## 7. SPURIOUS EMISSION

# 7.1 CONDUCTED SPURIOUS EMISSION

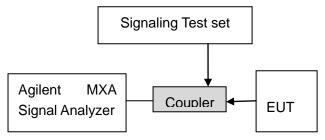
## 7.1.1 MEASUREMENT METHOD

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is 43 + log10(P[Watts]), where P is the transmitter power in Watts.

Test Procedure Used KDB 971168 v02r01 – Section 6.0

## **Test Settings**


1. Start frequency was set to 30MHz and stop frequency was set to at least 10 \* the fundamental

frequency (separated into at least two plots per channel)

- 2. Detector = RMS
- 3. Trace mode = max hold
- 4. Sweep time = auto couple
- 5. The trace was allowed to stabilize
- 6. Please see test notes below for RBW and VBW settings

#### **Test Setup**

The EUT and measurement equipment were set up as shown in the diagram below.



Test Instrument & Measurement Setup

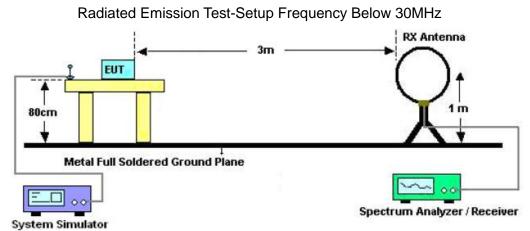
shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

## Test Note

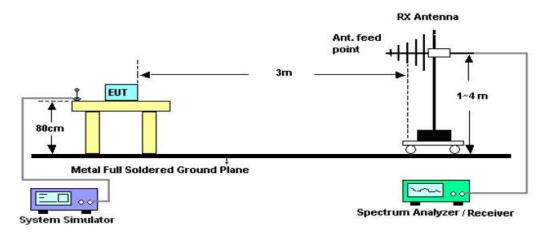
Compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater for frequencies less than 1 GHz and 1 MHz or greater for frequencies greater than 1 GHz. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

#### 7.1.2 MEASUREMENT RESULT

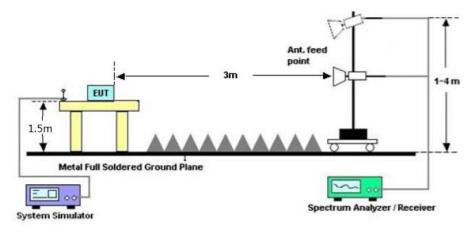
PLEASE REFER TO: APPENDIX A TEST PLOTS FOR CONDUCTED SPURIOUS EMISSION


Note: 1. No emission found in standby or receive mode, no recording in this report.

## 7.2 Radiated Spurious Emission


## 7.2.1. MEASUREMENT PROCEDURE

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.


#### 7.2.2. TEST SETUP



#### RADIATED EMISSION TEST SETUP 30MHz-1000MHz



#### RADIATED EMISSION TEST SETUP ABOVE 1000MHz



#### 7.2.3 PROVISIONS APPLICABLE

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Note: Only record the worst condition of each test mode:

-13

-13

-13

-26.04

-36.16

-29.47

-39.04

-49.16

-42.47

#### 7.2.3 MEASUREMENT RESULT

3760

256.9

639.8

|                    | LTE Band 2<br>Low channel     |                   |                                       |                       |                               |                |                |  |
|--------------------|-------------------------------|-------------------|---------------------------------------|-----------------------|-------------------------------|----------------|----------------|--|
| Frequency<br>(MHz) | Substituted level<br>(dBm)    | Polarity<br>(H/V) | Antenna<br>Gain<br>Correction<br>(dB) | Cable<br>Loss<br>(dB) | Corrected<br>Reading<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |  |
| 3720               | -45.87                        | V                 | 10.06                                 | 2.52                  | -38.33                        | -13            | -25.33         |  |
| 3720               | -46.49                        | Н                 | 10.06                                 | 2.52                  | -38.95                        | -13            | -25.95         |  |
| 257.2              | -51.33                        | V                 | 6.7                                   | 0.24                  | -44.87                        | -13            | -31.87         |  |
| 640.2              | -48.40                        | Н                 | 6.5                                   | 0.39                  | -42.29                        | -13            | -29.29         |  |
|                    |                               |                   | Middle chanr                          | nel                   |                               |                |                |  |
| Frequency<br>(MHz) | Substituted<br>level<br>(dBm) | Polarity<br>(H/V) | Antenna<br>Gain<br>Correction<br>(dB) | Cable<br>Loss (dB)    | Corrected<br>Reading<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |  |
| 3760               | -46.78                        | V                 | 10.06                                 | 2.52                  | -39.24                        | -13            | -26.24         |  |

## High channel

2.52

0.24

0.39

10.06

6.7

6.5

Н

V

Н

-46.58

-55.62

-48.58

| Frequency<br>(MHz) | Substituted level<br>(dBm) | Polarity<br>(H/V) | Antenna<br>Gain<br>Correction<br>(dB) | Cable<br>Loss (dB) | Corrected<br>Reading<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|--------------------|----------------------------|-------------------|---------------------------------------|--------------------|-------------------------------|----------------|----------------|
| 3800               | -48.32                     | V                 | 10.06                                 | 2.52               | -40.78                        | -13            | -27.78         |
| 3800               | -48.24                     | Н                 | 10.06                                 | 2.52               | -40.70                        | -13            | -27.70         |
| 254.6              | -55.07                     | V                 | 6.7                                   | 0.24               | -48.61                        | -13            | -35.61         |
| 639.4              | -48.16                     | Н                 | 6.5                                   | 0.39               | -42.05                        | -13            | -29.05         |

-28.74

|                    |                               |                   | Low channe                            |                       |                               |                |                |
|--------------------|-------------------------------|-------------------|---------------------------------------|-----------------------|-------------------------------|----------------|----------------|
| Frequency<br>(MHz) | Substituted level<br>(dBm)    | Polarity<br>(H/V) | Antenna<br>Gain<br>Correction<br>(dB) | Cable<br>Loss<br>(dB) | Corrected<br>Reading<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
| 3440               | -48.19                        | V                 | 10.06                                 | 2.52                  | -40.65                        | -13            | -27.65         |
| 3440               | -46.73                        | Н                 | 10.06                                 | 2.52                  | -39.19                        | -13            | -26.19         |
| 257.4              | -54.88                        | V                 | 6.7                                   | 0.24                  | -48.42                        | -13            | -35.42         |
| 640.2              | -51.51                        | Н                 | 6.5                                   | 0.39                  | -45.40                        | -13            | -32.40         |
|                    |                               |                   | Middle chanr                          | nel                   |                               |                |                |
| Frequency<br>(MHz) | Substituted<br>level<br>(dBm) | Polarity<br>(H/V) | Antenna<br>Gain<br>Correction<br>(dB) | Cable<br>Loss (dB)    | Corrected<br>Reading<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
| 3465               | -48.39                        | V                 | 10.06                                 | 2.52                  | -40.85                        | -13            | -27.85         |
| 3465               | -47.70                        | Н                 | 10.06                                 | 2.52                  | -40.16                        | -13            | -27.16         |
| 256.9              | -54.91                        | V                 | 6.7                                   | 0.24                  | -48.45                        | -13            | -35.45         |
| 639.8              | -49.33                        | Н                 | 6.5                                   | 0.39                  | -43.22                        | -13            | -30.22         |
|                    | ·                             |                   | High channe                           | el                    |                               |                |                |
| Frequency<br>(MHz) | Substituted level<br>(dBm)    | Polarity<br>(H/V) | Antenna<br>Gain<br>Correction<br>(dB) | Cable<br>Loss (dB)    | Corrected<br>Reading<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
| 3490               | -48.45                        | V                 | 10.06                                 | 2.52                  | -40.91                        | -13            | -27.91         |
| 3490               | -45.43                        | Н                 | 10.06                                 | 2.52                  | -37.89                        | -13            | -24.89         |
| 254.6              | -53.42                        | V                 | 6.7                                   | 0.24                  | -46.96                        | -13            | -33.96         |

6.5

0.39

-41.74

-13

Н

-47.85

639.4

# LTE Band 4

|                    | Low channel                   |                   |                                       |                       |                               |                |                |
|--------------------|-------------------------------|-------------------|---------------------------------------|-----------------------|-------------------------------|----------------|----------------|
| Frequency<br>(MHz) | Substituted level<br>(dBm)    | Polarity<br>(H/V) | Antenna<br>Gain<br>Correction<br>(dB) | Cable<br>Loss<br>(dB) | Corrected<br>Reading<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
| 1658               | -49.00                        | V                 | 10.72                                 | 1.65                  | -39.93                        | -13            | -26.93         |
| 1658               | -44.46                        | Н                 | 10.72                                 | 1.65                  | -35.39                        | -13            | -22.39         |
| 255.2              | -52.94                        | V                 | 6.7                                   | 0.24                  | -46.48                        | -13            | -33.48         |
| 641.1              | -49.26                        | Н                 | 6.5                                   | 0.39                  | -43.15                        | -13            | -30.15         |
|                    |                               |                   | Middle chanr                          | nel                   |                               |                |                |
| Frequency<br>(MHz) | Substituted<br>level<br>(dBm) | Polarity<br>(H/V) | Antenna<br>Gain<br>Correction<br>(dB) | Cable<br>Loss (dB)    | Corrected<br>Reading<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
| 1673               | -48.89                        | V                 | 10.72                                 | 1.65                  | -39.82                        | -13            | -26.82         |
| 1673               | -48.25                        | Н                 | 10.72                                 | 1.65                  | -39.18                        | -13            | -26.18         |
| 254.5              | -56.71                        | V                 | 6.7                                   | 0.24                  | -50.25                        | -13            | -37.25         |
| 640.2              | -51.12                        | Н                 | 6.5                                   | 0.39                  | -45.01                        | -13            | -32.01         |
|                    |                               |                   | High channe                           | el                    |                               |                |                |
| Frequency<br>(MHz) | Substituted level<br>(dBm)    | Polarity<br>(H/V) | Antenna<br>Gain<br>Correction<br>(dB) | Cable<br>Loss (dB)    | Corrected<br>Reading<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
| 1688               | -47.25                        | V                 | 10.72                                 | 1.65                  | -38.18                        | -13            | -25.18         |
| 1688               | -47.53                        | Н                 | 10.72                                 | 1.65                  | -38.46                        | -13            | -25.46         |
| 254.2              | -53.84                        | V                 | 6.7                                   | 0.24                  | -47.38                        | -13            | -34.38         |
| 640.8              | -51.78                        | Н                 | 6.5                                   | 0.39                  | -45.67                        | -13            | -32.67         |

#### LTE Band 5 .

|                    | Low channel                   |                   |                                       |                       |                               |                |                |
|--------------------|-------------------------------|-------------------|---------------------------------------|-----------------------|-------------------------------|----------------|----------------|
| Frequency<br>(MHz) | Substituted level<br>(dBm)    | Polarity<br>(H/V) | Antenna<br>Gain<br>Correction<br>(dB) | Cable<br>Loss<br>(dB) | Corrected<br>Reading<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
| 5020               | -46.34                        | V                 | 9.32                                  | 3.29                  | -40.31                        | -13            | -27.31         |
| 5020               | -47.50                        | Н                 | 9.32                                  | 3.29                  | -41.47                        | -13            | -28.47         |
| 257.1              | -52.52                        | V                 | 6.7                                   | 0.24                  | -46.06                        | -13            | -33.06         |
| 640.4              | -49.22                        | Н                 | 6.5                                   | 0.39                  | -43.11                        | -13            | -30.11         |
|                    |                               |                   | Middle chanr                          | nel                   |                               |                |                |
| Frequency<br>(MHz) | Substituted<br>level<br>(dBm) | Polarity<br>(H/V) | Antenna<br>Gain<br>Correction<br>(dB) | Cable<br>Loss (dB)    | Corrected<br>Reading<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
| 5070               | -47.65                        | V                 | 9.32                                  | 3.29                  | -41.62                        | -13            | -28.62         |
| 5070               | -47.03                        | Н                 | 9.32                                  | 3.29                  | -41.00                        | -13            | -28.00         |
| 257.3              | -57.32                        | V                 | 6.7                                   | 0.24                  | -50.86                        | -13            | -37.86         |
| 640.5              | -49.18                        | Н                 | 6.5                                   | 0.39                  | -43.07                        | -13            | -30.07         |
|                    |                               |                   | High channe                           | el                    |                               |                |                |
| Frequency<br>(MHz) | Substituted level<br>(dBm)    | Polarity<br>(H/V) | Antenna<br>Gain<br>Correction<br>(dB) | Cable<br>Loss (dB)    | Corrected<br>Reading<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
| 5120               | -49.67                        | V                 | 9.32                                  | 3.29                  | -43.64                        | -13            | -30.64         |
| 5120               | -49.29                        | Н                 | 9.32                                  | 3.29                  | -43.26                        | -13            | -30.26         |
| 256.3              | -55.16                        | V                 | 6.7                                   | 0.24                  | -48.70                        | -13            | -35.70         |
| 641.2              | -48.51                        | Н                 | 6.5                                   | 0.39                  | -42.40                        | -13            | -29.40         |

# LTE Band 7

|                    |                               |                   | Low channe                            | el                    |                               |                |                |  |
|--------------------|-------------------------------|-------------------|---------------------------------------|-----------------------|-------------------------------|----------------|----------------|--|
| Frequency<br>(MHz) | Substituted level<br>(dBm)    | Polarity<br>(H/V) | Antenna<br>Gain<br>Correction<br>(dB) | Cable<br>Loss<br>(dB) | Corrected<br>Reading<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |  |
| 1418               | -48.82                        | V                 | 10.72                                 | 1.65                  | -39.75                        | -13            | -26.75         |  |
| 1418               | -46.09                        | H                 | 10.72                                 | 1.65                  | -37.02                        | -13            | -24.02         |  |
| 253.8              | -53.10                        | V                 | 6.7                                   | 0.24                  | -46.64                        | -13            | -33.64         |  |
| 640.5              | -53.97                        | Н                 | 6.5                                   | 0.39                  | -47.86                        | -13            | -34.86         |  |
|                    |                               |                   | Middle chanr                          | nel                   |                               |                |                |  |
| Frequency<br>(MHz) | Substituted<br>level<br>(dBm) | Polarity<br>(H/V) | Antenna<br>Gain<br>Correction<br>(dB) | Cable<br>Loss (dB)    | Corrected<br>Reading<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |  |
| 1420               | -47.46                        | V                 | 10.72                                 | 1.65                  | -38.39                        | -13            | -25.39         |  |
| 1420               | -47.74                        | Н                 | 10.72                                 | 1.65                  | -38.67                        | -13            | -25.67         |  |
| 253.8              | -53.83                        | V                 | 6.7                                   | 0.24                  | -47.37                        | -13            | -34.37         |  |
| 639.7              | -49.95                        | Н                 | 6.5                                   | 0.39                  | -43.84                        | -13            | -30.84         |  |
|                    | High channel                  |                   |                                       |                       |                               |                |                |  |

# LTE Band 17

| Frequency<br>(MHz) | Substituted level<br>(dBm) | Polarity<br>(H/V) | Antenna<br>Gain<br>Correction<br>(dB) | Cable<br>Loss (dB) | Corrected<br>Reading<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|--------------------|----------------------------|-------------------|---------------------------------------|--------------------|-------------------------------|----------------|----------------|
| 1422               | -49.72                     | V                 | 10.72                                 | 1.65               | -40.65                        | -13            | -27.65         |
| 1422               | -46.42                     | Н                 | 10.72                                 | 1.65               | -37.35                        | -13            | -24.35         |
| 254.5              | -50.82                     | V                 | 6.7                                   | 0.24               | -44.36                        | -13            | -31.36         |
| 639.4              | -49.42                     | Н                 | 6.5                                   | 0.39               | -43.31                        | -13            | -30.31         |

**Note:** 1. EUT Field Strength (dBm) = Reading (Signal generator) + Antenna Gain (substitution antenna) - Cable loss (From Signal Generator to substitution antenna).

2. Below 30MHZ no Spurious found and the QPSK modes is the worst condition.

## 8. FREQUENCY STABILITY

## 8.1 MEASUREMENT METHOD

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMW500 DIGITAL RADIO COMMUNICATION TESTER.

- 1 , Measure the carrier frequency at room temperature.
- 2 , Subject the EUT to overnight soak at -10  $^\circ\!{\rm C}.$

, With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on channel 20175 for LTE band 4 measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.

3 , Repeat the above measurements at 10  $^\circ C$  increments from -10  $^\circ C$  to +50  $^\circ C$ . Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.

4 , Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1 1/2 hours unpowered, to allow any self-heating to stabilize, before continuing.

5 , Subject the EUT to overnight soak at +50  $^\circ\!\!\mathbb{C}.$ 

6 , With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.

7 , Repeat the above measurements at 10  $^\circ \rm C$  increments from +50  $^\circ \rm C$  to -10  $^\circ \rm C$ . Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.

8 , At all temperature levels hold the temperature to +/-  $0.5^{\circ}$ C during the measurement procedure.

## 8.2 PROVISIONS APPLICABLE

## 8.2.1 For Hand carried battery powered equipment

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-C-2004. The frequency stability of the transmitter is measured by:

a.) Temperature: The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.

b.) Primary Supply Voltage: The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

For Part 22, the frequency stability of the transmitter shall be maintained within  $\pm 0.00025\%$  ( $\pm 2.5$  ppm) of the center frequency. For Part 24 and Part 27, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

#### 8.2.2 For equipment powered by primary supply voltage

1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).

2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.

3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

ITE Dand 2

|                     |                   | LTE Band                   | 2                           |                |
|---------------------|-------------------|----------------------------|-----------------------------|----------------|
|                     | Mi                | ddle Channel, fo = 1       | 880 MHz                     |                |
| Temperature<br>(°℃) | Power<br>Supplied | Frequency<br>Error<br>(Hz) | Frequency<br>Error<br>(ppm) | Limit<br>(ppm) |
| -10                 |                   | -3.75                      | -0.001994                   | ±2.5           |
| 0                   |                   | -1.26                      | -0.000670                   | ±2.5           |
| 10                  |                   | -2.69                      | -0.001431                   | ±2.5           |
| 20                  | 3.7               | -5.72                      | -0.003044                   | ±2.5           |
| 30                  | 3.7               | -2.89                      | -0.001537                   | ±2.5           |
| 40                  |                   | -3.26                      | -0.001735                   | ±2.5           |
| 50                  |                   | -1.85                      | -0.000982                   | ±2.5           |
| 55                  |                   | 1.12                       | 0.000594                    | ±2.5           |
| - 25                | 4.2               | -15.81                     | -0.008408                   | ±2.5           |
| 20                  | 3.5               | -1.79                      | -0.000951                   | ±2.5           |

## 8.3 MEASUREMENT RESULT (WORST)

#### LTE Band 4

|                    | Middle Channel, fo = 1732.5 MHz |                            |                             |                |  |  |  |  |  |
|--------------------|---------------------------------|----------------------------|-----------------------------|----------------|--|--|--|--|--|
| Temperature<br>(℃) | Power<br>Supplied               | Frequency<br>Error<br>(Hz) | Frequency<br>Error<br>(ppm) | Limit<br>(ppm) |  |  |  |  |  |
| -10                |                                 | -3.05                      | -0.001759                   | ±2.5           |  |  |  |  |  |
| 0                  |                                 | 3.00                       | 0.001734                    | ±2.5           |  |  |  |  |  |
| 10                 |                                 | 1.57                       | 0.000908                    | ±2.5           |  |  |  |  |  |
| 20                 | 3.7                             | 0.37                       | 0.000215                    | ±2.5           |  |  |  |  |  |
| 30                 | 5.7                             | -0.69                      | -0.000396                   | ±2.5           |  |  |  |  |  |
| 40                 |                                 | -5.04                      | -0.002906                   | ±2.5           |  |  |  |  |  |
| 50                 |                                 | -2.42                      | -0.001395                   | ±2.5           |  |  |  |  |  |
| 55                 |                                 | -2.20                      | -0.001272                   | ±2.5           |  |  |  |  |  |

| - 25 | 4.2 | 7.77 | 0.004484 | ±2.5 |
|------|-----|------|----------|------|
| 25   | 3.5 | 9.98 | 0.005763 | ±2.5 |

|                    | Middle Channel, fo = 836.5 MHz |                            |                             |                |  |  |  |  |  |
|--------------------|--------------------------------|----------------------------|-----------------------------|----------------|--|--|--|--|--|
| Temperature<br>(℃) | Power<br>Supplied              | Frequency<br>Error<br>(Hz) | Frequency<br>Error<br>(ppm) | Limit<br>(ppm) |  |  |  |  |  |
| -10                |                                | 0.11                       | 0.000137                    | ±2.5           |  |  |  |  |  |
| 0                  |                                | 0.14                       | 0.000171                    | ±2.5           |  |  |  |  |  |
| 10                 | 3.7                            | 0.83                       | 0.000992                    | ±2.5           |  |  |  |  |  |
| 20                 |                                | 0.06                       | 0.000068                    | ±2.5           |  |  |  |  |  |
| 30                 | 5.7                            | -0.86                      | -0.001026                   | ±2.5           |  |  |  |  |  |
| 40                 |                                | 3.08                       | 0.003677                    | ±2.5           |  |  |  |  |  |
| 50                 |                                | 2.13                       | 0.002548                    | ±2.5           |  |  |  |  |  |
| 55                 |                                | -2.07                      | -0.002480                   | ±2.5           |  |  |  |  |  |
| - 25               | 4.2                            | -8.84                      | -0.010569                   | ±2.5           |  |  |  |  |  |
| 25                 | 3.5                            | 1.43                       | 0.001710                    | ±2.5           |  |  |  |  |  |

#### LLTE Band 5

#### LTE Band 7

|                    | Middle Channel, fo = 2535 MHz |                            |                             |                |  |  |  |  |  |
|--------------------|-------------------------------|----------------------------|-----------------------------|----------------|--|--|--|--|--|
| Temperature<br>(℃) | Power<br>Supplied             | Frequency<br>Error<br>(Hz) | Frequency<br>Error<br>(ppm) | Limit<br>(ppm) |  |  |  |  |  |
| -10                |                               | -0.90                      | -0.000356                   | ±2.5           |  |  |  |  |  |
| 0                  |                               | 6.08                       | 0.002398                    | ±2.5           |  |  |  |  |  |
| 10                 | 3.7                           | 3.19                       | 0.001258                    | ±2.5           |  |  |  |  |  |
| 20                 |                               | 2.73                       | 0.001078                    | ±2.5           |  |  |  |  |  |
| 30                 | 5.7                           | 0.30                       | 0.000119                    | ±2.5           |  |  |  |  |  |
| 40                 |                               | 3.09                       | 0.001219                    | ±2.5           |  |  |  |  |  |
| 50                 |                               | 0.29                       | 0.000113                    | ±2.5           |  |  |  |  |  |
| 55                 |                               | 1.37                       | 0.000542                    | ±2.5           |  |  |  |  |  |
| 25                 | 4.2                           | -11.43                     | -0.004509                   | ±2.5           |  |  |  |  |  |
| 25                 | 3.5                           | 5.84                       | 0.002302                    | ±2.5           |  |  |  |  |  |

|                    | Μ                 | iddle Channel, fo = 7      | 10 MHz                      |                |
|--------------------|-------------------|----------------------------|-----------------------------|----------------|
| Temperature<br>(℃) | Power<br>Supplied | Frequency<br>Error<br>(Hz) | Frequency<br>Error<br>(ppm) | Limit<br>(ppm) |
| -10                |                   | 2.86                       | 0.004030                    | ±2.5           |
| 0                  |                   | 1.04                       | 0.001471                    | ±2.5           |
| 10                 |                   | 0.51                       | 0.000725                    | ±2.5           |
| 20                 | 3.7               | -0.73                      | -0.001028                   | ±2.5           |
| 30                 | 5.7               | -0.63                      | -0.000887                   | ±2.5           |
| 40                 |                   | 2.26                       | 0.003183                    | ±2.5           |
| 50                 |                   | -0.11                      | -0.000161                   | ±2.5           |
| 55                 |                   | -2.63                      | -0.003707                   | ±2.5           |
| 25                 | 4.2               | -10.06                     | -0.014164                   | ±2.5           |
| 20                 | 3.5               | 2.17                       | 0.003063                    | ±2.5           |

LTE Band 17

Note: The EUT doesn't work below -10  $^\circ\!\mathrm{C}$ 

-

## 9. OCCUPIED BANDWIDTH

## 9.1 MEASUREMENT METHOD

The test set up and general procedure is similar to conducted peak output power test. Only different for setting the measurement configuration of the measuring instrument of Spectrum Analyzer.

## 9.2 PROVISIONS APPLICABLE

The emission bandwidth is defined as two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26dB below the transmitter power

#### 9.3 MEASUREMENT RESULT

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

#### LTE Band 2

#### **Channel Bandwidth: 1.4 MHz**

|            | Channel Bandwidth: 1.4 MHz |          |          |                         |         |  |  |  |  |
|------------|----------------------------|----------|----------|-------------------------|---------|--|--|--|--|
| Modulation | Channel                    | RB Confi | guration | Occupied Bandwidth(MHz) | Verdict |  |  |  |  |
| Woodation  | Onannei                    | Size     | Offset   |                         | Verdict |  |  |  |  |
| -          | LCH                        | 6        | 0        | 1.0774                  | PASS    |  |  |  |  |
| QPSK       | MCH                        | 6        | 0        | 1.0806                  | PASS    |  |  |  |  |
|            | HCH                        | 6        | 0        | 1.0816                  | PASS    |  |  |  |  |
|            | LCH                        | 6        | 0        | 1.0799                  | PASS    |  |  |  |  |
| 16QAM      | MCH                        | 6        | 0        | 1.0817                  | PASS    |  |  |  |  |
|            | HCH                        | 6        | 0        | 1.0802                  | PASS    |  |  |  |  |

#### **Channel Bandwidth: 3 MHz**

| Channel Bandwidth: 3 MHz |         |          |          |                         |         |  |  |  |
|--------------------------|---------|----------|----------|-------------------------|---------|--|--|--|
| Modulation               | Channel | RB Confi | guration | Occupied Bandwidth(MHz) | Verdict |  |  |  |
| modulation               | Ondrino | Size     | Offset   |                         | Verdiet |  |  |  |
|                          | LCH     | 15       | 0        | 2.6835                  | PASS    |  |  |  |
| QPSK                     | MCH     | 15       | 0        | 2.6862                  | PASS    |  |  |  |
|                          | HCH     | 15       | 0        | 2.6915                  | PASS    |  |  |  |
|                          | LCH     | 15       | 0        | 2.6847                  | PASS    |  |  |  |
| 16QAM                    | MCH     | 15       | 0        | 2.6863                  | PASS    |  |  |  |
|                          | HCH     | 15       | 0        | 2.6898                  | PASS    |  |  |  |

#### **Channel Bandwidth: 5 MHz**

|                    | Channel Bandwidth: 5 MHz |                  |  |                         |         |  |  |
|--------------------|--------------------------|------------------|--|-------------------------|---------|--|--|
| Modulation         | Channel                  | RB Configuration |  | Occupied Bandwidth(MHz) | Verdict |  |  |
| Modulation Channel | Size                     | Offset           |  | Verdict                 |         |  |  |

## Report No.: AGC01826170501FE07 Page 93 of 162

| QPSK  | LCH | 25 | 0 | 4.4833 | PASS |
|-------|-----|----|---|--------|------|
|       | MCH | 25 | 0 | 4.4874 | PASS |
|       | HCH | 25 | 0 | 4.4928 | PASS |
| 16QAM | LCH | 25 | 0 | 4.4820 | PASS |
|       | MCH | 25 | 0 | 4.4827 | PASS |
|       | HCH | 25 | 0 | 4.4987 | PASS |

#### **Channel Bandwidth: 10 MHz**

| Channel Bandwidth: 10 MHz |         |                                 |        |                          |         |  |  |  |  |
|---------------------------|---------|---------------------------------|--------|--------------------------|---------|--|--|--|--|
| Modulation                | Channel | RB Configuration<br>Size Offset |        | Occupied Bandwidth (MHz) | Verdict |  |  |  |  |
|                           |         | 0126                            | Oliset |                          |         |  |  |  |  |
|                           | LCH     | 50                              | 0      | 8.9347                   | PASS    |  |  |  |  |
| QPSK                      | MCH     | 50                              | 0      | 8.9538                   | PASS    |  |  |  |  |
|                           | HCH     | 50                              | 0      | 8.9597                   | PASS    |  |  |  |  |
|                           | LCH     | 50                              | 0      | 8.9421                   | PASS    |  |  |  |  |
| 16QAM                     | MCH     | 50                              | 0      | 8.9381                   | PASS    |  |  |  |  |
|                           | HCH     | 50                              | 0      | 8.9525                   | PASS    |  |  |  |  |

## Channel Bandwidth: 15 MHz

| Channel Bandwidth: 15 MHz |         |          |          |                          |         |  |  |  |
|---------------------------|---------|----------|----------|--------------------------|---------|--|--|--|
| Modulation                | Channel | RB Confi | guration | Occupied Bandwidth (MHz) | Verdict |  |  |  |
| Woodlation                | Onamio  | Size     | Offset   |                          | Vordiot |  |  |  |
|                           | LCH     | 75       | 0        | 13.416                   | PASS    |  |  |  |
| QPSK                      | MCH     | 75       | 0        | 13.460                   | PASS    |  |  |  |
|                           | HCH     | 75       | 0        | 13.469                   | PASS    |  |  |  |
|                           | LCH     | 75       | 0        | 13.400                   | PASS    |  |  |  |
| 16QAM                     | MCH     | 75       | 0        | 13.426                   | PASS    |  |  |  |
|                           | HCH     | 75       | 0        | 13.437                   | PASS    |  |  |  |

## Channel Bandwidth: 20 MHz

| Channel Bandwidth: 20 MHz |         |          |          |                          |         |  |  |  |
|---------------------------|---------|----------|----------|--------------------------|---------|--|--|--|
| Modulation                | Channel | RB Confi | guration | Occupied Bandwidth (MHz) | Verdict |  |  |  |
| Woodlation                | Onamo   | Size     | Offset   |                          | Verdiet |  |  |  |
|                           | LCH     | 100      | 0        | 17.872                   | PASS    |  |  |  |
| QPSK                      | MCH     | 100      | 0        | 17.899                   | PASS    |  |  |  |
|                           | HCH     | 100      | 0        | 17.879                   | PASS    |  |  |  |
|                           | LCH     | 100      | 0        | 17.865                   | PASS    |  |  |  |
| 16QAM                     | MCH     | 100      | 0        | 17.895                   | PASS    |  |  |  |
|                           | HCH     | 100      | 0        | 17.879                   | PASS    |  |  |  |

#### LTE Band 4

#### Channel Bandwidth: 1.4 MHz

| Channel Bandwidth: 1.4 MHz |          |          |           |                         |         |  |  |  |
|----------------------------|----------|----------|-----------|-------------------------|---------|--|--|--|
| Modulation                 | Channel  | RB Confi | iguration | Occupied Bandwidth(MHz) | Verdict |  |  |  |
| Woodlation                 | Ondriner | Size     | Offset    |                         | Verdiet |  |  |  |
| -                          | LCH      | 6        | 0         | 1.0787                  | PASS    |  |  |  |
| QPSK                       | MCH      | 6        | 0         | 1.0762                  | PASS    |  |  |  |
|                            | HCH      | 6        | 0         | 1.0789                  | PASS    |  |  |  |
|                            | LCH      | 6        | 0         | 1.0826                  | PASS    |  |  |  |
| 16QAM                      | MCH      | 6        | 0         | 1.0800                  | PASS    |  |  |  |
|                            | HCH      | 6        | 0         | 1.0777                  | PASS    |  |  |  |

## **Channel Bandwidth: 3 MHz**

|            | Channel Bandwidth: 3 MHz |          |          |                         |         |  |  |  |  |
|------------|--------------------------|----------|----------|-------------------------|---------|--|--|--|--|
| Modulation | Channel                  | RB Confi | guration | Occupied Bandwidth(MHz) | Verdict |  |  |  |  |
| Woodlation | Onamio                   | Size     | Offset   |                         | Verdiet |  |  |  |  |
|            | LCH                      | 15       | 0        | 2.6787                  | PASS    |  |  |  |  |
| QPSK       | MCH                      | 15       | 0        | 2.6859                  | PASS    |  |  |  |  |
|            | HCH                      | 15       | 0        | 2.6853                  | PASS    |  |  |  |  |
|            | LCH                      | 15       | 0        | 2.6851                  | PASS    |  |  |  |  |
| 16QAM      | MCH                      | 15       | 0        | 2.6791                  | PASS    |  |  |  |  |
|            | HCH                      | 15       | 0        | 2.6889                  | PASS    |  |  |  |  |

#### **Channel Bandwidth: 5 MHz**

| Channel Bandwidth: 5 MHz |         |          |          |                         |         |  |  |  |
|--------------------------|---------|----------|----------|-------------------------|---------|--|--|--|
| Modulation               | Channel | RB Confi | guration | Occupied Bandwidth(MHz) | Verdict |  |  |  |
| Modulation               | Onannei | Size     | Offset   |                         | Verdict |  |  |  |
|                          | LCH     | 25       | 0        | 4.4814                  | PASS    |  |  |  |
| QPSK                     | MCH     | 25       | 0        | 4.4820                  | PASS    |  |  |  |
|                          | HCH     | 25       | 0        | 4.4846                  | PASS    |  |  |  |
|                          | LCH     | 25       | 0        | 4.4824                  | PASS    |  |  |  |
| 16QAM                    | MCH     | 25       | 0        | 4.4737                  | PASS    |  |  |  |
|                          | HCH     | 25       | 0        | 4.4882                  | PASS    |  |  |  |

#### Channel Bandwidth: 10 MHz

| Channel Bandwidth: 10 MHz |         |          |           |                          |         |  |  |
|---------------------------|---------|----------|-----------|--------------------------|---------|--|--|
| Modulation Cha            | Channel | RB Confi | iguration | Occupied Bandwidth (MHz) | Verdict |  |  |
|                           | Oname   | Size     | Offset    |                          | Verdict |  |  |
| QPSK                      | LCH     | 50       | 0         | 8.9340                   | PASS    |  |  |

## Report No.: AGC01826170501FE07 Page 95 of 162

|       | MCH | 50 | 0 | 8.9403 | PASS |
|-------|-----|----|---|--------|------|
|       | HCH | 50 | 0 | 8.9303 | PASS |
|       | LCH | 50 | 0 | 8.9285 | PASS |
| 16QAM | MCH | 50 | 0 | 8.9270 | PASS |
|       | HCH | 50 | 0 | 8.9433 | PASS |

#### **Channel Bandwidth: 15 MHz**

| Channel Bandwidth: 15 MHz |         |          |          |                                        |         |  |  |  |  |
|---------------------------|---------|----------|----------|----------------------------------------|---------|--|--|--|--|
| Modulation                | Channel | RB Confi | <u> </u> | Occupied Bandwidth (MHz)               | Verdict |  |  |  |  |
|                           |         | Size     | Offset   | •••••••••••••••••••••••••••••••••••••• |         |  |  |  |  |
|                           | LCH     | 75       | 0        | 13.411                                 | PASS    |  |  |  |  |
| QPSK                      | MCH     | 75       | 0        | 13.403                                 | PASS    |  |  |  |  |
|                           | HCH     | 75       | 0        | 13.384                                 | PASS    |  |  |  |  |
|                           | LCH     | 75       | 0        | 13.418                                 | PASS    |  |  |  |  |
| 16QAM                     | MCH     | 75       | 0        | 13.410                                 | PASS    |  |  |  |  |
|                           | HCH     | 75       | 0        | 13.387                                 | PASS    |  |  |  |  |

## Channel Bandwidth: 20 MHz

| Channel Bandwidth: 20 MHz |         |                  |                    |                          |         |  |  |  |  |
|---------------------------|---------|------------------|--------------------|--------------------------|---------|--|--|--|--|
| Modulation                | Channel | RB Confi<br>Size | guration<br>Offset | Occupied Bandwidth (MHz) | Verdict |  |  |  |  |
|                           | LCH     | 100              | 0                  | 17.877                   | PASS    |  |  |  |  |
| QPSK                      | MCH     | 100              | 0                  | 17.853                   | PASS    |  |  |  |  |
|                           | HCH     | 100              | 0                  | 17.809                   | PASS    |  |  |  |  |
|                           | LCH     | 100              | 0                  | 17.892                   | PASS    |  |  |  |  |
| 16QAM                     | MCH     | 100              | 0                  | 17.851                   | PASS    |  |  |  |  |
|                           | HCH     | 100              | 0                  | 17.811                   | PASS    |  |  |  |  |

#### LTE Band 5

#### Channel Bandwidth: 1.4 MHz

|            | Channel Bandwidth: 1.4 MHz |          |          |                         |         |  |  |  |  |  |
|------------|----------------------------|----------|----------|-------------------------|---------|--|--|--|--|--|
| Modulation | Channel                    | RB Confi | guration | Occupied Bandwidth(MHz) | Verdict |  |  |  |  |  |
| woodlation | Onannei                    | Size     | Offset   |                         | Verdict |  |  |  |  |  |
| -          | LCH                        | 6        | 0        | 1.0753                  | PASS    |  |  |  |  |  |
| QPSK       | MCH                        | 6        | 0        | 1.0755                  | PASS    |  |  |  |  |  |
|            | HCH                        | 6        | 0        | 1.0769                  | PASS    |  |  |  |  |  |
|            | LCH                        | 6        | 0        | 1.0813                  | PASS    |  |  |  |  |  |
| 16QAM      | MCH                        | 6        | 0        | 1.0789                  | PASS    |  |  |  |  |  |
|            | HCH                        | 6        | 0        | 1.0776                  | PASS    |  |  |  |  |  |

|            | Channel Bandwidth: 3 MHz |          |          |                         |         |  |  |  |  |  |
|------------|--------------------------|----------|----------|-------------------------|---------|--|--|--|--|--|
| Modulation | Channel                  | RB Confi | guration | Occupied Bandwidth(MHz) | Verdict |  |  |  |  |  |
| Woodlation | Ondrine                  | Size     | Offset   |                         | Verdiet |  |  |  |  |  |
|            | LCH                      | 15       | 0        | 2.6862                  | PASS    |  |  |  |  |  |
| QPSK       | MCH                      | 15       | 0        | 2.6844                  | PASS    |  |  |  |  |  |
|            | HCH                      | 15       | 0        | 2.6832                  | PASS    |  |  |  |  |  |
|            | LCH                      | 15       | 0        | 2.6836                  | PASS    |  |  |  |  |  |
| 16QAM      | MCH                      | 15       | 0        | 2.6825                  | PASS    |  |  |  |  |  |
|            | HCH                      | 15       | 0        | 2.6833                  | PASS    |  |  |  |  |  |

## **Channel Bandwidth: 3 MHz**

## **Channel Bandwidth: 5 MHz**

| Channel Bandwidth: 5 MHz |                 |      |        |                         |         |  |  |  |  |
|--------------------------|-----------------|------|--------|-------------------------|---------|--|--|--|--|
| Modulation               | Channel RB Conf |      |        | Occupied Bandwidth(MHz) | Verdict |  |  |  |  |
|                          |                 | Size | Offset |                         |         |  |  |  |  |
|                          | LCH             | 25   | 0      | 4.4852                  | PASS    |  |  |  |  |
| QPSK                     | MCH             | 25   | 0      | 4.4859                  | PASS    |  |  |  |  |
|                          | HCH             | 25   | 0      | 4.4759                  | PASS    |  |  |  |  |
|                          | LCH             | 25   | 0      | 4.4810                  | PASS    |  |  |  |  |
| 16QAM                    | MCH             | 25   | 0      | 4.4783                  | PASS    |  |  |  |  |
|                          | HCH             | 25   | 0      | 4.4826                  | PASS    |  |  |  |  |

## Channel Bandwidth: 10 MHz

| Channel Bandwidth: 10 MHz |         |          |          |                          |         |  |  |  |  |
|---------------------------|---------|----------|----------|--------------------------|---------|--|--|--|--|
| Modulation                | Channel | RB Confi | guration | Occupied Bandwidth (MHz) | Verdict |  |  |  |  |
| Woodlation                | Onannei | Size     | Offset   |                          | Verdict |  |  |  |  |
|                           | LCH     | 50       | 0        | 8.9486                   | PASS    |  |  |  |  |
| QPSK                      | MCH     | 50       | 0        | 8.9509                   | PASS    |  |  |  |  |
|                           | HCH     | 50       | 0        | 8.9378                   | PASS    |  |  |  |  |
|                           | LCH     | 50       | 0        | 8.9377                   | PASS    |  |  |  |  |
| 16QAM                     | MCH     | 50       | 0        | 8.9495                   | PASS    |  |  |  |  |
|                           | HCH     | 50       | 0        | 8.9454                   | PASS    |  |  |  |  |

|            | Channel Bandwidth: 5 MHz |          |          |                         |         |  |  |  |  |  |
|------------|--------------------------|----------|----------|-------------------------|---------|--|--|--|--|--|
| Modulation | Channel                  | RB Confi | guration | Occupied Bandwidth(MHz) | Verdict |  |  |  |  |  |
| wouldition | Charmer                  | Size     | Offset   |                         | Verdict |  |  |  |  |  |
| _          | LCH                      | 25       | 0        | 4.4904                  | PASS    |  |  |  |  |  |
| QPSK       | MCH                      | 25       | 0        | 4.4889                  | PASS    |  |  |  |  |  |
|            | HCH                      | 25       | 0        | 4.4868                  | PASS    |  |  |  |  |  |
|            | LCH                      | 25       | 0        | 4.4810                  | PASS    |  |  |  |  |  |
| 16QAM      | MCH                      | 25       | 0        | 4.4932                  | PASS    |  |  |  |  |  |
|            | HCH                      | 25       | 0        | 4.4850                  | PASS    |  |  |  |  |  |

LTE Band 7 Channel Bandwidth: 5 MHz

## Channel Bandwidth: 10 MHz

| Channel Bandwidth: 10 MHz |         |                                 |   |                          |         |  |  |  |  |
|---------------------------|---------|---------------------------------|---|--------------------------|---------|--|--|--|--|
| Modulation Channel        | Channel | RB Configuration<br>Size Offset |   | Occupied Bandwidth (MHz) | Verdict |  |  |  |  |
|                           | LCH     | 50                              | 0 | 8.9538                   | PASS    |  |  |  |  |
| QPSK                      | MCH     | 50                              | 0 | 8.9653                   | PASS    |  |  |  |  |
|                           | HCH     | 50                              | 0 | 8.9395                   | PASS    |  |  |  |  |
|                           | LCH     | 50                              | 0 | 8.9469                   | PASS    |  |  |  |  |
| 16QAM                     | MCH     | 50                              | 0 | 8.9536                   | PASS    |  |  |  |  |
|                           | HCH     | 50                              | 0 | 8.9460                   | PASS    |  |  |  |  |

## Channel Bandwidth: 15 MHz

| Channel Bandwidth: 15 MHz |          |          |          |                          |         |  |  |  |  |
|---------------------------|----------|----------|----------|--------------------------|---------|--|--|--|--|
| Modulation                | Channel  | RB Confi | guration | Occupied Bandwidth (MHz) | Verdict |  |  |  |  |
| Woodlation                | Onariner | Size     | Offset   |                          | Verdict |  |  |  |  |
|                           | LCH      | 75       | 0        | 13.425                   | PASS    |  |  |  |  |
| QPSK                      | MCH      | 75       | 0        | 13.456                   | PASS    |  |  |  |  |
|                           | HCH      | 75       | 0        | 13.422                   | PASS    |  |  |  |  |
|                           | LCH      | 75       | 0        | 13.436                   | PASS    |  |  |  |  |
| 16QAM                     | MCH      | 75       | 0        | 13.437                   | PASS    |  |  |  |  |
|                           | HCH      | 75       | 0        | 13.413                   | PASS    |  |  |  |  |

## Channel Bandwidth: 20 MHz

| Channel Bandwidth: 20 MHz |         |                  |   |                          |         |  |  |  |  |
|---------------------------|---------|------------------|---|--------------------------|---------|--|--|--|--|
| Modulation                | Channel | RB Configuration |   | Occupied Bandwidth (MHz) | Verdict |  |  |  |  |
|                           | Size    | Offset           |   | Verdiet                  |         |  |  |  |  |
|                           | LCH     | 100              | 0 | 17.889                   | PASS    |  |  |  |  |
| QPSK                      | MCH     | 100              | 0 | 17.898                   | PASS    |  |  |  |  |
|                           | HCH     | 100              | 0 | 17.863                   | PASS    |  |  |  |  |
| 16QAM                     | LCH     | 100              | 0 | 17.896                   | PASS    |  |  |  |  |

| MCH | 100 | 0 | 17.895 | PASS |
|-----|-----|---|--------|------|
| HCH | 100 | 0 | 17.859 | PASS |

### LTE Band 17

#### **Channel Bandwidth: 5 MHz**

| Channel Bandwidth: 5 MHz |         |                                 |   |                          |               |  |  |  |
|--------------------------|---------|---------------------------------|---|--------------------------|---------------|--|--|--|
| Modulation               | Channel | RB Configuration<br>Size Offset |   | Occupied Bandwidth (MHz) | Verdict       |  |  |  |
| -                        |         |                                 | - |                          | <b>B</b> 4.00 |  |  |  |
|                          | LCH     | 25                              | 0 | 4.4852                   | PASS          |  |  |  |
| QPSK                     | MCH     | 25                              | 0 | 4.4881                   | PASS          |  |  |  |
|                          | HCH     | 25                              | 0 | 4.4747                   | PASS          |  |  |  |
|                          | LCH     | 25                              | 0 | 4.4805                   | PASS          |  |  |  |
| 16QAM                    | MCH     | 25                              | 0 | 4.4947                   | PASS          |  |  |  |
|                          | HCH     | 25                              | 0 | 4.4688                   | PASS          |  |  |  |

## Channel Bandwidth: 10 MHz

|            | Channel Bandwidth: 10 MHz |          |          |                          |         |  |  |  |  |
|------------|---------------------------|----------|----------|--------------------------|---------|--|--|--|--|
| Modulation | Channel                   | RB Confi | <u> </u> | Occupied Bandwidth (MHz) | Verdict |  |  |  |  |
| modulation | Onarmor                   | Size     | Offset   |                          | Vordiot |  |  |  |  |
|            | LCH                       | 50       | 0        | 8.9864                   | PASS    |  |  |  |  |
| QPSK       | MCH                       | 50       | 0        | 8.9706                   | PASS    |  |  |  |  |
|            | HCH                       | 50       | 0        | 8.9235                   | PASS    |  |  |  |  |
|            | LCH                       | 50       | 0        | 8.9888                   | PASS    |  |  |  |  |
| 16QAM      | MCH                       | 50       | 0        | 8.9724                   | PASS    |  |  |  |  |
|            | HCH                       | 50       | 0        | 8.9472                   | PASS    |  |  |  |  |

Note: Please refers to Appendix B for compliance test plots for Occupied Bandwidth (99%)

## **10. EMISSION BANDWIDTH**

## **10.1 MEASUREMENT METHOD**

The test set up and general procedure is similar to conducted peak output power test. Only different for setting the measurement configuration of the measuring instrument of Spectrum Analyzer.

## **10.2 PROVISIONS APPLICABLE**

The emission bandwidth is defined as two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26dB below the transmitter power

## **10.3 MEASUREMENT RESULT**

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

#### LTE Band 2

# Channel Bandwidth: 1.4 MHz

| Channel Bandwidth: 1.4 MHz |         |          |          |                |         |  |  |  |  |
|----------------------------|---------|----------|----------|----------------|---------|--|--|--|--|
| Modulation                 | Channel | RB Confi | guration | 26dB Bandwidth | Verdict |  |  |  |  |
| Modulation                 | Channel | Size     | Offset   | (MHz)          | verdict |  |  |  |  |
|                            | LCH     | 6        | 0        | 1.222          | PASS    |  |  |  |  |
| QPSK                       | MCH     | 6        | 0        | 1.281          | PASS    |  |  |  |  |
|                            | HCH     | 6        | 0        | 1.354          | PASS    |  |  |  |  |
|                            | LCH     | 6        | 0        | 1.230          | PASS    |  |  |  |  |
| 16QAM                      | MCH     | 6        | 0        | 1.254          | PASS    |  |  |  |  |
|                            | HCH     | 6        | 0        | 1.229          | PASS    |  |  |  |  |

#### **Channel Bandwidth: 3 MHz**

| Channel Bandwidth: 3 MHz |         |          |           |                      |         |  |  |  |  |
|--------------------------|---------|----------|-----------|----------------------|---------|--|--|--|--|
| Modulation               | Channel | RB Confi | iguration | 26dB Bandwidth (MHz) | Verdict |  |  |  |  |
| Wouldtion                | Oname   | Size     | Offset    |                      | Verdict |  |  |  |  |
|                          | LCH     | 15       | 0         | 2.855                | PASS    |  |  |  |  |
| QPSK                     | MCH     | 15       | 0         | 2.921                | PASS    |  |  |  |  |
|                          | HCH     | 15       | 0         | 3.254                | PASS    |  |  |  |  |
|                          | LCH     | 15       | 0         | 2.856                | PASS    |  |  |  |  |
| 16QAM                    | MCH     | 15       | 0         | 2.884                | PASS    |  |  |  |  |
|                          | HCH     | 15       | 0         | 2.878                | PASS    |  |  |  |  |

#### **Channel Bandwidth: 5 MHz**

|            | Channel Bandwidth: 5 MHz |          |          |                      |         |  |  |  |
|------------|--------------------------|----------|----------|----------------------|---------|--|--|--|
| Modulation | Channel                  | RB Confi | guration | 26dB Bandwidth (MHz) | Verdict |  |  |  |
| Wouldtion  | Oname                    | Size     | Offset   |                      | Verdict |  |  |  |

## Report No.: AGC01826170501FE07 Page 100 of 162

|       | LCH | 25 | 0 | 4.851 | PASS |
|-------|-----|----|---|-------|------|
| QPSK  | MCH | 25 | 0 | 4.888 | PASS |
|       | HCH | 25 | 0 | 6.061 | PASS |
|       | LCH | 25 | 0 | 4.822 | PASS |
| 16QAM | MCH | 25 | 0 | 4.927 | PASS |
|       | HCH | 25 | 0 | 4.966 | PASS |

## Channel Bandwidth: 10 MHz

| Channel Bandwidth: 10 MHz |         |          |        |                      |         |  |  |  |  |
|---------------------------|---------|----------|--------|----------------------|---------|--|--|--|--|
| Modulation                | Channel | RB Confi |        | 26dB Bandwidth (MHz) | Verdict |  |  |  |  |
|                           |         | Size     | Offset |                      |         |  |  |  |  |
|                           | LCH     | 50       | 0      | 9.543                | PASS    |  |  |  |  |
| QPSK                      | MCH     | 50       | 0      | 9.724                | PASS    |  |  |  |  |
|                           | HCH     | 50       | 0      | 11.83                | PASS    |  |  |  |  |
|                           | LCH     | 50       | 0      | 9.496                | PASS    |  |  |  |  |
| 16QAM                     | MCH     | 50       | 0      | 9.549                | PASS    |  |  |  |  |
|                           | HCH     | 50       | 0      | 9.524                | PASS    |  |  |  |  |

## Channel Bandwidth: 15 MHz

| Channel Bandwidth: 15 MHz |         |          |          |                      |         |  |  |  |  |
|---------------------------|---------|----------|----------|----------------------|---------|--|--|--|--|
| Modulation                | Channel | RB Confi | guration | 26dB Bandwidth (MHz) | Verdict |  |  |  |  |
| Woodlation                | Onamici | Size     | Offset   |                      | Verdict |  |  |  |  |
|                           | LCH     | 75       | 0        | 14.06                | PASS    |  |  |  |  |
| QPSK                      | MCH     | 75       | 0        | 21.40                | PASS    |  |  |  |  |
|                           | HCH     | 75       | 0        | 21.40                | PASS    |  |  |  |  |
|                           | LCH     | 75       | 0        | 14.10                | PASS    |  |  |  |  |
| 16QAM                     | MCH     | 75       | 0        | 17.66                | PASS    |  |  |  |  |
|                           | HCH     | 75       | 0        | 16.75                | PASS    |  |  |  |  |

## Channel Bandwidth: 20 MHz

| Channel Bandwidth: 20 MHz |         |          |          |                |         |  |  |  |  |
|---------------------------|---------|----------|----------|----------------|---------|--|--|--|--|
| Modulation                | Channel | RB Confi | guration | 26dB Bandwidth | Verdict |  |  |  |  |
| Modulation                | Channel | Size     | Offset   | (MHz)          | verdict |  |  |  |  |
|                           | LCH     | 100      | 0        | 18.74          | PASS    |  |  |  |  |
| QPSK                      | MCH     | 100      | 0        | 19.15          | PASS    |  |  |  |  |
|                           | HCH     | 100      | 0        | 18.88          | PASS    |  |  |  |  |
|                           | LCH     | 100      | 0        | 18.64          | PASS    |  |  |  |  |
| 16QAM                     | MCH     | 100      | 0        | 18.74          | PASS    |  |  |  |  |
|                           | HCH     | 100      | 0        | 18.72          | PASS    |  |  |  |  |

#### LTE Band 4

#### Channel Bandwidth: 1.4 MHz

| Channel Bandwidth: 1.4 MHz |         |          |          |                |         |  |  |  |  |
|----------------------------|---------|----------|----------|----------------|---------|--|--|--|--|
| Modulation                 | Channel | RB Confi | guration | 26dB Bandwidth | Verdict |  |  |  |  |
| Modulation                 | Channel | Size     | Offset   | (MHz)          | verdict |  |  |  |  |
| -                          | LCH     | 6        | 0        | 1.231          | PASS    |  |  |  |  |
| QPSK                       | MCH     | 6        | 0        | 1.211          | PASS    |  |  |  |  |
|                            | HCH     | 6        | 0        | 1.224          | PASS    |  |  |  |  |
|                            | LCH     | 6        | 0        | 1.224          | PASS    |  |  |  |  |
| 16QAM                      | MCH     | 6        | 0        | 1.224          | PASS    |  |  |  |  |
|                            | HCH     | 6        | 0        | 1.227          | PASS    |  |  |  |  |

## Channel Bandwidth: 3 MHz

| Channel Bandwidth: 3 MHz |         |          |        |                      |         |  |  |  |
|--------------------------|---------|----------|--------|----------------------|---------|--|--|--|
| Modulation               | Channel | RB Confi |        | 26dB Bandwidth (MHz) | Verdict |  |  |  |
|                          |         | Size     | Offset | . ,                  |         |  |  |  |
|                          | LCH     | 15       | 0      | 2.879                | PASS    |  |  |  |
| QPSK                     | MCH     | 15       | 0      | 2.861                | PASS    |  |  |  |
|                          | HCH     | 15       | 0      | 2.881                | PASS    |  |  |  |
|                          | LCH     | 15       | 0      | 2.872                | PASS    |  |  |  |
| 16QAM                    | MCH     | 15       | 0      | 2.877                | PASS    |  |  |  |
|                          | HCH     | 15       | 0      | 2.871                | PASS    |  |  |  |

## **Channel Bandwidth: 5 MHz**

| Channel Bandwidth: 5 MHz |         |          |          |                      |         |  |  |  |
|--------------------------|---------|----------|----------|----------------------|---------|--|--|--|
| Modulation               | Channel | RB Confi | guration | 26dB Bandwidth (MHz) | Verdict |  |  |  |
| modulation               | Onannei | Size     | Offset   |                      | Verdict |  |  |  |
|                          | LCH     | 25       | 0        | 4.804                | PASS    |  |  |  |
| QPSK                     | MCH     | 25       | 0        | 4.801                | PASS    |  |  |  |
|                          | HCH     | 25       | 0        | 4.859                | PASS    |  |  |  |
|                          | LCH     | 25       | 0        | 4.875                | PASS    |  |  |  |
| 16QAM                    | MCH     | 25       | 0        | 4.796                | PASS    |  |  |  |
|                          | HCH     | 25       | 0        | 4.860                | PASS    |  |  |  |

#### Channel Bandwidth: 10 MHz

| Channel Bandwidth: 10 MHz |         |                  |        |                      |         |  |
|---------------------------|---------|------------------|--------|----------------------|---------|--|
| Modulation                | Channel | RB Configuration |        | 26dB Bandwidth (MHz) | Verdict |  |
|                           |         | Size             | Offset |                      | Verdict |  |
| QPSK                      | LCH     | 50               | 0      | 9.446                | PASS    |  |
| QFSK                      | MCH     | 50               | 0      | 9.436                | PASS    |  |

## Report No.: AGC01826170501FE07 Page 102 of 162

|       | HCH | 50 | 0 | 9.389 | PASS |
|-------|-----|----|---|-------|------|
| 16QAM | LCH | 50 | 0 | 9.517 | PASS |
|       | MCH | 50 | 0 | 9.462 | PASS |
|       | HCH | 50 | 0 | 9.457 | PASS |

#### **Channel Bandwidth: 15 MHz**

| Channel Bandwidth: 15 MHz |                    |                                 |   |                      |         |  |
|---------------------------|--------------------|---------------------------------|---|----------------------|---------|--|
| Modulation                | Modulation Channel | RB Configuration<br>Size Offset |   | 26dB Bandwidth (MHz) | Verdict |  |
|                           | LCH                | 75                              | 0 | 14.15                | PASS    |  |
| QPSK                      | MCH                | 75                              | 0 | 14.04                | PASS    |  |
|                           | HCH                | 75                              | 0 | 14.06                | PASS    |  |
|                           | LCH                | 75                              | 0 | 14.05                | PASS    |  |
| 16QAM                     | MCH                | 75                              | 0 | 14.00                | PASS    |  |
|                           | HCH                | 75                              | 0 | 14.00                | PASS    |  |

#### Channel Bandwidth: 20 MHz

| Channel Bandwidth: 20 MHz |         |          |          |                |         |  |  |
|---------------------------|---------|----------|----------|----------------|---------|--|--|
| Modulation                | Channel | RB Confi | guration | 26dB Bandwidth | Verdict |  |  |
| Modulation                | Channel | Size     | Offset   | (MHz)          | Verdict |  |  |
|                           | LCH     | 100      | 0        | 18.64          | PASS    |  |  |
| QPSK                      | MCH     | 100      | 0        | 18.58          | PASS    |  |  |
|                           | HCH     | 100      | 0        | 18.63          | PASS    |  |  |
|                           | LCH     | 100      | 0        | 18.56          | PASS    |  |  |
| 16QAM                     | MCH     | 100      | 0        | 18.64          | PASS    |  |  |
|                           | HCH     | 100      | 0        | 18.54          | PASS    |  |  |

## LTE Band 5 Channel Bandwidth: 1.4 MHz

| Channel Bandwidth: 1.4 MHz |         |          |          |                |         |  |  |
|----------------------------|---------|----------|----------|----------------|---------|--|--|
| Modulation                 | Channel | RB Confi | guration | 26dB Bandwidth | Verdict |  |  |
| wooulation                 | Channel | Size     | Offset   | (MHz)          | verdict |  |  |
| -                          | LCH     | 6        | 0        | 1.220          | PASS    |  |  |
| QPSK                       | MCH     | 6        | 0        | 1.200          | PASS    |  |  |
|                            | HCH     | 6        | 0        | 1.225          | PASS    |  |  |
|                            | LCH     | 6        | 0        | 1.234          | PASS    |  |  |
| 16QAM                      | MCH     | 6        | 0        | 1.210          | PASS    |  |  |
|                            | HCH     | 6        | 0        | 1.213          | PASS    |  |  |

| Channel Bandwidth: 3 MHz |          |          |          |                      |         |  |
|--------------------------|----------|----------|----------|----------------------|---------|--|
| Modulation               | Channel  | RB Confi | guration | 26dB Bandwidth (MHz) | Verdict |  |
| modulation               | Ondriner | Size     | Offset   |                      | Verdiet |  |
|                          | LCH      | 15       | 0        | 2.868                | PASS    |  |
| QPSK                     | MCH      | 15       | 0        | 2.877                | PASS    |  |
|                          | HCH      | 15       | 0        | 2.890                | PASS    |  |
|                          | LCH      | 15       | 0        | 2.845                | PASS    |  |
| 16QAM                    | MCH      | 15       | 0        | 2.879                | PASS    |  |
|                          | HCH      | 15       | 0        | 2.873                | PASS    |  |

## **Channel Bandwidth: 5 MHz**

| Channel Bandwidth: 5 MHz |         |          |          |                      |         |  |
|--------------------------|---------|----------|----------|----------------------|---------|--|
| Modulation               | Channel | RB Confi | guration | 26dB Bandwidth (MHz) | Verdict |  |
| Woodlation               | Onannei | Size     | Offset   |                      | Verdict |  |
|                          | LCH     | 25       | 0        | 4.835                | PASS    |  |
| QPSK                     | MCH     | 25       | 0        | 4.820                | PASS    |  |
|                          | HCH     | 25       | 0        | 4.806                | PASS    |  |
|                          | LCH     | 25       | 0        | 4.820                | PASS    |  |
| 16QAM                    | MCH     | 25       | 0        | 4.870                | PASS    |  |
|                          | HCH     | 25       | 0        | 4.765                | PASS    |  |

#### Channel Bandwidth: 10 MHz

| Channel Bandwidth: 10 MHz |          |          |          |                      |         |  |
|---------------------------|----------|----------|----------|----------------------|---------|--|
| Modulation                | Channel  | RB Confi | guration | 26dB Bandwidth (MHz) | Verdict |  |
| modulation                | Ondriner | Size     | Offset   |                      | Voraiot |  |
|                           | LCH      | 50       | 0        | 9.469                | PASS    |  |
| QPSK                      | MCH      | 50       | 0        | 9.487                | PASS    |  |
|                           | HCH      | 50       | 0        | 9.393                | PASS    |  |
|                           | LCH      | 50       | 0        | 9.538                | PASS    |  |
| 16QAM                     | MCH      | 50       | 0        | 9.482                | PASS    |  |
|                           | HCH      | 50       | 0        | 9.464                | PASS    |  |

| LTE Band 7               |         |          |          |                     |         |  |
|--------------------------|---------|----------|----------|---------------------|---------|--|
| Channel Bandwidth: 5 MHz |         |          |          |                     |         |  |
| Channel Bandwidth: 5 MHz |         |          |          |                     |         |  |
| Modulation               | Channel | RB Confi | guration | 26dB Bandwidth(MHz) | Verdict |  |
|                          |         | Size     | Offset   |                     | Verdict |  |

## Report No.: AGC01826170501FE07 Page 104 of 162

| QPSK  | LCH | 25 | 0 | 4.885 | PASS |
|-------|-----|----|---|-------|------|
|       | MCH | 25 | 0 | 5.013 | PASS |
|       | HCH | 25 | 0 | 4.861 | PASS |
| 16QAM | LCH | 25 | 0 | 4.844 | PASS |
|       | MCH | 25 | 0 | 4.876 | PASS |
|       | HCH | 25 | 0 | 4.868 | PASS |

#### Channel Bandwidth: 10 MHz

| Channel Bandwidth: 10 MHz |         |                  |                    |                     |         |  |
|---------------------------|---------|------------------|--------------------|---------------------|---------|--|
| Modulation                | Channel | RB Confi<br>Size | guration<br>Offset | 26dB Bandwidth(MHz) | Verdict |  |
|                           | LCH     | 50               | 0                  | 9.508               | PASS    |  |
| QPSK                      | MCH     | 50               | 0                  | 9.828               | PASS    |  |
|                           | HCH     | 50               | 0                  | 9.603               | PASS    |  |
|                           | LCH     | 50               | 0                  | 9.585               | PASS    |  |
| 16QAM                     | MCH     | 50               | 0                  | 9.598               | PASS    |  |
|                           | HCH     | 50               | 0                  | 9.476               | PASS    |  |

#### Channel Bandwidth: 15 MHz

| Channel Bandwidth: 15 MHz |         |                  |        |                     |         |
|---------------------------|---------|------------------|--------|---------------------|---------|
| Modulation                | Channel | RB Configuration |        | 26dB Bandwidth(MHz) | Verdict |
|                           |         | Size             | Offset |                     | Vordiot |
|                           | LCH     | 75               | 0      | 14.13               | PASS    |
| QPSK                      | MCH     | 75               | 0      | 21.71               | PASS    |
|                           | HCH     | 75               | 0      | 14.29               | PASS    |
| 16QAM                     | LCH     | 75               | 0      | 14.13               | PASS    |
|                           | MCH     | 75               | 0      | 17.81               | PASS    |
|                           | HCH     | 75               | 0      | 14.13               | PASS    |

#### Channel Bandwidth: 20 MHz

| Channel Bandwidth: 20 MHz |         |                  |        |                     |         |
|---------------------------|---------|------------------|--------|---------------------|---------|
| Modulation                | Channel | RB Configuration |        | 26dB Bandwidth(MHz) | Verdict |
|                           |         | Size             | Offset |                     | verdict |
| QPSK                      | LCH     | 100              | 0      | 18.82               | PASS    |
|                           | MCH     | 100              | 0      | 19.26               | PASS    |
|                           | HCH     | 100              | 0      | 18.74               | PASS    |
| 16QAM                     | LCH     | 100              | 0      | 18.64               | PASS    |
|                           | MCH     | 100              | 0      | 18.83               | PASS    |
|                           | HCH     | 100              | 0      | 18.68               | PASS    |

#### LTE Band 17

#### **Channel Bandwidth: 5 MHz**

| Channel Bandwidth: 5 MHz |         |                  |        |                     |         |
|--------------------------|---------|------------------|--------|---------------------|---------|
| Modulation               | Channel | RB Configuration |        | 26dB Bandwidth(MHz) | Verdict |
|                          |         | Size             | Offset |                     | Vordiot |
| -                        | LCH     | 25               | 0      | 4.839               | PASS    |
| QPSK                     | MCH     | 25               | 0      | 4.843               | PASS    |
|                          | HCH     | 25               | 0      | 4.797               | PASS    |
| 16QAM                    | LCH     | 25               | 0      | 4.831               | PASS    |
|                          | MCH     | 25               | 0      | 4.805               | PASS    |
|                          | HCH     | 25               | 0      | 4.811               | PASS    |

## Channel Bandwidth: 10 MHz

| Channel Bandwidth: 10 MHz |         |                  |        |                      |         |
|---------------------------|---------|------------------|--------|----------------------|---------|
| Modulation                | Channel | RB Configuration |        | 26dB Bandwidth (MHz) | Verdict |
|                           |         | Size             | Offset |                      | verdict |
|                           | LCH     | 50               | 0      | 9.545                | PASS    |
| QPSK                      | MCH     | 50               | 0      | 9.541                | PASS    |
|                           | HCH     | 50               | 0      | 9.399                | PASS    |
| 16QAM                     | LCH     | 50               | 0      | 9.506                | PASS    |
|                           | MCH     | 50               | 0      | 9.391                | PASS    |
|                           | HCH     | 50               | 0      | 9.383                | PASS    |

Note: Please refers to Appendix B for compliance test plots for emission bandwidth (-26dBc)

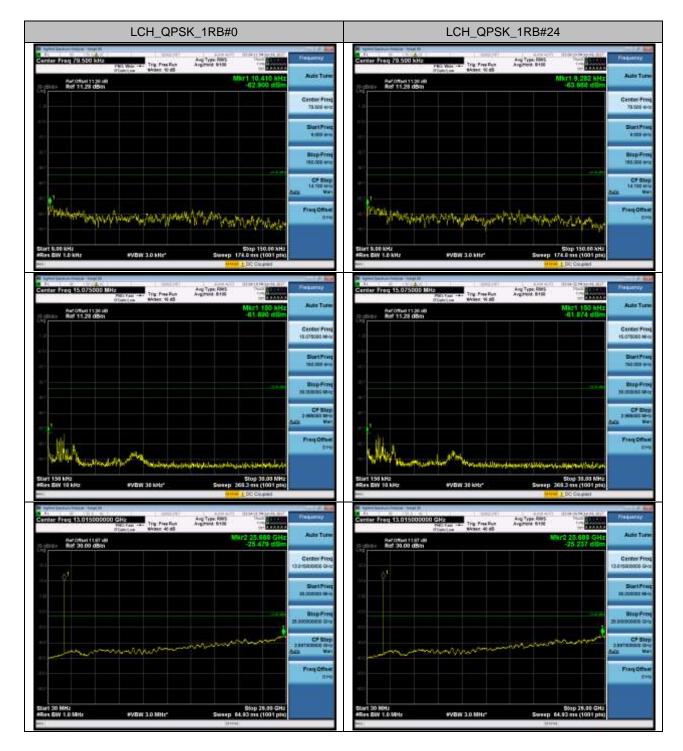
## 11. BAND EDGE

## **11.1 MEASUREMENT METHOD**

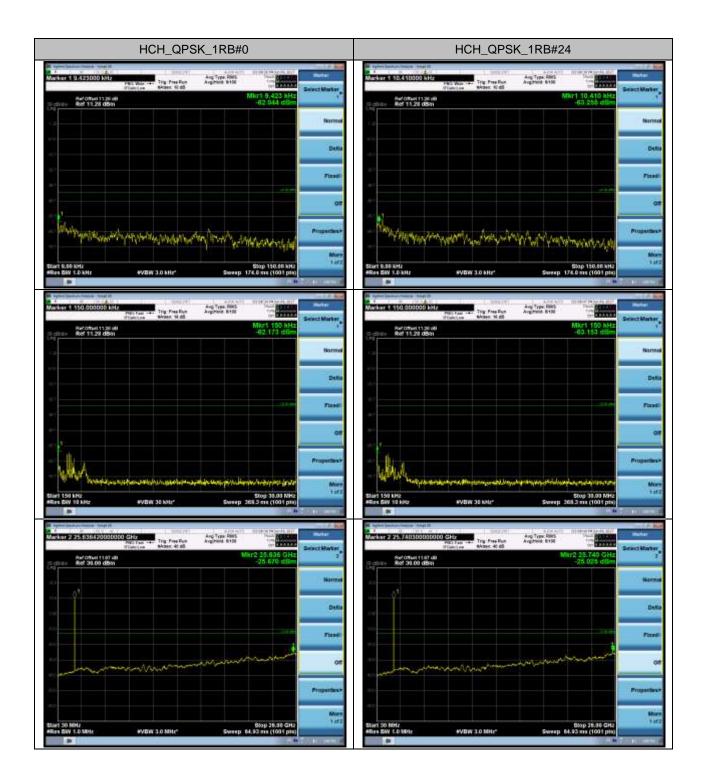
The test set up and general procedure is similar to conducted peak output power test. Only different for setting the measurement configuration of the measuring instrument of Spectrum Analyzer.

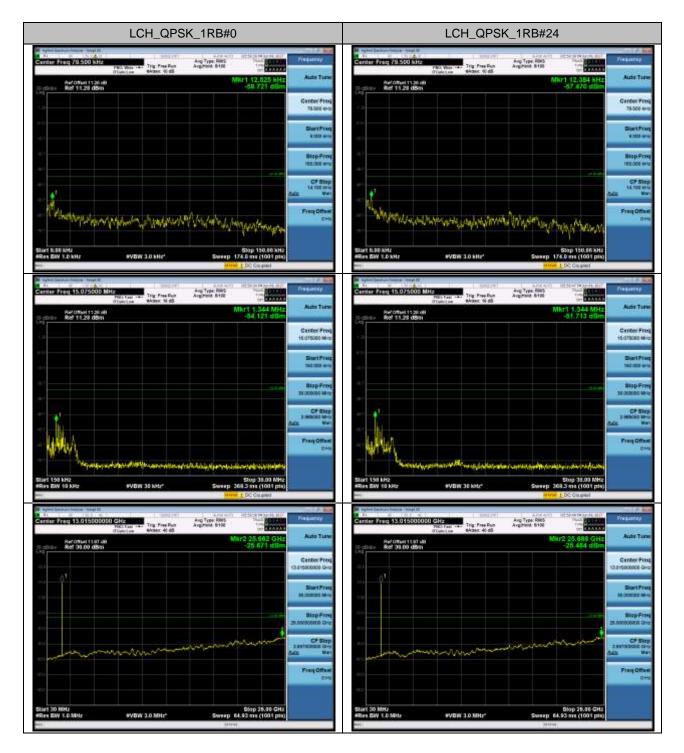
## **11.2 PROVISIONS APPLICABLE**

As Specified in FCC rules of §2.1051 §24.238(a) §27.53(e) §27.53(g) KDB 971168 v02r01 – Section 6.0

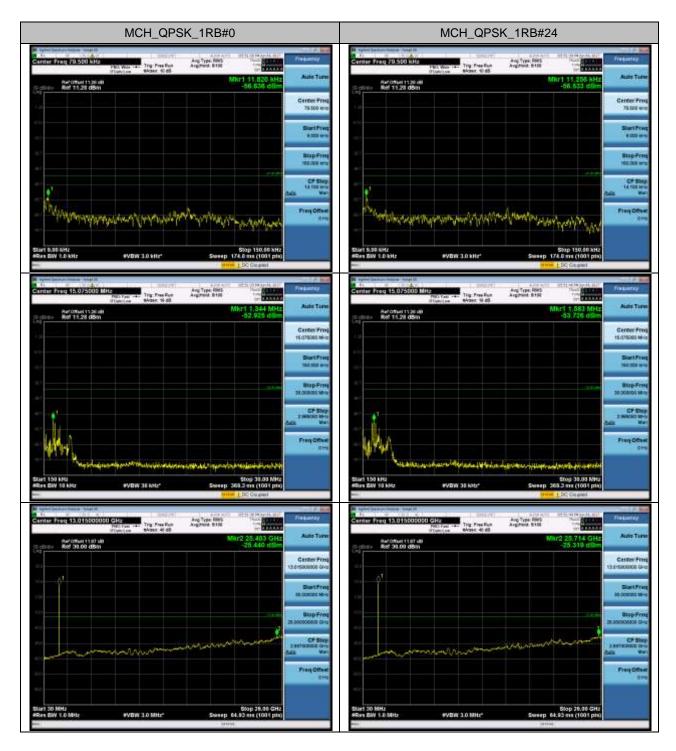

## **11.3 MEASUREMENT RESULT**

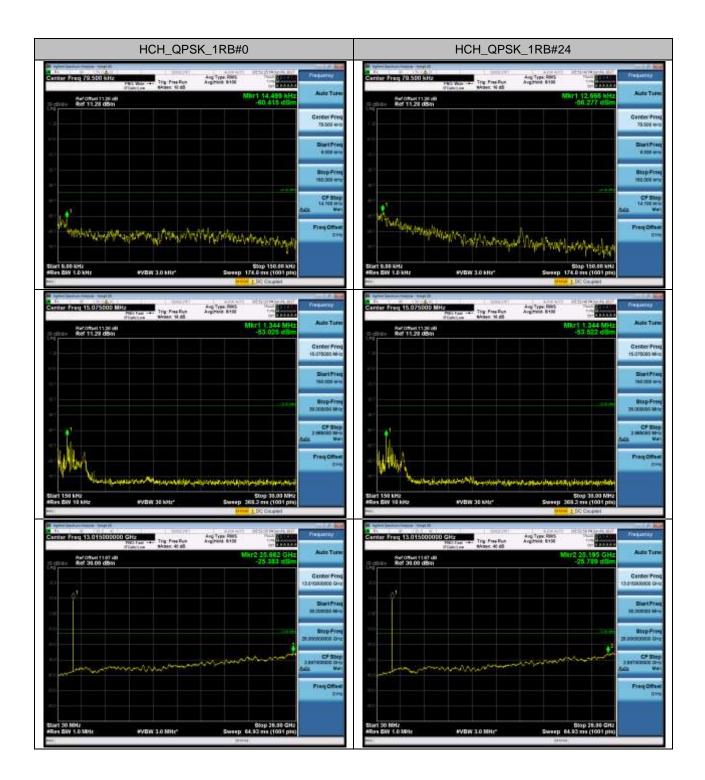
All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequency. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section. The minimum permissible attenuation level of any spurious emission is 43 + log10(P[Watts]), where P is the transmitter power in Watts.

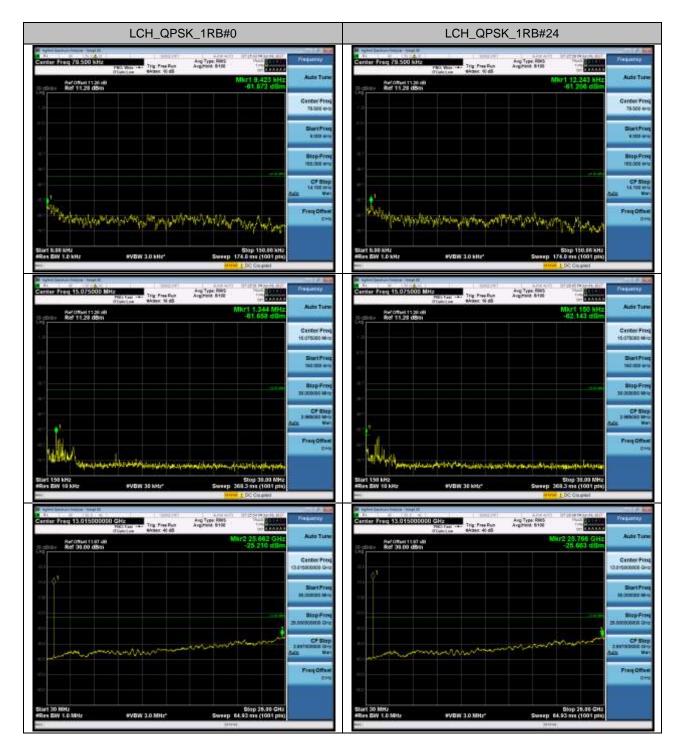

Please refers to Appendix III for compliance test plots for band edge

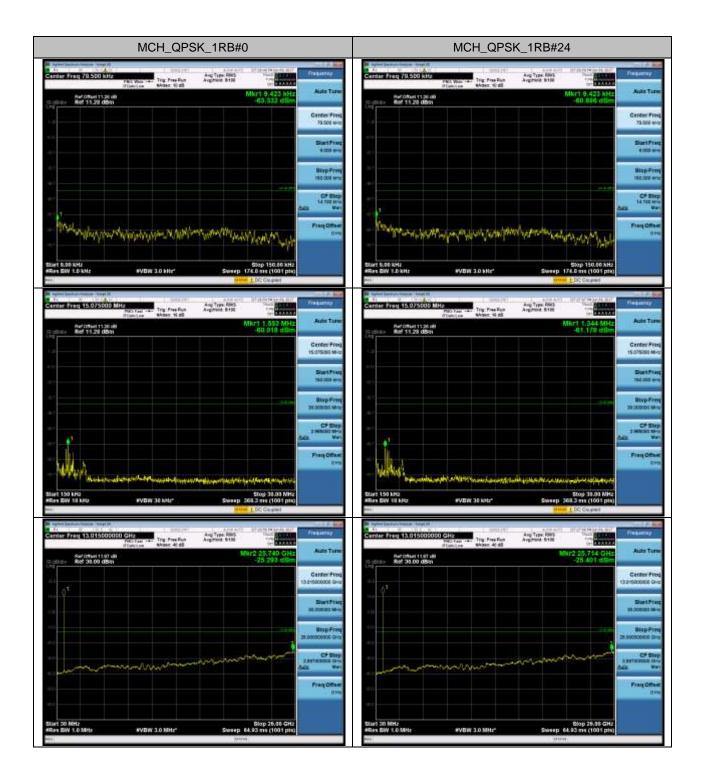

## APPENDIX A

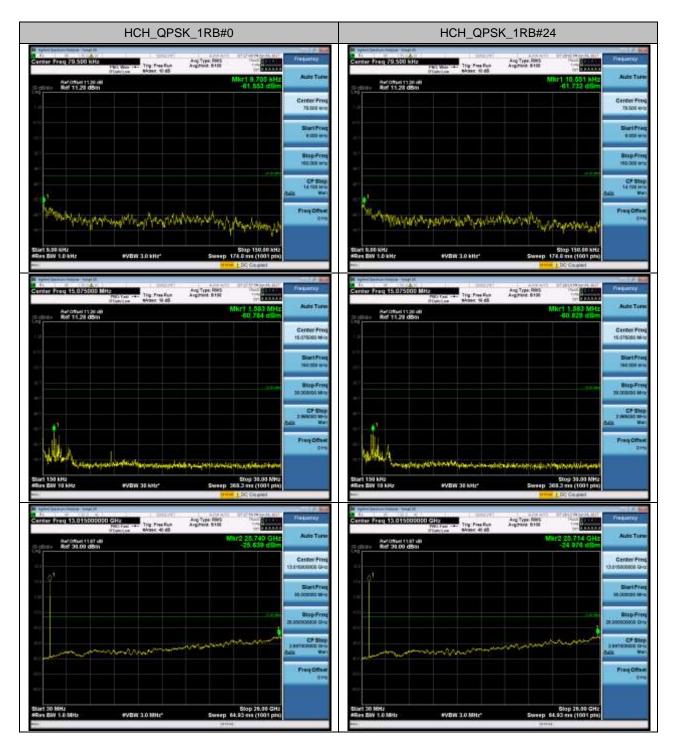
## TEST PLOTS FOR CONDUCTED SPURIOUS EMISSION LTE BAND 2





| MCH_QPSK_1RB#0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MCH_QPSK_1RB#24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Constant Section 2 Address of the section                                                                                                                                                                                                                                                                                                                                                                                                                              | Ang Type Data State Stat   |
| Ref 01.22 bitts<br>California 11.22 ddbm0.0.3.42 of firm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rectonue 11.20 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 21 Detta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21 Detta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Provident and a service of the second and a service of the second and the second and the second and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Manufally mention was how was by my that an independent of the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Start 5.00 kHz 500 kHz 500 10.0 kHz 117<br>#Ren IIW LDaltz #VIIW 3.0 kHz* Sweep 174.0 ms (001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Start 5.00 M/z<br>#Bes BW L0 M/z<br>#Bes BW L0 M/z<br>#Bes BW L0 M/z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Mathew 4 150 000000 Mater<br>Mathew 5 150 00000 Mater<br>Mathew 5 150 0000 Mater<br>Mathew 5 150 00000 Mat                                                                                                                                                                                                                                                         | And Area & GLO COLORO DI LET<br>Real France - Trige France France - Trige France France - Trige France France - Trige France - T |
| Ref dhui 138 all<br>D chui Ref 11.28 allan<br>Ref 11.28 allan<br>Narmal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ref Office 11.28 o   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Defia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Final State of State                                                                                                                                                                                                                                                                                                                                                                                                                          | Final Print                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Properties*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| - WMgA Consequences and a set of the second consecution that we prove the second second second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - WW proved to a construction of the section of the   |
| Start 199 NH2<br>#Rex BW 19 MH2<br>#Rex BW | Start 199 KH2<br>#Ree BW 19 Mits #VBW 36 Mits" Sweep 368.3 me (1001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| And Start 2 225 (4155)(2)(2)(2)(2)(2)(2)<br>Methods 2 2 (2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | North Control    |
| Ref Charl Les Marc 4 dl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ref Office 1187 das 44 dl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A Marriel Marriel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Detia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Defia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | at a second and a second and a second and a second a seco   |
| Properties*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Provident                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Start 30 MHz Blog 26,00 GHz 1 and<br>Rev DV L0 MHz W/DW 1.0 MHz Sweep 64,63 mz (1001 pHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Blart 30 MHz Blog 26,06 GHz Car2<br>Ree BW L0 MHz #VBW 10 MHz" Sweep 64,53 mc (r001 pm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| #Rea BW C.0 Mto #VBW 3.0 Mto" See ep. 64.53 mit (1001 phb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | week by Lumo woon 30 mitter Sweep Kr. San (100 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |





#### Report No.: AGC01826170501FE07 Page 111 of 162

