RF Exposure Lab

802 N. Twin Oaks Valley Road, Suite 105 • San Marcos, CA 92069 • U.S.A. TEL (760) 471-2100 • FAX (760) 471-2121 http://www.rfexposurelab.com

nttp://www.rrexposurelab.com

CERTIFICATE OF COMPLIANCE SAR EVALUATION

Bodytrak	Dates of Test: November 22 8	& December 16-20, 2021
86-90 Paul Street	Test Report Number:	SAR.20211207
London EC2A 4NE		Revision F
United Kingdom		

FCC ID:	2A3CVA
IC Certificate:	27774-А
Model(s):	Bodytrak BCP1N
Test Sample:	Engineering Unit Same as Production
Serial Number:	BTCP1-B0045
Equipment Type:	Wireless Body Worn Communicator
Classification:	Portable Transmitter Next to Body
TX Frequency Range:	699 – 716 MHz, 814 – 849 MHz, 1710 – 1755 MHz, 1850 – 1910 MHz, 2412 – 2462 MHz
Frequency Tolerance:	± 2.5 ppm
Maximum RF Output:	750 MHz (LTE) – 24.00 dBm, 850 MHz (UMTS) – 25.00 dBm, 850 MHz (LTE) – 24.00 dBm,
	1750 MHz (LTE) – 24.00 dBm, 1900 MHz (UMTS) – 25.00 dBm, 1900 MHz (LTE) – 24.00 dBm,
	2450 MHz (b) – 18.3 dBm, 2450 MHz (g) – 17.3 dBm, 2450 MHz (n20) – 13.0 dBm,
	2450 MHz (BT) – 8.0 dBm Conducted
Signal Modulation:	WCDMA, QPSK, 16QAM, DSSS, OFDM, GFSK
Antenna Type:	Internal
Application Type:	Certification
FCC Rule Parts:	Part 2, 15C, 22, 24, 27
KDB Test Methodology:	KDB 447498 D01 v06, KDB 941225 D01 v03r01, KDB 941225 D05 v02r01, KDB248227 v02r02
Industry Canada:	RSS-102 Issue 5, Safety Code 6
Max. SAR Value (PCE):	1.50 W/kg Reported Body Configuration
Max. SAR Value (DTS):	0.75 W/kg Reported Body Configuration
Max. SAR Value (DSS/DTS):	0.08 W/kg Reported Body Configuration
Max. Simultaneous (SPLSR):	0.04 Body Configuration
Separation Distance:	0 mm

This wireless mobile and/or portable device has been shown to be compliant for localized specific absorption rate (SAR) for uncontrolled environment/general exposure limits specified in ANSI/IEEE Std. C95.1-1992 and had been tested in accordance with the measurement procedures specified in IEEE 1528-2013 and IEC 62209-1528:2020 (See test report).

I attest to the accuracy of the data. All measurements were performed by myself or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RF Exposure Lab, LLC certifies that no party to this application is subject to a denial of Federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 853(a).

Jay M. Moulton Vice President

Table of Contents

1. Introduction	
SAR Definition [5]	. 5
2. SAR Measurement Setup	
Robotic System	
System Hardware	
System Electronics	
Probe Measurement System	
3. Probe and Dipole Calibration	
4. Phantom & Simulating Tissue Specifications	
Head & Body Simulating Mixture Characterization	
5. ANSI/IEEE C95.1 – 1992 RF Exposure Limits [2]	
Uncontrolled Environment	
Controlled Environment	
6. Measurement Uncertainty	
7. System Validation	
Tissue Verification	
Test System Verification	
8. SAR Test Data Summary	
Procedures Used To Establish Test Signal	
Device Test Condition	
9. LTE Document Checklist	
10. FCC 3G Measurement Procedures	
10.1 Procedures Used to Establish RF Signal for SAR	25
10.2 SAR Measurement Conditions for WCDMA/HSDPA/HSUPA	
11.1 SAR Measurement Conditions for LTE Bands	
SAR Data Summary –LTE Band 12	
SAR Data Summary – UMTS Band 5	54
SAR Data Summary –LTE Band 5	
SAR Data Summary –LTE Band 4	
SAR Data Summary – UMTS Band 2	
SAR Data Summary –LTE Band 2	58
SAR Data Summary – 2450 MHz Head 802.11b	
SAR Data Summary – Simultaneous Transmit (WLAN-BT Main)	
12. Test Equipment List	
13. Conclusion	
14. References	
Appendix A – System Validation Plots and Data	
Appendix B – SAR Test Data Plots	
Appendix C – SAR Test Setup Photos	
Appendix D – Probe Calibration Data Sheets	
Appendix E – Dipole Calibration Data Sheets	
Appendix F – Phantom Calibration Data Sheets	
Appendix G – Validation Summary1	31

Comment/Revision	Date
Original Release	December 21, 2021
Revision A – Added the test date for WiFi, added the test exclusion for BT on page 29, corrected the simultaneous table on page 22 and added all simultaneous evaluations on page 60 and corrected the calibration date for the MT8820C on page 61	January 6, 2022
Revision B – Added note describing the SPLSR calculation	March 2, 2022
Revision C – Correct values in simultaneous evaluation for Wifi from 0.75 to 0.61	June 10, 2022
Revision D – Correct the high channel frequency on pages 28, 29 & 59, correct the value of BT from 0.13 to 0.08 on page 60	July 13, 2022
Revision E – Added each equipment class maximum SAR value to page 1	July 14, 2022

Note: The latest version supersedes all previous versions listed in the above table. The latest version shall be used.

1. Introduction

This measurement report shows compliance of the Bodytrak Model Bodytrak BCP1N FCC ID: 2A3CVA with FCC Part 2, 1093, ET Docket 93-62 Rules for mobile and portable devices and IC Certificate: 27774-A with RSS102 Issue 5 & Safety Code 6. The FCC & IC have adopted the guidelines for evaluating the environmental effects of radio frequency radiation to protect the public and workers from the potential hazards of RF emissions due to FCC/IC regulated portable devices. [1], [6]

The test results recorded herein are based on a single type test of Bodytrak Model Bodytrak BCP1N and therefore apply only to the tested sample.

The test procedures and limits, as described in ANSI C95.1 – 1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [2], ANSI C95.3 – 2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields [3], IEEE Std.1528 – 2003 Recommended Practice [4], and Industry Canada Safety Code 6 Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz were employed.

The following table indicates all the wireless technologies operating in the Bodytrak BCP1N Wireless Module. The table also shows the tolerance for the power level for each mode (if applicable).

Band	Technology	Class	3GPP Nominal Power dBm	Tolerance dBm	Lower Tolerance dBm	Upper Tolerance dBm
Band 2 – 1900 MHz	LTE – FDD	3	23	±1.0	22.0	24.0
Band 4 – 1750 MHz	LTE – FDD	3	23	±1.0	22.0	24.0
Band 5 – 850 MHz	LTE – FDD	3	23	±1.0	22.0	24.0
Band 12 – 700 MHz	LTE – FDD	3	23	±1.0	22.0	24.0
Band 2 – 1900 MHz	UMTS	3	24	±1.0	23.0	25.0
Band 5 – 850 MHz	UMTS	3	24	±1.0	23.0	25.0
WLAN – 2.4 GHz	802.11b	N/A	N/A	N/A	N/A	18.3
WLAN – 2.4 GHz	802.11g	N/A	N/A	N/A	N/A	17.3
WLAN – 2.4 GHz	802.11n	N/A	N/A	N/A	N/A	13.0
Bluetooth	BLE	N/A	N/A	N/A	N/A	8.0

SAR Definition [5]

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ).

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of watts per kilogram (W/kg). SAR can be related to the electric field at a point by

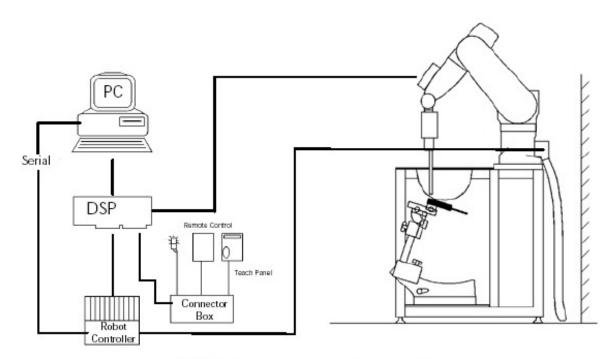
$$SAR = \frac{\sigma \mid E \mid^2}{\rho}$$

where:

 σ = conductivity of the tissue (S/m)

 ρ = mass density of the tissue (kg/m³)

E = rms electric field strength (V/m)


2. SAR Measurement Setup

Robotic System

These measurements are performed using the DASY52 automated dosimetric assessment system. The DASY52 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, Intel Core2 computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. 2.1).

System Hardware

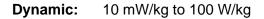
A cell controller system contains the power supply, robot controller teach pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the HP Intel Core2 computer with Windows XP system and SAR Measurement Software DASY52, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

System Electronics

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with autozeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in.

Probe Measurement System

The SAR measurements were conducted with the dosimetric probe EX3DV4, designed in the classical triangular configuration (see Fig. 2.2) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi fiber line ending at the front of the probe tip. (see Fig. 2.3) It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY52 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.



DAE System

Probe Specifications

- Calibration: In air from 10 MHz to 6.0 GHz In brain and muscle simulating tissue at Frequencies of 450 MHz, 835 MHz, 1750 MHz, 1900 MHz, 2450 MHz, 2600 MHz, 3500 MHz, 5200 MHz, 5300 MHz, 5600 MHz, 5800 MHz
- Frequency: 10 MHz to 6 GHz
- Linearity: ±0.2dB (30 MHz to 6 GHz)

- Range: Linearity: ±0.2dB
- Dimensions: Overall length: 330 mm
- Tip length: 20 mm
- Body diameter: 12 mm
- Tip diameter: 2.5 mm
- Distance from probe tip to sensor center: 1 mm
- Application: SAR Dosimetry Testing Compliance tests of wireless device

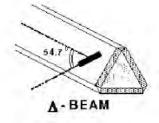


Figure 2.2 Triangular Probe Configurations

Figure 2.3 Probe Thick-Film Technique

Probe Calibration Process

Dosimetric Assessment Procedure

Each probe is calibrated according to a dosimetric assessment procedure described in with accuracy better than +/- 10%. The spherical isotropy was evaluated with the procedure described in and found to be better than +/-0.25dB. The sensitivity parameters (Norm X, Norm Y, Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe is tested.

Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a waveguide above 1GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

Temperature Assessment *

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium, correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor based temperature probe is used in conjunction with the E-field probe

SAR =
$$C \frac{\Delta T}{\Delta t}$$

$$\mathsf{SAR} = \frac{\left|\mathsf{E}\right|^2 \cdot \sigma}{\rho}$$

simulated tissue conductivity,

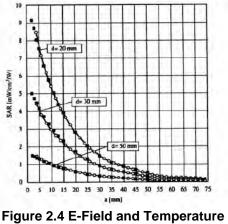
Tissue density (1.25 g/cm³ for brain tissue)

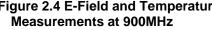
where:

where:

σ

ρ


 Δt = exposure time (30 seconds),


C = heat capacity of tissue (brain or muscle),

 ΔT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T / \Delta t$, the initial rate of tissue heating, before thermal diffusion takes place.

Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field;

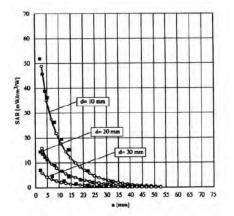


Figure 2.5 E-Field and Temperature Measurements at 1800MHz

Data Extrapolation

The DASY52 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below:

$$F_i = U_i + U_i^2 \cdot \frac{cf'}{dcp_i}$$
 with V_i = compensated signal of channel i (i=x,y,z)
 U_i = input signal of channel i (i=x,y,z)
 cf = crest factor of exciting field (DASY parameter)
 dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:	with	V _i Norm,	= compensated signal of channel i $(i = x,y,z)$ = sensor sensitivity of channel i $(i = x,y,z)$
$E_{i} = \sqrt{\frac{V_{i}}{Norm_{i} \cdot ConvF}}$		ConvF E	μV/(V/m) ² for E-field probes = sensitivity of enhancement in solution = electric field strength of channel i in V/m

The RSS value of the field components gives the total field strength (Hermetian magnitude):

$$E_{bd} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$	with	SAR E _{tor}	 local specific absorption rate in W/g total field strength in V/m
P		σ	= conductivity in [mho/m] or [Siemens/m]
		ρ	= equivalent tissue density in g/cm ³

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{puv} = \frac{E_{hut}^2}{3770}$$
 with $P_{pwe} = equivalent power density of a plane wave in W/cm2 = total electric field strength in V/m$

Scanning procedure

- The DASY installation includes predefined files with recommended procedures for measurements and system check. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.
- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. +/- 5 %.
- The highest integrated SAR value is the main concern in compliance test applications. These values can mostly be found at the inner surface of the phantom and cannot be measured directly due to the sensor offset in the probe. To extrapolate the surface values, the measurement distances to the surface must be known accurately. A distance error of 0.5mm could produce SAR errors of 6% at 1800 MHz. Using predefined locations for measurements is not accurate enough. Any shift of the phantom (e.g., slight deformations after filling it with liquid) would produce high uncertainties. For an automatic and accurate detection of the phantom surface, the DASY5 system uses the mechanical surface detection. The detection is always at touch, but the probe will move backward from the surface the indicated distance before starting the measurement.
- The "area scan" measures the SAR above the DUT or verification dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The robot performs a stepped movement along one grid axis while the local electrical field strength is measured by the probe. The probe is touching the surface of the SAM during acquisition of measurement values. The scan uses different grid spacings for different frequency measurements. Standard grid spacing for head measurements in frequency ranges 2GHz is 15 mm in x and y- dimension. For higher frequencies a finer resolution is needed, thus for the grid spacing is reduced according the following table:

Area scan grid spacing for different frequency ranges				
Frequency range Grid spacing				
≤ 2 GHz	≤ 15 mm			
2 – 4 GHz	≤ 12 mm			
4 – 6 GHz	≤ 10 mm			

Grid spacing and orientation have no influence on the SAR result. For special applications where the standard scan method does not find the peak SAR within the grid, e.g. mobile phones with flip cover, the grid can be adapted in orientation. Results of this coarse scan are shown in annex B.

RF Exposure Lab

Report Number: SAR.20211207

• A "zoom scan" measures the field in a volume around the 2D peak SAR value acquired in the previous "coarse" scan. It uses a fine meshed grid where the robot moves the probe in steps along all the 3 axis (x,y and z-axis) starting at the bottom of the Phantom. The grid spacing for the cube measurement is varied according to the measured frequency range, the dimensions are given in the following table:

Zoom scan grid spacing and volume for different frequency ranges					
Frequency range	Grid spacing	Grid spacing	Minimum zoom		
i requeitcy failige	for x, y axis	for z axis	scan volume		
≤ 2 GHz	≤ 8 mm	≤ 5 mm	≥ 30 mm		
2 – 3 GHz	≤ 5 mm	≤ 5 mm	≥ 28 mm		
3 – 4 GHz	≤ 5 mm	≤ 4 mm	≥ 28 mm		
4 – 5 GHz	≤ 4 mm	≤ 3 mm	≥ 25 mm		
5 – 6 GHz	≤ 4 mm	≤ 2 mm	≥ 22 mm		

DASY is also able to perform repeated zoom scans if more than 1 peak is found during area scan. In this document, the evaluated peak 1g and 10g averaged SAR values are shown in the 2D-graphics in annex B. Test results relevant for the specified standard (see section 3) are shown in table form in section 7.

Spatial Peak SAR Evaluation

The spatial peak SAR - value for 1 and 10 g is evaluated after the Cube measurements have been done. The basis of the evaluation are the SAR values measured at the points of the fine cube grid consisting of all points in the three directions x, y and z. The algorithm that finds the maximal averaged volume is separated into three different stages.

- The data between the dipole center of the probe and the surface of the phantom are extrapolated. This data cannot be measured since the center of the dipole is 1 to 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is about 1 mm (see probe calibration sheet). The extrapolated data from a cube measurement can be visualized by selecting 'Graph Evaluated'.
- The maximum interpolated value is searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10 g) are computed using the 3d-spline interpolation algorithm. If the volume cannot be evaluated (i.e., if a part of the grid was cut off by the boundary of the measurement area) the evaluation will be started on the corners of the bottom plane of the cube.
- All neighbouring volumes are evaluated until no neighbouring volume with a higher average value is found.

Extrapolation

The extrapolation is based on a least square algorithm [W. Gander, Computermathematik, p.168-180]. Through the points in the first 3 cm along the z-axis, polynomials of order four are calculated. These polynomials are then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from each other.

Interpolation

The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three onedimensional splines with the "Not a knot"-condition [W. Gander, Computermathematik, p.141-150] (x, y and z -direction) [Numerical Recipes in C, Second Edition, p.123ff].

Volume Averaging

At First the size of the cube is calculated. Then the volume is integrated with the trapezoidal algorithm. 8000 points (20x20x20) are interpolated to calculate the average.

Advanced Extrapolation

DASY uses the advanced extrapolation option which is able to compensate boundary effects on E-field probes.

SAM PHANTOM

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. 2.6)

Phantom Specification

Phantom:	3
Shell Material:	
Thickness:	

SAM Twin Phantom (V4.0) Vivac Composite 2.0 ± 0.2 mm

Figure 2.6 SAM Twin Phantom

Device Holder for Transmitters

In combination with the SAM Twin Phantom V4.0 the Mounting Device (see Fig. 2.7), enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can be easily, accurately, and repeat ably be positioned according to the FCC, CENELEC, IEC and IEEE specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Figure 2.7 Mounting Device

Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations. To produce the worstcase condition (the hand absorbs antenna output power), the hand is omitted during the tests.

3. **Probe and Dipole Calibration**

See Appendix D and E.

4. Phantom & Simulating Tissue Specifications

Head & Body Simulating Mixture Characterization

The head and body mixtures consist of the material based on the table listed below. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. Body tissue parameters that have not been specified in P1528 are derived from the issue dielectric parameters computed from the 4-Cole-Cole equations.

		Simulating Tissue				
Ingredients		750 MHz Head	900 MHz Head	1750 MHz Head	1900 MHz Head	2450 MHz Head
Mixing Percentage						
Water						
Sugar Salt		Proprietary Purchased from Pr Speag	Proprietary Purchased from Speag	Proprietary Purchased from Speag	Proprietary Purchased from Speag	Proprietary Purchased from Speag
Bactericide						
DGBE						
Dielectric Constant	Target	41.94	41.50	40.08	40.00	39.20
Conductivity (S/m)	Target	0.89	0.97	1.37	1.40	1.80

Table 4.1 Typical Composition of Ingredients for Tissue

5. ANSI/IEEE C95.1 – 1992 RF Exposure Limits [2]

Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIROMENT Professional Population (W/kg) or (mW/g)
SPATIAL PEAK SAR ¹ Head	1.60	8.00
SPATIAL AVERAGE SAR ² Whole Body	0.08	0.40
SPATIAL PEAK SAR ³ Hands, Feet, Ankles, Wrists	4.00	20.00

Table 5.1 Human Exposure Limits

¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

² The Spatial Average value of the SAR averaged over the whole body.

³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

6. Measurement Uncertainty

Exposure Assessment Measurement Uncertainty

Re	lative DASY	5 Uncertain	ty Budg	et for	SAR T	ests		
	According to IEC62209-2/2010 (30 MHz - 6 GHz range)							
	Uncertainty	Probability	Divisor	Ci	Ci	Standard L	Jncertainty	v ² or
Error Description	Value	Distribution		(1g)	(10g)	± %, (1g)	± %, (10g)	V eff
Measurement System								
Probe calibration	± 6.6%	Normal	1	1	1	± 6.6%	± 6.6%	8
Axial isotropy	± 4.7%	Rectangular	√3	0.7	0.7	± 1.9%	± 1.9%	8
Hemispherical isotropy	± 9.6%	Rectangular	√3	0.7	0.7	± 3.9%	± 3.9%	8
Boundary effects	± 2.0%	Rectangular	√3	1	1	± 1.2%	± 1.2%	8
Probe linearity	± 4.7%	Rectangular	√3	1	1	± 2.7%	± 2.7%	8
System detection limits	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	8
Modulation response	± 2.4%	Rectangular	√3	1	1	± 1.4%	± 1.4%	8
Readout electronics	± 0.3%	Normal	1	1	1	± 0.3%	± 0.3%	8
Response time	± 0.8%	Rectangular	√3	1	1	± 0.5%	± 0.5%	8
Integration time	± 2.6%	Rectangular	√3	1	1	± 1.5%	± 1.5%	8
RF ambient noise	± 3.0%	Rectangular	√3	1	1	± 1.7%	± 1.7%	8
RF ambient reflections	± 3.0%	Rectangular	√3	1	1	± 1.7%	± 1.7%	8
Probe positioner	± 0.8%	Rectangular	√3	1	1	± 0.5%	± 0.5%	8
Probe positioning	± 6.7%	Rectangular	√3	1	1	± 3.9%	± 3.9%	8
Post-processing	± 4.0%	Rectangular	√3	1	1	± 2.3%	± 2.3%	8
Test Sample Related								
Device positioning	± 2.9%	Normal	1	1	1	± 2.9%	± 2.9%	145
Device holder uncertainty	± 3.6%	Normal	1	1	1	± 3.6%	± 3.6%	5
Power drift	± 5.0%	Rectangular	√3	1	1	± 2.9%	± 2.9%	8
Phantom and Setup								
Phantom uncertainty	± 7.9%	Rectangular	√3	1	1	± 4.6%	± 4.6%	8
SAR algorithm correction	± 1.9%	Normal	1	1	0.84	± 1.9%	± 1.9%	8
Liquid conductivity (meas.)	± 5.0%	Rectangular	√3	0.78	0.71	± 0.1%	± 0.1%	8
Liquid permittivity (meas.)	± 5.0%	Rectangular	√3	0.26	0.26	± 0.1%	± 0.1%	8
Temp. Unc. – Conductivity	± 3.4%	Rectangular	√3	0.78	0.71	± 1.5%	± 1.5%	8
Temp. Unc. – Permittivity	± 0.4%	Rectangular	√3	0.23	0.26	± 0.1%	± 0.1%	8
Combined Uncertainty						± 12.4%	± 12.3%	330
Expanded Std. Uncertainty						± 24.8%	± 24.6%	

Worst case uncertainty budget for DASY5 assessed according to IEC62209-2/2010 standard. The budget is valid for the frequency range 30 MHz - 6 GHz and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerable smaller.

7. System Validation

Tissue Verification

Id		leasure	u 1122ne i	aramer	.613		
		750 MHz Head		900 N	1Hz Head	1750 MHz Head	
Date(s)		Dec.	20, 2021	Dec.	17, 2021	Dec.	16, 2021
Liquid Temperature (°C)	20.0	Target	Measured	Target	Measured	Target	Measured
Dielectric Constant: ε		41.94	41.18	41.50	40.94	40.08	39.45
Conductivity: σ	Conductivity: σ		0.91	0.97	1.00	1.37	1.38
		1900	MHz Head	2450 N	MHz Head		
Date(s)		Dec.	16, 2021	Nov. 22, 2021			
Liquid Temperature (°C)	20.0	Target	Measured	Target	Measured		
Dielectric Constant: ε		40.00	39.69	39.20	39.14		
Conductivity: σ		1.40	1.43	1.80	1.82		

Table 7.1 Measured Tissue Parameters

See Appendix A for data printout.

Test System Verification

Prior to assessment, the system is verified to the $\pm 10\%$ of the specifications at the test frequency by using the system kit. Power is normalized to 1 watt. (Graphic Plots Attached)

Table 7.2 System Dipole Validation Target & Measured

	Test Frequency	Targeted SAR _{1g} (W/kg)	Measure SAR _{1g} (W/kg)	Tissue Used for Verification	Deviation Target and Fast SAR to SAR (%)	Plot Number
20-Dec-2021	750 MHz	8.57	8.62	Head	+ 0.58	1
17-Dec-2021	900 MHz	11.20	11.40	Head	+ 1.79	2
16-Dec-2021	1750 MHz	37.70	37.90	Head	+ 0.53	3
16-Dec-2021	1900 MHz	40.40	40.90	Head	+ 1.24	4
22-Nov-2021	2450 MHz	54.10	54.50	Head	+ 0.74	5

See Appendix A for data plots.

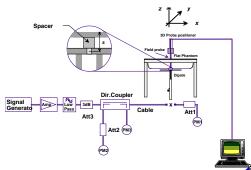
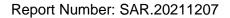



Figure 7.1 Dipole Validation Test Setup

8. SAR Test Data Summary

See Measurement Result Data Pages

See Appendix B for SAR Test Data Plots. See Appendix C for SAR Test Setup Photos.

Procedures Used To Establish Test Signal

The device was either placed into simulated transmit mode using the manufacturer's test codes or the actual transmission is activated through a base station simulator or similar equipment. See data pages for actual procedure used in measurement.

Device Test Condition

In order to verify that the device was tested at full power, conducted output power measurements were performed before and after each SAR measurement to confirm the output power unless otherwise noted. If a conducted power deviation of more than 5% occurred, the test was repeated. The power drift of each test is measured at the start of the test and again at the end of the test. The drift percentage is calculated by the formula ((end/start)-1)*100 and rounded to three decimal places. The drift percentage is calculated into the resultant SAR value on the data sheet for each test.

The testing was conducted on all edges closest to each antenna. The front, back, left, right and bottom sides were tested for the WWAN antenna. The remaining sides were not tested as the WWAN antenna was more than 2.5 cm from the side. The front and right sides were tested for the WLAN and BT antenna. The remaining sides were not tested as the antenna was more than 2.5 cm from these sides. All further test reductions are shown on page 27 for WCDMA bands, page 29 for WLAN & BT and pages 41-52 for LTE bands. See the photo in Appendix C for a pictorial of the setups and antenna locations.

The device was on a minimum of 10 cm of Styrofoam during each test.

The WCDMA testing was conducted using 12.2 kbps RMC configured in Test Loop Mode 1. The HSPA testing was conducted with HS-DPCCH, E-DPCCH and E-DPDCH all enabled and a 12.2 kbps RMC. FRC was configured according to HS-DPCCH Sub-Test 1 using H-set 1 and QPSK.

9. LTE Document Checklist

1) Identify the operating frequency range of each LTE transmission band used by the device

LTE Operating	Uplink (transmit)	Downlink (Receive)	Duplex mode
Band	Low - high	Low - high	(FDD/TDD)
2	1850-1910	1930-1990	FDD
4	1710-1755	2110-2155	FDD
5	8244-849	869-894	FDD
12	704-716	734-746	FDD

2) Identify the channel bandwidths used in each frequency band; 1.4, 3, 5, 10, 15, 20 MHz etc

LTE Band Class	Bandwidth (MHz)	Frequency or Freq. Band (MHz)
2	1.4, 3, 5, 10, 15, 20	1850-1915
4	1.4, 3, 5, 10, 15, 20	1710-1755
5	1.4, 3, 5, 10	824-849
12	1.4, 3, 5, 10	704-716

3) Identify the high, middle and low (H, M, L) channel numbers and frequencies in each LTE frequency band

LTE Band	Bandwidth		Free	quency (MHz)/Channel #					
Class	(MHz)	L	ow	М	id	High			
2	1.4	1850.7	18607	1880.0	18900	1909.3	19193		
2	3	1851.5	18615	1880.0	18900	1908.5	19185		
2	5	1852.5	18625	1880.0	18900	1907.5	19175		
2	10	1855.0	18650	1880.0	18900	1905.0	19150		
2	15	1857.5	18675	1880.0	18900	1902.5	19125		
2	20	1860.0	18700	1880.0	18900	1900.0	19100		
4	1.4	1710.7	19957	1732.5	20175	1754.3	20393		
4	3	1711.5	19965	1732.5	20175	1753.5	20385		
4	5	1712.5	19975	1732.5	20175	1752.5	20375		
4	10	1715.0	20000	1732.5	20175	1750.0	20350		
4	15	1717.5	20025	1732.5	20175	1747.5	20325		
4	20	1720.0	20050	1732.5	20175	1745.0	20300		
5	1.4	824.7	20407	836.5	20525	848.3	20643		
5	3	825.5	20415	836.5	20525	847.5	20635		
5	5	826.5	20425	836.5	20525	846.5	20625		
5	10	829.0	20450	836.5	20525	844.0	20600		
12	1.4	699.7	23017	707.5	23095	715.3	23173		
12	3	700.5	23025	707.5	23095	714.5	23165		
12	5	701.5	23035	707.5	23095	713.5	23155		
12	10	704.0	23060	707.5	23095	711.0	23130		

- 4) Specify the UE category and uplink modulations used:
 - UE Category: 3
 - Uplink modulations: QPSK and 16QAM
- 5) Include descriptions of the LTE transmitter and antenna implementation; and also identify whether it is a standalone transmitter operating independently of other wireless transmitters in the device or sharing hardware components and/or antenna(s) with other transmitters etc

The device has 3 antennas:

- WWAN Main (Transmit and Receive) Antenna
- WLAN Main (Transmit and Receive) Antenna
- BT Main (Transmit and Receive) Antenna

Transmission relationship

- All transmission (TX) is limited to the WWAN, WLAN and BT antennas
- The device is <u>unable</u> to transmit WCDMA/HSPA and LTE simultaneously.
- Simultaneous Tx with the WWAN, WLAN and BT is allowed.

Antonno nort	WCDM	A/HSPA	LT	Ъ	802.11	b/g/n	Blue	etooth		
Antenna port	TX	RX	TX	RX	TX	RX	TX	RX		
#1 WWAN Main	No	No	No	No	Yes	Yes	Yes	Yes		
#2 WLAN Main	Yes	Yes	Yes	Yes	No	No	Yes	Yes		
#3 BT Main	Yes	Yes	Yes	Yes	Yes	Yes	No	No		

6) Identify the LTE voice/data requirements in each operating mode and exposure condition with respect to head and body test configurations, antenna locations, handset flip-cover or slide positions, antenna diversity conditions etc

The device is a data only device. Data mode was tested in each operating mode and exposure condition in the body configuration. See test setup photos to see all configurations tested.

- 7) Identify if Maximum Power Reduction (MPR) is optional or mandatory, i.e. built-in by design:
 - a) Only mandatory MPR may be considered during SAR testing, when the maximum output power is permanently limited by the MPR implemented within the UE; and only for the applicable RB (resource block) configurations specified in LTE standards

	Modulation Channel Bandwidth/transmission Bandwidth Configuration MPR							
Modulation	l Ch	Channel Bandwidth/transmission Bandwidth Configuration						
		(RB)						
	1.4	1.4 3.0 5 10 15 20						
	MHz	MHZ	MHz	MHz	MHz	MHz		
QPSK	> 5	>4	> 8	> 12	>16	> 18	<u>≤</u> 1	
16QAM	≤ 5	≤4	≤ 8	≤ 12	≤16	≤18	≤ 1	
16QAM	> 5	>4	> 8	> 12	>16	> 18	≤ 2	

MPR	is mandatory,	built-in by	design	on all	production	units. I	t was	enabled	during	testing.
									0	

b) A-MPR (additional MPR) must be disabled

A-MPR was disabled during testing.

8) Include the maximum average conducted output power on the required test channels for each channel bandwidth and UL modulation used in each frequency band:

The maximum average conducted output power for the testing is listed on pages 31-40 of this report. The below table shows the factory set point with the allowable tolerance.

Band	Technology	Class	3GPP Nominal Power dBm	Tolerance dBm	Lower Tolerance dBm	Upper Tolerance dBm
Band 2 – 1900 MHz	LTE – FDD	3	23	±1.0	22.0	24.0
Band 4 – 1750 MHz	LTE – FDD	3	23	±1.0	22.0	24.0
Band 5 – 850 MHz	LTE – FDD	3	23	±1.0	22.0	24.0
Band 12 – 700 MHz	LTE – FDD	3	23	±1.0	22.0	24.0

9) Identify all other U.S. wireless operating modes (3G, Wi-Fi, WiMax, Bluetooth etc), device/exposure configurations (head and body, antenna and handset flip-cover or slide positions, antenna diversity conditions etc.) and frequency bands used for these modes

Other when	ess modes.					
Band	Technology	Class	3GPP Nominal Power dBm	Tolerance dBm	Lower Tolerance dBm	Upper Tolerance dBm
Band 2 – 1900 MHz	UMTS	3	24	±1.0	23.0	25.0
Band 5 – 850 MHz	UMTS	3	24	±1.0	23.0	25.0
WLAN – 2.4 GHz	802.11b	N/A	N/A	N/A	N/A	18.3
WLAN – 2.4 GHz	802.11g	N/A	N/A	N/A	N/A	17.3
WLAN – 2.4 GHz	802.11n	N/A	N/A	N/A	N/A	13.0
Bluetooth	BLE	N/A	N/A	N/A	N/A	8.0

Other wireless modes:

10) Include the maximum average conducted output power measured for the other wireless modes and frequency bands.

The maximum average conducted output power measured for the testing is listed on pages 26 & 28 of this report. The table in item 9 shows the factory set point with the allowable tolerance.

11) When power reduction is applied to certain wireless modes to satisfy SAR compliance for simultaneous transmission conditions, other equipment certification or operating requirements, include the maximum average conducted output power measured in each power reduction mode applicable to the simultaneous voice/data transmission configurations for such wireless configurations and frequency bands; and also include details of the power reduction implementation and measurement setup

Power reduction is not required to satisfy SAR compliance.

Report Number: SAR.20211207

12) Include descriptions of the test equipment, test software, built-in test firmware etc. required to support testing the device when power reduction is applied to one or more transmitters/antennas for simultaneous voice/data transmission

Power reduction is not required to satisfy SAR compliance.

13) When appropriate, include a SAR test plan proposal with respect to the above

Power reduction is not required to satisfy SAR compliance.

14) If applicable, include preliminary SAR test data and/or supporting information in laboratory testing inquiries to address specific issues and concerns or for requesting further test reduction considerations appropriate for the device; for example, simultaneous transmission configurations.

Not applicable.

10. FCC 3G Measurement Procedures

Power measurements were performed using a base station simulator under average power.

10.1 Procedures Used to Establish RF Signal for SAR

The device was placed into a simulated call using a base station simulator in a screen room. Such test signals offer a consistent means for testing SAR and recommended for evaluating SAR. The SAR measurement software calculates a reference point at the start and end of the test to check for power drifts. If conducted power deviations of more than 5% occurred, the tests were repeated.

10.2 SAR Measurement Conditions for WCDMA/HSDPA/HSUPA

Configure the call box 8960 to support all WCDMA tests in respect to the 3GPP 34.121 (listed in Table below). Measure the power at Ch4132, 4182 and 4233 for US cell; Ch9262, 9400 and 9538 for US PCS band.

For Rel99

FOR Rel99	 Set a Test Mode 1 loop back with a 12.2kbps Reference Measurement Channel (RMC).
For HSDPA Rel 6	 Set and send continuously Up power control commands to the device Measure the power at the device antenna connector using the power meter with average detector.
	• Establish a Test Mode 1 look back with both 1 12.2kbps RMC channel and a H-Set1 Fixed Reference Channel (FRC). With the 8960 this is accomplished by setting the signal Channel Coding to "Fixed Reference Channel" and configuring for HSET-1 QKSP.
	 Set beta values and HSDPA settings for HSDPA Subtest1 according to Table below.
	 Send continuously Up power control commands to the device Measure the power at the device antenna connector using the power meter with modulated average detector.
For HSUPA Rel 6	 Repeat the measurement for the HSDPA Subtest2, 3 and 4 as given in Table below.
FOI HOUFA KEI O	 Use UL RMC 12.2kbps and FRC H-Set1 QPSK, Test Mode 1 loop back. With the 8960 this is accomplished by setting the signal Channel Coding to "E-DCH Test Channel" and configuring the equipment category to Cat5_10ms. Set the Absolute Grant for HSUPA Subtest1 according to Table below. Set the device power to be at least 5dB lower than the Maximum output power Send power control bits to give one TPC_cmd = +1 command to the device. If device doesn't send any E-DPCH data with decreased E-TFCI within 500ms, then repeat this process until the decreased E-TFCI is reported. Confirm that the E-TFCI transmitted by the device is equal to the target E-TFCI in Table below. If the E-TFCI transmitted by the device is not equal to the target E-TFCI, then send power control bits to give one TPC_cmd = -1 command to the UE. If UE sends any E-DPCH data with decreased E-TFCI within 500 ms, send new power control bits to give one TPC_cmd = -1 command to the UE. Measure the power using the power meter with modulated average detector. Repeat the measurement for the HSUPA Subtest2, 3, 4 and 5 as given in Table below.

3GPP Release	Mode	Mode Cellular Band [dBm]		[dBm]	Sub-Test (See Table	MPR		
Version		4132	4183	4233	Below)			
99	WCDMA	24.68	24.74	24.55	-	-		
6		24.96	24.71	24.66	1	0		
6	HSDPA	24.53	24.77	24.91	2	0		
6	HSDFA	24.01	24.16	24.41	3	0.5		
6		24.16	24.28	24.23	4	0.5		
6		24.82	24.69	24.88	1	0		
6		22.77	22.67	22.77	2	2		
6	HSUPA	23.62	23.55	23.51	3	1		
6		22.53	22.98	22.58	4	2		
6		24.75	24.95	24.54	5	0		

Conducted Powers

3GPP Release			Band [d	Bm]	Sub-Test (See Table MPR		
Version		9262 9400 9538		9538	`Below)		
99	WCDMA	24.98	24.78	24.56	-	-	
6		24.65	24.74	24.75	1	0	
6	HSDPA	24.55	24.82	24.51	2	0	
6	NSUFA	24.06	24.38	24.13	3	0.5	
6		24.23	24.29	24.38	4	0.5	
6		24.66	24.57	24.81	1	0	
6		22.95	22.81	22.68	2	2	
6	HSUPA	23.59	23.76	23.54	3	1	
6		22.74	22.78	22.73	4	2	
6		24.58	24.90	24.76	5	0	

Sub-Test Setup for Release 6 HSDPA

Sub-Test	βc	βd	B _c / β _d	β_{hs}
1	2/15	15/15	2/15	4/15
2	12/15	15/15	15/15	24/15
3	15/15	8/15	15/8	30/15
4	15/15	4/15	15/4	30/15
$\Delta_{ack}, \Delta_{nack} a$	and $\Delta_{cqi} =$	8		

Sub-Test Setup for Release 6 HSUPA

Sub-Test	β _c	β _d	B _c / β _d	β_{hs}	B _{ec}	B_{ed}	MPR	AG Index	E-TFCI
1	11/15	15/15	11/15	22/15	209/225	1039/225	0.0	20	75
2	6/15	15/15	6/15	12/15	12/15	94/75	2.0	12	67
3	15/15	9/15	15/9	30/15	30/15	47/15	1.0	15	92
4	2/15	15/15	2/15	4/15	2/15	56/15	2.0	17	71
5	15/15	15/15	15/15	30/15	24/15	134/15	0.0	21	81
$\Delta_{ack}, \Delta_{nack}$ a	nd $\Delta_{cqi} = 8$	3							

Figure	10.1 1631 N	eduction rai					
Band/ Frequency (MHz)	Technology	Position	Required Channel	Tested/ Reduced			
			4132	Tested			
		Front	4183	Tested			
			4233	Tested			
			4132	Reduced ¹			
		Back	4183	Tested			
			4233	Reduced ¹			
			4132	Reduced ¹			
		Left	4183	Tested			
Band 5			4233	Reduced ¹			
824-849 MHz	WCDMA		4132	Reduced ¹			
		Right	4183	Tested			
		C C	4233	Reduced ¹			
			4132	Tested			
		Bottom	4183	Tested			
			4233	Tested			
			4132	Reduced ²			
		Тор	4183	Reduced ²			
			4233	Reduced ²			
			9262	Tested			
		Front	9400	Tested			
			9538	Tested			
			9262	Reduced ¹			
		Back	9400	Tested			
			9538	Reduced ¹			
			9262	Reduced ¹			
		Left	9400	Tested			
Band 2	WCDMA		9538	Reduced ¹			
1850-1910 MHz	VVCDIVIA		9262	Reduced ¹			
		Right	9400	Tested			
			9538	Reduced ¹			
	Γ		9262	Reduced ¹			
		Bottom	9400	Tested			
			9538	Reduced ¹			
	Γ		9262	Reduced ²			
		Тор	9400	Reduced ²			
			9538	Reduced ²			

Figure 10.1 Test Reduction Table – WCDMA

Reduced¹ - When the mid channel is 3 dB (0.8 W/kg) below the limit, the remaining channels are not required per KDB 447498 D01 v06 section 4.3.3 page 14. Reduced² – The top is more than 25 mm from the antenna which is excluded from SAR testing.

RF Exposure Lab

Band	Mode	Bandwidth (MHz)	Channel	Frequency (MHz)	Data Rate	Avg Power (dBm)	Tune-up Pwr (dBm)
			1	2412	1	17.45	18.30
	802.11b	20	6	2437	1 Mhac	17.50	18.30
			11	2462	Mbps	17.40	18.30
			1	2412	C	16.97	17.30
2450 MHz	802.11g	20	6	2437	6 Mbps	16.94	17.30
			11	2462	wups	16.94	17.30
			1	2412		11.95	13.00
	802.11n	20	6	2437	HT0	11.87	13.00
			11	2462		11.90	13.00

Band	Mode	Channel	Frequency (MHz)	Data Rate	Antenna	Avg Power (dBm)	Tune-up Pwr (dBm)
		0	2402	Basic		7.42	8.00
2450 MHz	Bluetooth v4.0	39	2441	Rate	Main	7.43	8.00
		78	2480	GFSK		7.38	8.00

Figure 10.1 Test Reduction Table – WiFi 2.4 GHz Main

Mode	Side	Required Channel	Tested/Reduced
		1 – 2412 MHz	Reduced ¹
	Front	6 – 2437 MHz	Tested
		11 – 2462 MHz	Reduced ¹
802.11b		1 – 2412 MHz	Tested
	Right	6 – 2437 MHz	Tested
		11 – 2462 MHz	Tested
	Rema	aining Sides	Reduced ³
		1 – 2412 MHz	Reduced ²
	Front	6 – 2437 MHz	Reduced ²
		11 – 2462 MHz	Reduced ²
802.11g		1 – 2412 MHz	Reduced ²
-	Right	6 – 2437 MHz	Reduced ²
		11 – 2462 MHz	Reduced ²
	Rema	aining Sides	Reduced ³
		1 – 2412 MHz	Reduced ²
	Front	6 – 2437 MHz	Reduced ²
		11 – 2462 MHz	Reduced ²
802.11n		1 – 2412 MHz	Reduced ²
	Right	6 – 2437 MHz	Reduced ²
	-	11 – 2462 MHz	Reduced ²
	Rema	aining Sides	Reduced ³

Reduced¹ – When the reported SAR is ≤ 0.4 W/kg, SAR is not required for the remaining test configuration per KDB 248227 D01 v02r02 section 5.1.1 1) page 9.

Reduced² – When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 3.0 W/kg, SAR is not required per KDB 248227 D01 v02r02 section 5.2.2 2) page 10.

Reduced³ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11.

Closest Distance to Back: 30 mm Closest Distance to Left: 55 mm Closest Distance to Top: 38 mm Closest Distance to Bottom: 72 mm

Note: The BT transmitter is excluded from SAR testing for both the FCC and ISED. The BT antenna is a minimum of 10 mm from the user and the maximum Tx power is 6.3 mW. For the FCC per 47 CFR 1310 calculation, the maximum Tx power must be less than or equal to 10 mW to be excluded. For ISED per RSS-102, the maximum Tx power must be less than or equal to 7 mW. Therefore, both the FCC and ISED exclude SAR testing for the BT transmitter as it is less than both exclusion limits.

11.1 SAR Measurement Conditions for LTE Bands

11.1.1 LTE Functionality

The follow table identifies all the channel bandwidths in each frequency band supported by this device.

LTE Band Class	Bandwidth (MHz)	Frequency or Freq. Band (MHz)
2	1.4, 3, 5, 10, 15, 20	1850-1915
4	1.4, 3, 5, 10, 15, 20	1710-1755
5	1.4, 3, 5, 10	824-849
12	1.4, 3, 5, 10	704-716

11.1.2 Test Conditions

All SAR measurements for LTE were performed using the Anritsu MT8820C. A closed loop power control setting allowed the UE to transmit at the maximum output power during the SAR measurements. The Figure 11.1 table indicates all the test reduction utilized for this report.

MPR was enabled for this device. A-MPR was disabled for all SAR test measurements.

Table 11.1.2.1 LTE Power Measurements										
Band	Bandwidth	RB Size	RB Offset	Channel	Frequency	QPSK	16QAM			
				18607	1850.7	23.5	22.6			
			0	18900	1880.0	23.5	22.7			
				19193	1909.3	23.4	22.4			
				18607	1850.7					
		1	3	18900	1880.0					
			_	19193	1909.3					
				18607	1850.7	23.7				
			5	18900	1880.0	23.7				
				19193	1909.3					
				18607	1850.7					
	1.4 MHz		0	18900	1880.0					
				19193	1909.3					
				18607	1850.7					
		3	1	18900	1880.0					
				19193	1909.3	23.4	22.5			
				18607	1850.7	23.3	22.5			
			3	18900	1880.0	23.8	22.6 22.7 22.3 22.3 22.7 22.5 22.7 22.5 22.7 22.5 22.7 22.5 22.7 22.5 22.6 22.3 22.6 22.5 22.6 22.7 21.6 21.6 21.6 21.6 22.4 22.3 22.4 22.3 22.4 22.3 22.4 22.3 22.4 22.3 22.4 22.7 21.6 21.7 22.6 21.7 22.6 21.7 22.6 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.6 21.7 <t< td=""></t<>			
				19193	1909.3	23.8	22.7			
				18607	1850.7	22.5	21.6			
		6	0	18900	1880.0	22.4	21.6			
2				19193	1909.3	22.5	21.6			
2				18615	1851.5	23.4	22.4			
			0	18900	1880.0	23.3	22.3			
				19185	1908.5	23.2	22.6			
				18615	1851.5	23.3	22.4			
		1	7	18900	1880.0	23.6	22.3			
				19185	1908.5	23.8	22.8			
				18615	1851.5	23.9	22.4			
			14	18900	1880.0	23.3	22.7			
				19185	1908.5	23.5	22.6			
				18615	1851.5	22.5	21.3			
	3 MHz		0	18900	1880.0	22.3	21.7			
				19185	1908.5	23.522.723.422.423.422.323.422.323.222.723.722.523.722.723.222.923.622.523.722.623.622.623.622.823.422.323.523.823.822.722.521.623.422.823.322.523.322.523.322.722.521.623.422.423.322.323.422.423.322.323.422.423.322.723.522.623.322.423.322.723.522.623.521.622.521.322.621.522.721.822.321.922.521.422.421.522.521.422.421.722.521.622.421.722.521.4				
				18615	1851.5	22.7	21.8			
		8	7	18900	1880.0	22.3	21.9			
				19185	1908.5	22.5	21.4			
				18615	1851.5	22.4	21.5			
			14	18900	1880.0	22.6	21.6			
				19185	1908.5	22.4	21.7			
				18615	1851.5	22.5	21.2			
		15	0	18900	1880.0					
				19185	1908.5	22.7	21.5			

Table 11.1.2.1 LTE Power Measurements

Band	Bandwidth	RB Size	RB Offset	Channel	Frequency	QPSK	16QAM
Danu	Danawiath	10 5126	ND Onset	Channel	rrequency	QUSIC	IUQAM
				19625	1053 5	22 5	22.7
			0	18625	1852.5	23.5	22.7
			0	18900	1880.0	23.6	22.8
				19175	1907.5	23.8	22.9
			12	18625	1852.5	23.6	22.8
		1	12	18900	1880.0	23.8	22.6
				19175	1907.5	23.3	22.8
				18625	1852.5	23.9	22.3
			24	18900	1880.0	23.7	22.3
				19175	1907.5	23.8	22.6
				18625	1852.5	22.7	21.2
	5 MHz		0	18900	1880.0	22.3	21.5
				19175	1907.5	22.6	21.6
				18625	1852.5	22.3	21.4
		12	6	18900	1880.0	22.3	21.8
				19175	1907.5	22.4	21.6
				18625	1852.5	22.7	21.7
			13	18900	1880.0	22.8	21.5
				19175	1907.5	22.4	21.8
				18625	1852.5	22.6	21.6
		25	0	18900	1880.0	22.8	21.6
2				19175	1907.5	22.8	21.3
Z				18650	1855.0	23.6	22.8
			0	18900	1880.0	23.6	22.7
				19150	1905.0	23.7	22.5
				18650	1855.0	23.6	22.8
		1	24	18900	1880.0	23.2	22.6
				19150	1905.0	23.7	22.3
				18650	1855.0	23.2	22.7
			49	18900	1880.0	23.6	22.3
				19150	1905.0	23.4	22.3
				18650	1855.0	22.5	21.3
	10 MHz		0	18900	1880.0	22.5	21.9
				19150	1905.0	22.8	21.8
				18650	1855.0	22.2	21.4
		25	13	18900	1880.0	22.6	21.8
				19150	1905.0	22.4	21.7
				18650	1855.0	22.2	21.8
			25	18900	1880.0	22.6	21.6
				19150	1905.0	22.8	21.0
				18650	1855.0	22.8	21.7
		50	0	18900	1880.0	22.4	21.7
		50	0	19150	1905.0	22.4	21.4

Report Number: SAR.20211207

Band	Bandwidth	RB Size	RB Offset	Channel	Frequency	QPSK	16QAM
Danu	Danuwiath	ND 512C	RD Offset	Channel	rrequency	QISK	IUQAM
	1		1	40675	4057.5	22.7	22.4
				18675	1857.5	23.7	23.1
			0	18900	1880.0	24.0	22.8
				19125	1902.5	23.7	22.7
				18675	1857.5	24.2	22.5
		1	37	18900	1880.0	23.6	23.0
				19125	1902.5	23.6	23.1
				18675	1857.5	23.9	22.7
			74	18900	1880.0	23.7	22.9
				19125	1902.5	23.8	23.0
				18675	1857.5	22.6	21.9
	15 MHz		0	18900	1880.0	22.7	21.5
				19125	1902.5	23.0	22.0
				18675	1857.5	23.0	21.8
		36	19	18900	1880.0	22.7	22.2
				19125	1902.5	22.9	22.1
				18675	1857.5	23.0	21.9
			39	18900	1880.0	23.1	21.9
				19125	1902.5	22.6	22.0
				18675	1857.5	22.9	21.6
		75	0	18900	1880.0	22.9	21.9
2				19125	1902.5	22.7	22.0
2				18700	1860.0	23.6	22.8
			0	18900	1880.0	23.7	22.9
				19100	1900.0	23.9	22.9
				18700	1860.0	23.8	22.8
		1	49	18900	1880.0	23.8	22.7
				19100	1900.0	23.8	23.0
				18700	1860.0	23.8	23.2
			99	18900	1880.0	23.8	22.9
				19100	1900.0	23.8	22.8
				18700	1860.0	22.9	21.8
	20 MHz		0	18900	1880.0	23.1	22.1
			-	19100	1900.0	23.1	21.5
				18700	1860.0	23.0	22.1
		50	24	18900	1880.0	22.8	21.9
				19100	1900.0	22.9	22.2
				18700	1860.0	22.6	22.0
			50	18900	1880.0	22.8	22.2
				19100	1900.0	22.8	21.9
				19100	1860.0	22.8	21.3
1		100	0	18900	1880.0	22.8	22.1
		100	0				
				19100	1900.0	22.7	22.1

Band	Bandwidth	RB Size	RB Offset	Channel	Frequency	QPSK	16QAM
Dana	Danawiath	ND SIZC	ND Onset	channer	ricquency		100
				10057	1710 7	<u> </u>	22 5
			0	19957	1710.7	23.3	22.5
		1		20175	1732.5	23.3	22.7
				20393	1754.3	23.4	22.3
			3	19957	1710.7	23.8	22.7
				20175	1732.5	23.2	22.5
				20393	1754.3	23.3	22.3
			5	19957	1710.7	23.9	22.3
				20175	1732.5	23.6	22.7
				20393	1754.3	23.6	22.4
		3	0	19957	1710.7	23.2	22.9
	1.4 MHz			20175	1732.5	23.6	22.5
				20393	1754.3	23.6	22.6
			1	19957	1710.7	23.6	22.4
				20175	1732.5	23.5	22.3
				20393	1754.3	23.6	22.3
			3	19957	1710.7	23.8	22.3
				20175	1732.5	23.7	22.7
				20393	1754.3	23.3	22.5
		6	0	19957	1710.7	22.8	21.6
				20175	1732.5	22.3	21.7
4				20393	1754.3	22.2	21.4
4	3 MHz	1	0	19965	1711.5	23.5	22.7
				20175	1732.5	23.9	22.7
				20385	1753.5	23.8	22.5
			7	19965	1711.5	23.5	22.7
				20175	1732.5	23.3	22.3
				20385	1753.5	23.4	22.7
				19965	1711.5	23.5	22.3
				20175	1732.5	23.6	22.4
				20385	1753.5	23.7	22.5
			0	19965	1711.5	22.3	21.8
				20175	1732.5	22.7	21.5
				20385	1753.5	22.5	21.6
		8	7	19965	1711.5	22.8	21.6
				20175	1732.5	22.6	21.4
				20385	1753.5	22.6	21.5
			14	19965	1711.5	22.8	21.8
				20175	1732.5	22.5	21.3
				20175	1753.5	22.6	21.5
			0	19965	1755.5	22.0	21.7
		15		20175	1732.5	22.4	21.7
				20175	1753.5	22.3	21.8

Band	Bandwidth	RB Size	RB Offset	Channel	Frequency	QPSK	16QAM
Dunu	Banawiatii	110 0120	ND ONSEC	channer	ricquency	<u> </u>	100,111
				19975	1712.5	23.9	22.7
			0				
		1		20175	1732.5	23.4	22.4
				20375	1752.5	23.6	22.7
			12	19975	1712.5	23.9	22.8
				20175	1732.5	23.5	22.3
				20375	1752.5	23.3	22.7
			24	19975	1712.5	23.9	22.3
				20175	1732.5	23.2	22.3
				20375	1752.5	23.2	22.2
		12	0	19975	1712.5	22.4	21.7
	5 MHz			20175	1732.5	22.9	21.6
				20375	1752.5	22.8	21.4
			6	19975	1712.5	22.2	21.8
				20175	1732.5	22.9	21.6
				20375	1752.5	22.2	21.4
			13	19975	1712.5	22.9	21.6
				20175	1732.5	22.7	21.6
				20375	1752.5	22.8	21.4
		25	0	19975	1712.5	22.8	21.7
				20175	1732.5	22.8	21.6
4				20375	1752.5	22.7	21.3
4	10 MHz	1	0	20000	1715.0	23.7	22.5
				20175	1732.5	23.4	22.6
				20350	1750.0	23.5	22.6
			24	20000	1715.0	23.3	22.4
				20175	1732.5	23.6	22.7
				20350	1750.0	23.5	22.4
			49	20000	1715.0	23.6	22.9
				20175	1732.5	23.2	22.9
				20350	1750.0	23.9	22.4
			0	20000	1715.0	22.7	21.8
				20175	1732.5	22.3	21.7
				20350	1750.0	22.4	21.5
		25	13	20000	1715.0	22.6	21.8
				20175	1732.5	22.3	21.9
				20350	1750.0	22.2	21.3
			25	20000	1715.0	22.3	21.3
				20175	1732.5	22.5	21.3
				20350	1750.0	22.5	21.6
		50	0	20000	1715.0	22.2	21.0
				20000	1732.5	22.5	21.2
			0	20173	1750.0	22.3	21.7

Band	Bandwidth	RB Size	RB Offset	Channel	Frequency	QPSK	16QAM
Dallu	Danuwiuth	ND 512C	RD Offset	Channel	riequency	QF3N	IUQAN
				20025	47475	22.0	22.2
				20025	1717.5	23.9	23.2
		1	0	20175	1732.5	23.6	22.8
				20325	1747.5	23.7	22.9
			37	20025	1717.5	23.6	23.1
				20175	1732.5	23.5	23.1
				20325	1747.5	24.0	23.2
			74	20025	1717.5	24.1	22.7
				20175	1732.5	23.6	22.8
				20325	1747.5	23.9	23.2
		36	0	20025	1717.5	23.0	22.0
	15 MHz			20175	1732.5	22.8	21.6
				20325	1747.5	22.7	21.8
			19	20025	1717.5	23.0	21.5
				20175	1732.5	22.6	22.2
				20325	1747.5	22.9	22.0
			39	20025	1717.5	23.0	21.9
				20175	1732.5	22.5	21.8
				20325	1747.5	23.2	22.1
		75	0	20025	1717.5	22.9	22.0
				20175	1732.5	22.5	22.0
				20325	1747.5	22.8	22.1
4	20 MHz	1	0	20050	1720.0	24.1	22.5
				20175	1732.5	23.6	22.7
				20300	1745.0	23.8	22.5
			49	20050	1720.0	23.9	23.0
				20175	1732.5	24.0	22.7
				20300	1745.0	24.0	23.0
				20050	1720.0	23.7	22.6
			99	20175	1732.5	23.7	22.8
			-	20300	1745.0	24.1	23.0
				20050	1720.0	22.6	21.9
			0	20175	1732.5	23.0	21.8
				20300	1745.0	22.8	21.7
		50	24	20050	1720.0	22.8	21.7
				20030	1732.5	22.7	21.9
				20300	1745.0	23.0	22.0
		100	50	20050	1720.0	23.1	21.7
				20050	1732.5	23.0	22.0
				20175	1745.0	23.0	22.0
				20300	1743.0	23.0	22.0
			0				
				20175	1732.5	22.9	22.0
				20300	1745.0	23.0	22.1

Band	Bandwidth	RB Size	RB Offset	Channel	Frequency	QPSK	16QAM
Danu	Danuwiath	ND 512C	RD Offset	Channel	rrequency	QI SK	IUQAM
				20407	0247	22.7	22.5
				20407	824.7	23.7	22.5
			0	20525	836.5	23.7	22.3
				20643	848.3	23.3	22.8
				20407	824.7	23.8	22.6
		1	3	20525	836.5	23.4	22.7
				20643	848.3	23.3	22.9
				20407	824.7	23.7	22.3
			5	20525	836.5	23.4	22.4
				20643	848.3	23.2	22.9
				20407	824.7	23.5	22.3
	1.4 MHz		0	20525	836.5	23.4	22.9
				20643	848.3	23.5	22.7
				20407	824.7	23.2	22.7
		3	1	20525	836.5	23.4	22.6
				20643	848.3	23.8	22.2
				20407	824.7	23.3	22.6
			3	20525	836.5	23.5	22.5
				20643	848.3	23.8	22.9
		6	0	20407	824.7	22.2	21.7
				20525	836.5	22.5	21.9
_				20643	848.3	22.8	21.6
5			0	20415	825.5	23.5	22.9
				20525	836.5	23.3	22.9
				20635	847.5	23.6	22.8
				20415	825.5	23.5	22.8
		1	7	20525	836.5	23.8	22.8
				20635	847.5	23.7	22.5
				20415	825.5	23.5	22.8
			14	20525	836.5	23.3	22.6
				20635	847.5	23.7	22.7
				20415	825.5	22.4	21.7
	3 MHz		0	20525	836.5	22.3	21.6
				20635	847.5	22.8	21.4
				20415	825.5	22.8	21.6
		8	7	20525	836.5	22.3	21.5
			,	20635	847.5	22.3	21.3
				20035	825.5	22.5	21.6
			14	20525	836.5	22.5	21.0
				20525	847.5	22.3	21.5
				20035	825.5	22.3	21.7
		15	0	20413	836.5	22.8	21.2
		1.5	0				
				20635	847.5	22.4	21.5

Band	Bandwidth	RB Size	RB Offset	Channel	Frequency	QPSK	16QAM
Dallu	Danuwiutii	ND SIZE	RD Offset	Channel	riequency	QF3K	IOQAIVI
			1				
				20425	826.5	23.7	22.9
			0	20525	836.5	23.6	22.8
				20625	846.5	24.1	22.5
				20425	826.5	24.0	22.9
		1	12	20525	836.5	23.9	23.2
				20625	846.5	23.9	22.7
				20425	826.5	23.9	23.1
			24	20525	836.5	23.6	23.2
				20625	846.5	23.9	22.8
				20425	826.5	22.9	21.8
	5 MHz	12	0	20525	836.5	23.0	21.7
				20625	846.5	23.1	22.1
				20425	826.5	23.2	21.6
			6	20525	836.5	22.6	21.8
				20625	846.5	23.1	21.9
				20425	826.5	22.9	21.8
			13	20525	836.5	22.7	22.2
				20625	846.5	23.1	21.8
		25	0	20425	826.5	22.7	21.7
				20525	836.5	22.7	22.1
-				20625	846.5	23.2	22.1
5				20450	829.0	23.6	23.1
			0	20525	836.5	24.0	22.6
				20600	844.0	24.2	23.1
				20450	829.0	23.7	23.0
		1	24	20525	836.5	24.0	22.6
				20600	844.0	24.0	22.7
				20450	829.0	23.9	22.8
			49	20525	836.5	23.6	22.7
				20600	844.0	23.6	22.8
				20450	829.0	22.8	22.0
	10 MHz		0	20525	836.5	22.8	21.5
				20600	844.0	22.8	21.8
				20450	829.0	22.5	21.7
		25	13	20525	836.5	22.5	21.9
		-	-	20600	844.0	23.0	22.2
				20450	829.0	22.8	22.0
			25	20525	836.5	22.8	22.0
			-	20600	844.0	23.0	21.8
				20450	829.0	22.9	22.1
		50	0	20525	836.5	22.9	21.8
			, v	20600	844.0	22.7	21.8

Band	Bandwidth	RB Size	RB Offset	Channel 23017 23095 23173	Frequency 699.7 707.5	QPSK 23.4 23.5	16QAM 22.5
		1	0	23095			
		1	0	23095			
		1	0		/0/.5		1 77 6
		1		231/3	745.2		22.6
		1			715.3	23.7	22.7
		1	2	23017	699.7	23.4	22.4
			3	23095	707.5	23.8	22.8
				23173	715.3	23.6	22.8
			_	23017	699.7	23.2	22.7
			5	23095	707.5	23.6	22.4
	-			23173	715.3	23.4	22.4
				23017	699.7	23.5	22.3
	1.4 MHz		0	23095	707.5	23.9	22.4
				23173	715.3	23.3	22.2
		3		23017	699.7	23.9	22.5
			1	23095	707.5	23.2	22.4
				23173	715.3	23.3	22.7
				23017	699.7	23.8	22.2
			3	23095	707.5	23.9	22.5
				23173	715.3	23.5	22.6
		6	0	23017	699.7	22.3	21.3
				23095	707.5	22.9	21.4
12				23173	715.3	22.7	21.7
12				23025	700.5	23.3	22.5
			0	23095	707.5	23.3	22.8
				23165	714.5	23.9	22.7
				23025	700.5	23.6	22.6
		1	7	23095	707.5	23.4	22.7
				23165	714.5	23.5	22.3
				23025	700.5	23.7	22.5
			14	23095	707.5	23.3	22.2
				23165	714.5	23.8	22.7
	ŀ			23025	700.5	22.3	21.8
	3 MHz		0	23095	707.5	22.3	21.9
				23165	714.5	22.6	21.8
				23025	700.5	22.3	21.6
		8	7	23095	707.5	22.4	21.3
		2		23165	714.5	22.8	21.7
				23025	700.5	22.8	21.9
			14	23095	707.5	22.4	21.4
			- •	23165	714.5	22.4	21.8
	-			23025	700.5	22.4	21.5
		15	0	23025	707.5	22.9	21.5
		10	0	23095	714.5	22.9	21.0

Band	Bandwidth	RB Size	RB Offset	Channel	Frequency	QPSK	16QAM
Danu	Banawiath	ND SIZE	no onset	channel	requeitey	QUUN	TOQAM
	1		1	22025	701 5	22.0	22.0
				23035	701.5	23.8	22.9
			0	23095	707.5	23.7	22.9
				23155	713.5	23.8	22.9
			12	23035	701.5	23.8	23.0
		1	12	23095	707.5	23.7	22.7
				23155	713.5	24.1	23.2
				23035	701.5	23.8	22.9
			24	23095	707.5	24.1	22.8
				23155	713.5	23.6	22.7
				23035	701.5	22.6	21.8
	5 MHz		0	23095	707.5	22.9	22.1
				23155	713.5	22.9	21.6
				23035	701.5	23.1	21.6
		12	6	23095	707.5	22.6	21.7
				23155	713.5	22.7	21.9
				23035	701.5	22.6	21.7
			13	23095	707.5	22.8	22.1
				23155	713.5	23.0	21.9
		25	0	23035	701.5	23.2	21.7
				23095	707.5	22.7	21.6
10				23155	713.5	22.9	22.1
12				23060	704.0	24.0	22.9
			0	23095	707.5	23.6	22.5
				23130	711.0	24.0	23.1
				23060	704.0	24.0	23.1
		1	24	23095	707.5	23.9	22.8
				23130	711.0	23.9	22.6
				23060	704.0	24.0	22.9
			49	23095	707.5	23.9	22.9
			-	23130	711.0	23.8	23.1
				23060	704.0	23.0	22.1
	10 MHz		0	23095	707.5	22.5	22.1
			-	23130	711.0	22.8	22.1
				23060	704.0	22.9	21.7
		25	13	23095	707.5	23.0	22.0
				23130	711.0	23.0	22.1
				23060	704.0	22.5	22.0
			25	23095	704.0	22.6	22.0
			25	23130	711.0	23.0	21.8
				23130	704.0	23.0	21.8
		50	0	23000	704.0	22.7	21.8
		50	0				
				23130	711.0	23.2	22.1

		Table 11.1	.2.2 Test I	Reduction	l able		
Band/	Dee	Required	Bondwidth	Medulation	RB	RB	Tested/
Frequency (MHz)	Pos.	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		18700					Tested
		18900			50	24	Tested
		19100					Tested
		18700					Reduced ¹
		18900			100	0	Tested
		19100		0001/			Reduced ¹
		18700		QPSK			Reduced ²
		18900				0	Reduced ²
		19100			1		Reduced ²
		18700			1		Tested
		18900				49	Tested
		19100					Tested
	Front	18700	20 MHz				Reduced ³
		18900			50	24	Reduced ³
		19100					Reduced ³
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100		160AM			Reduced ¹
		18700		16QAM	1	0	Reduced ⁴
		18900					Reduced ⁴
		19100					Reduced ⁴
		18700		I		Reduced ⁴	
		18900	_			49	Reduced ⁴
		19100					Reduced ⁴
Band 2			bandwidths (15 M	/Hz, 10 MHz, 5 MH	lz, 3 MHz, 1.4 MH	z)	Reduced ⁵
1850-1910 MHz		18700		QPSK	50	24	Reduced ⁶
		18900					Tested
		19100					Reduced ⁶
		18700			100		Reduced ¹
		18900				0	Reduced ¹
		19100					Reduced ¹
		18700		QION			Reduced ²
		18900				0	Reduced ²
		19100			1		Reduced ²
		18700					Reduced ⁶
		18900				49	Tested
		19100	20 MHz				Reduced ⁶
	Back	18700	20 1011 12				Reduced ³
		18900			50	24	Reduced ³
		19100					Reduced ³
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100		16QAM			Reduced ¹
		18700					Reduced ⁴
		18900				0	Reduced ⁴
		19100			1		Reduced ⁴
		18700			1		Reduced ⁴
		18900				49	Reduced ⁴
		19100					Reduced ⁴
Poducod ¹ If the S				//Hz, 10 MHz, 5 M⊦			Reduced ⁵

Table 11 1 2 2 Test Reduction Table

Reduced¹ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 v02r05.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05. Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05

v02r05.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 v02r05.

Band/	Des	Required	Development	Mar haladan	RB	RB	Tested/	
Frequency (MHz)	Pos.	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced	
		18700				0.1001	Reduced ⁶	
		18900			50	24	Tested	
		19100					Reduced ⁶	
		18700					Reduced ¹	
		18900			100	0	Reduced ¹	
		19100		0.001/		-	Reduced ¹	
		18700		QPSK			Reduced ²	
		18900				0	Reduced ²	
		19100			1		Reduced ²	
		18700			1		Reduced ⁶	
		18900				49	Tested	
		19100	20 MHz				Reduced ⁶	
	Left	18700					Reduced ³	
		18900			50	24	Reduced ³	
		19100					Reduced ³	
		18700					Reduced ¹	
		18900			100	0	Reduced ¹	
		19100		16QAM			Reduced ¹	
		18700		IOQAIVI			Reduced ⁴	
		18900				0 49	Reduced ⁴	
		19100			1		Reduced ⁴	
		18700					Reduced ⁴	
		18900					Reduced ⁴	
		19100					Reduced ⁴ Reduced ⁵	
Band 2		All lower bandwidths (15 MHz, 10 MHz, 5 MHz, 3 MHz, 1.4 MHz)						
1850-1910 MHz		18700			50	24	Tested	
		18900					Tested	
		19100			100	0	Tested	
		18700					Reduced ¹	
		18900					Tested	
		19100		QPSK			Reduced ¹	
		18700		di oli			Reduced ²	
		18900				0	Reduced ²	
		19100			1		Reduced ²	
		18700					Tested	
		18900				49	Tested	
		19100	20 MHz				Tested	
	Right	18700					Reduced ³	
		18900			50	24	Reduced ³	
		19100					Reduced ³	
		18700			100		Reduced ¹	
		18900			100	0	Reduced ¹	
		19100	4	16QAM			Reduced ¹	
		18700	{			<u> </u>	Reduced ⁴	
		18900	4			0	Reduced ⁴	
		19100	4		1		Reduced ⁴	
		18700			1	40	Reduced ⁴	
		18900				49	Reduced ⁴	
		19100	 				Reduced ⁴	
		All lower in the 50% RB testing		/Hz, 10 MHz, 5 MH			Reduced ⁵	

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 v02r05.

Band/ Frequency (MHz)	Pos.	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		18700					Reduced ⁶
		18900			50	24	Tested
		19100					Reduced ⁶
		18700				0	Reduced ¹
		18900			100		Reduced ¹
		19100		ODCK			Reduced ¹
		18700		QPSK	1		Reduced ²
		18900				0	Reduced ²
	Bottom	19100					Reduced ²
		18700				49	Reduced ⁶
		18900	20 MHz				Tested
Dand 0		19100					Reduced ⁶
Band 2 1850-1910 MHz		18700					Reduced ³
1650-1910 MHz		18900			50	24	Reduced ³
		19100	1				Reduced ³
		18700					Reduced ¹
	-	18900			100	0	Reduced ¹
		19100		16QAM			Reduced ¹
		18700		INQAIN			Reduced ⁴
		18900				0	Reduced ⁴
		19100			4		Reduced ⁴
		18700			1		Reduced ⁴
		18900				49	Reduced ⁴
		19100	1				Reduced ⁴
		All lower	bandwidths (15 N	/Hz, 10 MHz, 5 MH	Iz, 3 MHz, 1.4 MH	z)	Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 v02r05.

Band/		Required	_		RB	RB	Tested/
Frequency (MHz)	Pos.	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		20850			Anooation	Onset	Tested
		21100			50	24	Tested
		21350			50	24	Tested
		20850					Reduced ¹
		21100			100	0	Tested
		21350			100	0	Reduced ¹
		20850		QPSK			Reduced ²
		21100				0	Reduced ²
		21350				0	Reduced ²
		20850			1		Tested
		21100				49	Tested
		21350				49	Tested
	Front	20850	20 MHz				Reduced ³
	FIOIL	21100			50	24	Reduced ³
		21350			50	24	Reduced ³
		20850					Reduced ¹
		21100			100	0	Reduced ¹
		21350			100	0	Reduced ¹
		20850		16QAM			Reduced ⁴
		21100				0	Reduced ⁴
		21350			1	0	Reduced ⁴
		20850					Reduced ⁴
		20050	_			49	Reduced ⁴
	21350			49	Reduced ⁴		
Band 7		21330	Reduced ⁵				
2500-2570 MHz		20850	All lower bandwid				Reduced ⁶
2300-2370 10112		21100			50	24	Tested
		21350					Reduced ⁶
		20850			100	0	Reduced ¹
		21100					Reduced ¹
		21350	•			0	Reduced ¹
		20850		QPSK			Reduced ²
		21100				0	Reduced ²
		21350				0	Reduced ²
		20850			1		Reduced ⁶
		21100				49	Tested
		21350				49	Reduced ⁶
	Back	20850	20 MHz				Reduced ³
	Dack		•		50	24	Reduced ³
		21100 21350			50	24	Reduced ³
		20850			100	0	Reduced ¹
		21100	-		100	0	Reduced ¹
		21350		16QAM			Reduced ¹
		20850	4			~	Reduced ⁴
		21100	{			0	Reduced ⁴
		21350	4		1		Reduced ⁴
		20850				10	Reduced ⁴
		21100				49	Reduced ⁴
		21350	L				Reduced ⁴
				ths (15 MHz, 10 M			Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 v02r05.

Band/	_	Required			RB	RB	Tested/		
Frequency (MHz)	Pos.	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced		
		20850			Anobation	Onset	Reduced ⁶		
		21100	-		50	24	Tested		
		21350			50	27	Reduced ⁶		
		20850					Reduced ¹		
		21100			100	0	Reduced ¹		
		21350			100	Ũ	Reduced ¹		
		20850		QPSK			Reduced ²		
		21100				0	Reduced ²		
		21350				0	Reduced ²		
		20850			1		Reduced ⁶		
		21100				49	Tested		
		21350					Reduced ⁶		
	Left	20850	20 MHz				Reduced ³		
		21100			50	24	Reduced ³		
		21350					Reduced ³		
		20850		-			Reduced ¹		
		21100			100	0	Reduced ¹		
		21350		400 414			Reduced ¹		
		20850		16QAM			Reduced ⁴		
		21100			1	0	Reduced ⁴		
		21350					Reduced ⁴		
		20850					Reduced ⁴		
		21100				49	Reduced ⁴		
		21350					Reduced ⁴		
Band 7		All lower bandwidths (15 MHz, 10 MHz, 5 MHz)							
2500-2570 MHz		20850			50	24	Tested		
		21100					Tested		
		21350			100	0	Tested		
		20850					Reduced ¹		
		21100					Tested		
		21350		QPSK			Reduced ¹		
		20850		QFON			Reduced ²		
		21100				0	Reduced ²		
		21350			1		Reduced ²		
		20850			I		Tested		
		21100				49	Tested		
		21350	20 MHz				Tested		
	Right	20850	20 1011 12				Reduced ³		
		21100			50	24	Reduced ³		
		21350					Reduced ³		
		20850					Reduced ¹		
		21100			100	0	Reduced ¹		
		21350	ļ	16QAM			Reduced ¹		
		20850	ļ				Reduced ⁴		
		21100	ļ			0	Reduced ⁴		
		21350	ļ		1		Reduced ⁴		
		20850	ļ		ı		Reduced ⁴		
		21100				49	Reduced ⁴		
		21350					Reduced ⁴ Reduced ⁵		
		All lower bandwidths (15 MHz, 10 MHz, 5 MHz)							

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 v02r05.

Band/ Frequency (MHz)	Pos.	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		20850					Reduced ⁶
		21100			50	24	Tested
		21350					Reduced ⁶
		20850					Reduced ¹
		21100			100	0	Reduced ¹
		21350		ODCK			Reduced ¹
		20850		QPSK	1		Reduced ²
		21100				0	Reduced ²
	Bottom	21350				49	Reduced ²
		20850					Reduced ⁶
		21100					Tested
Dend 7		21350	20 MHz				Reduced ⁶
Band 7 2500-2570 MHz	Bottom	20850				24	Reduced ³
2300-2370 MHZ		21100			50		Reduced ³
		21350					Reduced ³
		20850					Reduced ¹
		21100			100	0	Reduced ¹
		21350		160414			Reduced ¹
		20850		16QAM			Reduced ⁴
		21100				0	Reduced ⁴
		21350			4		Reduced ⁴
		20850			1		Reduced ⁴
		21100				49	Reduced ⁴
		21350	1				Reduced ⁴
	Bottom		All lower bandwid	ths (15 MHz, 10 M	Hz, 5 MHz)		Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 v02r05.

Band/	_	Required	Desident and		RB	RB	Tested/
Frequency (MHz)	Pos.	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		20450			Anooation	Onset	Reduced ⁶
		20525			25	13	Tested
		20525	-		25	15	Reduced ⁶
		20000					Reduced ¹
		20525			50	0	Tested
		20600			50	0	Reduced ¹
		20000		QPSK			Reduced ²
		20525	-			0	Reduced ²
		20525	-			0	Reduced ²
		20600	-		1		Tested
		20525	-			24	Tested
		20525	-			24	Tested
	Front	20600	10 MHz				Reduced ³
	FION		-		25	10	
		20525	-		20	13	Reduced ³
		20600	-	16QAM -			Reduced ³ Reduced ¹
		20450 20525	-		50	0	Reduced ¹
					50	0	
		20600					Reduced ¹
		20450	-		1	0 24	Reduced ⁴
		20525	-				Reduced ⁴
		20600	-				Reduced ⁴
		20450	-				Reduced ⁴
		20525				24	Reduced ⁴
Dand C		20600		htha (F MUH 2 MUH	. 1 4 MII-)		Reduced ⁴
Band 5 824-849 MHz		20450	All lower bandwid		2, 1.4 MHZ) 25		Reduced ⁵
024-049 IVINZ			-			10	Reduced ⁶
		20525				13	Tested
		20600	-		50	0	Reduced ⁶
		20450	-				Reduced ¹
		20525 20600	-				Reduced ¹ Reduced ¹
		20000	-	QPSK			Reduced ²
		20525	-			0	Reduced ²
			-			0	
		20600	-		1		Reduced ²
		20450	-			24	Reduced ⁶
		20525	-			24	Tested
	Deals	20600	10 MHz				Reduced ⁶
	Back	20450	-		05	40	Reduced ³
		20525	-		25	13	Reduced ³
		20600	-				Reduced ³
		20450	-		50	0	Reduced ¹
		20525	-		50	0	Reduced ¹
		20600	-	16QAM			Reduced ¹
		20450	4			~	Reduced ⁴
		20525	4			0	Reduced ⁴
		20600	4		1	ļ	Reduced ⁴
		20450				<u> </u>	Reduced ⁴
		20525				24	Reduced ⁴
		20600	L				Reduced ⁴
		in the 50% RB testing		dths (5 MHz, 3 MHz			Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 v02r05.

Band/		Required			RB	RB	Tested/
Frequency (MHz)	Pos.	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		20450			Anooution	Onset	Reduced ⁶
		20525	•		25	13	Tested
		20600	•		20	10	Reduced ⁶
		20450	•				Reduced ¹
		20525			50	0	Reduced ¹
		20600			00	Ũ	Reduced ¹
		20450		QPSK			Reduced ²
		20525				0	Reduced ²
		20600				Ũ	Reduced ²
		20450			1		Reduced ⁶
		20525				24	Tested
		20600	•			2-1	Reduced ⁶
	Left	20000	20 MHz				Reduced ³
	Lon	20525	•		25	13	Reduced ³
		20600	•		20	10	Reduced ³
		20000	•				Reduced ¹
		20525			50	0	Reduced ¹
		20600			00	0	Reduced ¹
		20450		16QAM			Reduced ⁴
		20525			1	0	Reduced ⁴
		20600					Reduced ⁴
		20450					Reduced ⁴
		20525	•			24	Reduced ⁴
		20600					Reduced ⁴
Band 5		20000	All lower bandwid	ths (5 MHz, 3 MHz	(, 1,4 MHz)		Reduced ⁵
824-849 MHz		20450			25	13 0	Reduced ⁶
		20525					Tested
		20600					Reduced ⁶
		20450					Reduced ¹
		20525					Reduced ¹
		20600					Reduced ¹
		20450		QPSK			Reduced ²
		20525				0	Reduced ²
		20600				-	Reduced ²
		20450			1		Reduced ⁶
		20525				24	Tested
		20600					Reduced ⁶
	Right	20450	20 MHz				Reduced ³
	g	20525			25	13	Reduced ³
		20600			_0		Reduced ³
		20450					Reduced ¹
		20525			50	0	Reduced ¹
		20600	•		00	Ũ	Reduced ¹
		20000	1	16QAM			Reduced ⁴
		20525	1			0	Reduced ⁴
		20525	1			Ū	Reduced ⁴
		20000	1		1		Reduced ⁴
		20430	_			24	Reduced ⁴
		20525	1			24	Reduced ⁴
		20000	All lower bondwid	uths (5 MHz, 3 MHz	, 1 / M⊔→)		Reduced ⁵
		in the 50% RB testing					

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 v02r05.

Band/ Frequency (MHz)	Pos.	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced		
		20450					Tested		
		20525			25	13	Tested		
		20600					Tested		
		20450					Reduced ¹		
		20525			50	0	Tested		
		20600		QPSK			Reduced ¹		
		20450		QF3K			Reduced ²		
		20525				0	Reduced ²		
		20600			1		Reduced ²		
		20450	20 MHz		1		Tested		
	Bottom	20525				24	Tested		
Dand 5		20600					Tested		
Band 5 824-849 MHz		20450			25		Reduced ³		
624-649 MITZ		20525				13	Reduced ³		
		20600					Reduced ³		
		20450					Reduced ¹		
		20525			50	0	Reduced ¹		
		20600		16QAM			Reduced ¹		
		20450		IOQAIN			Reduced ⁴		
		20525				0	Reduced ⁴		
		20600]		1		Reduced ⁴		
		20450]				Reduced ⁴		
		20525]			24	Reduced ⁴		
		20600					Reduced ⁴		
		All lower bandwidths (5 MHz, 3 MHz, 1.4 MHz)							

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 v02r05.

Band/		Required			RB	RB	Tested/
Frequency (MHz)	Pos.	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		23060			Allocation	Chicot	Tested
		23095			25	13	Tested
		23130			20	10	Tested
		23060					Reduced ¹
		23095			50	0	Tested
		23130			00	Ū	Reduced ¹
		23060		QPSK			Reduced ²
		23095				0	Reduced ²
		23130				0	Reduced ²
		23060			1		Tested
		23095				24	Tested
		23130				24	Tested
	Front	23060	10 MHz				Reduced ³
	FIOIL	23095			25	13	Reduced ³
		23130			25	15	Reduced ³
		23060		16QAM			Reduced ¹
		23095			50	0	Reduced ¹
		23130			50	0	Reduced ¹
		23060					Reduced ⁴
		23095				0	Reduced ⁴
		23130				0	Reduced ⁴
		23060			1		Reduced ⁴
		23095				24	Reduced ⁴
		23130				24	Reduced ⁴
Band 12		23130	All lower bandwig	dths (5 MHz, 3 MHz	1 / MHz)		Reduced ⁵
699-716 MHz		23060			25		Reduced ⁶
033-7 10 10112		23095				13	Tested
		23130			25	15	Reduced ⁶
		23060			50	0	Reduced ¹
		23095					Reduced ¹
		23130			50	0	Reduced ¹
		23060		QPSK			Reduced ²
		23095				0	Reduced ²
		23130				0	Reduced ²
		23060			1		Reduced ⁶
		23095				24	Tested
		23130				24	Reduced ⁶
	Back	23060	10 MHz				Reduced ³
	Dack	23095			25	13	Reduced ³
		23130			25	15	Reduced ³
		23060					Reduced ¹
					50	0	
		23095			50	0	Reduced ¹
		23130		16QAM			Reduced ¹
		23060				0	Reduced ⁴
		23095				0	Reduced ⁴
		23130			1		Reduced ⁴
		23060				<u>.</u>	Reduced ⁴
		23095				24	Reduced ⁴
		23130					Reduced ⁴
Reduced ¹ – If the S				ths (5 MHz, 3 MHz			Reduced ⁵

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 v02r05.

Band/		Required			RB	RB	Tested/	
Frequency (MHz)	Pos.	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced	
		23060			/ mooution	Chicot	Reduced ⁶	
		23095			25	13	Tested	
		23130			20	10	Reduced ⁶	
		23060					Reduced ¹	
		23095			50	0	Tested	
		23130		0.501/		-	Reduced ¹	
		23060		QPSK			Reduced ²	
		23095				0	Reduced ²	
		23130					Reduced ²	
		23060			1		Tested	
		23095				24	Tested	
		23130	10 MHz				Tested	
	Left	23060	TUMHZ				Reduced ³	
		23095			25	13	Reduced ³	
		23130					Reduced ³	
		23060		16QAM			Reduced ¹	
		23095			50	0	Reduced ¹	
		23130					Reduced ¹	
		23060					Reduced ⁴	
		23095				0	Reduced ⁴	
		23130			4		Reduced ⁴	
		23060			1		Reduced ⁴	
		23095				24	Reduced ⁴	
		23130					Reduced ⁴	
Band 12			All lower bandwid	dths (5 MHz, 3 MHz	z, 1.4 MHz)		Reduced⁵	
699-716 MHz		23060		QPSK		13	Reduced ⁶	
		23095			25		Tested	
		23130					Reduced ⁶	
		23060				0	Reduced ¹	
		23095			50		Reduced ¹	
		23130					Reduced ¹	
		23060		GIOR			Reduced ²	
		23095				0	Reduced ²	
		23130			1		Reduced ²	
		23060					Reduced ⁶	
		23095				24	Tested	
		23130	10 MHz				Reduced ⁶	
	Right	23060	10 10112				Reduced ³	
		23095			25	13	Reduced ³	
		23130					Reduced ³	
		23060					Reduced ¹	
		23095			50	0	Reduced ¹	
		23130	4	16QAM			Reduced ¹	
		23060	4			_	Reduced ⁴	
		23095	4			0	Reduced ⁴	
		23130	4		1		Reduced ⁴	
		23060	4		1		Reduced ⁴	
		23095				24	Reduced ⁴	
		23130					Reduced ⁴ Reduced ⁵	
	L	All lower bandwidths (5 MHz, 3 MHz, 1.4 MHz) he in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941						

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 v02r05.

Band/ Frequency (MHz)	Pos.	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced	
		23060					Tested	
		23095			25	13	Tested	
		23130					Tested	
		23060					Reduced ¹	
		23095			50	0	Tested	
		23130		QPSK			Reduced ¹	
		23060		QPSK			Reduced ²	
		23095				0	Reduced ²	
		23130			1		Reduced ²	
		23060			I		Tested	
	Тор	23095				24	Tested	
Dond 10		23130	10 MU-				Tested	
Band 12 699-716 MHz		23060	10 MHz		25		Reduced ³	
099-7 10 MHZ		23095				13	Reduced ³	
		23130					Reduced ³	
		23060					Reduced ¹	
		23095			50	0	Reduced ¹	
		23130		16QAM			Reduced ¹	
		23060		IOQAIVI			Reduced ⁴	
		23095				0	Reduced ⁴	
		23130			1		Reduced ⁴	
		23060					Reduced ⁴	
		23095				24	Reduced ⁴	
		23130					Reduced ⁴	
		All lower bandwidths (5 MHz, 3 MHz, 1.4 MHz)						

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 v02r05.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 v02r05.

SAR Data Summary –LTE Band 12

MEASUREMENT RESULTS

Gap	Plot	Position	Freq	uency	BW/ Modulation	RB Size	RB Offset	MPR Target	End Power	Measured SAR	Reported SAR
-			MHz	Ch.	Modulation	Size	Unset	Target	(dBm)	(W/kg)	(W/kg)
			704.0	23060	10 MHz/QPSK	1	24	0	24.0	1.29	1.29
			707.5	23095	10 MHz/QPSK	1	24	0	23.9	1.32	1.35
			711.0	23129	10 MHz/QPSK	1	24	0	23.9	1.28	1.31
		Front	704.0	23060	10 MHz/QPSK	25	13	1	22.9	1.06	1.09
			707.5	23095	10 MHz/QPSK	25	13	1	23.0	1.02	1.02
			711.0	23129	10 MHz/QPSK	25	13	1	23.0	1.06	1.06
			707.5	23095	10 MHz/QPSK	50	0	1	22.6	0.765	0.84
		Back	707.5	23095	10 MHz/QPSK	1	24	0	23.9	0.495	0.51
		Dack	707.5	23095	10 MHz/QPSK	25	13	1	23.0	0.384	0.38
			704.0	23060	10 MHz/QPSK	1	24	0	24.0	0.926	0.93
			707.5	23095	10 MHz/QPSK	1	24	0	23.9	0.984	1.01
0 mm		Left	711.0	23129	10 MHz/QPSK	1	24	0	23.9	0.942	0.96
UTIIII			707.5	23095	10 MHz/QPSK	25	13	1	23.0	0.758	0.76
			707.5	23095	10 MHz/QPSK	50	0	1	22.6	0.678	0.74
		Right	707.5	23095	10 MHz/QPSK	1	24	0	23.9	0.236	0.24
		Right	707.5	23095	10 MHz/QPSK	25	13	1	23.0	0.193	0.19
			704.0	23060	10 MHz/QPSK	1	24	0	24.0	1.31	1.31
	1		707.5	23095	10 MHz/QPSK	1	24	0	23.9	1.32	1.35
			711.0	23129	10 MHz/QPSK	1	24	0	23.9	1.30	1.33
		Bottom	704.0	23060	10 MHz/QPSK	25	13	1	22.9	1.04	1.06
			707.5	23095	10 MHz/QPSK	25	13	1	23.0	0.952	0.95
			711.0	23129	10 MHz/QPSK	25	13	1	23.0	1.02	1.02
			707.5	23095	10 MHz/QPSK	50	0	1	22.6	0.783	0.86
		Repeat	707.5	23095	10 MHz/QPSK	1	24	0	23.9	1.30	1.33

1. SAR Measurement Phantom Configuration SAR Configuration

- 2. Test Signal Call Mode
- 3. Test Configuration

4. Tissue Depth is at least 15.0 cm

Jay M. Moulton Vice President

- Left Head Head
- Test Code

With Belt Clip

Eli4 Right Head Body Base Station Simulator

Body 1.6 W/kg (mW/g) averaged over 1 gram

Without Belt Clip N/A

SAR Data Summary – UMTS Band 5

MEASUREMENT RESULTS

Gap	Plot	Freque	ency	Modulation	Position	End Power	RMC	Test Set Up	Measured SAR	Reported SAR
-		MHz	Ch.			(dBm)		-	(W/kg)	(W/kg)
		826.4	4132			24.68	12.2 kbps	Test Loop 1	0.840	0.90
		836.6	4183		Front	24.74	12.2 kbps	Test Loop 1	0.811	0.86
		846.6	4233			24.55	12.2 kbps	Test Loop 1	0.804	0.89
		836.6	4183		Back	24.74	12.2 kbps	Test Loop 1	0.389	0.41
0 mm		836.6	4183	WCDMA	Left	24.74	12.2 kbps	Test Loop 1	0.706	0.75
0 11111	836.6 4183		4183	-	Right	24.74	12.2 kbps	Test Loop 1	0.395	0.42
		826.4	4132			24.68	12.2 kbps	Test Loop 1	1.24	1.34
	2	836.6	4183		Bottom	24.74	12.2 kbps	Test Loop 1	1.28	1.36
		846.6	4233			24.55	12.2 kbps	Test Loop 1	0.989	1.10
		836.6	4183		Repeat	24.74	12.2 kbps	Test Loop 1	1.26	1.34
							Body 1.6 W/kg (mW/g) averaged over 1 gram	,		
 SAR Measurement Phantom Configuration SAR Configuration Test Signal Call Mode Test Configuration 							=	Station Simulator	Right Head N/A	

4. Tissue Depth is at least 15.0 cm

Jay M. Moulton Vice President

SAR Data Summary –LTE Band 5

MEASUREMENT RESULTS

Gap F	Plot	Position	Frequency		BW/ Modulation	RB Size	RB Offset	MPR Target	End Power	Measured SAR	Reported SAR
			MHz	Ch.		0120	011000	Target	(dBm)	(W/kg)	(W/kg)
			829.0	20450	10 MHz/QPSK	1	24	0	23.7	0.809	0.87
			836.5	20525	10 MHz/QPSK	1	24	0	24.0	0.818	0.82
		Front	844.0	20600	10 MHz/QPSK	1	24	0	24.0	0.794	0.79
			836.5	20525	10 MHz/QPSK	25	13	1	22.5	0.649	0.73
			836.5	20525	10 MHz/QPSK	50	0	1	22.9	0.579	0.59
		Back	836.5	20525	10 MHz/QPSK	1	24	0	24.0	0.417	0.42
			836.5	20525	10 MHz/QPSK	25	13	1	22.5	0.329	0.37
		Left	836.5	20525	10 MHz/QPSK	1	24	0	24.0	0.701	0.70
		Len	836.5	20525	10 MHz/QPSK	25	13	1	22.5	0.547	0.61
0 mm		Diaht	836.5	20525	10 MHz/QPSK	1	24	0	24.0	0.387	0.39
		Right	836.5	20525	10 MHz/QPSK	25	13	1	22.5	0.302	0.34
			829.0	20450	10 MHz/QPSK	1	24	0	23.7	1.15	1.23
	3		836.5	20525	10 MHz/QPSK	1	24	0	24.0	1.30	1.30
			844.0	20600	10 MHz/QPSK	1	24	0	24.0	1.28	1.28
		Bottom	829.0	20450	10 MHz/QPSK	25	13	1	22.5	0.971	1.09
			836.5	20525	10 MHz/QPSK	25	13	1	22.5	1.06	1.19
			844.0	20600	10 MHz/QPSK	25	13	1	23.0	1.01	1.01
			836.5	20525	10 MHz/QPSK	50	0	1	22.9	0.811	0.83
		Repeat	836.5	20525	10 MHz/QPSK	1	24	0	24.0	1.28	1.28

Body 1.6 W/kg (mW/g) averaged over 1 gram

- 1. SAR Measurement Phantom Configuration SAR Configuration
- 2. Test Signal Call Mode
- 3. Test Configuration
- 4. Tissue Depth is at least 15.0 cm

Jay M. Moulton Vice President

Left Head Head Test Code

With Belt Clip

⊠Eli4 ⊠Body Right Head

Base Station Simulator

© 2021 RF Exposure Lab, LLC Page 55 of 137 *This report shall not be reproduced except in full without the written approval of RF Exposure Lab, LLC.*

SAR Data Summary –LTE Band 4

MEASUREMENT RESULTS Reported End Measured Frequency BW/ RB RB MPR Gap Plot Position Power SAR SAR Size Offset Modulation Target MHz Ch. (W/kg) (dBm) (W/kg) 20 MHz/QPSK -----1720.0 20050 1 49 0 23.9 1.21 1.24 -----1732.5 20175 20 MHz/QPSK 1 49 0 24.0 1.24 1.24 24.0 4 1745.0 20300 20 MHz/QPSK 1 49 0 1.40 1.40 20050 24 1 22.8 1.00 1.05 -----Front 1720.0 20 MHz/QPSK 50 1 20175 20 MHz/QPSK 24 22.7 1.01 1.08 ----1732.5 50 1 1745.0 20300 20 MHz/QPSK 50 24 23.0 1.06 1.06 20 MHz/QPSK 1732.5 20175 100 0 1 23.0 0.711 0.71 1732.5 20175 20 MHz/QPSK 0 24.0 0.475 0.48 1 49 -----Back 1732.5 20175 20 MHz/QPSK 24 22.7 0.42 50 1 0.391 -----1732.5 20175 20 MHz/QPSK 49 0 24.0 0.172 0.17 1 -----Left 0 mm 1732.5 20175 20 MHz/QPSK 50 24 1 22.7 0.144 0.15 -----49 1720.0 20 MHz/QPSK 0 23.9 20050 1 1.16 1.19 -----1732.5 20175 20 MHz/QPSK 1 49 0 1.16 1.16 -----24.0 20 MHz/QPSK 49 24.0 1.23 1745.0 20300 1 0 1.23 ----------Right 1720.0 20050 20 MHz/QPSK 50 24 1 22.8 0.963 1.01 1732.5 20175 20 MHz/QPSK 50 24 1 22.7 0.987 1.06 -----1745.0 20300 20 MHz/QPSK 24 1 23.0 1.04 1.04 -----50 1732.5 20175 20 MHz/QPSK 100 0 1 23.0 0.665 0.67 ----------1732.5 20175 20 MHz/QPSK 49 0 24.0 0.267 0.27 1 Bottom -----1732.5 20175 20 MHz/QPSK 50 24 1 22.7 0.219 0.23 20 MHz/QPSK 49 0 24.0 -----Repeat 1745.0 20300 1 1.38 1.38

Body 1.6 W/kg (mW/g) averaged over 1 gram

- 1. SAR Measurement Phantom Configuration SAR Configuration
- 2. Test Signal Call Mode
- 3. Test Configuration
- 4. Tissue Depth is at least 15.0 cm

Jay M. Moulton Vice President

Left Head Head Test Code

With Belt Clip

Eli4 \boxtimes Body Right Head

Base Station Simulator Without Belt Clip \mathbb{N}/A

SAR Data Summary – UMTS Band 2

MEASUREMENT RESULTS

Gap	Plot	Freque	ency	Modulation	Position	End Power	RMC	Test Set Up	Measured SAR	Reported SAR
•		MHz	Ch.			(dBm)		•	(W/kg)	(W/kg)
	5	1852.4	9262			24.98	12.2 kbps	Test Loop 1	1.42	1.43
		1880.0	9400		Front	24.78	12.2 kbps	Test Loop 1	1.33	1.40
		1907.6	9538		Back Left	24.56	12.2 kbps	Test Loop 1	1.22	1.35
		1880.0	9400			24.78	12.2 kbps	Test Loop 1	0.650	0.68
0		1880.0	9400	WCDMA		24.78	12.2 kbps	Test Loop 1	0.135	0.14
mm		1852.4	9262	VCDIVIA		24.98	12.2 kbps	Test Loop 1	1.22	1.23
		1880.0	9400		Right	24.78	12.2 kbps	Test Loop 1	1.20	1.26
		1907.6	9538			24.56	12.2 kbps	Test Loop 1	1.07	1.18
		1880.0	9400		Bottom	24.78	12.2 kbps	Test Loop 1	0.262	0.28
		1852.4	9262		Repeat	24.98	12.2 kbps	Test Loop 1	1.40	1.41
							Body 1.6 W/kg (mW/g) averaged over 1 gram			
 SAR Measurement Phantom Configuration SAR Configuration Test Signal Call Mode 					Hea	t Head id t Code	⊠Eli4 ⊠Bod ⊠Base		Right Head	

With Belt Clip

- 2. Test Signal Call Mode
- 3. Test Configuration
- 4. Tissue Depth is at least 15.0 cm

Jay M. Moulton Vice President

Base Station Simulator $\overline{}$ Without Belt Clip $\overline{}$ N/A

Page 57 of 137

SAR Data Summary –LTE Band 2

MEASUREMENT RESULTS

Gap	Plot	Position	Frequ	iency	BW/ Modulation	RB Size	RB Offset	MPR Target	End Power	Measured SAR	Reported SAR
			MHz	Ch.	Woullation	Size	Oliset	Target	(dBm)	(W/kg)	(W/kg)
			1860.0	18700	20 MHz/QPSK	1	49	0	23.8	1.22	1.28
			1880.0	18900	20 MHz/QPSK	1	49	0	23.8	1.25	1.31
	6		1900.0	19100	20 MHz/QPSK	1	49	0	23.8	1.43	1.50
		Front	1860.0	18700	20 MHz/QPSK	50	24	1	23.0	1.02	1.02
			1880.0	18900	20 MHz/QPSK	50	24	1	22.8	1.05	1.10
			1900.0	19100	20 MHz/QPSK	50	24	1	22.9	1.16	1.19
			1880.0	18900	20 MHz/QPSK	100	0	1	22.7	0.752	0.81
		Back	1880.0	18900	20 MHz/QPSK	1	49	0	23.8	0.545	0.57
		Dack	1880.0	18900	20 MHz/QPSK	50	24	1	22.8	0.451	0.47
		Left	1880.0	18900	20 MHz/QPSK	1	49	0	23.8	0.116	0.12
0 mm		Leit	1880.0	18900	20 MHz/QPSK	50	24	1	22.8	0.0826	0.09
			1860.0	18700	20 MHz/QPSK	1	49	0	23.8	0.983	1.03
			1880.0	18900	20 MHz/QPSK	1	49	0	23.8	1.05	1.10
			1900.0	19100	20 MHz/QPSK	1	49	0	23.8	1.14	1.19
		Right	1860.0	18700	20 MHz/QPSK	50	24	1	23.0	0.836	0.84
			1880.0	18900	20 MHz/QPSK	50	24	1	22.8	0.912	0.95
		-	1900.0	19100	20 MHz/QPSK	50	24	1	22.9	1.04	1.06
			1880.0	18900	20 MHz/QPSK	100	0	1	22.7	0.685	0.73
		Bottom	1880.0	18900	20 MHz/QPSK	1	49	0	23.8	0.234	0.25
		Bottom -	1880.0	18900	20 MHz/QPSK	50	24	1	22.8	0.197	0.21
		Repeat	1900.0	19100	20 MHz/QPSK	1	49	0	23.8	1.41	1.48

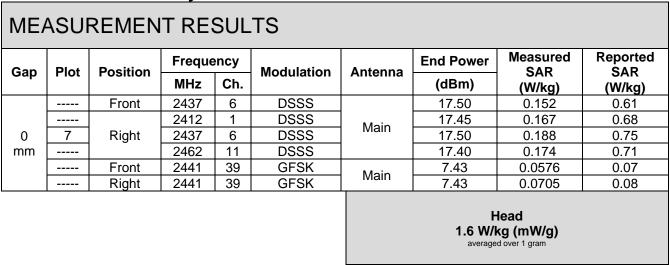
Body 1.6 W/kg (mW/g) averaged over 1 gram

- 1. SAR Measurement Phantom Configuration
- SAR Configuration 2. Test Signal Call Mode
- Test Signal Call Mode
 Test Configuration
- Test Configuration
 Tissue Depth is at least 15.0 cm

Jay M. Moulton Vice President

□Left Head □Head

Test Code


With Belt Clip

⊠Eli4 ⊠Body Right Head

Base Station Simulator Without Belt Clip

SAR Data Summary – 2450 MHz Head 802.11b

Left Head

Test Code

With Belt Clip

Head

1. SAR Measurement Phantom Configuration SAR Configuration

2. Test Signal Call Mode

- 3. Test Configuration
- 4. Tissue Depth is at least 15.0 cm

Jay M. Moulton Vice President

The testing was conducted with the WiFi transmitter operating at a 30% duty cycle. The reported SAR value was first scaled to the upper end of the tolerance and to 100% duty cycle.

Right Head

Body Base Station Simulator

 \boxtimes Eli4

Without Belt Clip $\square N/A$

SAR Data Summary – Simultaneous Transmit (WWAN-BT Main)

MEASUREMENT RESULTS									
BT Channel	Total SAR (W/kg)								
41	19100	0.08		1.50	1.58				
				Head 1.6 W/kg (m averaged over					

The BT transmitter is excluded from stand alone SAR testing. Therefore, the SAR value is calculated per KDB447498 D01 v06 section 4.3.2 b) 1) on page 14.

SAR Data Summary – Simultaneous Transmit (WLAN-BT Main)

MEASU	MEASUREMENT RESULTS											
WLAN Channel	BT Channel	SAR (W/kg) WLA	N	SAR (W/kg) BT	Total SAR (W/kg)							
6	41	0.61		0.08	0.69							
				Head 1.6 W/kg (m averaged over								

The BT transmitter is excluded from stand alone SAR testing. Therefore, the SAR value is calculated per KDB447498 D01 v06 section 4.3.2 b) 1) on page 14.

SAR Data Summary – Simultaneous Transmit (WLAN-WWAN Main)

MEASUREMENT RESULTS									
WLAN Channel WWAN Channel SAR (W/kg) WLAN SAR (W/kg) WWAN Total SAR (W/kg)									
6	19100	0.61		1.50	2.11				
		Head 1.6 W/kg (m averaged over							

The closest distance and highest SAR value is the WLAN-WWAN antenna combination. Therefore, the SPLSR was calculated for these two antennas to give the highest separation ratio.

MEASUREMENT RESULTS - WWAN-WiFi (Main)

Position	Frequency		Maxima			Frequency		Maxima			SAR ₁	SAR₂	SAR Total
1 0311011	MHz	Ch.	Х	Y	Z	MHz	Ch.	Х	Y	Z	UAN	UAI 2	OAN TOtal
Front	2437	6	8.50	38.20	-0.16	1900	19100	-38.00	-22.00	-0.08	0.61	1.50	2.11
											Head Tissue 1.6 W/kg (mW averaged over 1	/g)	

Front (R_i) – 76.07 mm SPLSR=0.04

Simultaneous Separation Ratio Calculation

 $(SAR_1 + SAR_2)^{1.5}/R_i \le 0.04$ rounded to two digits

SAR evaluation for the two simultaneously transmitting antennas was performed according to KDB447498 D01 v06 Section 4.3.2 c) and found to be ≤ 0.04 and compliant with the guidance. The calculation of the separation distance R_i was performed according to KDB447498 Section 4.3.2 d). The calculated separation distance (R_i) was conducted using a 3D distance calculator to determine the distance between the two hotspots.

© 2021 RF Exposure Lab, LLC

Page 60 of 137

This report shall not be reproduced except in full without the written approval of RF Exposure Lab, LLC.

12. Test Equipment List

lă	ble 12.1 Equipment Speci	Incations	
Туре	Calibration Due Date	Calibration Done Date	Serial Number
Staubli Robot TX60L	N/A	N/A	F07/55M6A1/A/01
Measurement Controller CS8c	N/A	N/A	1012
ELI4 Flat Phantom	N/A	N/A	1065
Device Holder	N/A	N/A	N/A
Data Acquisition Electronics 4	01/13/2022	01/13/2021	1321
SPEAG E-Field Probe EX3DV4	01/22/2022	01/22/2021	7530
Speag Validation Dipole D750V2	06/04/2022	06/04/2021	1053
Speag Validation Dipole D835V2	06/04/2022	06/04/2021	4d131
Speag Validation Dipole D1750V2	06/03/2022	06/03/2021	1061
Speag Validation Dipole D1900V2	06/04/2022	06/04/2021	5d147
Speag Validation Dipole D2450V2	06/03/2022	06/03/2021	881
Agilent N1911A Power Meter	03/16/2022	03/16/2021	GB45100254
Agilent N1922A Power Sensor	03/17/2022	03/17/2021	MY45240464
Agilent (HP) 8561E Spectrum Analyzer	03/15/2022	03/15/2021	31720068
Agilent (HP) 8350B Signal Generator	03/16/2022	03/16/2021	2749A10226
Agilent (HP) 83525A RF Plug-In	03/16/2022	03/16/2021	2647A01172
Agilent (HP) 8753C Vector Network Analyzer	03/15/2022	03/15/2021	3135A01724
Agilent (HP) 85047A S-Parameter Test Set	03/15/2022	03/15/2021	2904A00595
Anritsu MT8820C	04/23/2022	04/23/2021	6201381721
Aprel Dielectric Probe Assembly	N/A	N/A	0011
Head Equivalent Matter (750 MHz)	N/A	N/A	N/A
Head Equivalent Matter (900 MHz)	N/A	N/A	N/A
Head Equivalent Matter (1750 MHz)	N/A	N/A	N/A
Head Equivalent Matter (1900 MHz)	N/A	N/A	N/A
Head Equivalent Matter (2450 MHz)	N/A	N/A	N/A

Table 12.1 Equipment Specifications

13. Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC/IC. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body is a very complex phenomena that depends on the mass, shape, and size of the body; the orientation of the body with respect to the field vectors; and, the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

14. References

[1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio Frequency Radiation, August 1996

[2] ANSI/IEEE C95.1 – 1992, American National Standard Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 300kHz to 100GHz, New York: IEEE, 1992.

[3] ANSI/IEEE C95.3 – 2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave, New York: IEEE, 2002.

[4] International Electrotechnical Commission, IEC 62209-2 (Edition 1.0), Human Exposure to radio frequency fields from hand-held and body mounted wireless communication devices – Human models, instrumentation, and procedures – Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), March 2010.

[5] IEEE Standard 1528 – 2013, IEEE Recommended Practice for Determining the Peak-Spatial Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques, June 2013.

[6] Industry Canada, RSS – 102 Issue 5, Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands), March 2015.

[7] Health Canada, Safety Code 6, Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz, 2009.

Appendix A – System Validation Plots and Data

**********	• *********	******	*****	* * * * * * * * * * * * * * * * * * * *
Test Result f				
Mon 20/Dec/20		erectr	IC Pa	rameter
Freq Freque	-	Engil.	~ m	
FCC_eH Limits		-		
FCC_sH Limits				
Test_e Epsilo		M		
Test_s Sigma		·		* * * * * * * * * * * * * * * * * * * *
_				
Freq	FCC_eH FC			
0.7000	42.20 0.			
0.7040	42.18 0.			
0.7075	42.163 0. 42.15 0.	89 4.	1.428	0.878^
0.7100				
0.7110	42.145 0.			
0.7200	42.10 0.			
0.7300	42.05 0.			
	42.002 0.			
0.7400	41.99 0.			
0.7500	41.94 0.		1.18	
0.7600	41.89 0.			
0.7700	41.84 0.			
0.7800	41.79 0.			
0.7900	41.73 0.	90 40	0.94	0.94
* value inter	rpolated			
	-			
**********	*******	*****	* * * * * *	* * * * * * * * * * * * * * * * * * * *
Test Result i	Eor UIM Di	electr	ic Par	rameter
Test Result f Fri 17/Dec/20		electr	ic Pa	rameter
Fri 17/Dec/20 Freq Freque)21	electr	ric Par	rameter
Fri 17/Dec/20 Freq Freque eH Limits)21 mcy(GHz) for Head	Epsilo	on	rameter
Fri 17/Dec/20 Freq Freque eH Limits sH Limits	021 ency(GHz) for Head for Head	Epsilo Sigma	on	rameter
Fri 17/Dec/20 Freq Freque eH Limits SH Limits Test_e Epsilo	021 ency(GHz) for Head for Head on of UIN	Epsilo Sigma	on	rameter
Fri 17/Dec/20 Freq Freque eH Limits SH Limits Test_e Epsilo Test_s Sigma	021 ency(GHz) for Head for Head on of UIM	Epsilo Sigma M	on	
Fri 17/Dec/20 Freq Freque eH Limits SH Limits Test_e Epsilo Test_s Sigma)21 ency(GHz) for Head for Head on of UIN of UIM	Epsilo Sigma M	on	****
Fri 17/Dec/20 Freq Freque eH Limits SH Limits Test_e Epsilo Test_s Sigma ************	221 ency(GHz) for Head for Head on of UIN of UIM ********** eH sH	Epsilo Sigma M ******	on ****** est_e	**************************************
Fri 17/Dec/20 Freq Freque eH Limits SH Limits Test_e Epsilo Test_s Sigma *********** Freq 0.8000	221 ency(GHz) for Head for Head on of UIN of UIM eH sH 41.68 0.	Epsilo Sigma M ****** I Te 90 43	on ****** est_e 1.11	**************************************
Fri 17/Dec/20 Freq Freque eH Limits SH Limits Test_e Epsilo Test_s Sigma *********** Freq 0.8000 0.8100	221 ency(GHz) for Head for Head on of UIN of UIM eH sH 41.68 0. 41.63 0.	Epsilo Sigma M ******* 1 Te 90 4: 90 4:	on est_e 1.11 1.06	**************************************
Fri 17/Dec/20 Freq Freque eH Limits SH Limits Test_e Epsilo Test_s Sigma *********** Freq 0.8000 0.8100 0.8200	221 mcy(GHz) for Head for Head on of UIN of UIM ********** eH sH 41.68 0. 41.63 0.	Epsilo Sigma M ******* 90 4: 90 4: 90 4: 90 4:	on est_e 1.11 1.06 1.00	**************************************
Fri 17/Dec/20 Freq Freque eH Limits SH Limits Test_e Epsilo Test_s Sigma *********** Freq 0.8000 0.8100 0.8200 0.8264	221 ency(GHz) for Head for Head on of UIM of UIM eH sH 41.68 0. 41.63 0. 41.58 0. 41.548 0.	Epsilo Sigma M ******* 90 4: 90 4: 90 4: 90 4: 90 4:	on est_e 1.11 1.06 1.00 1.032	**************************************
Fri 17/Dec/20 Freq Freque eH Limits SH Limits Test_e Epsilo Test_s Sigma ************ Freq 0.8000 0.8100 0.8200 0.8200 0.8264 0.8290	021 ency(GHz) for Head for Head on of UIN of UIM eH sH 41.68 0. 41.63 0. 41.58 0. 41.548 0. 41.548 0.	Epsilo Sigma M ******* 90 4 90 4 90 4 90 4 90 4	on est_e 1.11 1.06 1.00 1.032 1.045	**************************************
Fri 17/Dec/20 Freq Freque eH Limits SH Limits Test_e Epsilo Test_s Sigma *********** Freq 0.8000 0.8100 0.8200 0.8200 0.8264 0.8290 0.8300	221 ency(GHz) for Head for Head on of UIN of UIM eH sH 41.68 0. 41.63 0. 41.58 0. 41.548 0. 41.548 0. 41.535 0.	Epsilo Sigma M ******* 90 4 90 4 90 4 90 4 90 4 90 4 90 4	on est_e 1.11 1.06 1.00 1.032 1.045 1.05	**************************************
Fri 17/Dec/20 Freq Freque eH Limits SH Limits Test_e Epsilo Test_s Sigma ************************************	221 mcy(GHz) f for Head f for Head on of UIN of UIM ********** eH SH 41.68 0. 41.63 0. 41.58 0. 41.548 0. 41.535 0. 41.53 0. 41.51 0.	Epsilo Sigma M ******* 90 4 90 4 90 4 90 4 90 4 90 4 90 4 90 4	on est_e 1.11 1.06 1.00 1.032 1.045 1.05 1.03	**************************************
Fri 17/Dec/20 Freq Freque eH Limits SH Limits Test_e Epsilo Test_s Sigma ************************************	221 mcy(GHz) f for Head f for Head of UIM of UIM ********** eH SH 41.68 0. 41.63 0. 41.53 0. 41.53 0. 41.53 0. 41.51 0.	Epsilo Sigma M ******* 90 4 90 4 90 4 90 4 90 4 90 4 90 4 90 4	on est_e 1.11 1.06 1.00 1.032 1.045 1.05 1.03 1.03	<pre>************************************</pre>
Fri 17/Dec/20 Freq Freque eH Limits SH Limits Test_e Epsilo Test_s Sigma ************************************	221 mcy(GHz) f for Head f for Head of UIM of UIM ********** eH SH 41.68 0. 41.63 0. 41.53 0. 41.548 0. 41.53 0. 41.51 0. 41.51 0. 41.50 0.	Epsilo Sigma M ******* 90 4 90 4 90 4 90 4 90 4 90 4 90 4 90 4	on est_e 1.11 1.06 1.00 1.032 1.045 1.03 1.03 1.03 1.02	<pre>************************************</pre>
Fri 17/Dec/20 Freq Freque eH Limits SH Limits Test_e Epsilo Test_s Sigma ************************************	221 mcy(GHz) f for Head f for Head of UIM of UIM ********** eH SH 41.68 0. 41.63 0. 41.58 0. 41.548 0. 41.535 0. 41.53 0. 41.51 0. 41.51 0. 41.50 0.	Epsilo Sigma M ******* 90 4 90 4 90 4 90 4 90 4 90 4 90 4 90 4	on est_e 1.11 1.06 1.00 1.032 1.045 1.03 1.03 1.03 1.02 1.012	<pre>************************************</pre>
Fri 17/Dec/20 Freq Freque eH Limits SH Limits Test_e Epsilo Test_s Sigma ************************************	021 mcy(GHz) f for Head f for Head f for Head of UIM eH SH 41.68 0. 41.63 0. 41.58 0. 41.548 0. 41.548 0. 41.53 0. 41.51 0. 41.51 0. 41.50 0. 41.50 0.	Epsilo Sigma M ******* 90 4 90 4 90 4 90 4 90 4 90 4 90 4 90 4	on est_e 1.11 1.06 1.00 1.032 1.045 1.03 1.03 1.03 1.02 1.012 1.007	<pre>************************************</pre>
Fri 17/Dec/20 Freq Freque eH Limits SH Limits Test_e Epsilo Test_s Sigma ************************************	221 mcy(GHz) f for Head f for Head of UIM of UIM ********** eH SH 41.68 0. 41.63 0. 41.53 0. 41.548 0. 41.53 0. 41.51 0. 41.51 0. 41.51 0. 41.50 0. 41.50 0. 41.50 0.	Epsilo Sigma M ******* 90 4: 90 4: 91 4: 91 4: 91 4: 91 4: 91 4: 91 4: 91 4: 92 4: 91 4: 92 4: 9	on est_e 1.11 1.06 1.00 1.032 1.045 1.03 1.03 1.03 1.02 1.012 1.007 1.00	<pre>************************************</pre>
Fri 17/Dec/20 Freq Freque eH Limits SH Limits Test_e Epsilo Test_S Sigma ************************************	221 mcy(GHz) f for Head f for Head f for Head of UIM eH SH 41.68 0. 41.63 0. 41.58 0. 41.548 0. 41.53 0. 41.51 0. 41.51 0. 41.51 0. 41.50 0. 41.50 0. 41.50 0. 41.50 0.	Epsilo Sigma M ******* 90 4: 90 4: 91 4: 91 4: 91 4: 91 4: 92 4: 91 4: 92 4: 91 4: 92 4: 91 4: 92 4: 91 4: 92 4: 92 4: 91 4: 92 4: 92 4: 92 4: 92 4: 92 4: 92 4: 92 4: 92 4: 93 4: 94 4: 9	on est_e 1.11 1.06 1.00 1.032 1.045 1.03 1.03 1.03 1.02 1.012 1.007 1.00 0.98	<pre>************************************</pre>
Fri 17/Dec/20 Freq Freque eH Limits SH Limits Test_e Epsilo Test_s Sigma ************************************	221 mcy(GHz) f for Head f for Head f for Head of UIM eH SH 41.68 0. 41.63 0. 41.58 0. 41.548 0. 41.548 0. 41.53 0. 41.51 0. 41.51 0. 41.50 0.	Epsilo Sigma M ******* 90 4: 90 4: 91 4: 917 4: 914 4: 92 4: 93 4: 94 4:	on est_e 1.11 1.06 1.00 1.032 1.045 1.03 1.03 1.03 1.02 1.012 1.007 1.00 0.98 0.97	<pre>************************************</pre>
Fri 17/Dec/20 Freq Freque eH Limits SH Limits Test_e Epsilo Test_s Sigma ************************************	221 mcy(GHz) f for Head f for Head f for Head of UIM eH SH 41.68 0. 41.63 0. 41.58 0. 41.548 0. 41.548 0. 41.53 0. 41.51 0. 41.51 0. 41.50 0. 51.50 0.	Epsilo Sigma M ******* 90 4: 90 4: 91 4: 917 4: 92 4: 93 4: 93 4: 95 4:	on est_e 1.11 1.06 1.00 1.032 1.045 1.03 1.03 1.03 1.02 1.012 1.007 1.00 0.98 0.97 0.96	<pre>************************************</pre>
Fri 17/Dec/20 Freq Freque eH Limits SH Limits Test_e Epsilo Test_S Sigma ************************************	221 mcy(GHz) f for Head f for Head f for Head of UIM ************************************	Epsilo Sigma M ******* 90 4: 90 4: 91 4: 914 4: 92 4: 93 4: 93 4: 93 4: 95 4: 96 4:	on est_e 1.11 1.06 1.00 1.032 1.045 1.03 1.03 1.03 1.03 1.02 1.012 1.007 1.00 0.98 0.97 0.96 0.95	<pre>************************************</pre>
Fri 17/Dec/20 Freq Freque eH Limits SH Limits Test_e Epsilo Test_S Sigma ************************************	D21 mcy(GHz) f for Head f for Head f for Head of UIM eH SH 41.68 0. 41.63 0. 41.63 0. 41.548 0. 41.548 0. 41.548 0. 41.55 0. 41.51 0. 41.51 0. 41.50 0	Epsilo Sigma M ******* 90 4: 90 4: 91 4: 92 4: 93 4: 93 4: 93 4: 95 4: 96 4: 97 4:	on est_e 1.11 1.06 1.00 1.032 1.045 1.03 1.03 1.03 1.03 1.02 1.012 1.007 1.00 0.98 0.97 0.96 0.95 0.94	<pre>************************************</pre>
Fri 17/Dec/20 Freq Freque eH Limits SH Limits Test_e Epsilo Test_S Sigma ************************************	221 ency(GHz) a for Head a for Head a for Head of UIM ************************************	Epsilo Sigma M ******* 90 4: 90 4: 91 4: 92 4: 93 4: 93 4: 93 4: 93 4: 93 4: 93 4: 94 90 90 4: 94 90 90 4: 95 4: 96 4: 97 4: 98 4: 90 4: 9	on est_e 1.11 1.06 1.00 1.032 1.045 1.03 1.03 1.03 1.03 1.02 1.012 1.007 1.00 0.98 0.97 0.96 0.95 0.94 0.93	<pre>************************************</pre>

* value interpolated

Test Result for UIM Dielectric Parameter Thu 16/Dec/2021 Freq Frequency(GHz) eH Limits for Head Epsilon sH Limits for Head Sigma Test_e Epsilon of UIM Test_s Sigma of UIM FreqeHsHTest_e Test_s1.700040.161.3439.551.341.710040.141.3539.531.351.720040.131.3539.511.361.730040.111.3639.491.361.732540.1051.36339.4851.363*1.745040.091.3739.471.371.745040.0851.3739.461.375*1.760040.061.3839.431.391.770040.051.3839.411.401.780040.031.3939.391.401.790040.021.3939.371.41 * value interpolated Test Result for UIM Dielectric Parameter Thu 16/Dec/2021 Freq Frequency(GHz) eH Limits for Head Epsilon sH Limits for Head Sigma Test_e Epsilon of UIM Test_s Sigma of UIM Freq eH sH Test_e Test_s FreqeHsHTest_e Test_s1.850040.001.4039.791.411.852440.001.4039.7851.412*1.860040.001.4039.771.421.870040.001.4039.751.421.880040.001.4039.731.431.890040.001.4039.711.431.900040.001.4039.691.431.907640.001.4039.671.438*1.910040.001.4039.671.441.920040.001.4039.661.45

* value interpolated

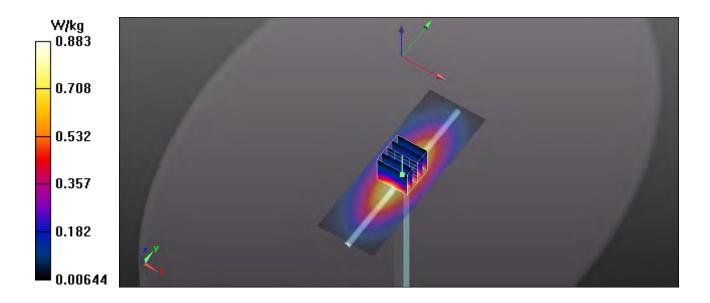
* value interpolated

RF Exposure Lab

Plot 1

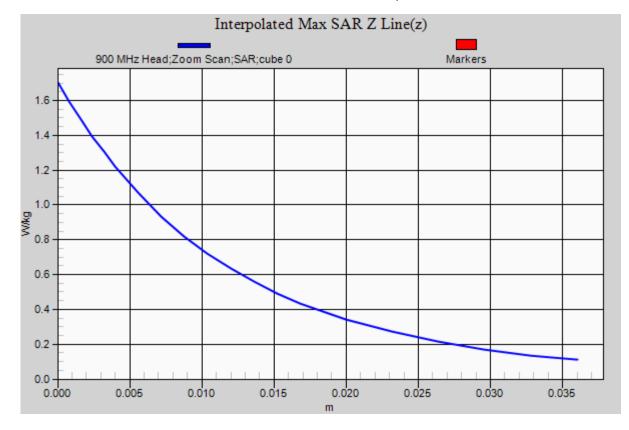
DUT: Dipole 750 MHz D750V3; Type: D750V3; Serial: D750V3 - SN 1053

Communication System: CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: HSL750; Medium parameters used: f = 750 MHz; σ = 0.91 S/m; ϵ_r = 41.18; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 12/20/2021; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 – SN7530; ConvF(10.64, 10.64, 10.64); Calibrated: 1/22/2021; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/13/2021 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

750 MHz Head/Verification/Area Scan (41x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.875 W/kg


750 MHz Head/Verification /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.569 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.691 mW/g P_{in}= 100 mW **SAR(1 g) = 0.862 mW/g; SAR(10 g) = 0.552 mW/g**

Maximum value of SAR (measured) = 0.884 W/kg

Report Number: SAR.20211207

RF Exposure Lab

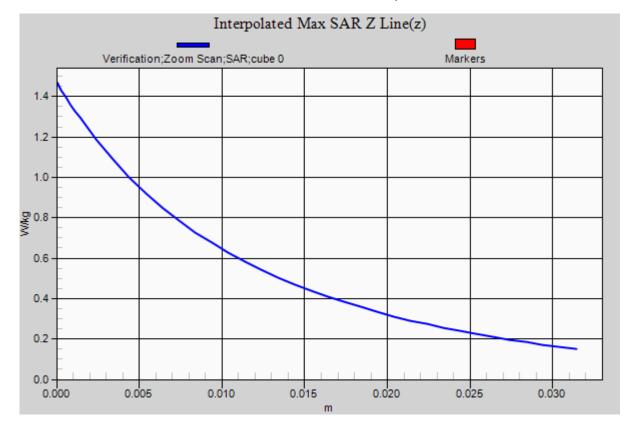
Plot 2

DUT: Dipole 900 MHz D900V2; Type: D900V2; Serial: D900V2 - SN:1d128

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1 Medium: HSL900; Medium parameters used: f = 900 MHz; σ = 1 S/m; ϵ_r = 40.94; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 12/17/2021; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN7530; ConvF(10.06, 10.06, 10.06); Calibrated: 1/22/2021; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/13/2021 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:


900 MHz/Verification/Area Scan (5x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.19 W/kg

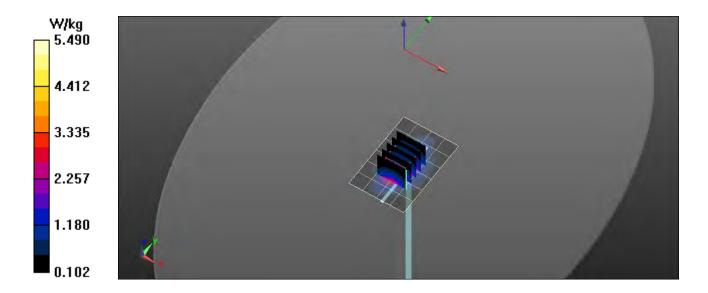
900 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 31.568 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.43 W/kg SAR(1 g) = 1.14 W/kg; SAR(10 g) = 0.712 W/kg Maximum value of SAR (measured) = 1.2 W/kg

Report Number: SAR.20211207

RF Exposure Lab

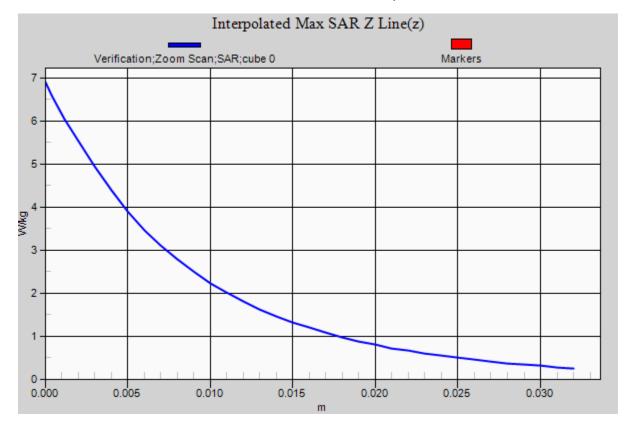
Plot 3

DUT: Dipole 1750 MHz D1750V2; Type: D1750V2; Serial: D1750V2 - SN:1061


Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: HSL1750; Medium parameters used: f = 1750 MHz; σ = 1.38 S/m; ϵ_r = 39.45; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 12/16/2021; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN7530; ConvF(8.2, 8.2, 8.2); Calibrated: 1/22/2021; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/13/2021 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

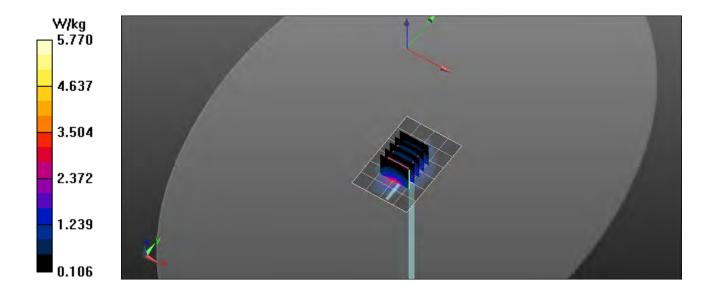

1750 MHz/Verification/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.42 W/kg

1750 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 54.639 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 7.17 W/kg **SAR(1 g) = 3.79 W/kg; SAR(10 g) = 1.97 W/kg** Maximum value of SAR (measured) = 5.49 W/kg

Report Number: SAR.20211207

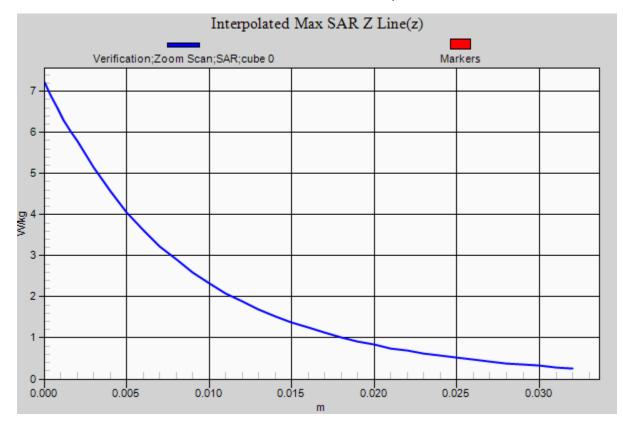
Plot 4

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: D1900V2 - SN: 5d147


Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL1900; Medium parameters used: f = 1900 MHz; σ = 1.43 S/m; ϵ_r = 39.69; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 12/16/2021; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN7530; ConvF(7.98, 7.98, 7.98); Calibrated: 1/22/2021; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/13/2021 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

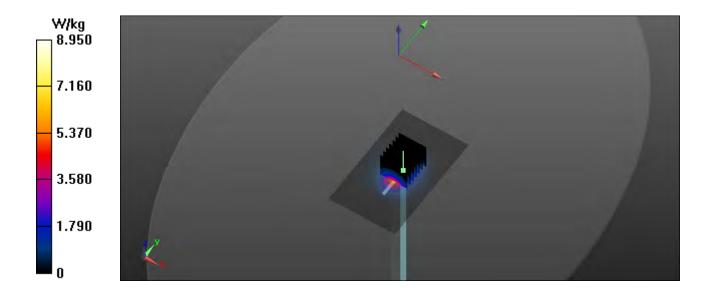

1900 MHz/Verification/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.61 W/kg

1900 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 44.186 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 7.45 W/kg Pin= 100 mW **SAR(1 g) = 4.09 W/kg; SAR(10 g) = 2.11 W/kg** Maximum value of SAR (measured) = 5.79 W/kg

Report Number: SAR.20211207

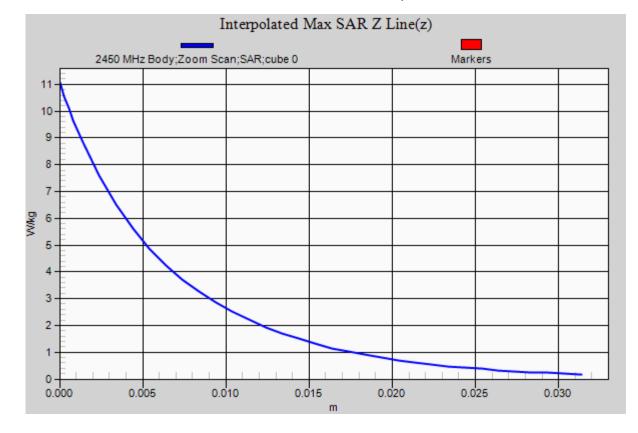
Plot 5

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN: 881


Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL2450; Medium parameters used: f = 2450 MHz; σ = 1.82 S/m; ϵ_r = 39.14; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 11/22/2021; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 – SN7530; ConvF(7.6, 7.6, 7.6); Calibrated: 1/22/2021; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/13/2021 Phantom: ELI 5.0; Type: QDOVA002AA; Serial: 1251 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:


Head Verification/2450 MHz/Area Scan (61x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 8.95 W/kg

Head Verification/2450 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.597 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 11.18 W/kg Pin= 100 mW SAR(1 g) = 5.45 W/kg; SAR(10 g) = 2.52 W/kg Maximum value of SAR (measured) = 8.71 W/kg

Report Number: SAR.20211207

Appendix B – SAR Test Data Plots

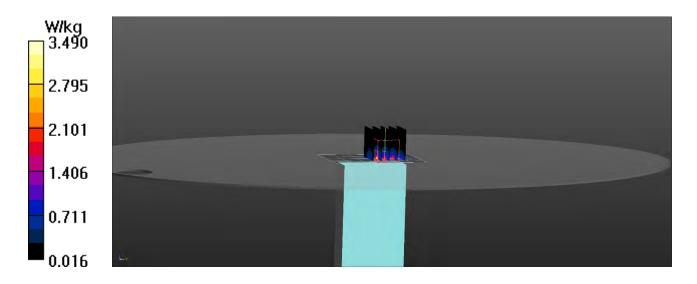
Plot 1

DUT: Communication Pack; Type: Body Worn; Serial: BTCP1-B0045

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: HSL750; Medium parameters used (interpolated): f = 707.5 MHz; σ = 0.878 S/m; ϵ_r = 41.428; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 12/20/2021; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN7530; ConvF(10.64, 10.64, 10.64); Calibrated: 1/22/2021 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/13/2021 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)


Procedure Notes:

B12 LTE/Bottom 1 RB 24 Offset Mid/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 2.02 W/kg

B12 LTE/Bottom 1 RB 24 Offset Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 33.22 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 5.63 W/kg SAR(1 g) = 1.32 W/kg; SAR(10 g) = 0.532 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 3.49 W/kg

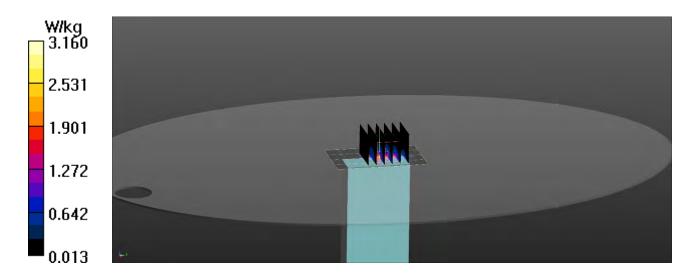
Plot 2

DUT: Communication Pack; Type: Body Worn; Serial: BTCP1-B0045

Communication System: UMTS (WCDMA); Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: HSL835; Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.937 S/m; ϵ_r = 41.03; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 12/17/2021; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN7530; ConvF(10.06, 10.06, 10.06); Calibrated: 1/22/2021 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/13/2021 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)


Procedure Notes:

B5 WCDMA/Bottom Mid/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 2.78 W/kg

B5 WCDMA/Bottom Mid/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 40.22 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 5.37 W/kg SAR(1 g) = 1.28 W/kg; SAR(10 g) = 0.498 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 3.16 W/kg

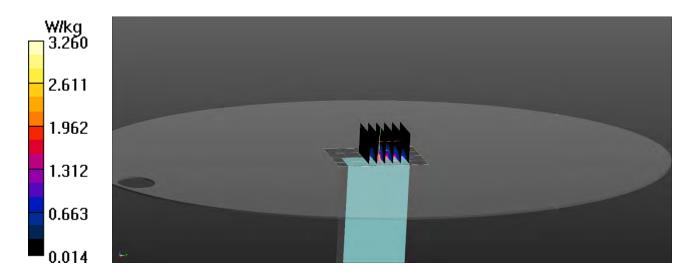
Plot 3

DUT: Communication Pack; Type: Body Worn; Serial: BTCP1-B0045

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: HSL835; Medium parameters used (interpolated): f = 836.5 MHz; σ = 0.937 S/m; ϵ_r = 41.03; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 12/17/2021; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN7530; ConvF(10.06, 10.06, 10.06); Calibrated: 1/22/2021 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/13/2021 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)


Procedure Notes:

B5 LTE/Bottom 1 RB 24 Offset Mid/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 2.87 W/kg

B5 LTE/Bottom 1 RB 24 Offset Mid/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 40.01 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 5.65 W/kg SAR(1 g) = 1.30 W/kg; SAR(10 g) = 0.484 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 3.26 W/kg

Plot 4

DUT: Communication Pack; Type: Body Worn; Serial: BTCP1-B0045

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium: HSL1750; Medium parameters used (interpolated): f = 1745 MHz; σ = 1.375 S/m; ϵ_r = 39.46; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 12/16/2021; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN7530; ConvF(8.2, 8.2, 8.2); Calibrated: 1/22/2021 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/13/2021 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

B4 LTE/Front 1 RB 49 Offset High/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 3.23 W/kg

B4 LTE/Front 1 RB 49 Offset High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.46 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 5.49 W/kg **SAR(1 g) = 1.4 W/kg; SAR(10 g) = 0.751 W/kg**

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 3.13 W/kg

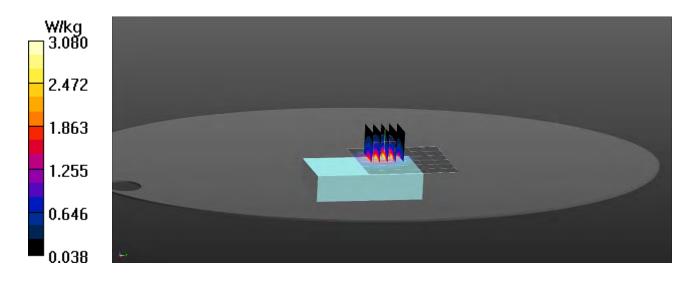
Plot 5

DUT: Communication Pack; Type: Body Worn; Serial: BTCP1-B0045

Communication System: UMTS (WCDMA); Frequency: 1852.4 MHz; Duty Cycle: 1:1 Medium: HSL1900; Medium parameters used (interpolated): f = 1852.4 MHz; σ = 1.412 S/m; ϵ_r = 39.785; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 12/16/2021; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN7530; ConvF(7.98, 7.98, 7.98); Calibrated: 1/22/2021 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/13/2021 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)


Procedure Notes:

B2 WCDMA/Front Low/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 3.10 W/kg

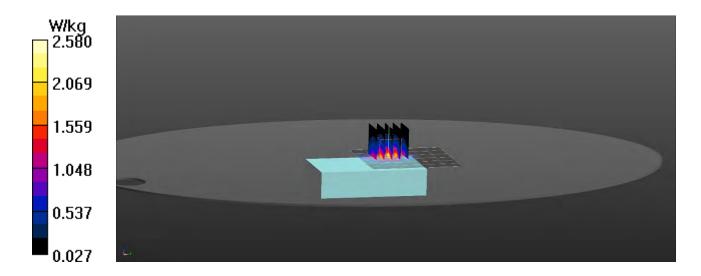
B2 WCDMA/Front Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 26.68 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 3.97 W/kg SAR(1 g) = 1.42 W/kg; SAR(10 g) = 0.689 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 3.08 W/kg

Plot 6

DUT: Communication Pack; Type: Body Worn; Serial: BTCP1-B0045

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL1900; Medium parameters used: f = 1900 MHz; σ = 1.43 S/m; ϵ_r = 39.69; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: Date: 12/16/2021; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN7530; ConvF(7.98, 7.98, 7.98); Calibrated: 1/22/2021 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/13/2021 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

B2 LTE/Front 1 RB 49 Offset High/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.47 W/kg

B2 LTE/Front 1 RB 49 Offset High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.35 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.35 W/kg SAR(1 g) = 1.43 W/kg; SAR(10 g) = 0.869 W/kg Maximum value of SAR (measured) = 2.58 W/kg

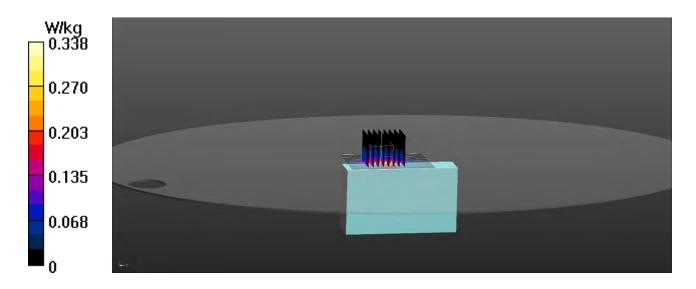
Plot 7

DUT: Communication Pack; Type: Body Worn; Serial: BTCP1-B0072

Communication System: WiFi 802.11b (DSSS, 1 Mbps); Frequency: 2437 MHz; Duty Cycle: 1:3.32889 Medium: HSL2450; Medium parameters used (interpolated): f = 2437 MHz; σ = 1.807 S/m; ϵ_r = 39.166; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 11/22/2021; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN7530; ConvF(7.6, 7.6, 7.6); Calibrated: 1/22/2021 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/13/2021 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)


Procedure Notes:

2450 MHz/Right 6/Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.292 W/kg

2450 MHz/Right 6/Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.976 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.519 W/kg SAR(1 g) = 0.188 W/kg; SAR(10 g) = 0.077 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.338 W/kg

Appendix D – Probe Calibration Data Sheets

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client RF Exposure Lab

Certificate No:	EX3-7530_Jai	n21

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:7530
Calibration procedure(s)	QA CAL-01.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes
Calibration date:	January 22, 2021
	nts the traceability to national standards, which realize the physical units of measurements (SI). ainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: CC2552 (20x)	31-Mar-20 (No. 217-03106)	Apr-21
DAE4	SN: 660	23-Dec-20 (No. DAE4-660_Dec20)	Dec-21
Reference Probe ES3DV2	SN: 3013	30-Dec-20 (No. ES3-3013_Dec20)	Dec-21
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-20)	In house check: Jun-22
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	Och 1
Approved by:	Katja Pokovic	Technical Manager	all
This calibration certificate	e shall not be reproduced except in	full without written approval of the lab	Issued: January 23, 2021 oratory

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty cycle) of the RF signal modulation dependent linearization parameters A, B, C, D Polarization o o rotation around probe axis Polarization & *9* rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ". "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization ϑ = 0 (f \leq 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Accreditation No.: SCS 0108

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.42	0.48	0.43	± 10.1 %
DCP (mV) ^B	98.0	100.8	100.8	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Max dev.	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	139.4	± 2.2 %	± 4.7 %
		Y	0.0	0.0	1.0		144.8		
		Z	0.0	0.0	1.0		147.2		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-143.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

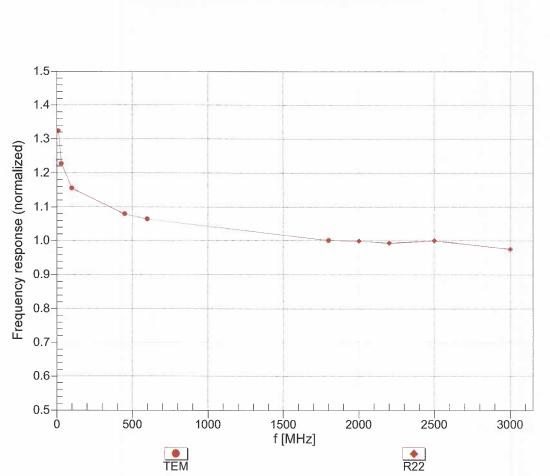
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.64	10.64	10.64	0.47	0.80	± 12.0 %
900	41.5	0.97	10.06	10.06	10.06	0.37	0.92	± 12.0 %
1300	40.8	1.14	9.34	9.34	9.34	0.25	1.23	± 12.0 %
1450	40.5	1.20	9.19	9.19	9.19	0.31	0.80	± 12.0 %
1640	40.2	1.31	8.54	8.54	8.54	0.37	0.86	± 12.0 %
1750	40.1	1.37	8.20	8.20	8.20	0.41	0.86	± 12.0 %
1900	40.0	1.40	7.98	7.98	7.98	0.38	0.86	± 12.0 %
2300	39.5	1.67	7.83	7.83	7.83	0.39	0.90	± 12.0 %
2450	39.2	1.80	7.60	7.60	7.60	0.36	0.90	± 12.0 %
2600	39.0	1.96	7.36	7.36	7.36	0.39	0.90	± 12.0 %
3500	37.9	2.91	7.10	7.10	7.10	0.35	1.30	<u>± 13.1 %</u>
3700	37.7	3.12	6.90	6.90	6.90	0.35	1.30	± 13.1 %
5250	35.9	4.71	5.40	5.40	5.40	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.79	4.79	4.79	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.95	4.95	4.95	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

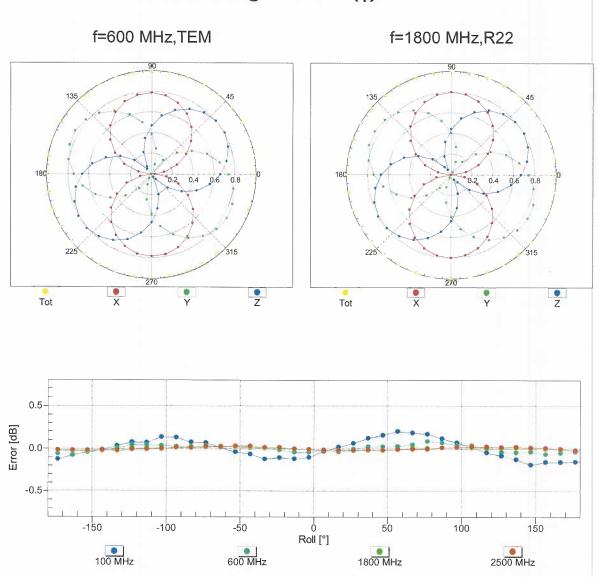
⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
6500	34.5	6.07	5.55	5.55	5.55	0.20	2.50	± 18.6 %

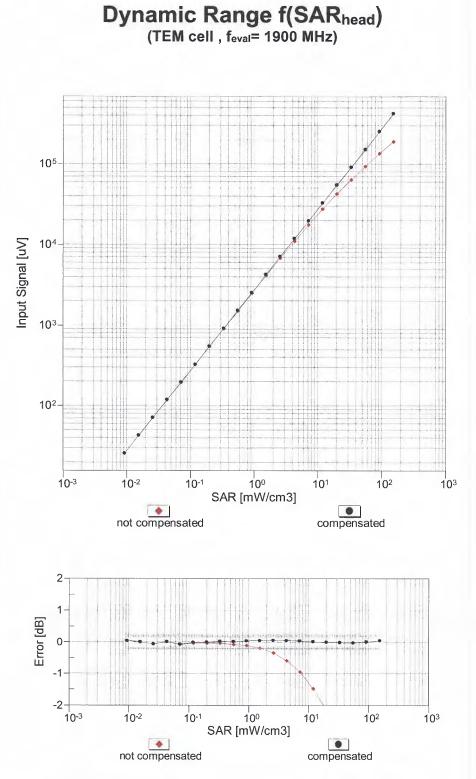
Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 6GHz is ± 700 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies 6-10 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured


SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz; below ± 2% for frequencies between 3-6 GHz; and below ± 4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary.

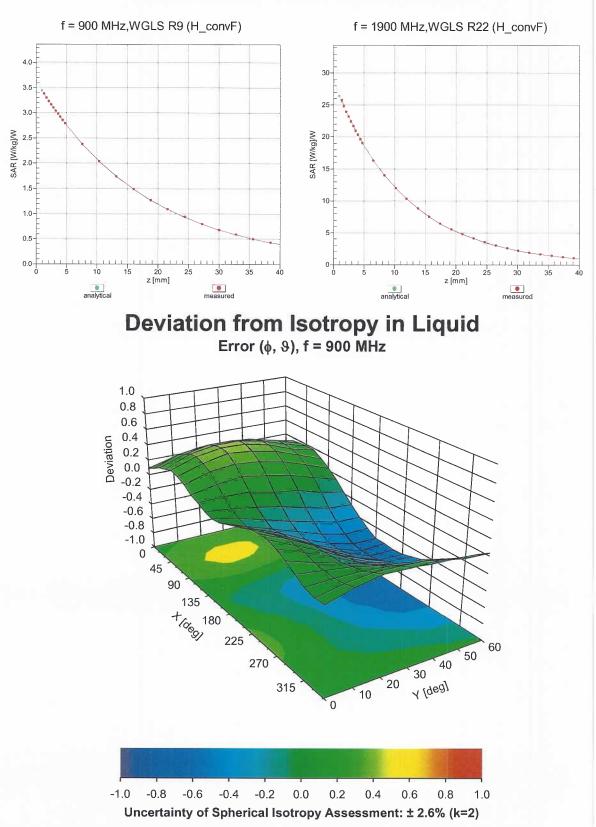
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

January 22, 2021

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-7530_Jan21

Page 9 of 10

January 22, 2021

Conversion Factor Assessment

Page 10 of 10

Appendix E – Dipole Calibration Data Sheets

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

- C Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client RF Exposure Lab

Certificate No: D750V3-1053_Jun21

	RATI			

Object	D750V3 - SN:1053	3 . (***					
Calibration procedure(s)	QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz						
Calibration date:	June 04, 2021						
The measurements and the uncerta	ainties with confidence pro	nal standards, which realize the physical units obbability are given on the following pages and a facility: environment temperature $(22 \pm 3)^{\circ}$ C and	re part of the certificate.				
Calibration Equipment used (M&TE	critical for calibration)						
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration				
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22				
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22				
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22				
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22				
Type-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22				
Reference Probe EX3DV4	SN: 7349	28-Dec-20 (No. EX3-7349_Dec20)	Dec-21				
DAE4	SN: 601	02-Nov-20 (No. DAE4-601_Nov20)	Nov-21				
Secondary Standards	ID #	Check Date (in house)	Scheduled Check				
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22				
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22				
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-20)	In house check: Oct-22				
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22				
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21				
	Name	Function	Signature				
Calibrated by:	Michael Weber	Laboratory Technician	11/11/1~				
			M.NEX				
Approved by:	Katja Pokovic	Technical Manager	M.Mess Le 45				
			Issued: June 8, 2021				

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the • nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.7 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.17 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.57 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.58 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	56.5 Ω + 0.1 jΩ
Return Loss	- 24.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.035	5 ns
--	------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

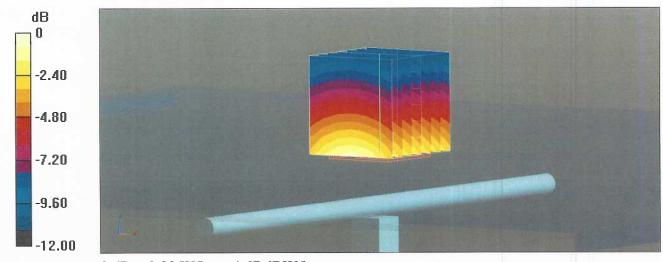
Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

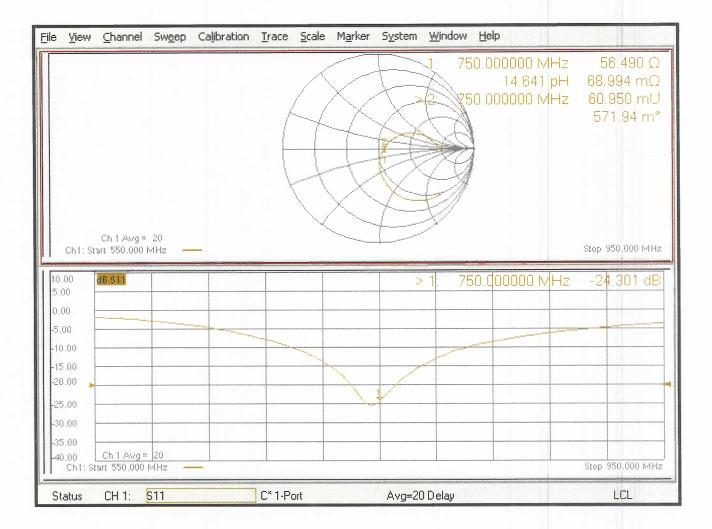
Date: 04.06.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1053


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; σ = 0.91 S/m; ϵ_r = 42.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(10.11, 10.11, 10.11) @ 750 MHz; Calibrated: 28.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.74 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.30 W/kg **SAR(1 g) = 2.17 W/kg; SAR(10 g) = 1.41 W/kg** Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (> 30mm) Ratio of SAR at M2 to SAR at M1 = 65.5% Maximum value of SAR (measured) = 2.93 W/kg

0 dB = 2.93 W/kg = 4.67 dBW/kg

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D900V2-1d128_Jun21

CALIBRATION CERTIFICATE

RF Exposure Lab

Client

Object	D900V2 - SN:1d1	28	
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	dure for SAR Validation Sources b	etween 0.7-3 GHz
Calibration date:	June 04, 2021		and the second sec
		onal standards, which realize the physical units robability are given on the following pages and a	
All calibrations have been conducte	ed in the closed laborator	y facility: environment temperature (22 \pm 3)°C a	and humidity < 70%.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
Type-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
Reference Probe EX3DV4	SN: 7349	28-Dec-20 (No. EX3-7349_Dec20)	Dec-21
DAE4	SN: 601	02-Nov-20 (No. DAE4-601_Nov20)	Nov-21
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	M. Heles
Approved by:	Katja Pokovic	Technical Manager	Jelly-
	b	full without written approval of the laboratory.	Issued: June 8, 2021

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage

С Servizio svizzero di taratura

S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.97 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.3 ± 6 %	0.96 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.76 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	11.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.77 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	7.14 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.0 Ω - 0.6 jΩ
Return Loss	- 38.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.412 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

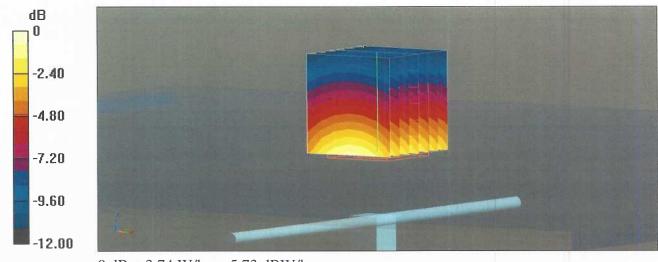
Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 04.06.2021

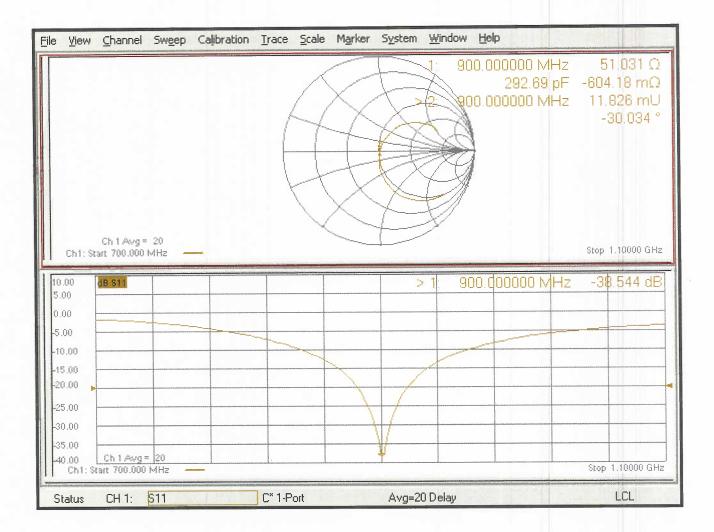
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:1d128


Communication System: UID 0 - CW; Frequency: 900 MHz Medium parameters used: f = 900 MHz; $\sigma = 0.96$ S/m; $\epsilon_r = 42.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.62, 9.62, 9.62) @ 900 MHz; Calibrated: 28.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)


Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 65.79 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 4.23 W/kg **SAR(1 g) = 2.76 W/kg; SAR(10 g) = 1.77 W/kg** Smallest distance from peaks to all points 3 dB below = 16 mm Ratio of SAR at M2 to SAR at M1 = 65% Maximum value of SAR (measured) = 3.74 W/kg

0 dB = 3.74 W/kg = 5.73 dBW/kg

Impedance Measurement Plot for Head TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

Certificate No: D1750V2-1061_Jun21

CALIBRATION CERTIFICATE

RF Exposure Lab

Object	D1750V2 - SN:1061
Calibration procedure(s)	QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz
Calibration date:	June 03, 2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
Type-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
Reference Probe EX3DV4	SN: 7349	28-Dec-20 (No. EX3-7349_Dec20)	Dec-21
DAE4	SN: 601	02-Nov-20 (No. DAE4-601_Nov20)	Nov-21
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21
	Name	Function	Signature
Calibrated by:	Jeffrey Katzman	Laboratory Technician	1. totas
Approved by:	Katja Pokovic	Technical Manager	BBC
			Issued: June 8, 2021
This calibration certificate shall not	be reproduced except in	full without written approval of the laboratory	<i>.</i>

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.7 ± 6 %	1.37 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	37.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.93 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.8 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.4 Ω + 0.0 jΩ	
Return Loss	- 44.5 dB	

General Antenna Parameters and Design

Electrical Delay (one direction) 1.221 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

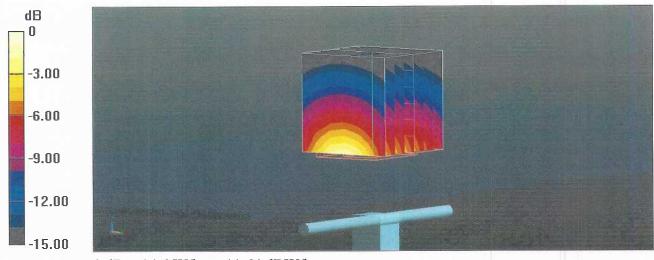
Manufactured by	SPEAG
, ,	

DASY5 Validation Report for Head TSL

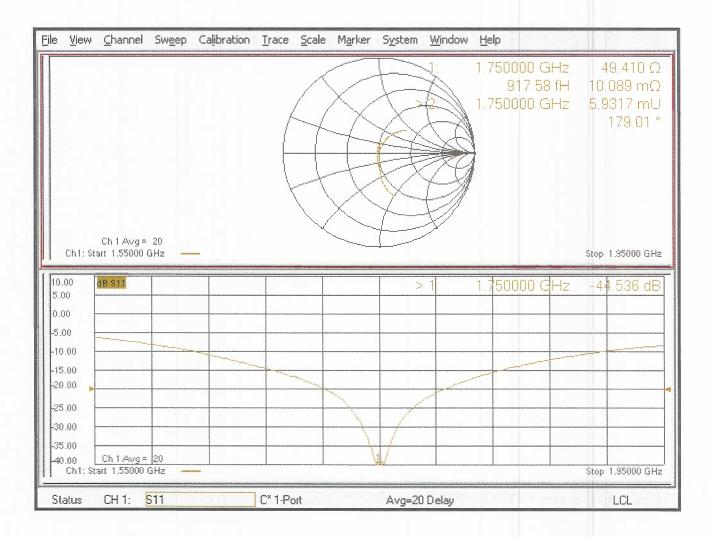
Date: 03.06.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1061


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; σ = 1.37 S/m; ϵ_r = 40.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.67, 8.67, 8.67) @ 1750 MHz; Calibrated: 28.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 107.4 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 17.5 W/kg **SAR(1 g) = 9.38 W/kg; SAR(10 g) = 4.93 W/kg** Smallest distance from peaks to all points 3 dB below = 9.1 mm Ratio of SAR at M2 to SAR at M1 = 54% Maximum value of SAR (measured) = 14.6 W/kg

0 dB = 14.6 W/kg = 11.64 dBW/kg

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Accreditation No.: SCS 0108

Client RF Exposure Lab

Certificate No: D1900V2-5d147_Jun21

CALIBRATION CERTIFICATE

Multilateral Agreement for the recognition of calibration certificates

Object	D1900V2 - SN:5d	1147	
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	dure for SAR Validation Sources	between 0.7-3 GHz
Calibration date:	June 04, 2021		
The measurements and the uncerta	ainties with confidence pr ed in the closed laborator	onal standards, which realize the physical un robability are given on the following pages an y facility: environment temperature (22 \pm 3)°C	d are part of the certificate.
	ł		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
Type-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
Reference Probe EX3DV4	SN: 7349	28-Dec-20 (No. EX3-7349_Dec20)	Dec-21
DAE4	SN: 601	02-Nov-20 (No. DAE4-601_Nov20)	Nov-21
Secondary Standards	D #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	
Calibrated by.		Laboratory rectinician	MARKET
Approved by:	Katja Pokovic	Technical Manager	All of

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d147_Jun21

Issued: June 8, 2021

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the • nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	1.41 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.1 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.3 Ω + 5.4 jΩ	
Return Loss	- 24.2 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.192 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

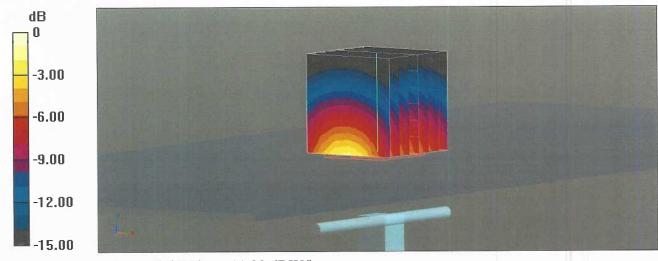
Manufactured by	SPEAG
1 -	

DASY5 Validation Report for Head TSL

Date: 04.06.2021

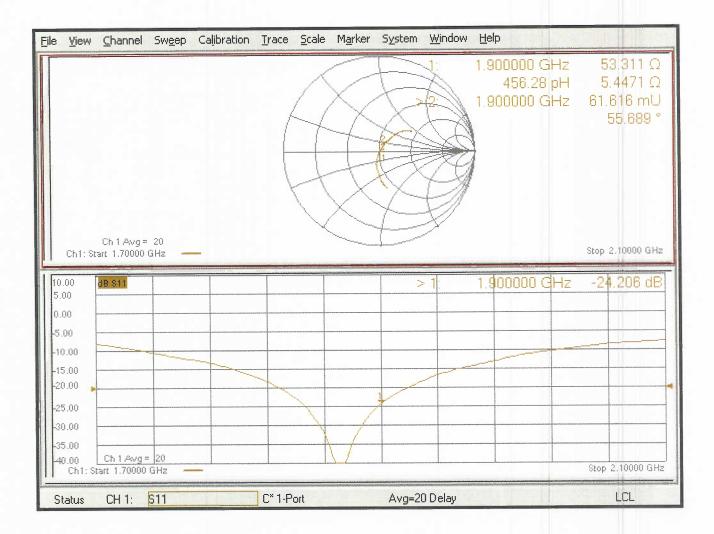
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d147


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.41 S/m; ϵ_r = 40.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.43, 8.43, 8.43) @ 1900 MHz; Calibrated: 28.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.2 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 18.7 W/kg **SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.28 W/kg** Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 54.6% Maximum value of SAR (measured) = 15.6 W/kg

0 dB = 15.6 W/kg = 11.93 dBW/kg

Impedance Measurement Plot for Head TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- C Service suisse d etalonnage
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certi	ficate	No:	D2/	450	N2	-88	1_,	Jun	21	
		and a start of the				46				

Client RF Exposure Lab

NF.	L=20 }	iu su	1.6 60	

CALIBRATION	CERTIFICATE
Object	D2450V2 - SN:881
Calibration procedure(s)	QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz
Calibration date:	June 03, 2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
Type-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
Reference Probe EX3DV4	SN: 7349	28-Dec-20 (No. EX3-7349_Dec20)	Dec-21
DAE4	SN: 601	02-Nov-20 (No. DAE4-601_Nov20)	Nov-21
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21
	Name	Function	Signature
Calibrated by:	Jeffrey Katzman	Laboratory Technician	1. http
(_		
Approved by:	Katja Pokovic	Technical Manager	Alt
			Issued: June 8, 2021
This calibration certificate shall not	be reproduced except in	full without written approval of the laboratory	1

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4		
Extrapolation	Advanced Extrapolation			
Phantom	Modular Flat Phantom			
Distance Dipole Center - TSL	10 mm	with Spacer		
Zoom Scan Resolution	dx, dy, dz = 5 mm			
Frequency	2450 MHz ± 1 MHz			

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity	
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m	
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.7 ± 6 %	1.87 mho/m ± 6 %	
Head TSL temperature change during test	< 0.5 °C			

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.9 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	54.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.0 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.3 Ω + 4.3 jΩ				
Return Loss	- 24.7 dB				

General Antenna Parameters and Design

Electrical Delay (one direction)	1.156 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

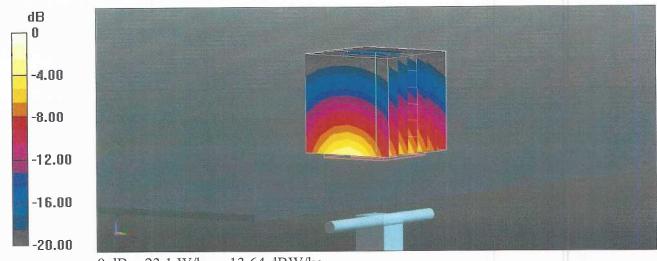
Manufactured by SPEAG	Manufactured by	
-----------------------	-----------------	--

DASY5 Validation Report for Head TSL

Date: 03.06.2021

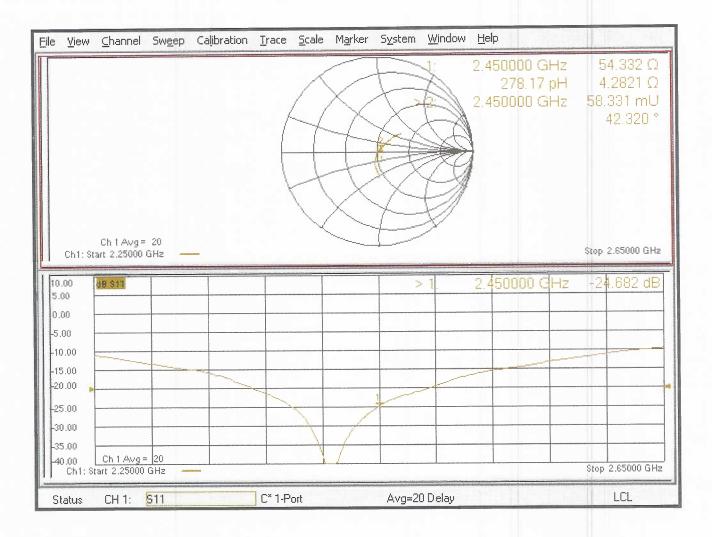
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:881


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.87$ S/m; $\epsilon_r = 37.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 28.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 119.0 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 28.0 W/kg **SAR(1 g) = 13.9 W/kg; SAR(10 g) = 6.34 W/kg** Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 49.5% Maximum value of SAR (measured) = 23.1 W/kg

0 dB = 23.1 W/kg = 13.64 dBW/kg

Impedance Measurement Plot for Head TSL

Appendix F – Phantom Calibration Data Sheets

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Certificate of Conformity / First Article Inspection

ltem	Oval Flat Phantom ELI 4.0
Type No	QD OVA 001 B
Series No	1003 and higher
Manufacturer	Untersee Composites
	Knebelstrasse 8
	CH-8268 Mannenbach, Switzerland

Tests

Complete tests were made on the prototype units QD OVA 001 AA 1001, QD OVA 001 AB 1002, pre-series units QD OVA 001 BA 1003-1005 as well as on the series units QD OVA 001 BB, 1006 ff.

Test	Requirement	Details	Units tested
Material thickness	Compliant with the standard requirements	Bottom plate: 2.0mm +/- 0.2mm	ali
Material parameters	Dielectric parameters for required frequencies	< 6 GHz: Rel. permittivity = 4 +/-1, Loss tangent ≤ 0.05	Material sample
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards if handled and cleaned according to the instructions.	DGBE based simulating liquids. Observe Technical Note for material compatibility.	Equivalent phantoms, Material sample
Shape	Thickness of bottom material, Internal dimensions, Sagging compatible with standards from minimum frequency	Bottom elliptical 600 x 400 mm Depth 190 mm, Shape is within tolerance for filling height up to 155 mm, Eventual sagging is reduced or elimínated by support via DUT	Prototypes, Sample testing

Standards

- CENELEC EN 50361-2001, « Basic standard for the measurement of the Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz – 3 GHz) », July 2001
- [2] IEEE 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques, December 2003
- IEC 62209 1, "Specific Absorption Rate (SAR) in the frequency range of 300 MHz to 3 GHz Measurement Procedure, Part 1: Hand-held mobile wireless communication devices", February 2005
- [4] IEC 62209 2, Draft, "Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices – Human models, Instrumentation and Procedures – Part 2: Procedure to determine the Specific Absorption Rate (SAR) in the head and body for 30 MHz to 6 GHz Handheld and Body-Mounted Devices used in close proximity to the Body.", February 2005
- [5] OET Bulletin 65, Supplement C, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", Edition January 2001

Based on the tests above, we certify that this item is in compliance with the standards [1] to [5] if operated according to the specific requirements and considering the thickness. The dimensions are fully compliant with [4] from 30 MHz to 6 GHz. For the other standards, the minimum lower frequency limit is limited due to the dimensional requirements ([1]: 450 MHz, [2]: 300 MHz, [3]: 800 MHz, [5]: 375 MHz) and possibly further by the dimensions of the DUT. **S P 6 a G**

Date 28.4.2008 Signature / Stamp	Schmi <u>d &</u> Partner Engineering AG Zeughaugstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9709, Fax +41,44,245 9779 info@speag.com; http://www.speag.com
----------------------------------	---

Doc No 881 - QD OVA 001 B - D

1 (1)

Page

Appendix G – Validation Summary

Per FCC KDB 865664 D02 v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue equivalent media for system validation according to the procedures outlined in FCC KDB 865664 D01 v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point using the system that normally operates with the probe for routine SAR measurements and according to the required tissue equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

	SAR System valuation Summary													
SAR	E rrow		Draha	Draha	Probe Cal. Point		Canad	Darma	CW Validation			Modulation Validation		
System #	Freq. (MHz)	Date	Probe S/N	Probe Type					Cond. (σ)	Perm. (ε _r)	Sens- itivity	Probe Linearity	Probe Isotropy	Modulation Type
2	750	02/08/2021	7530	EX3DV4	750	Head	0.92	40.65	Pass	Pass	Pass	QPSK	Pass	Pass
2	900	02/08/2021	7530	EX3DV4	900	Head	1.00	40.85	Pass	Pass	Pass	WCDMA	Pass	Pass
2	900	02/08/2021	7530	EX3DV4	900	Head	1.00	40.85	Pass	Pass	Pass	QPSK	Pass	Pass
2	1750	02/09/2021	7530	EX3DV4	1750	Head	1.41	39.16	Pass	Pass	Pass	QPSK	Pass	Pass
2	1900	02/09/2021	7530	EX3DV4	1900	Head	1.30	39.09	Pass	Pass	Pass	WCDMA	Pass	Pass
2	1900	02/09/2021	7530	EX3DV4	1900	Head	1.30	39.09	Pass	Pass	Pass	QPSK	Pass	Pass
2	2450	02/12/2021	7530	EX3DV4	2450	Head	1.81	39.05	Pass	Pass	Pass	DSSS/OFDM	Pass	Pass

Table G-1 SAR System Validation Summary