

FCC Test Report

Application No.:	DNT2408230173R1158-02145
------------------	--------------------------

Applicant: Shenzhen DYscan Technology Co., Ltd

Address of Room 206 chuangkehui, Jinhetian Business Center, Longhuan 3

Applicant: Road, Longhua District, Shenzhen, 518109, China

EUT Description: Bar-code Scanner

Model No.: SM2806BG-2D-ZJ

FCC ID: 2A5LB-DYZN5R745

Power Supply: DC 3.7V From Battery; DC 5V From Adapter

Charging Voltage: DC 5V

Trade Mark: /

47 CFR FCC Part 2, Subpart J

Standards: 47 CFR Part 15, Subpart C

ANSI C63.10: 2020

Date of Receipt: 2024/9/8

Date of Test: 2024/9/9 to 2024/9/18

Date of Issue: 2024/9/19

Test Result: PASS

Prepared By: Wayne Jin (Testing Engineer)

Reviewed By: (Project Engineer)

Approved By: (Manager)

Note: If there is any objection to the results in this report, please submit a written inquiry to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp, and is issued by the company in accordance with the requirements of the "Conditions of Issuance of Test Reports" printed in the attached page. Unless otherwise stated, the results presented in this report only apply to the samples tested this time. Partial reproduction of this report is not allowed unless approved by the company in writing.

Date: September 19, 2024

Page: 2/66

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	1	Sep.19, 2024	Valid	Original Report

Date: September 19, 2024 Page: 3 / 66

1 Test Summary

1 Cot Gaillinary				
Test Item	Test Requirement	Test Method	Test Result	Result
Antenna Requirement	15.203/247(b)	<u> </u>	Clause 3.1	PASS
20dB Emission Bandwidth	15.247 (a)(1)	ANSI C63.10: 2020	Clause 3.2	PASS
Conducted Peak Output Power	15.247 (b)(1)	ANSI C63.10: 2020	Clause 3.3	PASS
Carrier Frequencies Separation	15.247 (a)(1)	ANSI C63.10: 2020	Clause 3.4	PASS
Dwell Time	15.247 (a)(1)	ANSI C63.10: 2020	Clause 3.5	PASS
Hopping Channel Number	15.247 (a)(1)	ANSI C63.10: 2020	Clause 3.6	PASS
Band-edge for RF Conducted Emissions	15.247(d)	ANSI C63.10: 2020	Clause 3.7	PASS
RF Conducted Spurious Emissions	15.247(d)	ANSI C63.10: 2020	Clause 3.8	PASS
Radiated Spurious	15.247(d);	ANSI C63.10: 2020	Clause 3.9	PASS
emissions	15.205/15.209	ANSI C03.10. 2020	Clause 3.9	FASS
Restricted bands around fundamental frequency (Radiated Emission)	15.247(d); 15.205/15.209	ANSI C63.10: 2020	Clause 3.10	PASS
AC Power Line Conducted Emission	15.207	ANSI C63.10: 2020	Clause 3.11	PASS

Note:

^{1. &}quot;N/A" denotes test is not applicable in this test report.

Date: September 19, 2024

Page: 4/66

Contents

1 Test S	Summary	3	
2 Gener	eral Information	5	
2.1	Test Location	5	
2.2	General Description of EUT	6	
2.3	Channel List	7	
2.4	Test Environment and Mode	8	
2.5	Power Setting of Test Software	9	
2.6	Description of Support Units	9	
2.7	Test Facility	9	
2.8	Measurement Uncertainty (95% confidence levels, k=2)	10	
2.9	Equipment List	11	
2.10	Assistant equipment used for test	12	
3 Test r	results and Measurement Data	13	
3.1	Antenna Requirement	13	
3.2	20dB Emission Bandwidth	14	
3.3	Conducted Output Power	15	
3.4	Carrier Frequencies Separationy	16	
3.5	Dwell Time	17	
3.6	Hopping Channel Number	18	
3.7	Band-edge for RF Conducted Emissions	19	
3.8	RF Conducted Spurious Emissions	20	
3.9	Radiated Spurious Emissions	21	
3.10	Restricted bands around fundamental frequency	29	
3.11	AC Power Line Conducted Emissions	33	
4 Apper	endix	36	
Apper	ndix A: 20dB Emission Bandwidth	36	
Appen	ndix B: Maximum conducted output power	40	
Apper	endix C: Carrier frequency separation	44	
Apper	ndix D: Dwell Time	46	
Appen	ndix F: Number of hopping channels	47	
Apper	Appendix F: Band edge measurements		
Appen	ndix F: Conducted Spurious Emission	53	

Report No.: DNT2408230173R1158-02145 Date: September 19, 2024 Page: 5 / 66

General Information

2.1 Test Location

Company:	Dongguan DN Testing Co., Ltd
Address:	No. 1, West Fourth Street, South Xinfa Road, Wusha Liwu, Chang ' an Town, Dongguan City, Guangdong P.R.China
Test engineer:	Wayne Lin

Date: September 19, 2024

Page: 6 / 66

2.2 General Description of EUT

Manufacturer:	Shenzhen DYscan Technology Co., Ltd			
Address of Manufacturer:	L306, Jinhetian Business Center, Longhuan 3 Road, Longhua District, Shenzhen, China			
Test EUT Description:	Bar-code Scanner			
Model No.:	SM2806BG-2D-ZJ			
Additional Model(s):	SM2806-2D-YXZJ,SM2806G-1D-ZJ,SM2806-2D-YX2m,SM2806BG-2D-ZJ, SM2806G-2D,SM2806-2D-USBZJ, B09TW7KB75, B09TW8YQM2, B0BF9M18KH, B0BLJDR2DC, B0C4H3MH26, B09TW7KB75,B0D5CTFSPV,SM2806BG-2D, VT6310G-1D, VT6310BG-1D, SU2806LG-1D-Y-HW,SU2806G-2D-Y-HW, SU2806BG-2D-Y-HW,S2806G,S2806BG,V2806G, V2806BG,2806BG-2D, 2806BG-1D, 2806G-2D,2806G-1D,2806G-LS,2806BG-LS, DS6100B,DS5100B, DSXXXXXX,DI9010, DI9120,DI9130,DI9160,DI9150,DI9180,DIXXXX, DS6510B, DS6520B,DS5600B, DS6600B,DS5900B			
Chip Type:	YC3020			
Serial number:	PR2408230173R1158			
Power Supply:	DC 3.7V From Battery; DC 5V From Adapter			
Charging Voltage:	DC 5V			
Trade Mark:				
Hardware Version:	V1.0			
Software Version:	V1.0			
Operation Frequency:	2402 MHz to 2480 MHz			
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)			
Type of Modulation:	GFSK,π/4-DQPSK,8DPSK			
Sample Type:	□ Portable Device, □ Module, □ Mobile Device			
Antenna Type:	Copper Antenna			
Antenna Ports:				
Antenna Gain*:	⊠ Provided by applicant			
Antenna Gain .	3dBi			
	⊠ Provided by applicant			
RF Cable*: 0.5dB(0.6~1GHz); 0.8dB(1.4~2GHz); 1.0dB(2.1~2.7GHz); 1.5dB(3~4GHz); 1.8dB(4.4~6GHz);				

Remark:

*All models are just color differences, motherboard, PCB circuit board, chip, electronic components, appearance is all the same.

*Since the above data and/or information is provided by the applicant relevant results or conclusions of this report are only made for these data and/or information , DNT is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.

Report No.: DNT2408230173R1158-02145 Date: September 19, 2024 Page: 7 / 66

2.3 Channel List

	Operation Frequency of each channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz), (

Remark:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

Date: September 19, 2024 Page: 8 / 66

2.4 5Test Environment and Mode

Operating Environment:			
Temperature:	20~25.0 °C		
Humidity:	45~56 % RH		
Atmospheric Pressure:	101.0~101.30 KPa		
Test mode:			
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.		

Date: September 19, 2024 Page: 9 / 66

2.5 Power Setting of Test Software

Software Name	fcc_test_tool		
Frequency(MHz)	2402	2441	2480
GFSK Setting	5	5	5
π/4-DQPSK Setting	5	5	5
8DPSK	5	5	5

2.6 Description of Support Units

The EUT has been tested independent unit.

2.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Lab A:

· FCC, USA

Designation Number: CN1348

• A2LA (Certificate No. 7050.01)

DONGGUAN DN TESTING CO., LTD. is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 7050.01.

• Innovation, Science and Economic Development Canada

DONGGUAN DN TESTING CO., LTD. EMC Laboratory has been recognized by ISED as an accredited testing laboratory. CAB identifier is CN0149.

IC#: 30755.

Date: September 19, 2024

Page: 10 / 66

2.8 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	20dB Emission Bandwidth	±0.0196%
2	Carrier Frequency Separation	±1.9%
3	Number of Hopping Channel	±1.9%
4	Time of Occupancy	±0.028%
5	Max Peak Conducted Output Power	±0.743 dB
6	Band-edge Spurious Emission	±1.328 dB
7	A	9KHz-1GHz:±0.746dB
	Conducted RF Spurious Emission	1GHz-26GHz:±1.328dB

No.	Item	Measurement Uncertainty
1	Conduction Emission	± 3.0dB (150kHz to 30MHz)
	0, 0, 0, 0,	± 4.8dB (Below 1GHz)
2	Dedicted Emission	± 4.8dB (1GHz to 6GHz)
2	Radiated Emission	± 4.5dB (6GHz to 18GHz)
		± 5.02dB (Above 18GHz)

Date: September 19, 2024

Page: 11 / 66

2.9 Equipment List

For Connect EUT Antenna Terminal Test										
Description	Manufacturer	Model	Serial Number	Cal date	Due date					
Signal Generator	Keysight	N5181A-6G	MY48180415	2023-10-25	2024-10-24					
Signal Generator	Keysight	N5182B	MY57300617	2023-10-25	2024-10-24					
Power supply	Keysight	E3640A	ZB2022656	2023-10-25	2024-10-24					
Radio Communication R&S Tester		CMW500	105082	2023-10-25	2024-10-24					
Spectrum Analyzer	Aglient	N9010A	MY52221458	2023-10-25	2024-10-24					
BT/WIFI Test Software	Tonscend	JS1120 V3.1.83	NA	NA	NA					
RF Control Unit	Tonscend	JS0806-2	22F8060581	NA	NA					
Power Sensor	Anritsu	ML2495A	2129005	2023-10-25	2024-10-24					
Pulse Power Sensor	Anritsu	MA2411B	1911397	2023-10-25	2024-10-24					
temperature and humidity box	SCOTEK	SCD-C40-80PRO	6866682020008	2023-10-25	2024-10-24					

	Test Equipment for Conducted Emission									
Description	Manufacturer	Model	Serial Number	Number Cal Date						
Receiver	R&S	ESCI3	101152	2023-10-24	2024-10-23					
LISN	R&S	ENV216	102874	2023-10-24	2024-10-23					
ISN	R&S	ENY81-CA6	1309.8590.03	2023-10-24	2024-10-23					

Test Ed	quipment for F	Radiated Emis	sion(30MHz	-1000MH	z)	
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date	
Receiver	R&S	ESR7	102497	2023-10-24	2024-10-23	
Test Software	ETS-LINDGREN	TiLE-FULL	NA	NA	NA	
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23	
Log periodic antenna	ETS-LINDGREN	VULB 9168	01475	2023-10-24	2024-10-23	
Pre-amplifier	Schwarzbeck	BBV9743B	00423	2023-10-24	2024-10-23	

Re

Report No.: DNT2408230173R1158-02145 Date: September 19, 2024 Page: 12 / 66

Test E	quipment for F	Radiated Emi	ssion(Above	1000MHz	<u>z</u>)
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Frequency analyser	Keysight	N9010A	MY52221458	2023-10-24	2024-10-23
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23
Horn Antenna	ETS-LINDGREN	3117	00252567	2023-10-24	2024-10-23
Double ridged waveguide antenna	ETS-LINDGREN	3116C	00251780	2023-10-24	2024-10-23
Test Software	ETS-LINDGREN	TiLE-FULL	NA	NA	NA
Pre-amplifier	ETS-LINDGREN	3117-PA	252567	2023-10-24	2024-10-23
Pre-amplifier	ETS-LINDGREN	3116C-PA	251780	2023-10-24	2024-10-23

2.10 Assistant equipment used for test

Code	Equipment	Manufacturer	Model No.	Equipment No.
1	Computer	acer	N22C8	EMC notebook01
2	Adapter	HUAWEI	HW-100225C00	NA

Report No.: DNT2408230173R1158-02145 Date: September 19, 2024 Page: 13 / 66

3 Test results and Measurement Data

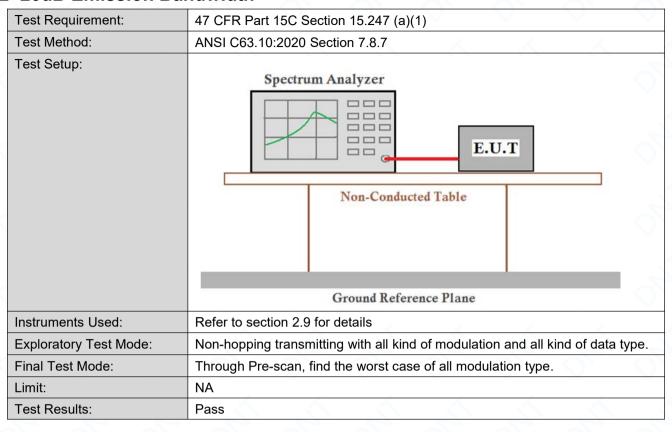
3.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

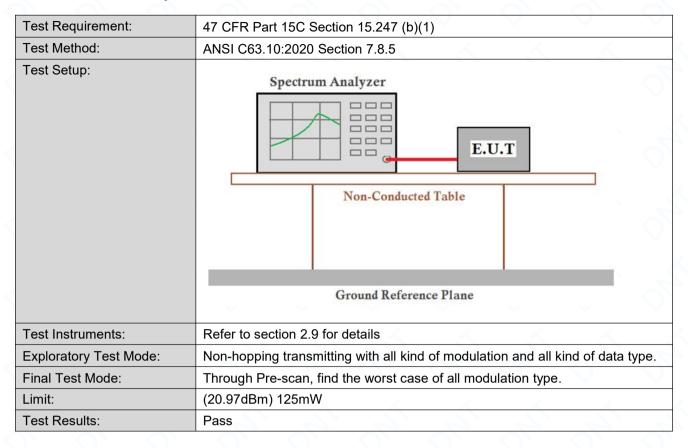
15.247(b) (4) requirement:


The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 3dBi.

Report No.: DNT2408230173R1158-02145 Date: September 19, 2024 Page: 14 / 66

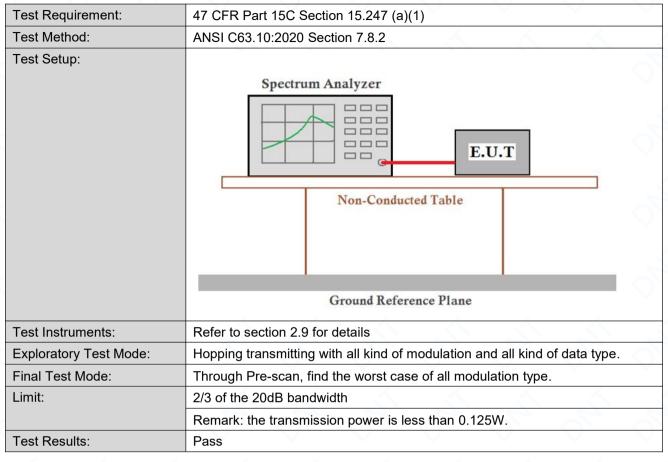
3.2 20dB Emission Bandwidth


The detailed test data see: Appendix A

Date: September 19, 2024

Page: 15 / 66

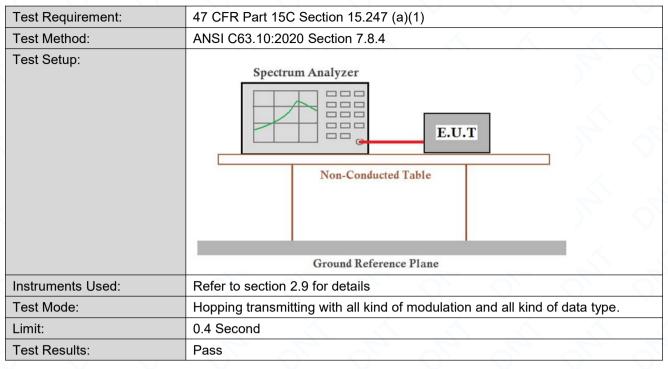
3.3 Conducted Output Power



The detailed test data see: Appendix B

Report No.: DNT2408230173R1158-02145 Date: September 19, 2024 Page: 16 / 66

3.4 Carrier Frequencies Separationy



The detailed test data see: Appendix C

Report No.: DNT2408230173R1158-02145 Date: September 19, 2024 Page: 17 / 66

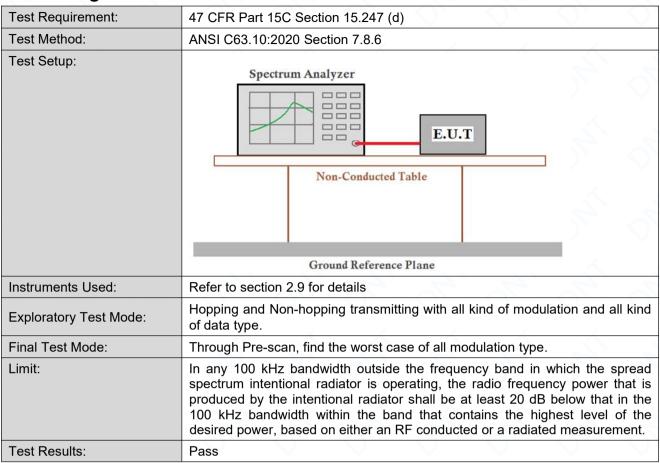
3.5 Dwell Time

The detailed test data see: Appendix D

Date: September 19, 2024

Page: 18 / 66

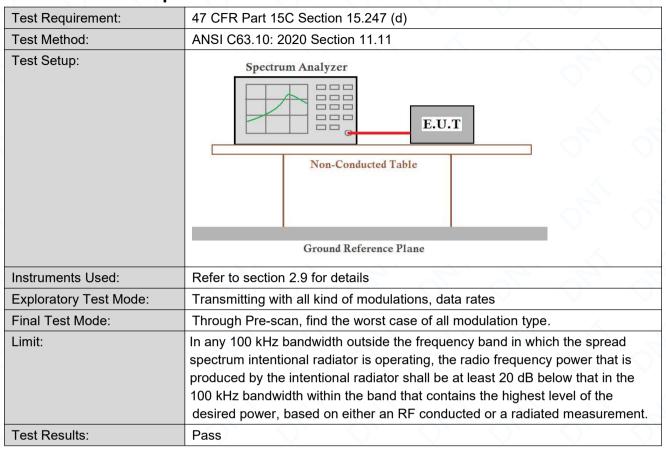
3.6 Hopping Channel Number


Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)	O ,	
Test Method:	ANSI C63.10:2020 Section 7.8.3		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table		
	Ground Reference Plane		•
Instruments Used:	Refer to section 2.9 for details		
Test Mode:	Hopping transmitting with all kind of modulation	V	
Limit:	At least 15 channels		
Test Results:	Pass		

The detailed test data see: Appendix E

Report No.: DNT2408230173R1158-02145 Date: September 19, 2024 Page: 19 / 66

3.7 Band-edge for RF Conducted Emissions



The detailed test data see: Appendix F

port No.: DNT2408230173R1158-02145 Date: September 19, 2024 Page: 20 / 66

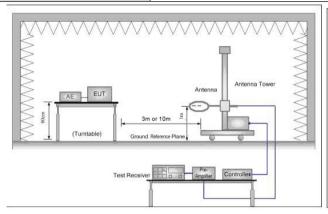
3.8 RF Conducted Spurious Emissions

The detailed test data see: Appendix G

Date: September 19, 2024

Page: 21 / 66

3.9 Radiated Spurious Emissions


Test Requirement:	47 CFR Part 15C Section	n 15.209 and 15.20	05		~
Test Method:	ANSI C63.10: 2020 Sect	ion 11.12			Α
Test Site:	Measurement Distance:	3m or 10m (Semi-	Anechoic Ch	amber)	
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
		Peak	1MHz	3MHz	Peak
	9, 6,	Peak	1MHz	10Hz	Average
	Above 1GHz), (),		(DC≥0.98)	\Diamond , \Diamond ,
	, ,	, ,		≥1/T	/
				(DC<0.98)	
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	- /	-<	300
	0.490MHz-1.705MHz	24000/F(kHz)		(-2)	30
	1.705MHz-30MHz	30	<u>_</u>	<u> </u>	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3
	Remark: 15.35(b),Unless emissions is 20dB above applicable to the equipm emission level radiated b	e the maximum per ent under test. This	mitted avera	ge emission lin	nit

Date: September 19, 2024

Page: 22

/ 66

Test Setup:

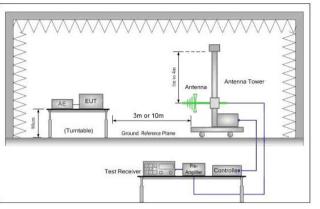


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel ,the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for

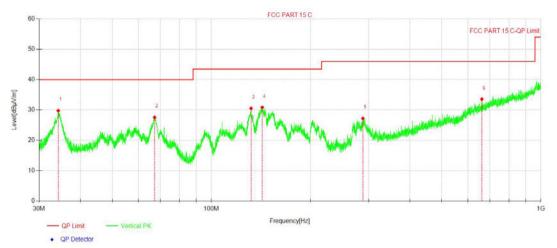
Dongguan DN Testing Co., Ltd.

Date: September 19, 2024

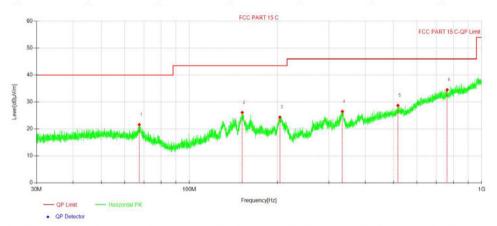
Page: 23

/ 66

	Transmitting mode, And found the X axis positioning which it is worse case. j. Repeat above procedures until all frequencies measured was complete.
Test Configuration:	 Measurements Below 1000MHz RBW = 120 kHz VBW = 300 kHz Detector = Peak Trace mode = max hold Peak Measurements Above 1000 MHz RBW = 1 MHz VBW ≥ 3 MHz Detector = Peak Sweep time = auto Trace mode = max hold Average Measurements Above 1000MHz RBW = 1 MHz VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates. Charge+Transmitting mode.
Final Test Mode:	Pretest the EUT at Transmitting mode. Through Pre-scan, find the DH5 of data type is the worst case of All modulation type.
Instruments Used:	Refer to section 2.9 for details
Test Results:	Pass



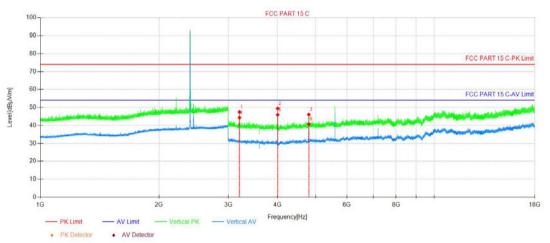
Date: September 19, 2024

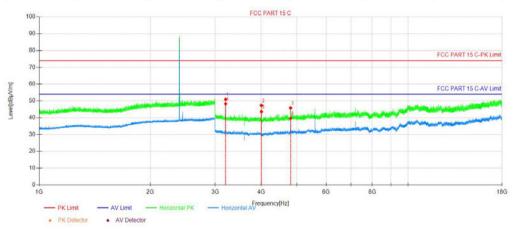

Page: 24 / 66

Test data

For 30-1000MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/ m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	34.30	39.14	-9.38	29.76	40.00	10.24	100	40	QP	Vertical
2	67.24	37.21	-9.64	27.57	40.00	12.43	100	337	QP	Vertical
3	131.98	39.79	-9.25	30.54	43.50	12.96	100	0	QP	Vertical
4	142.72	39.16	-8.30	30.86	43.50	12.64	100	309	QP	Vertical
5	288.29	34.47	-7.28	27.19	46.00	18.81	100	299	QP	Vertical
6	662.07	31.96	1.61	33.57	46.00	12.43	100	281	QP	Vertical

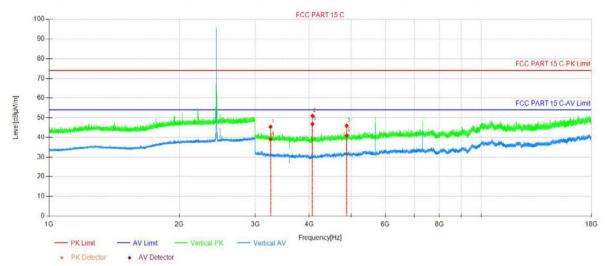

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	67.41	31.24	-9.66	21.58	40.00	18.42	100	7	QP	Horizontal
2	151.65	33.91	-7.82	26.09	43.50	17.41	100	169	QP	Horizontal
3	204.02	35.40	-11.06	24.34	43.50	19.16	100	255	QP	Horizontal
4	333.80	32.44	-5.93	26.51	46.00	19.49	100	0	QP	Horizontal
5	517.24	30.02	-1.31	28.71	46.00	17.29	100	150	QP	Horizontal
6	762.57	30.93	3.62	34.55	46.00	11.45	100	140	QP	Horizontal

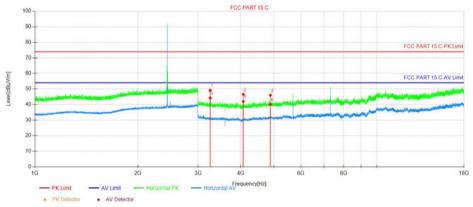

Date: September 19, 2024

Page: 25 / 66

For above 1GHz DH5 2402MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Heigh t [cm]	Angle [°]	Remark	Polarity
1	3202.51	54.65	-7.18	47.47	74.00	26.53	150	316	Peak	Vertical
2	4003.55	55.56	-6.15	49.41	74.00	24.59	150	227	Peak	Vertical
3	4803.84	50.67	-4.61	46.06	74.00	27.94	150	227	Peak	Vertical
4	3203.26	51.50	-7.18	44.32	54.00	9.68	150	316	AV	Vertical
5	4004.30	52.07	-6.15	45.92	54.00	8.08	150	242	AV	Vertical
6	4804.59	45.41	-4.61	40.80	54.00	13.20	150	227	AV	Vertical

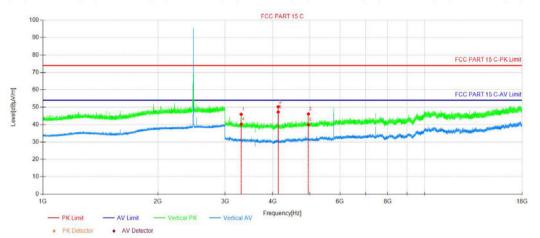

	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
Ī	1	3202.51	58.09	-7.18	50.91	74.00	23.09	150	345	Peak	Horizon
	2	4002.80	53.46	-6.15	47.31	74.00	26.69	150	220	Peak	Horizon
	3	4803.84	50.42	-4.61	45.81	74.00	28.19	150	249	Peak	Horizon
	4	3203.26	55.44	-7.18	48.26	54.00	5.74	150	220	AV	Horizon
	5	4004.30	49.73	-6.15	43.58	54.00	10.42	150	4	AV	Horizon
	6	4804.59	44.28	-4.61	39.67	54.00	14.33	150	249	AV	Horizon

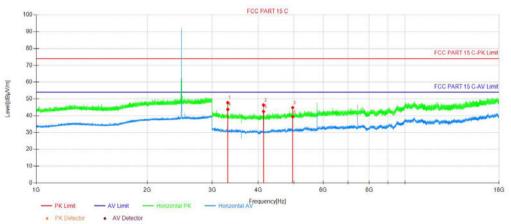

Date: September 19, 2024

Page: 26 / 66

DH5 2441MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	3255.01	52.63	-7.26	45.37	74.00	28.63	150	173	Peak	Vertical
2	4068.05	57.08	-6.16	50.92	74.00	23.08	150	230	Peak	Vertical
3	4882.59	50.65	-4.72	45.93	74.00	28.07	150	230	Peak	Vertical
4	3255.76	46.29	-7.26	39.03	54.00	14.97	150	331	AV	Vertical
5	4068.80	52.89	-6.16	46.73	54.00	7.27	150	230	AV	Vertical
6	4882.59	45.72	-4.72	41.00	54.00	13.00	150	230	AV	Vertical


	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
	1	3255.01	56.34	-7.26	49.08	74.00	24.92	150	357	Peak	Horizon
	2	4068.80	52.74	-6.16	46.58	74.00	27.42	150	107	Peak	Horizon
\	3	4882.59	50.73	-4.72	46.01	74.00	27.99	150	122	Peak	Horizon
	4	3255.76	51.45	-7.26	44.19	54.00	9.81	150	342	AV	Horizon
	5	4068.80	48.15	-6.16	41.99	54.00	12.01	150	222	AV	Horizon
	6	4882.59	44.81	-4.72	40.09	54.00	13.91	150	122	AV	Horizon


Date: September 19, 2024

Page: 27 / 66

DH5 2480MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	3306.76	53.19	-7.29	45.90	74.00	28.10	150	227	Peak	Vertical
2	4133.30	56.41	-6.16	50.25	74.00	23.75	150	227	Peak	Vertical
3	4959.84	50.95	-4.86	46.09	74.00	27.91	150	227	Peak	Vertical
4	3307.51	47.55	-7.29	40.26	54.00	13.74	150	227	AV	Vertical
5	4134.05	53.36	-6.16	47.20	54.00	6.80	150	227	AV	Vertical
6	4960.59	44.84	-4.86	39.98	54.00	14.02	150	227	AV	Vertical

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	3306.76	55.04	-7.29	47.75	74.00	26.25	150	0	Peak	Horizon
2	4133.30	52.55	-6.16	46.39	74.00	27.61	150	213	Peak	Horizon
3	4959.84	49.68	-4.86	44.82	74.00	29.18	150	128	Peak	Horizon
4	3307.51	51.01	-7.29	43.72	54.00	10.28	150	356	AV	Horizon
5	4134.05	48.68	-6.16	42.52	54.00	11.48	150	213	AV	Horizon
6	4960.59	44.20	-4.86	39.34	54.00	14.66	150	128	AV	Horizon

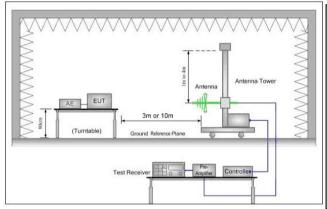
Date: September 19, 2024 Page: 28 / 66

Note:

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)

- 2. The amplitude of 9KHz to 30MHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.
- 3. The amplitude of 18GHz to 25GHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be report.
- 4. All channels had been pre-test, DH5 is the worst case, only the worst case was reported.


Report No.: DNT2408230173R1158-02145 Date: Se

Date: September 19, 2024

Page: 29 / 66

3.10 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 1	47 CFR Part 15C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 2020 Section	NSI C63.10: 2020 Section 11.12							
Test Site:	Measurement Distance: 3m	easurement Distance: 3m or 10m (Semi-Anechoic Chamber)							
Limit:	Frequency	Limit (dBuV/m)	Remark						
	30MHz-88MHz	40.0	Quasi-peak						
	88MHz-216MHz	43.5	Quasi-peak						
	216MHz-960MHz	46.0	Quasi-peak						
	960MHz-1GHz	54.0	Quasi-peak						
	Ab 21/2 401 b	54.0	Average Value						
	Above 1GHz	74.0	Peak Value						
Test Setup:			0, 0,						

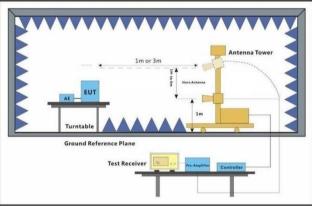


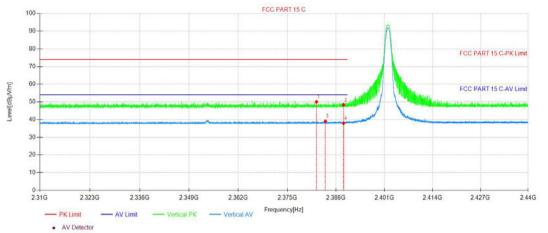
Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

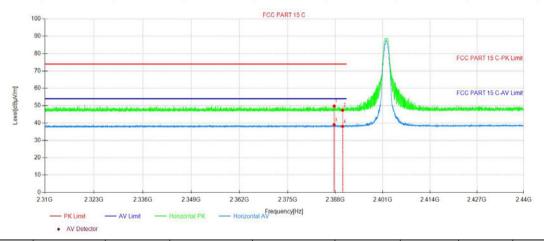
Test Procedure:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
- h. Test the EUT in the lowest channel, the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

Test Configuration:


Measurements Below 1000MHz

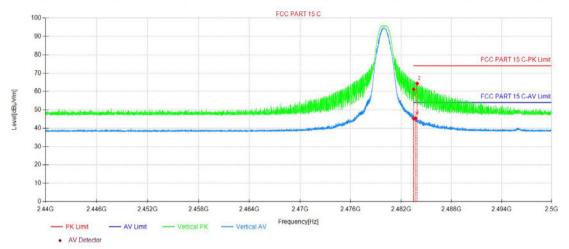
Report No.: DNT	72408230173R1158-02145 Date: September 19, 2024 Page: 30 /
	• RBW = 120 kHz
	• VBW = 300 kHz
	Detector = Peak
	Trace mode = max hold
	Peak Measurements Above 1000 MHz
	• RBW = 1 MHz
	• VBW ≥ 3 MHz
	Detector = Peak
	Sweep time = auto
	Trace mode = max hold
	Average Measurements Above 1000MHz
	• RBW = 1 MHz
	VBW = 10 Hz, when duty cycle is no less than 98 percent.
	 VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum
	transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates. Transmitting mode.
Final Test Mode:	Pretest the EUT Transmitting mode.
	Through Pre-scan, find the DH5 of data type is the worst case of all modulation
	type.
	Only the worst case is recorded in the report.
Instruments Used:	Refer to section 2.9 for details
Test Results:	Pass

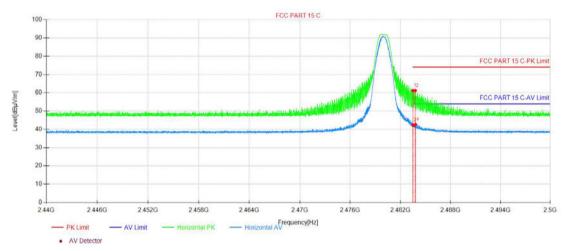


Date: September 19, 2024 Page: 31 / 66

Test Date DH5 2402MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBμV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2382.78	50.89	-0.83	50.06	74.00	23.94	150	239	Peak	Vertical
2	2390.01	49.18	-0.80	48.38	74.00	25.62	150	167	Peak	Vertical
3	2385.17	39.81	-0.81	39.00	54.00	15.00	150	8	AV	Vertical
4	2390.01	38.78	-0.80	37.98	54.00	16.02	150	239	AV	Vertical


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2387.70	50.51	-0.80	49.71	74.00	24.29	150	185	Peak	Horizon
2	2390.01	48.16	-0.80	47.36	74.00	26.64	150	227	Peak	Horizon
3	2387.68	39.75	-0.80	38.95	54.00	15.05	150	344	AV	Horizon
4	2390.01	38.89	-0.80	38.09	54.00	15.91	150	194	AV	Horizon


Date: September 19, 2024

Page: 32 / 66

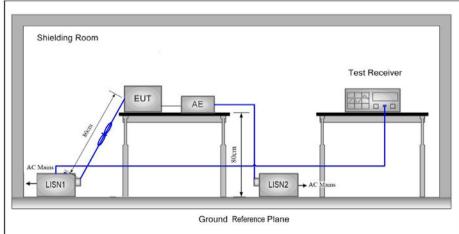
DH5 2480MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2483.51	61.43	-0.29	61.14	74.00	12.86	150	245	Peak	Vertical
2	2483.91	64.65	-0.28	64.37	74.00	9.63	150	219	Peak	Vertical
3	2483.51	45.38	-0.29	45.09	54.00	8.91	150	210	AV	Vertical
4	2483.73	45.74	-0.29	45.45	54.00	8.55	150	219	AV	Vertical

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2483.50	61.47	-0.29	61.18	74.00	12.82	150	318	Peak	Horizon
2	2483.78	61.47	-0.28	61.19	74.00	12.81	150	309	Peak	Horizon
3	2483.50	42.62	-0.29	42.33	54.00	11.67	150	300	AV	Horizon
4	2483.82	42.91	-0.28	42.63	54.00	11.37	150	300	AV	Horizon

Note:

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:


Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.

2.All channels had been pre-test, DH5 is the worst case, only the worst case was reported.

Date: September 19, 2024 Page: 33 / 66

3.11 AC Power Line Conducted Emissions

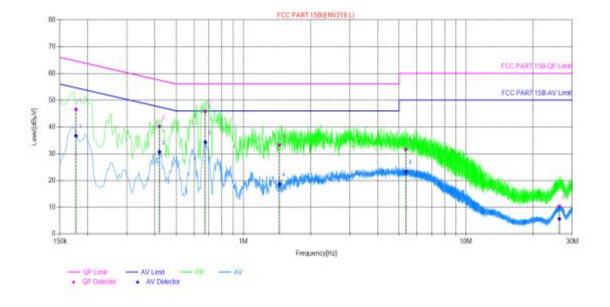
Test Requirement:	47 CFR Part 15C Section 1	5.207	<u> </u>			
Test Method:	ANSI C63.10: 2020					
Test Frequency Range:	150kHz to 30MHz					
Limit:	[Limit (dBuV)				
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logari	thm of the frequency.				
Test Setup:	2) The EUT was connected Impedance Stabilization New impedance. The power cabe a second LISN 2, which was plane in the same way as the multiple socket outlet strip was ingle LISN provided the read 3) The tabletop EUT was pure ground reference plane. An placed on the horizontal ground of the EUT shall be 0.4 m for vertical ground reference preference plane. The LISN unit under test and bonded mounted on top of the ground between the closest points the EUT and associated equipment and all of the interval of	etwork) which provides a 5 bles of all other units of the is bonded to the ground rehe LISN 1 for the unit being was used to connect multiply ting of the LISN was not eplaced upon a non-metallicular for floor-standing arrangound reference plane, with a vertical ground referent was bonded to the hour than the vertical ground reference plane, and reference plane. This do of the LISN 1 and the EUT unipment was at least 0.8 mm emission, the relative poterface cables must be characteristics.	OΩ/50μH + 5Ω linear EUT were connected to ference g measured. A ole power cables to a exceeded. It table 0.8m above the gement, the EUT was berence plane. The rear ference plane. The orizontal ground the boundary of the ne for LISNs distance was T. All other units of the form the LISN 2. ositions of			

Exploratory Test Mode:

Transmitting with all kind of modulations, data rates at lowest, middle and highest channel.

Charge + Transmitting mode.

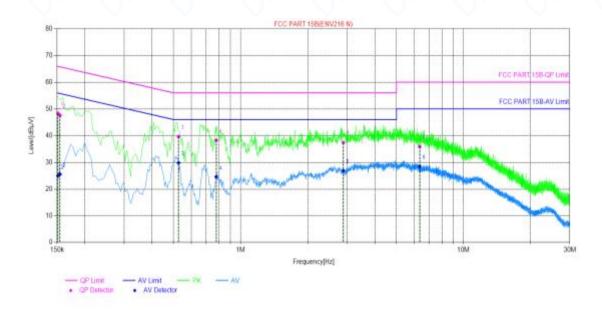
Dongguan DN Testing Co., Ltd.


Report No.: DNT2408230173R1158-02145 Date: September 19, 2024 Page: 34 / 66

Final Test Mode:	Through Pre-scan, find the the worst case.
Instruments Used:	Refer to section 2.9 for details
Test Results:	PASS

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.


Live Line:

Final Data List									
NO.	Freq. [MHz]	Factor [dB]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Value (dBµV)	AV Limit [dBµV]	AV Margin [dB]	Verdict
1	0.1768	9.91	46.57	64.63	18.06	36.71	54.63	17.92	PASS
2	0.4198	9.79	40.19	57.45	17.26	30.63	47.45	16.82	PASS
3	0.6736	9.78	45.88	56.00	10.12	34.27	46.00	11.73	PASS
4	1.4508	9.73	33.26	56.00	22.74	18.62	46.00	27.38	PASS
5	5.3671	9.81	31.68	60.00	28.32	23.31	50.00	26.69	PASS
6	26.2359	10.23	10.31	60.00	49.69	5.67	50.00	44.33	PASS

Date: September 19, 2024 Page: 35 / 66

Neutral Line:

٠		
۰	٠	
۰	٠	

Final Data List									
NO.	Freq. [MHz]	Factor [dB]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict
1	0.1514	9.79	48.28	65.92	17.64	24.94	55.92	30.98	PASS
2	0.1545	9.80	47.56	65.75	18.19	25.53	55.75	30.22	PASS
3	0.5265	9.73	39.62	56.00	16.38	29.81	46.00	16.19	PASS
4	0.7770	9.81	38.27	56.00	17.73	24.54	46.00	21.46	PASS
5	2.8890	9.86	37.37	56.00	18.63	26.87	46.00	19.13	PASS
6	6.3582	9.98	35.88	60.00	24.12	28.47	50.00	21.53	PASS

emark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including LISN Factor and the Cable Factor etc.), The basic equation is as follows:

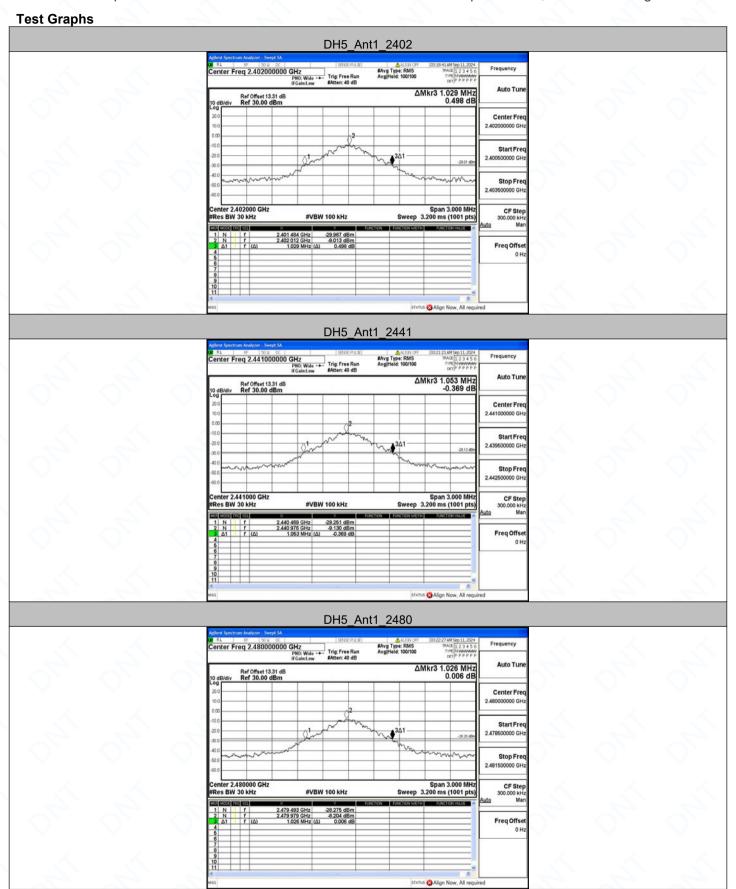
Result Level= Reading Level + Correct Factor(including LISN Factor, Cable Factor etc

R

Report No.: DNT2408230173R1158-02145 Date: September 19, 2024 Page: 36 / 66

4 Appendix

Appendix A: 20dB Emission Bandwidth


Test Result

. oot i toouit							
Test Mode	Antenna	Freq(MHz)	20dB EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	1.029	2401.484	2402.513		
DH5	Ant1	2441	1.053	2440.469	2441.522		
		2480	1.026	2479.493	2480.519		
		2402	1.344	2401.337	2402.681	-4-	\
2DH5	Ant1	2441	1.362	2440.328	2441.690		
		2480	1.341	2479.340	2480.681		
		2402	1.347	2401.325	2402.672		
3DH5	Ant1	2441	1.332	2440.334	2441.666		
		2480	1.326	2479.346	2480.672		

Date: September 19, 2024

Page: 37 / 66

Report No.: DNT2408230173R1158-02145 Page: 38 / 66 Date: September 19, 2024 2DH5_Ant1_2402 Rt F 50 9 DC |
enter Freq 2.402000000 GHz | PRO: Wide | Aften: 40 dB |
Aften: 40 dB | #Avg Type: RMS AvaiHold: 100/100 Auto Tun ΔMkr3 1.344 MHz 0.037 dB Ref Offset 13.31 dB Ref 30.00 dBm Center Fre Start Free enter 2.402000 GHz tes BW 30 kHz Freq Offse 2DH5 Ant1 2441 #Avg Type: RMS Avg|Hold: 100/100 Center Free Start Fre CF Step 300,000 kH Ma Span 3.000 MHz Sweep 3.200 ms (1001 pts) 2.440 328 GHz 2.441 012 GHz 1.362 MHz (A) STATUS Align Now, All requ 2DH5_Ant1_2480 enter Freq 2.480000000 GHz

FRO: Wide --If Gallet law

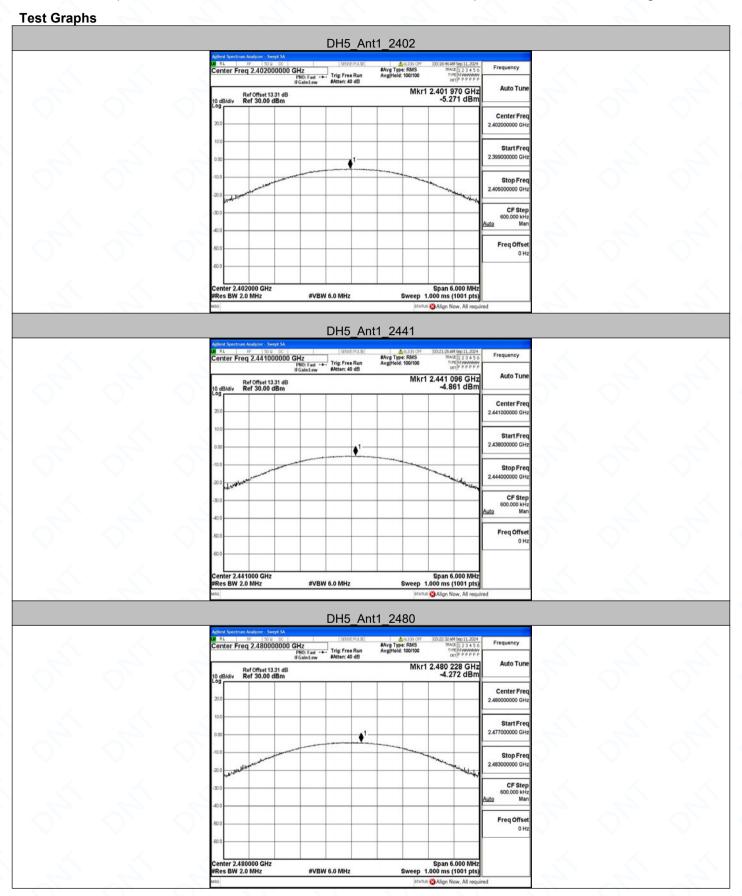
#Atten: 40 dB #Avg Type: RMS Avg|Hold: 100/100 Frequency ΔMkr3 1.341 MHz -0.227 dB Center Fre Stop Free 2.481500000 GH CF Step 300,000 kH Freq Offse

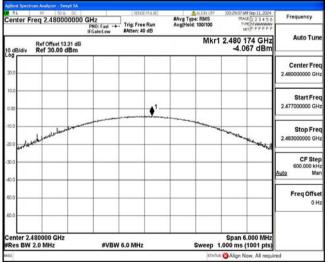
Report No.: DNT2408230173R1158-02145 Page: 39 / 66 Date: September 19, 2024 3DH5_Ant1_2402 Rt F 50 9 DC |
enter Freq 2.402000000 GHz | PRO: Wide | Aften: 40 dB |
Aften: 40 dB | #Avg Type: RMS AvaiHold: 100/100 Auto Tun ΔMkr3 1.347 MHz -0.018 dB Ref Offset 13.31 dB Ref 30.00 dBm Center Fre Start Free enter 2.402000 GHz tes BW 30 kHz Freq Offse 3DH5 Ant1 2441 AL RF SOR DC | enter Freq 2.441000000 GHz PNO: IFGal #Avg Type: RMS Avg|Hold: 100/100 Center Free Start Fre CF Step 300,000 kH Ma Span 3.000 MHz Sweep 3.200 ms (1001 pts) 2.440 334 GHz 2.440 991 GHz 1.332 MHz (Δ) STATUS Align Now, All requ 3DH5_Ant1_2480 #Avg Type: RMS Avg|Hold: 100/100 Center Fre Stop Free CF Step 300,000 kH Freq Offse

Report No.: DNT2408230173R1158-02145 Date: September 19, 2024 Page: 40 / 66

Appendix B: Maximum conducted output power

Test Result


TOOLITOOUIL						
Test Mode	Antenna	Freq(MHz)	Conducted Peak Powert[dBm]	Conducted Limit[dBm]	Verdict	
	Ant1	2402	-5.27	≤30	PASS	
DH5		2441	-4.86	≤20.97	PASS	
		2480	-4.27	≤20.97	PASS	
	Ant1	2402	-4.63	≤20.97	PASS	
2DH5		2441	-4.42	≤20.97	PASS	
		2480	-4.07	≤20.97	PASS	
	Ant1		2402	-4.75	≤20.97	PASS
3DH5		2441	-4.89	≤20.97	PASS	
		2480	-4.41	≤20.97	PASS	


Report No.: DNT2408230173R1158-02145 Da

Date: September 19, 2024

Page: 41 / 66

Report No.: DNT2408230173R1158-02145 Date: September 19, 2024 Page: 42 / 66 2DH5_Ant1_2402 enter Freq 2.402000000 GHz
| Free Run
| Free Run #Avg Type: RMS AvaiHold: 100/100 Auto Tun Mkr1 2.402 270 GHz -4.629 dBm Ref Offset 13.31 dB Ref 30.00 dBm Center Fre Start Free Freq Offse enter 2.402000 GHz tes BW 2.0 MHz Span 6.000 MHz Sweep 1.000 ms (1001 pts) #VBW 6.0 MHz 2DH5 Ant1 2441 At FF S0 9 DC | enter Freq 2.441000000 GHz PNO IFG# #Avg Type: RMS Avg|Hold: 100/100 Mkr1 2.441 264 GHz -4.419 dBm Center Free Start Free CF Step 600.000 kH Ma Freq Offse enter 2.441000 GHz Res BW 2.0 MHz Span 6.000 MHz Sweep 1.000 ms (1001 pts) #VBW 6.0 MHz 2DH5_Ant1_2480 #Avg Type: RMS Avg|Hold: 100/100 Frequency

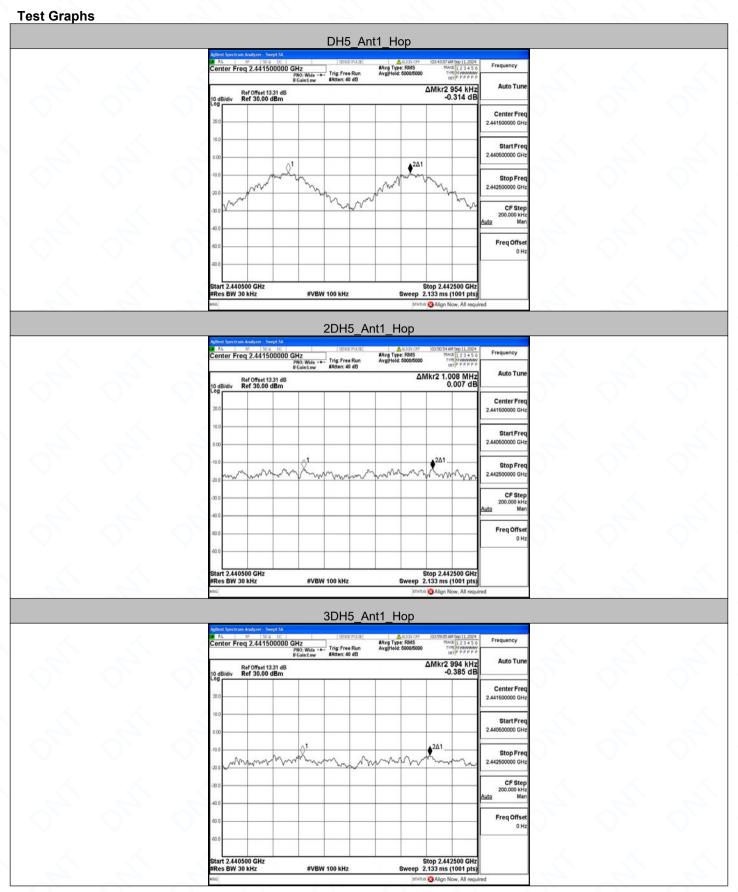
Report No.: DNT2408230173R1158-02145 Page: 43 / 66 Date: September 19, 2024 3DH5_Ant1_2402 enter Freq 2.402000000 GHz
| Free Run
| Free Run #Avg Type: RMS AvaiHold: 100/100 Auto Tun Mkr1 2.402 186 GHz -4.745 dBm Ref Offset 13.31 dB Ref 30.00 dBm Center Fre Start Free Freq Offse enter 2.402000 GHz tes BW 2.0 MHz Span 6.000 MHz Sweep 1.000 ms (1001 pts) #VBW 6.0 MHz 3DH5 Ant1 2441 At FF S0 9 DC | enter Freq 2.441000000 GHz PNO IFG# #Avg Type: RMS Avg|Hold: 100/100 Mkr1 2.441 198 GHz -4.888 dBm Center Free Start Free Freq Offse Span 6.000 MHz Sweep 1.000 ms (1001 pts) enter 2.441000 GHz Res BW 2.0 MHz #VBW 6.0 MHz 3DH5_Ant1_2480 #Avg Type: RMS Avg|Hold: 100/100 Frequency Mkr1 2.479 778 GHz -4.411 dBm Center Fre Start Free 2.477000000 GH: 1 Hadaret Hadrian Stop Free CF Step 600.000 kH Mai

#VBW 6.0 MHz

enter 2.480000 GHz tes BW 2.0 MHz Freq Offse

Span 6.000 MHz Sweep 1.000 ms (1001 pts)

Report No.: DNT2408230173R1158-02145 Date: September 19, 2024 Page: 44 / 66


Appendix C: Carrier frequency separation

Test Result

Test Mode	Antenna	Freq(MHz)	Result[MHz]	Limit[MHz]	Verdict
DH5	Ant1	Нор	0.954	≥0.702	PASS
2DH5	Ant1	Нор	1.008	≥0.908	PASS
3DH5	Ant1	Нор	0.994	≥0.898	PASS

Report No.: DNT2408230173R1158-02145 Date: September 19, 2024 Page: 45 / 66

