

TM-2309000356P TMWK2309003418KR FCC ID: Z3K-EVOLVESLS10 IC: 9930A-EVOLVESLS10

Page: 1 / 78 Rev.: 01

RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-247

Test Standard	FCC Part 15.247 IC RSS-247 issue 3 and IC RSS-GEN issue 5
Product name	Evolve SLS 10 Monitor
Brand Name	JET OPTOELECTRONICS CO., LTD.
Model No.	620105
Test Result	Pass
Statements of Conformity	Determination of compliance is based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc.(Wugu Laboratory)

Approved by:

long

Dally Hong Sr. Engineer

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instruction, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City , Taiwan /新北市五股區五工六路 11 號 t:(886-2) 2299-9720 f:(886-2) 2299-9721 www.sgs.com.tw

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	February 16, 2024	Initial Issue	ALL	Peggy Tsai
01	February 27, 2024	See the following Note Rev. (01)	P.1, 10	Peggy Tsai

Rev. (01):

1. Modify IC Test Standard.

2. Modify Test Methodology and Applied Standards in section 1.9.

Page: 3 / 78 Rev.: 01

Table of contents

1.	GENERAL INFORMATION	. 4
1.1	EUT INFORMATION	. 4
	INFORMATION ABOUT THE FHSS CHARACTERISTICS	
	EUT CHANNEL INFORMATION	
	ANTENNA INFORMATION	-
	MEASUREMENT UNCERTAINTY	
	FACILITIES AND TEST LOCATION	
	INSTRUMENT CALIBRATION	
	SUPPORT AND EUT ACCESSORIES EQUIPMENT	
	TEST METHODOLOGY AND APPLIED STANDARDS	
	TEST SUMMERY	
	DESCRIPTION OF TEST MODES	
	THE WORST MODE OF OPERATING CONDITION	
	THE WORST MODE OF MEASUREMENT	
	EUT DUTY CYCLE	
	TEST RESULT	
4.1	AC POWER LINE CONDUCTED EMISSION	17
	20DB BANDWIDTH AND OCCUPIED BANDWIDTH (99%)	
4.3	OUTPUT POWER MEASUREMENT	25
4.4	FREQUENCY SEPARATION	28
4.5	NUMBER OF HOPPING	32
	CONDUCTED BANDEDGE AND SPURIOUS EMISSION	
4.7	TIME OF OCCUPANCY (DWELL TIME)	39
4.8	RADIATION BANDEDGE AND SPURIOUS EMISSION	44
AP	PENDIX 1 - PHOTOGRAPHS OF EUT	

1. GENERAL INFORMATION

1.1 EUT INFORMATION

	JET OPTOELECTRONICS CO.,LTD.
	(FCC) 7F-2, No. 300, Yangguang St., Neihu Dist., Taipei City
Applicant	11491,Taiwan
	(IC) 3F., No. 300, Yangguang St., Neihu Dist., Taipei City
	11491,Taiwan
	JET OPTOELECTRONICS CO.,LTD.
	(FCC) 7F-2, No. 300, Yangguang St., Neihu Dist., Taipei City
Manufacturer	11491,Taiwan
	(IC) 3F., No. 300, Yangguang St., Neihu Dist., Taipei City
	11491,Taiwan
Equipment	Evolve SLS 10 Monitor
Madal Nama	000405
Model Name	620105
Model Discrepancy	N/A
Brand Name	JET OPTOELECTRONICS CO., LTD.
Received Date	September 21, 2023
Date of Test	October 3 ~ 12, 2023
Power Supply	Powered from Car Battery (DC 12V)
HW Version	20230607 D01
SW Version	MAINLINE-115 MCU version V1.2.16
Serial number	H230811M5000020
Pomark:	·

Remark:

1. For more details, please refer to the User's manual of the EUT.

2. Disclaimer: Antenna information is provided by the applicant, test results of this report are applicable to the sample EUT received.

1.2 INFORMATION ABOUT THE FHSS CHARACTERISTICS

1.2.1 Pseudorandom Frequency Hopping Sequence

The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; the phase in the hopping sequence is determined by the Bluetooth clock of the master. The channel is divided into time slots where each slot corresponds to an RF hop frequency. Consecutive hops correspond to different RF hop frequencies. The nominal hop rate is 1 600 hops/s.

1.2.2 Equal Hopping Frequency Use

The channels of this system will be used equally over the long-term distribution of the hopsets.

1.2.3 Example of a 79 hopping sequence in data mode:

02, 05, 31, 24, 20, 10, 43, 36, 30, 23, 40, 06, 21, 50, 44, 09, 71, 78, 01, 13, 73, 07, 70, 72, 35, 62, 42, 11, 41, 08, 16, 29, 60, 15, 34, 61, 58, 04, 67, 12, 22, 53, 57, 18, 27, 76, 39, 32, 17, 77, 52, 33, 56, 46, 37, 47, 64, 49, 45, 38, 69, 14, 51, 26, 79, 19, 28, 65, 75, 54, 48, 03, 25, 66, 05, 16, 68, 74, 59, 63, 55

1.2.4 System Receiver Input Bandwidth

Each channel bandwidth is 1MHz.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

1.2.5 Equipment Description

15.247(a)(1) that the Rx input bandwidths shift frequencies in synchronization with the transmitted signals.

15.247(g): In accordance with the Bluetooth Industry Standard, the system is designed to comply with all of the regulations in Section 15.247 when the transmitter is presented with a continuous data (or information) system.

15.247(h): In accordance with the Bluetooth Industry Standard, the system does not coordinate it channels selection/ hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

RSS-247, 5.1 (a): The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

1.3 EUT CHANNEL INFORMATION

Frequency Range	2402MHz-2480MHz
Modulation Type	 GFSK for BDR-1Mbps π/4-DQPSK for EDR-2Mbps 8DPSK for EDR-3Mbps
Number of channel	79 Channels

Remark:

Refer as ANSI C63.10: 2013 clause 5.6.1 Table 4 and RSS-GEN Table 1 for test channels

Number of frequencies to be tested

Frequency range in which device operates	Number of frequencies	Location in frequency range of operation
1 MHz or less	1	Middle
1 MHz to 10 MHz	2	1 near top and 1 near bottom
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom

1.4 ANTENNA INFORMATION

Antenna Type	PIFA DPCB Dipole Coils		
Antenna Gain	Gain: 2.7 dBi		
Antenna connector	N/A		

Notes:

1. The antenna(s) of the EUT are permanently attached and there are no provisions for connection to an external antenna. So the EUT complies with the requirements of §15.203 and RSS-GEN 6.8.

Page: 7 / 78 Rev.: 01

1.5 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	± 2.213 dB
Channel Bandwidth	± 2.7 %
RF output power (Power Meter + Power sensor)	± 0.243 dB
Power Spectral density	± 2.739 dB
Conducted Bandedge	± 2.739 dB
Conducted Spurious Emission	± 2.742 dB
Radiated Emission_9kHz-30MHz	± 3.115 dB
Radiated Emission_30MHz-200MHz	± 4.071 dB
Radiated Emission_200MHz-1GHz	± 4.419 dB
Radiated Emission_1GHz-6GHz	± 5.023 dB
Radiated Emission_6GHz-18GHz	± 5.068 dB
Radiated Emission_18GHz-26GHz	± 3.349 dB
Radiated Emission_26GHz-40GHz	± 3.229 dB

Remark:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

Page: 8 / 78 Rev.: 01

1.6 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at

AC Powerline Conducted Emission and Conducted:

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City, Taiwan.

Radiated emission 9kHz to 40GHz:

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City, Taiwan.

No. 12, Ln. 116, Wugong 3rd Rd., Wugu Dist., New Taipei City, Taiwan 24803

CAB identifier: TW1309

Test site	Test Engineer	Remark
AC Conduction Room	-	Not applicable, because EUT doesn't connect to AC Main Source direct.
Radiation	Czerny Lin	-
RF Conducted	Allen Shen	-

Remark: The lab has been recognized as the FCC accredited lab. under the KDB 974614 D01 and is listed in the FCC pubic Access Link (PAL) database, FCC Registration No. :444940, the FCC Designation No.:TW1309

1.7 INSTRUMENT CALIBRATION

	Conducted_FCC/IC/NCC (All)						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Power Sensor	Anritsu	MA2411B	1911386	2023-07-25	2024-07-24		
Power Sensor	Anritsu	MA2411B	1911387	2023-07-25	2024-07-24		
Power Meter	Anritsu	ML2496A	2136002	2022-11-24	2023-11-23		
EXA Signal Analyzer	Keysight	N9010B	MY60242460	2023-02-02	2024-02-01		
Software	Radio Test Software Ver. 21						

	Radiated Emission Test Site: 966 D					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Antenna	SHWARZBECK	VULB 9168	1277	2023-01-13	2024-01-12	
Pre-Amplifier	EMCI	EMC118A45SE	980820	2022-12-23	2023-12-22	
Pre-Amplifier	EMCI	EMC330N	980853	2022-12-23	2023-12-22	
Coaxial Cable	EMC	EMC101G-KM-KM- 9000	220407+211228+230 205	2023-03-21	2024-03-20	
EXA Signal Analyzer	Agilent	N9010A	MY52220817	2023-03-09	2024-03-08	
Coaxial Cable	EMC	EMCCFD400	211212+211222+211 020	2023-03-21	2024-03-20	
High Pass Filter	TITAN	T04H30001800070S0 1	211215-7-1	2023-02-02	2024-02-01	
Thermo-Hygro Meter	EDSDS	EDS-A49	966D1	2023-05-11	2024-05-10	
Pre-Amplifier	EMCI	EMC184045SE	980872	2023-01-03	2024-01-02	
Horn Antenna	RF SPIN	DRH18-E	210301A18ES	2023-02-03	2024-02-02	
Horn Antenna	SHWARZBECK	BBHA 9170	1134	2022-12-30	2023-12-29	
Loop Antenna	SCHWARZBECK	FMZB 1513-60	1513-60-028	2022-12-27	2023-12-26	
Software	e 3 V9-210616c					

Remark:

1. Each piece of equipment is scheduled for calibration once a year.

2. N.C.R. = No Calibration Required.

1.8 SUPPORT AND EUT ACCESSORIES EQUIPMENT

Conducted_FCC/IC/NCC (All)					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
NB(E)	Lenovo	T460	N/A	N/A	N/A

	Radiated_Sup_Units				
NO	Kind	Brand	Model	Core	Length
1	NB(E)	Lenovo	IBM7663	N/A	N/A
2	Car Battery	YUASA	70B24R	N/A	N/A
3	C to USB Cable	N/A	N/A	N/A	0.3m
А	DC Cable	N/A	N/A	N/A	0.2m

1.9 TEST METHODOLOGY AND APPLIED STANDARDS

Test Mode

The EUT is connected to the laptop, and the test software (adb.exe) is used to set according to the test requirements (Modulation, Frequency, Power Setting...), so that the RF signal is continuously transmitted to perform the test.

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.247, KDB 662911, KDB 558074, RSS-247 Issue 3 and RSS-GEN Issue 5.

2. TEST SUMMERY

IC Standard Section	FCC Standard Section	Report Section	Test Item	Result
-	15.203	1.3	Antenna Requirement	Pass
RSS-GEN 8.8	15.207(a)	4.1	AC Conducted Emission	N/A
RSS-247(5.1)(a)	15.247(a)(1)	4.2	20 dB Bandwidth	Pass
RSS-GEN 6.7	-	4.2	Occupied Bandwidth (99%)	Pass
RSS-247(5.4)(b)	15.247(b)(1)	4.3	Output Power Measurement	Pass
RSS-247(5.1)(b)	15.247(a)(1)	4.4	Frequency Separation	Pass
RSS-247(5.1)(d)	15.247(a)(1)(iii)	4.5	Number of Hopping	Pass
RSS-247(5.5)	15.247(d)	4.6	Conducted Band Edge	Pass
RSS-247(5.5)	15.247(d)	4.6	Conducted Spurious Emission	Pass
RSS-247(5.1)(d)	15.247(a)(1)(iii)	4.7	Time of Occupancy	Pass
RSS-GEN 8.9,	15.247(d)	1 0	Dediction Dand Edge	Deee
8.10	15.205	4.8	Radiation Band Edge	Pass
RSS-GEN 8.9,	15.247(d)	4.8	Radiation Spurious Emission	Pass
8.10	15.205	4.0	Radiation Spundus Emission	Fa55

Г

Report No.: TMWK2309003418KR

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	GFSK for BDR-1Mbps (DH5) π/4-DQPSK for 2Mbps (2DH5) 8DPSK for EDR-3Mbps (3DH5)
Test Channel Frequencies	GFSK for BDR-1Mbps: 1.Lowest Channel: 2402MHz 2.Middle Channel: 2441MHz 3.Highest Channel: 2480MHz π/4-DQPSK for 2Mbps: 1.Lowest Channel: 2402MHz 2.Middle Channel: 2441MHz 3.Highest Channel: 2480MHz 8DPSK for EDR-3Mbps: 1.Lowest Channel: 2441MHz 2.Middle Channel: 2441MHz 3.Highest Channel: 2480MHz

Remark:

1. EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report.

2. The system support GFSK , $\pi/4$ DQPSK ,8DPSK , the $\pi/4$ DQPSK were reduced since the identical parameters with 8dpsk. In the following test items, frequency hopping, Conducted band edge, radiated band edge and spurious emissions.

3.2 THE WORST MODE OF MEASUREMENT

Ra	Radiated Emission Measurement Above 1G			
Test Condition	Radiated Emission Above 1G			
Power supply Mode	Mode 1: EUT Power by Car Battery			
Worst Mode	Mode 1			
Worst Position	 Placed in fixed position. Placed in fixed position at X-Plane (E2-Plane) Placed in fixed position at Y-Plane (E1-Plane) Placed in fixed position at Z-Plane (H-Plane) 			

Radiated Emission Measurement Below 1G			
Test Condition Radiated Emission Below 1G			
Power supply Mode Mode 1: EUT Power by Car Battery			
Worst Mode Mode 1 Mode 2 Mode 3 Mode 4			

Remark:

1. The worst mode was record in this test report.

2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, for radiated measurement. The worst case(Z-Plane) were recorded in this report

Page: 14 / 78 Rev.: 01

3.3 EUT DUTY CYCLE

Temperature:	23.4 ℃	Test date:	October 3, 2023
Humidity:	53% RH	Tested by:	Allen Shen

For GFSK (1Mbps)

	Duty Cycle				
Configuration	Duty Cycle (%) = Ton / (Ton+Toff)	Duty Factor (dB) =10*log(1/Duty Cycle)	1/T (kHz)	VBW setting (kHz)	
DH1	15.00	8.24	2.67	3.00	
DH3	65.20	1.86	0.61	1.00	
DH5	57.66	2.39	0.35	1.00	

For π/4-DQPSK (2Mbps)

Duty Cycle				
Configuration	Duty Cycle (%) = Ton / (Ton+Toff)	Duty Factor (dB) =10*log(1/Duty Cycle)	1/T (kHz)	VBW setting (kHz)
2DH1	15.20	8.18	2.63	3.00
2DH3	65.60	1.83	0.61	1.00
2DH5	57.66	2.39	0.35	1.00

For 8-DPSK (3Mbps)

	Duty Cycle				
Configuration	Duty Cycle (%) = Ton / (Ton+Toff)	Duty Factor (dB) =10*log (1/Duty Cycle)	1/T (kHz)	VBW setting (kHz)	
3DH1	15.40	8.12	2.60	3.00	
3DH3	65.20	1.86	0.61	1.00	
3DH5	57.49	2.40	0.35	1.00	


Page: 15 / 78 Rev.: 01

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

Page: 16 / 78 Rev.: 01

Page: 17 / 78 Rev.: 01

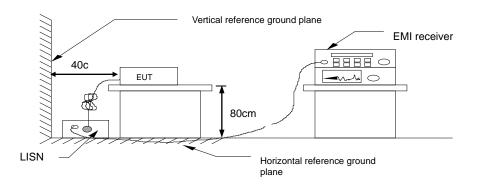
4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

4.1.1 Test Limit

According to §15.207(a) and RSS-GEN section 8.8,

Frequency Range	Limits(dBµV)		
(MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56*	56 to 46*	
0.50 to 5	56	46	
5 to 30	60	50	


* Decreases with the logarithm of the frequency.

4.1.2 Test Procedure

Test method Refer as ANSI C63.10: 2013 clause 6.2,

- 1. The EUT was placed on a non-conducted table, which is 0.8m above horizontal ground plane and 0.4m above vertical ground plane.
- 2. EUT connected to the line impedance stabilization network (LISN)
- 3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. Recorded Line for Neutral and Line.

4.1.3 Test Setup

4.1.4 Test Result

Not applicable, because EUT not connect to AC Main Source direct.

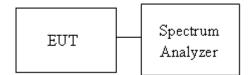
Page: 18 / 78 Rev.: 01

4.2 20dB BANDWIDTH AND OCCUPIED BANDWIDTH (99%)

4.2.1 Test Limit

According to §15.247(a) (1), RSS-247 section 5.1(a) and RSS-GEN 6.7,

<u>20 dB Bandwidth</u> : For reporting purposes only.


Occupied Bandwidth(99%) : For reporting purposes only.

4.2.2 Test Procedure

Test method Refer as ANSI C63.10: 2013 clause 7.8.7,

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 1% ~ 5% OBW, VBW ≥3*RBW and Detector = Peak, to measurement 20 dB Bandwidth.
- SA set RBW = 1% ~ 5% OBW, VBW ≥ three times the RBW and Detector = Peak, to measurement 99% Bandwidth
- 5. Measure and record the result of 20 dB Bandwidth and 99% Bandwidth. in the test report.

4.2.3 Test Setup

Page: 19 / 78 Rev.: 01

4.2.4 Test Result

Temperature:	23.4 °C	Test date:	October 3, 2023
Humidity:	53% RH	Tested by:	Allen Shen

20dB BANDWIDTH

GFSK

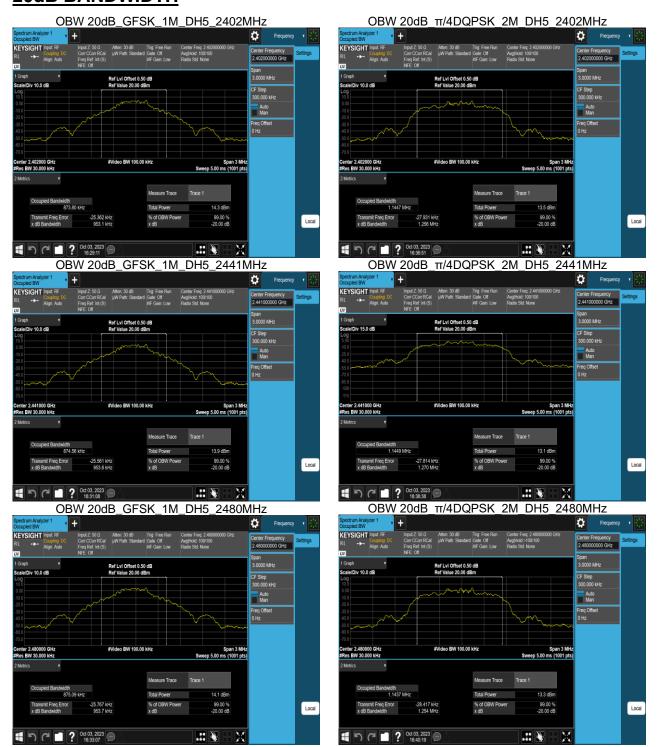
СН	20 dB BW	2/3 BW
	(MHz)	(MHz)
Low	0.9531	0.64
Mid	0.9536	0.64
High	0.9537	0.64
π/4-D0	QPSK	
СН	20 dB BW	2/3 BW
	(MHz)	(MHz)
Low	1.256	0.84
Mid	1.270	0.85
High	1.254	0.84

8-DPSK

СН	20 dB BW (MHz)	2/3 BW (MHz)
Low	1.270	0.85
Mid	1.251	0.83
High	1.250	0.83

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

Page: 20 / 78 Rev.: 01


BANDWIDTH 99

GFSK

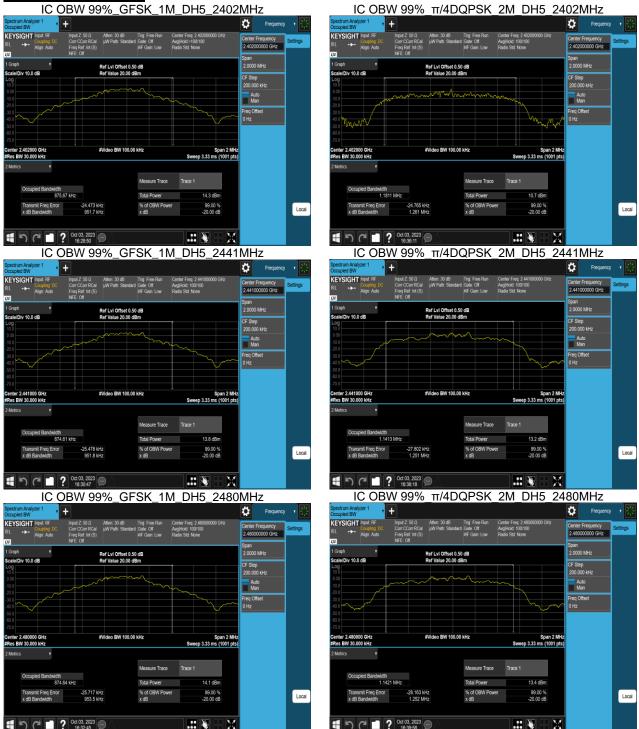
СН	99% BW
Сп	(MHz)
Low	0.87567
Mid	0.87461
High	0.87464
π/4-DQPSK	
СН	99% BW
Сп	(MHz)
Low	1.1811
Mid	1.1413
High	1.1421
8-DPSK	
СН	99% BW
Сп	(MHz)
Low	1.1423
Mid	1.1449
High	1.1445

Test Data 20dB BANDWIDTH

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

Page: 21 / 78 Rev.: 01

Page: 22 / 78 Rev.: 01



Report No.:

TMWK2309003418KR

<u>Test Data</u>

BANDWIDTH 99

Page: 23 / 78 Rev.: 01

Page: 24 / 78 Rev.: 01

Page: 25 / 78 Rev.: 01

4.3 OUTPUT POWER MEASUREMENT

4.3.1 Test Limit

According to §15.247(a)(1) and RSS-247 section 5.4(b)

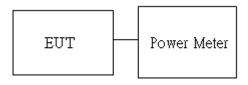
Peak output power :

FCC

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

<u>IC</u>

According to RSS-247 section 5.4(b), For FHSs operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).


Antenna not exceed 6 dBi : 21dBm
 Antenna with DG greater than 6 dBi : 21dBm [Limit = 30 – (DG – 6)]

Average output power : For reporting purposes only.

4.3.2 Test Procedure

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

4.3.3 Test Setup

Page: 26 / 78 Rev.: 01

4.3.4 Test Result

Temperature:	23.4 °C	Test date:	October 3, 2023
Humidity:	53% RH	Tested by:	Allen Shen

Peak & Average output power :

1M BR mode (Peak):

СН	Freq. (MHz)	Power set	Peak Output Power (dBm)	Output Power (mW)	Limit (mW)
Low	2402	7	7.85	6.095	1000
Mid	2441	7	7.72	5.916	1000
High	2480	7	7.50	5.623	1000

2M EDR mode (Peak):

СН	Freq. (MHz)	Power set	Peak Output Power (dBm)	Output Power (mW)	Limit (mW)
Low	2402	7	7.84	6.081	125
Mid	2441	7	7.72	5.916	125
High	2480	7	7.50	5.623	125

3M EDR mode (Peak):

СН	Freq. (MHz)	Power set	Peak Output Power (dBm)	Output Power (mW)	Limit (mW)
Low	2402	7	7.92	6.194	125
Mid	2441	7	7.80	6.026	125
High	2480	7	7.58	5.728	125

1M BR mode (Average):

СН	Freq. (MHz)	Power set	Avg. Output Power (dBm)	Output Power (mW)	Limit (mW)
Low	2402	7	7.79	6.014	1000
Mid	2441	7	7.65	5.823	1000
High	2480	7	7.41	5.510	1000

2M EDR mode (Average):

СН	Freq. (MHz)	Power set	Avg. Output Power (dBm)	Output Power (mW)	Limit (mW)
Low	2402	7	5.31	3.397	125
Mid	2441	7	5.22	3.328	125
High	2480	7	5.02	3.178	125

3M EDR mode (Average):

СН	Freq. (MHz)	Power set	Avg. Output Power (dBm)	Output Power (mW)	Limit (mW)
Low	2402	7	5.27	3.369	125
Mid	2441	7	5.17	3.292	125
High	2480	7	4.98	3.151	125

*Note: Max. Output include tune up tolerance Power measured by using average detector.

EIRP Power:

1M BR mode EIRP

Channel	Frequency (MHz)	Power set	Avg. Output Power (dBm)	Antenna Gain (dBi)	EIRP (mW)	Limit (mW)
Low	2402	7	7.79	2.70	11.198	4000
Mid	2441	7	7.65	2.70	10.843	4000
High	2480	7	7.41	2.70	10.260	4000

2M EDR mode EIRP

Channel	Frequency (MHz)	Power set	Avg. Output Power (dBm)	Antenna Gain (dBi)	EIRP (mW)	Limit (mW)
Low	2402	7	5.31	2.70	6.326	4000
Mid	2441	7	5.22	2.70	6.196	4000
High	2480	7	5.02	2.70	5.918	4000

3M EDR mode EIRP

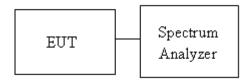
Channel	Frequency (MHz)	Power set	Avg. Output Power (dBm)	Antenna Gain (dBi)	EIRP (mW)	Limit (mW)
Low	2402	7	5.27	2.70	6.273	4000
Mid	2441	7	5.17	2.70	6.130	4000
High	2480	7	4.98	2.70	5.867	4000

* *Note:* EIRP = Average Power + Gain

4.4 FREQUENCY SEPARATION

4.4.1 Test Limit

According to §15.247(a)(1) and RSS-247 section 5.1(b)


Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Limit	> two-thirds of the 20 dB bandwidth	

4.4.2 Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set the spectrum analyzer as RBW = 100kHz, VBW = 300kHz, Sweep = auto. Max hold, mark 3 peaks of hopping channel and record the 3 peaks frequency

4.4.3 Test Setup

Page: 29 / 78 Rev.: 01

4.4.4 Test Result

Temperature:	23.4 °C	Test date:	October 3, 2023
Humidity:	53% RH	Tested by:	Allen Shen

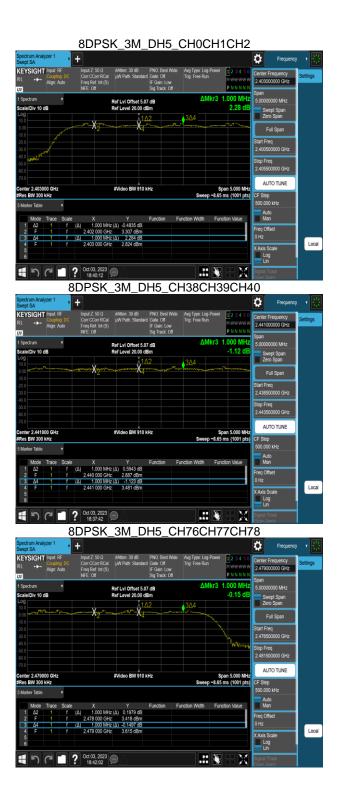
	Test mode: GFSK_BDR-1Mbps mode / 2402-2480 MHz					
Channel Frequency (MHz)		Channel Separation (MHz)	Channel Separation Limits (MHz)	Result		
Low	2402	1.000	0.64	PASS		
Mid	2441	1.000	0.64	PASS		
High	2480	1.000	0.64	PASS		

Test mode: π/4-DQPSK_2Mbps mode / 2402-2480 MHz					
Channel	Frequency (MHz)	Channel Separation (MHz)	Channel Separation Limits (MHz)	Result	
Low	2402	1.000	0.84	PASS	
Mid	2441	1.000	0.85	PASS	
High	2480	1.000	0.84	PASS	

	Test mode: 8DPSK_EDR-3Mbps mode / 2402-2480 MHz					
Channel	Frequency (MHz)	Channel Separation (MHz)	Channel Separation Limits (MHz)	Result		
Low	2402	1.000	0.85	PASS		
Mid	2441	1.000	0.83	PASS		
High	2480	1.000	0.83	PASS		

Report No.:

TMWK2309003418KR


Page: 30 / 78 Rev.: 01

Test Data

Page: 31 / 78 Rev.: 01

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

Page: 32 / 78 Rev.: 01

4.5 NUMBER OF HOPPING

4.5.1 Test Limit

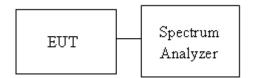
According to §15.247(a)(1)(iii) and RSS-247 section 5.1(d)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

4.5.2 Test Procedure

Test method Refer as ANSI C63.10: 2013 clause 7.8.3

1. Place the EUT on the table and set it in transmitting mode.


2. EUT RF output port connected to the SA by RF cable.

3. Set spectrum analyzer Start Freq. = 2400 MHz, Stop Freq. = 2441 MHz for Low range,

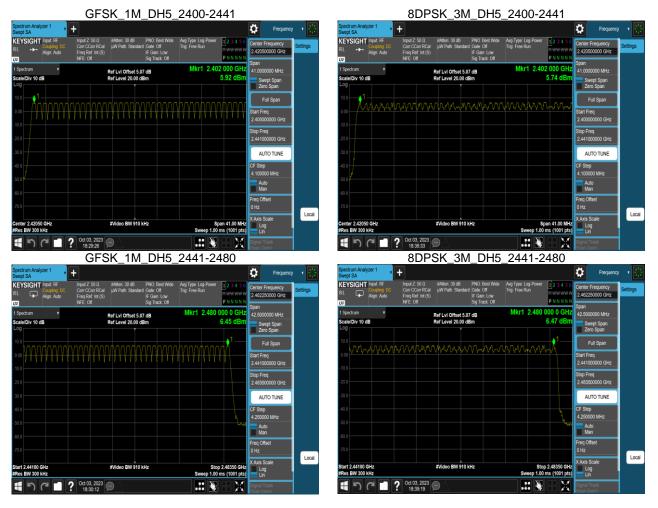
Start Freq. = 2441 MHz, Stop Freq. = 2483.5 MHz for High range ; RBW=430KHz, VBW = 1.5MHz.

4. Max hold, view and count how many channel in the band.

4.5.3 Test Setup

4.5.4 Test Result

Temperature:	23.4 ℃	Test date:	October 3, 2023
Humidity:	53% RH	Tested by:	Allen Shen


Number of Hopping				
Mode	ode Frequency Channel (MHz) Number		Hopping Channel Number Limits	Result
BDR-1Mbps	2402-2480	79	15	Pass
EDR-3Mbps	2402-2480	79	15	F 855

Page: 33 / 78 Rev.: 01

Test Data

Number of Hopping

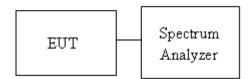
Page: 34 / 78 Rev.: 01

4.6 CONDUCTED BANDEDGE AND SPURIOUS EMISSION

4.6.1 Test Limit

According to §15.247(d) and RSS-247 section 5.5

Limit	-20 dBc
-------	---------


4.6.2 Test Procedure

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

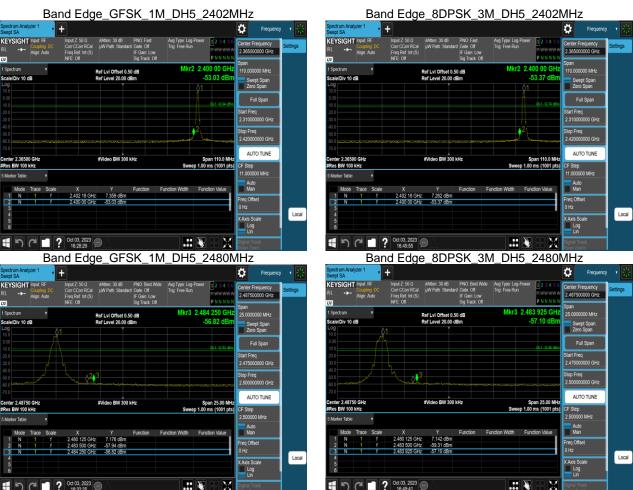
2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

3. The Band Edge at 2.4GHz and 2.4835GHz are investigated with both hopping "ON" and "OFF" modes ".

4.6.3 Test Setup

4.6.4 Test Result

Temperature:	23.4 ℃	Test date:	October 3, 2023
Humidity:	53% RH	Tested by:	Allen Shen



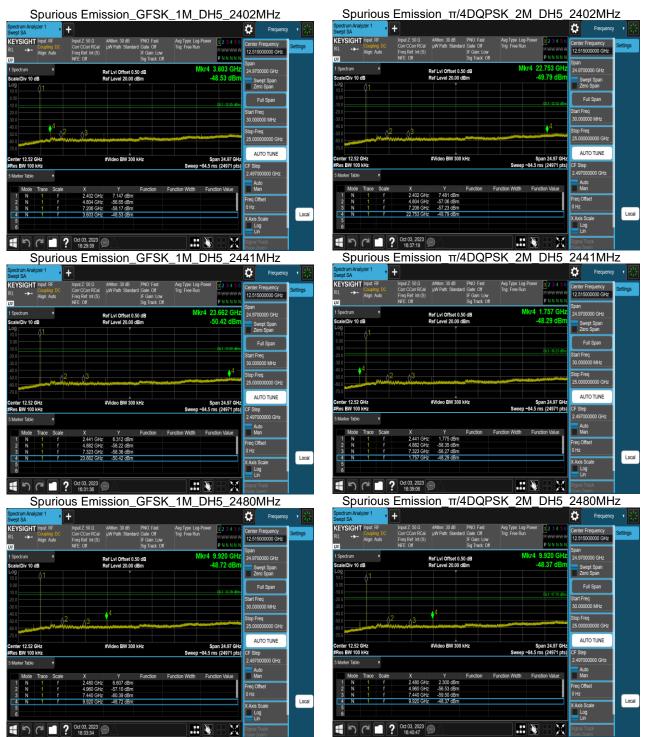
Report No.:

TMWK2309003418KR

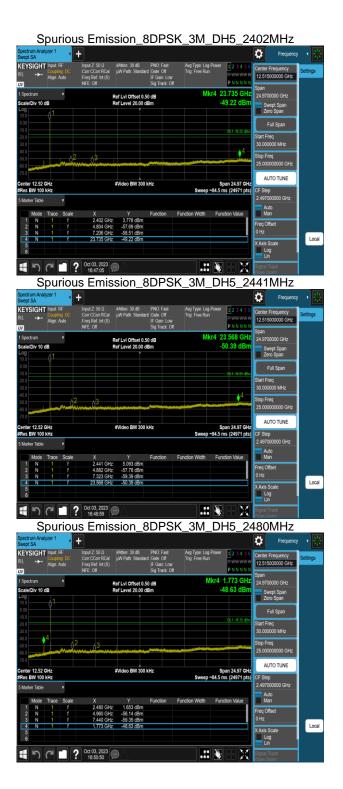
Test Data

Band Edge

Page: 35 / 78 Rev.: 01



Hopping mode



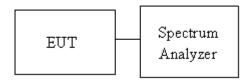
Spurious Emission

Page: 38 / 78 Rev.: 01

Page: 39 / 78 Rev.: 01

4.7 TIME OF OCCUPANCY (DWELL TIME)

4.7.1 Test Limit


According to §15.247(a)(1)(iii) and RSS-247 section 5.1(d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.7.2 Test Procedure

- 1. EUT RF output port connected to the SA by RF cable.
- 2. Set center frequency of spectrum analyzer = operating frequency.
- 3. Set the spectrum analyzer as RBW, VBW=3MHz, Sweep > one cycle.

4.7.3 Test Setup

