

Page:

1

of

31

Report Number: F690501-RF-RTL000473-1

TEST REPORT
of
FCC Part 15 Subpart C §15.247
FCC ID: ZNFHBS835
1. Equipment Under Test: LG STEREO Headset2. Model Name: HBS-8353. Variant Model Name(s): Refer to the page 34. Applicant: LG Electronics USA, Inc.
5. Manufacturer : EM-Tech
6. Date of Receipt : 2020.02.06
7. Date of Test(s) : 2018.06.04 ~ 2020.03.09
8. Date of Issue : 2020.04.02
 In the configuration tested, the EUT complied with the standards specified above. This test report does not assure KOLAS accreditation. 1) The results of this test report are effective only to the items tested. 2) The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received.
Tested by: Nancy Park SGS Korea Co., Ltd. Gunpo Laboratory

RTT5041-19(2020.03.02)(2)

-

SGS Korea Co., Ltd. 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr

Report Number:	F690501-RF-RTL000473-1	Page:	2	of	31	

INDEX

Table of Contents	Page
1. General Information	3
2. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission	8
3. 6 dB Bandwidth	22
4. Maximum Peak Conducted Output Power	25
5. Power Spectral Density	28
6. Antenna Requirement	31

1. General Information

1.1. Testing Laboratory

SGS Korea Co., Ltd. (Gunpo Laboratory)

- 10-2, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
- 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
- Designation number: KR0150

All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Phone No. : +82 31 688 0901

Find the No. . +62 31 666 0901 Fax No. : +82 31 688 0921

1.2. Details of Applicant

Applicant	:	LG Electronics USA, Inc.
Address	:	1000 Sylvan Avenue, Englewood Cliffs, New Jersey, United States, 07632
Contact Person	:	Han, Kyung-Su
Phone No.	:	+1 201 266 2215
Phone No.		

1.3. Details of Manufacturer

Company	:	EM-Tech
Address	:	40, Changwon-daero 1144beon-gil, Seongsan-gu, Changwon-si,
		Gyeongsangnam-do, Korea, 51539

1.4. Description of EUT

Kind of Product	LG STEREO Headset	
Model Name	HBS-835	
Variant Model Name	HBS-830	
Power Supply	DC 3.7 V	
Frequency Range	Range 2 402 Mz ~ 2 480 Mz (Bluetooth Low Energy)	
Modulation Technique	GFSK	
Number of Channels	40 channels (Bluetooth Low Energy)	
Antenna Type	FPCB Antenna	
Antenna Gain	3.33 dB i	

Report Number: F690501-RF-RTL000473-1

1.5. Test Equipment List

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Interval	Cal. Due
Signal Generator	R&S	SMBV100A	259067	Jun. 10, 2019	Annual	Jun. 10, 2021
Signal Generator	R&S	SMR40	100272	Jun. 07, 2019	Annual	Jun. 07, 2020
Spectrum Analyzer	R&S	FSV30	100955	Mar. 11, 2020	Annual	Mar. 11, 2021
Spectrum Analyzer	Agilent	N9020A	MY53421758	Sep. 11, 2019	Annual	Sep. 11, 2020
Bluetooth Tester	TESCOM	TC-3000C	3000C000495	Apr. 29, 2019	Annual	Apr. 29, 2020
Directional Coupler	KRYTAR	152613	122661	Feb. 17, 2020	Annual	Feb. 17, 2021
High Pass Filter	Wainwright Instrument GmbH	WHK3.0/18G-10SS	344	May 21, 2019	Annual	May 21, 2020
High Pass Filter	Wainwright Instrument GmbH	WHNX7.5/26.5G-6SS	15	Jun. 07, 2019	Annual	Jun. 07, 2020
Low Pass Filter	Mini-Circuits	NLP-1200+	V 9500401023-2	Jun. 05, 2019	Annual	Jun. 05, 2020
Power Sensor	R&S	NRP-Z81	100748	Jun. 05, 2019	Annual	Jun. 05, 2020
DC Power Supply	R&S	HMP2020	020089489	May 21, 2019	Annual	May 21, 2020
Preamplifier	H.P.	8447F	2944A03909	Aug. 07, 2019	Annual	Aug. 07, 2020
Signal Conditioning Unit	R&S	SCU-18	10117	Jun. 12, 2019	Annual	Jun. 12, 2020
Preamplifier	MITEQ Inc.	JS44-18004000-35-8P	1546891	May 13, 2019	Annual	May 13, 2020
Loop Antenna	Schwarzbeck Mess-Elektronik	FMZB 1519	1519-039	Aug. 22, 2019	Biennial	Aug. 22, 2021
Bilog Antenna	Schwarzbeck Mess-Elektronik	VULB 9163	396	Mar. 21, 2019	Biennial	Mar. 21, 2021
Horn Antenna	R&S	HF906	100326	Feb. 14, 2020	Annual	Feb. 14, 2021
Horn Antenna	Schwarzbeck Mess-Electronic	BBHA 9170	BBHA9170431	Sep. 10, 2018	Biennial	Sep. 10, 2020
Antenna Master	INNCO systems GmbH	MA4640-XP-ET	MA4640/536/383 30516/L	N.C.R.	N/A	N.C.R.
Controller	INNCO systems GmbH	CONTROLLER CO3000-4P	CO3000/963/383 30516/L	N.C.R.	N/A	N.C.R.
Turn Table	INNCO systems GmbH	DS 1200 S	N/A	N.C.R.	N/A	N.C.R.
Test Receiver	R&S	ESU26	100109	Feb. 18, 2020	Annual	Feb. 18, 2021
Anechoic Chamber	SY Corporation	L × W × H (9.6 m × 6.4 m × 6.6 m)	N/A	N.C.R.	N/A	N.C.R.
Coaxial Cable	SUCOFLEX	104 (3 m)	MY3258414	Jan. 28, 2020	Semi- annual	Jul. 28, 2020
Coaxial Cable	SUCOFLEX	104 (10 m)	MY3145814	Jan. 28, 2020	Semi- annual	Jul. 28, 2020
Coaxial Cable	Rosenberger	LA1-C006-1500	131014 01/20	Feb. 23, 2020	Semi- annual	Aug. 23, 2020
Coaxial Cable	Rosenberger	LA1-C006-1500	131014 05/20	Feb. 23, 2020	Semi- annual	Aug. 23, 2020
Coaxial Cable	Rosenberger	LA1-C006-1500	131014 10/20	Feb. 23, 2020	Semi- annual	Aug. 23, 2020

1.6. Summary of Test Results

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part15 Subpart C			
Section	Test Item(s) Result		
15.205(a) 15.209	Transmitter Radiated Spurious Emissions	Complied ¹⁾	
15.247(d)	Conducted Spurious Emission	Complied ²⁾	
15.247(a)(2)	6 dB Bandwidth	Complied ²⁾	
15.247(b)(3)	Maximum Peak Conducted Output Power	Complied ²⁾	
15.247(e)	Power Spectral Density	Complied ²⁾	
15.207	AC Power Line Conducted Emission	N/A ³⁾	

Note;

1) This product is a PCB change that does not affect RF. So only radiation test was performed.

2) The Conducted test datas were reused from the previous test results.

3) The AC power line test was not performed because the EUT does not operate while charging.

1.7. Test Procedure(s)

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 558074 D01 DTS Meas Guidance v04 were used in the measurement of the DUT.

1.8. Sample calculation

Where relevant, the following sample calculation is provided:

1.8.1. Conducted Test

Offset value (dB) = Attenuator (dB) + Cable loss (dB)

1.8.2. Radiation Test

Field strength level (dBµV/m) = Measured level (dBµV) + Antenna factor (dB) + Cable loss (dB) - Amplifier gain (dB)

Report Number: F690501-RF-RTL000473-1

1.9. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
RF Output Power	± 0.52 dB
Occupied Bandwidth	± 9.66 kHz
Power Spectral Density	± 0.41 dB
Conducted Spurious Emission	± 0.76 dB
Radiated Emission, 9 kHz to 30 MHz	± 3.59 dB
Radiated Emission, below 1 GHz	± 5.88 dB
Radiated Emission, above 1 Glz	± 5.94 dB

Uncertainty figures are valid to a confidence level of 95 %.

1.10. Information of Variant Models

Model Name	Description
HBS-835	Basic model.
HBS-830	HW, SW are same as basic model, but the difference in presence or absence of JBL logo for exterior of the product.

1.11. Test Report Revision

Revision	Report Number	Date of Issue	Description
0	F690501-RF-RTL000473	2020.03.26	Initial
1	F690501-RF-RTL000473-1	2020.04.02	Modified the Summary of Test Results.

1.12. Duty Cycle of EUT

Regarding to KDB 558074 D01 15.247 Meas Guidance v05r02, 6, the maximum duty cycle was investigated and set the spectrum analyzer as below;

Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100.

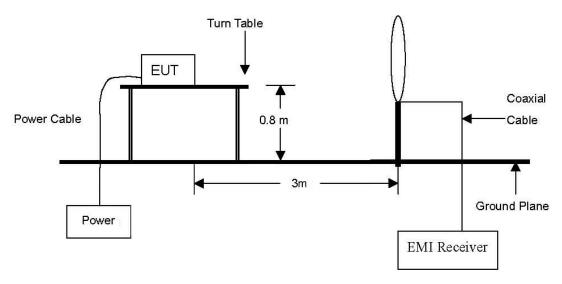
Duty Cycle (%)	63.96
Correction Factor (dB)	1.94

Remark:

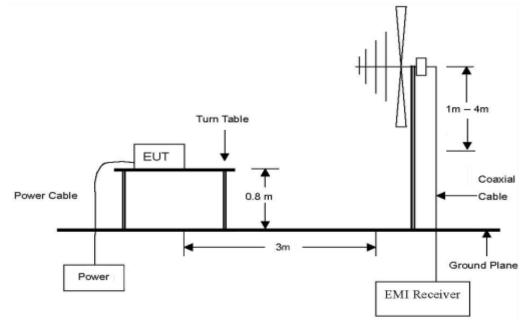
- 1. Duty Cycle (%) = (Tx on time / Tx on + off time) x 100
- 2. Correction Factor (dB) = $10 \log (1 / \text{Duty cycle})$

- Test plot

Att			8 👄 SWT 2 ms 👄	RBW 3 VBW 3							
SGL Co		0/10	TDF								
JIFK CI			1 1					M1[1]		1.206	586644 mV
1			10 m		_		M		-D2	DB	1.10300 m
1 mW-								D2[1]	4	Ť	-0.21 di
100 µW									 		401.00 µ
					3						
10 µW-		1		-							1
1 µW—		1				,					
т µ**		www	UNNU			how	men		lon	hundren	
100 nW	-		an status		-	2001 228 227 22				Profest & Liberary	-
10 nW-											
1 nW—										-	
100 pW	-										
10 pW-						3					
10 pro											
CF 2.4	4 GHz					400	pts				200.0 µs/
larker											
Туре	Ref		X-value			alue		Function	Fun	ction Resu	lt
M1		1	1.103 n			1.21 m					
D2 D3	M1 M1	1	401.0 μ			-0.21 c					
03	TIM	1	627.0 j	15		0.07 0					



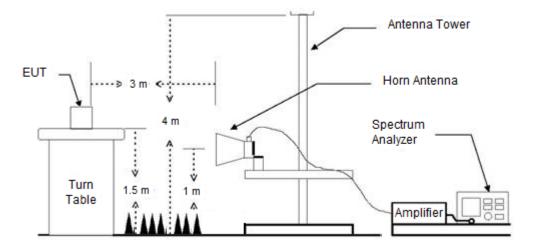
2. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission


2.1. Test Setup

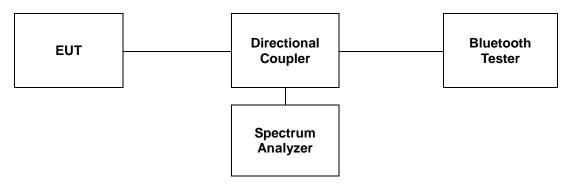
2.1.1. Transmitter Radiated Spurious Emissions

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 $\,\rm klz$ to 30 $\,\rm Mz$

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz.



Report Number: F690501-RF-RTL000473-1


Page:	9	of	31
-------	---	----	----

The diagram below shows the test setup that is utilized to make the measurements for emission. The spurious emissions were investigated form 1 Gl_2 to the 10th harmonic of the highest fundamental frequency or 40 Gl_2 , whichever is lower.

2.1.2. Conducted Spurious Emission

2.2. Limit

According to §15.247(d), in any 100 klb bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 klb bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emission which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

According to §15.209(a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (쌘)	Field Strength (⊭∛/m)	Measurement Distance (Meters)
0.009-0.490	2 400/F(kHz)	300
0.490-1.705	24 000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 Mb, 76-88 Mb, 174-216 Mb or 470-806 Mb. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.

2.3. Test Procedures

Radiated emissions from the EUT were measured according to the dictates in section 11.11 & 11.12 of ANSI C63.10-2013.

2.3.1. Test Procedures for emission below 30 Mb

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum Hold Mode.

2.3.2. Test Procedures for emission from above 30 Ma

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site below 1 GHz and 1.5 meters above the ground at a 3 meter anechoic chamber test site above 1 GHz. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 3 meter away from the interference-receiving antenna.
- 3. The antenna is a bi-log antenna, a horn antenna and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Report Number: F690501-RF-RTL000473-1

Note;

All channels were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

1. Unwanted Emissions into Non-Restricted Frequency Bands

- The Reference Level Measurement refer to section 11.11.2 Set analyzer center frequency to DTS channel center frequency, SPAN \ge 1.5 times the DTS bandwidth, the RBW = 100 klz and VBW \ge 3 x RBW, Detector = Peak, Sweep time = Auto couple, Trace = Max hold.

- Unwanted Emissions Level Measurement refer to section 11.11.3

Set the center frequency and span to encompass frequency range to be measured, the RBW = 100 kHz and VBW \ge 3 x RBW, Detector = Peak, Sweep time = Auto couple, Trace = Max hold.

2. Unwanted Emissions into Restricted Frequency Bands

- Peak Power measurement procedure refer to section 11.12.2.4 Set RBW = as specified in Table 9, VBW \geq 3 x RBW, Detector = Peak, Sweep time = auto, Trace = Max hold.

Table 9 – RBW as a fund	ction of frequency
Frequency	RBW
9 kHz to 150 kHz	200 Hz to 300 Hz
0.15 MHz to 30 MHz	9 kHz to 10 kHz
30 MHz to 1 000 MHz	100 kHz to 120 kHz
> 1 000 Mlz	1 MHz

If the peak – detected amplitude can be shown to comply with the average limit, then it is not necessary to perform a separate average measurement.

- Average Power measurements procedure refer to section 11.12.2.5.2

The EUT shall be configured to operate at the maximum achievable duty cycle.

Measure the duty cycle D of the transmitter output signal as described in section 11.6. Set RBW = 1 Mb, VBW \ge 3 x RBW, Detector = RMS, if span / (# of points in sweep) \le (RBW/2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied then the detector mode shall be set to peak.

Averaging type = power (i.e., RMS).

As an alternative the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used. Sweep time = auto, Perform a trace average of at least 100 traces.

A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:

1) If power averaging (rms) mode was used in step f), then the applicable correction factor is [10 log (1 / D)], where D is the duty cycle.

3. Definition of DUT Axis.

Definition of the test orthogonal plan for EUT was described in the test setup photo. The test orthogonal plan of EUT is X - axis during radiation test.

2.3.3. Test Procedures for Conducted Spurious Emissions

Per the guidance of ANSI C63.10-2013, section 11.11.1 & 11.11.2 & 11.11.3, the reference level for out of band emissions is established from the plots of this section since the band edge emissions are measured with a RBW of 100 kHz. This reference level is then used as the limit in subsequent plots for out of band spurious emissions shown in section 2.4.3. The limit for out of band spurious emission at the band edge is 20 dB below the fundamental emission level measured in a 100 kHz bandwidth.

1. Conducted Emissions at Band Edge

- The Measurement refer to section 11.11.2 Set the center frequency and span to encompass frequency range to be measured, the RBW = 100 kHz and VBW ≥ 3 x RBW, Detector = Peak, Sweep time = Auto couple, Trace mode = Max hold, The trace was allowed to stabilize.

2. Conducted Spurious Emissions

- The Measurement refer to section 11.11.3 Start frequency was set to 9 kt and stop frequency was set to 25 Gt (separated into two plots per channel), RBW = 1 Mt, VBW ≥ 3 x RBW, Detector = Peak, Sweep time = Auto couple, Trace = Max hold, The trace was allowed to stabilize.

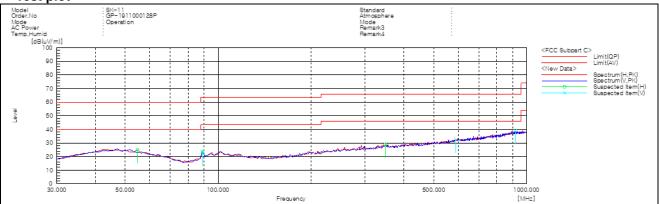
3. TDF function

- For plots showing conducted spurious emissions from 9 klz to 25 GHz, all path loss of wide frequency range was investigated and compensated to spectrum analyzer as TDF function. So, the reading values shown in plots were final result.

2.4. Test Results

Ambient temperature	:	(23	± 1) ℃
Relative humidity	:	47	% R.H.

2.4.1. Radiated Spurious Emission below 1 000 Mb


The frequency spectrum from 9 ktz to 1 000 Mtz was investigated. All reading values are peak values.

Radi	ated Emissio	ns	Ant	Correction Factors Total I		Lim	it	
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP + CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
54.87	31.80	Peak	н	19.43	-26.32	24.91	40.00	15.09
89.07	34.90	Peak	V	14.72	-25.24	24.38	43.50	19.12
89.07	34.50	Peak	н	14.72	-25.24	23.98	43.50	19.52
348.67	31.60	Peak	н	21.02	-24.76	27.86	46.00	18.14
589.62	31.50	Peak	V	24.98	-23.87	32.61	46.00	13.39
919.17	32.90	Peak	V	28.30	-22.05	39.15	46.00	6.85

Remark:

- 1. Spurious emissions for all channels were investigated and almost the same below 1 ${\rm Ghz}$.
- 2. Reported spurious emissions are in **<u>High channel</u>** as worst case among other channels.
- 3. Radiated spurious emission measurement as below.
- (Actual = Reading + AF + AMP + CL)
- 4. According to §15.31(o), emission levels are not report much lower than the limits by over 20 dB.

- Test plot

2.4.2. Radiated Spurious Emission above 1 000 Mb

The frequency spectrum above 1 000 Mb was investigated. All reading values are peak and average values.

Low Channel (2 402 Mb)

Radia	Radiated Emissions			Correction Factors			Total	Limit	
Frequency (Mb)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
*2 310.00	14.54	Peak	Н	27.96	8.21	-	50.71	74.00	23.29
*2 310.00	3.63	Average	Н	27.96	8.21	1.94	41.74	54.00	12.26
*2 375.40	16.18	Peak	Н	28.05	8.33	-	52.56	74.00	21.44
*2 378.10	4.48	Average	Н	28.08	8.33	1.94	42.83	54.00	11.17
*2 390.00	15.28	Peak	Н	28.20	8.35	-	51.83	74.00	22.17
*2 390.00	4.10	Average	Н	28.20	8.35	1.94	42.59	54.00	11.41

Radiated Emissions			Ant.	Corr	ection Fact	tors	Total	Lim	it
Frequency (Mb)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-	-

Middle Channel (2 440 Mz)

Radiated Emissions			Ant.	Corr	ection Fact	ors	Total	Lim	it
Frequency (Mz)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-	-

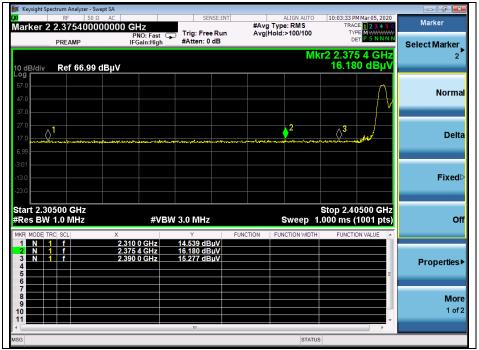
Report Number: F690501-RF-RTL000473-1

High Channel (2 480 Mbz)

Radia	Radiated Emissions			Correction Factors			Total	Limit	
Frequency (Mb)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*2 483.50	24.43	Peak	Н	28.37	8.44	-	61.24	74.00	12.76
*2 483.50	7.72	Average	Н	28.37	8.44	1.94	46.47	54.00	7.53
*2 483.52	24.84	Peak	н	28.37	8.44	-	61.65	74.00	12.35
*2 483.62	8.48	Average	н	28.37	8.44	1.94	<u>47.23</u>	54.00	6.77
*2 500.00	14.02	Peak	н	28.30	8.49	-	50.81	74.00	23.19
*2 500.00	3.85	Average	Н	28.30	8.49	1.94	42.58	54.00	11.42

Radiated Emissions			Ant.	Corr	ection Fact	tors	Total	Lim	it
Frequency (朏)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-	-

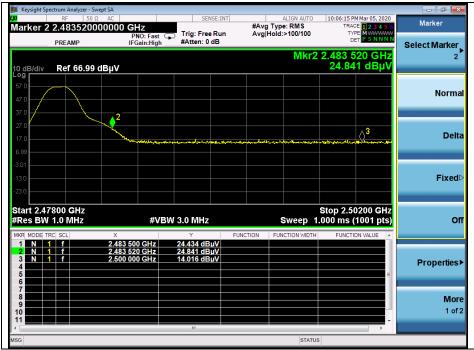
Remark:


- 1. "*" means the restricted band.
- 2. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 3. Radiated emissions measured in frequency above 1 000 № were made with an instrument using peak/average detector mode.
- 4. Actual = Reading + AF + CL + (DF) or Reading + AF + AMP + CL + (DF).
- 5. According to § 15.31(o), emission levels are not reported much lower than the limits by over 20 dB.

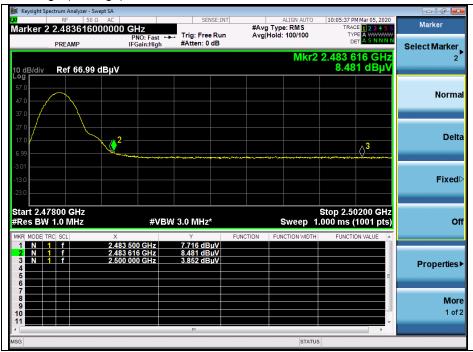
Report Number: F690501-RF-RTL000473-1

- Test plots

Low channel Band edge (Peak)

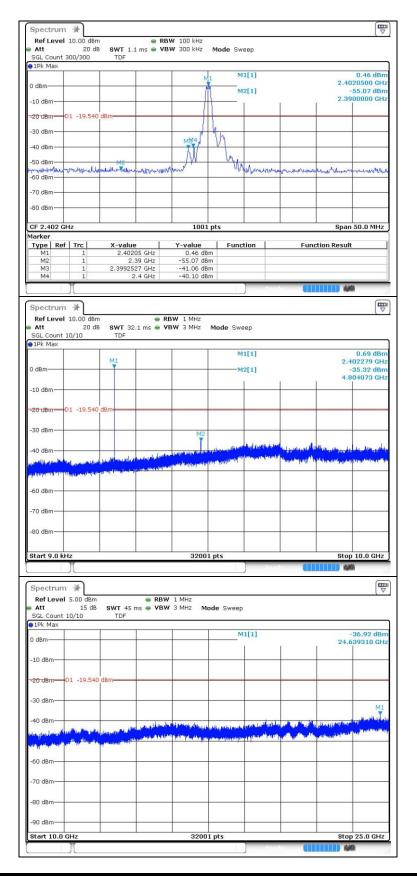


Low channel Band edge (Average)



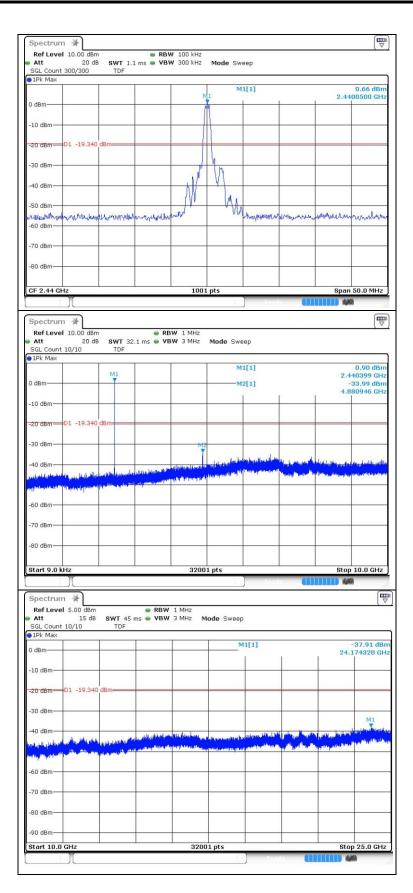
High channel Band edge (Peak)

High channel Band edge (Average)



Report Number: F690501-RF-RTL000473-1

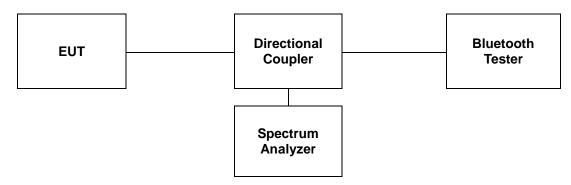
2.4.3. Plot of Conducted Spurious Emissions


Low Channel

Report Number: F690501-RF-RTL000473-1

31

Report Number: F690501-RF-RTL000473-1


31

Spectrum 🔆						,
Ref Level 10.00		👄 RBW 100 kHz	1992) - 1453 - 1555			(
SGL Count 300/30		ms 👳 VBW 300 kHz	Mode Sweep			
1Pk Max	10 101					_
		M	1 M1[1]			0.50 dB
0 dBm			M2[1]			0500 GH 8.40 dB
-10 dBm			(internal			5000 GI
-20 dBm D1 -19	1.500 dBm					
-30 dBm			Y.			
-40 dBm		AV.	N Ma			
		1/1	AT .			
-50 dBm	an manual manual	in which is a support with	Wardow	when all hours los	W4	duration
-60 dBm		And all the second second	design of the	and Free Adverses	AL ANON DURITION	THE A REAL PROPERTY OF
-70 dBm						
12						
-80 dBm						
CF 2.48 GHz		1001	nte		Snan 5	60.0 MH
larker		1001	pes		opune	0.0
Type Ref Trc	X-value	Y-value	Function	Func	tion Result	
M1 1 M2 1						
M3 1		GHz -45.70 dBr	m			
M4 1	. 2.5	5 GHz -55.85 dBr	m			
				nady 🔛		_
Spectrum 🗰						
Ref Level 10.00) dBm	👄 RBW 1 MHz				1
Att	20 dB SWT 32.1		Mode Sweep			
SGL Count 10/10 1Pk Max	TDF					
TPK Max			M1[1]			0.70 dB
	MI		and the second		2.48	0399 GI
0 dBm			M2[1]			6.03 dB 0943 GI
			1	1 1	4.90	0943 GI
-10 dBm						
-20 d8m D1 -19	9.500_dBm-					
-20 08111 01 11	1.500 dbm					
-30 dBm				-		
		ME		22 14 14 14		
-40 dBm	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	and the second states	Languages La	the state of the state of the	and the second	- Junited
and an able to be a selection of the second	In the second second and the second	المان الدومة من التعام المانية. الشار بيوسية والمراجع المراجع الم	of such the succession of the	and a second second	and a shear the	al all a service
and the second second place	analysis public the interesting of	munante des stands and stands and stands		-		
and the second se						
-60 dBm						
-60 dBm						
-60 dBm						
-60 dBm						
-60 dBm		2200			Stan	10.0.04
-60 dBm		32001	L pts		Stop :	10.0 GH
-60 dBm		32001	L pts	nadv.	Stop :	10.0 GH
-60 dBm -70 dBm -80 dBm -80 dBm 		32001	L pts		Stop :	
-60 dBm			L pts	sady	Stop :	
-60 dBm -70 dBm -80 dBm Start 9.0 kHz Spectrum * Ref Level 5.00		RBW 1 MHz) ^m p	(1)	Stop :	
-60 dBm -70 dBm -80 dBm Start 9.0 kHz Spectrum * Ref Level 5.00	5 dB SWT 45 ms) ^m p		Stop :	
-60 dBm -70 dBm -80 dBm Start 9.0 kHz Spectrum * Ref Level 5.00 Att 1 SGL Count 10/10	5 dB SWT 45 ms	RBW 1 MHz	ode Sweep		Stop :	
-60 dBm -70 dBm -80 dB	5 dB SWT 45 ms	RBW 1 MHz) ^m p	adv (11)	-3	(1 17.59 dB
-60 dBm -70 dBm -80 dB	5 dB SWT 45 ms	RBW 1 MHz	ode Sweep	andy (1)	-3	(1 17.59 dB
-60 dBm -70 dBm -80 dBm Start 9.0 kHz Spectrum # Ref Level 5.00 • Att 1 5GL count 10/10 • 1Pk Max 0 dBm	5 dB SWT 45 ms	RBW 1 MHz	ode Sweep	andy ()	-3	(1 17.59 dB
-60 dBm -70 dBm -80 dBm Start 9.0 kHz Spectrum # Ref Level 5.00 • Att 1 5GL count 10/10 • 1Pk Max 0 dBm	5 dB SWT 45 ms	RBW 1 MHz	ode Sweep		-3	(1 17.59 dB
-60 dBm -70 dBm -80 dBm -80 dBm -10 dBm -10 dBm	5 dB SWT 45 ms	RBW 1 MHz	ode Sweep		-3	(1 17.59 dB
-60 dBm -70 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -10 dBm -10 dBm -11 dBm -11 dBm -11 dBm	5 dB SWT 45 ms	RBW 1 MHz	ode Sweep		-3	(1 17.59 dB
-60 dBm -70 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -10 dBm -10 dBm -11 dBm -11 dBm -11 dBm	5 dB SWT 45 ms	RBW 1 MHz	ode Sweep		-3	(t 7.59 dB 2770 Gl
-60 dBm -70 dBm -80 dBm -80 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm	5 dB SWT 45 ms TDF	RBW 1 MHz WBW 3 MHz Mc	M1[1]		-3 23.88	(1 7.59 dB 2770 GI
-60 dBm -70 dBm -80 dBm -80 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm	5 dB SWT 45 ms TDF	RBW 1 MHz WBW 3 MHz Mc	M1[1]		-3 23.88	(t 7.59 dB 2770 Gl
-60 dBm -70 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -10 dBm -10 dBm -11 dBm -11 dBm -11 dBm -11 dBm	5 dB SWT 45 ms TDF	RBW 1 MHz VBW 3 MHz Mc	M1[1]		-3 23.88	(t 7.59 dB 2770 Gl
-60 dBm -70 dBm -80 dBm -80 dBm -80 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm	5 dB SWT 45 ms TDF	RBW 1 MHz VBW 3 MHz Mc			-3 23.88 23.88	(t 7.59 dB 2770 Gl
-60 dBm -70 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -11 th	5 dB SWT 45 ms TDF	RBW 1 MHz VBW 3 MHz Mc			-3 23.88 23.88	(t 7.59 dB 2770 Gl
-60 dBm -70 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -11 th	5 dB SWT 45 ms TDF	RBW 1 MHz VBW 3 MHz Mc			-3 23.88 23.88	(t 7.59 dB 2770 Gl
-60 dBm -70 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -11 dB	5 dB SWT 45 ms TDF	RBW 1 MHz VBW 3 MHz Mc			-3 23.88 23.88	(t 7.59 dB 2770 Gl
-60 dBm -70 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -11 dB	5 dB SWT 45 ms TDF	RBW 1 MHz VBW 3 MHz Mc			-3 23.88 23.88	(t 7.59 dB 2770 Gl
-60 dBm -70 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -10 dB	5 dB SWT 45 ms TDF	RBW 1 MHz VBW 3 MHz Mc			-3 23.88 23.88	(t 7.59 dB 2770 Gl
-60 dBm -70 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -11 dBm -11 dBm -11 dBm -11 dBm -12 dBm -12 dBm -12 dBm -13 dBm -14 dBm -14 dBm -15 dBm -16 dBm -17 dBm -17 dBm -18 dBm -19 dB	5 dB SWT 45 ms TDF	RBW 1 MHz VBW 3 MHz Mc			-3 23.88 23.88	(t 7.59 dB 2770 Gl
-60 dBm -70 dBm -80 dBm -80 dBm -80 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm	5 dB SWT 45 ms TDF	RBW 1 MHz VBW 3 MHz Mc			-3 23.88 23.88	10.0 GH
-60 dBm -70 dBm -80 dBm -80 dBm -80 dBm -80 dBm -80 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -11 dBm -11 dBm -11 dBm -11 dBm -12 dBm -12 dBm -12 dBm -13 dBm -14 dBm -14 dBm -15 dBm -16 dBm -17 dBm -17 dBm -18 dBm -19 dB	5 dB SWT 45 ms TDF	RBW 1 MHz VBW 3 MHz Mc			-3 23.68	(1 7.59 dB 2770 GI

3.6 dB Bandwidth

3.1. Test Setup

3.2. Limit

According to §15.247(a)(2), systems using digital modulation techniques may operate in the 902-928 Mb, 2 400-2 483.5 Mb, and 5 725-5 850 Mb bands. The minimum 6 dB Bandwidth shall be at least 500 kb.

3.3. Test Procedure

The test follows section 11.8 DTS bandwidth of ANSI C63.10-2013.

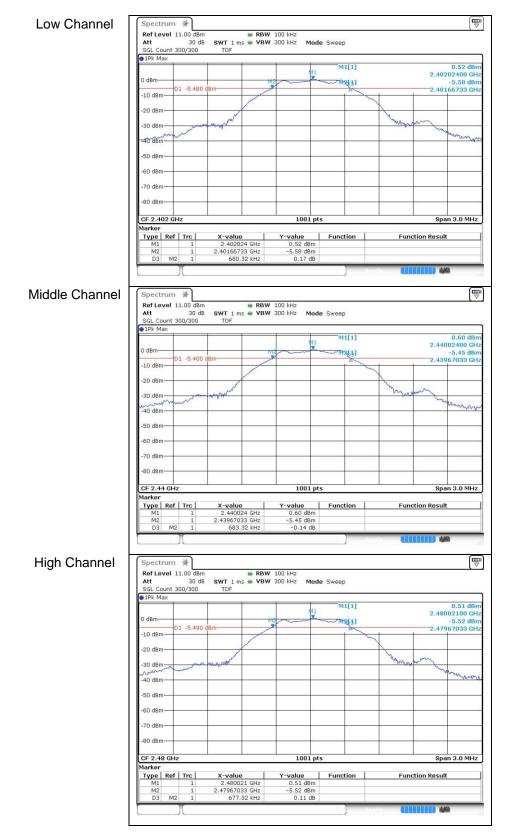
Tests performed using section 11.8.1 Option 1.

- Option 1:

- 1. Set RBW to = 100 kHz.
- 2. Set the VBW \geq 3 x RBW.
- 3. Detector = peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

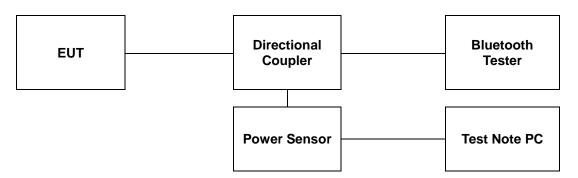
Report Number: F690501-RF-RTL000473-1

3.4. Test Results


Ambient temperature	:	(23	± 1) ℃
Relative humidity	:	47	% R.H.

Mode	Channel	Frequency (账)	6 dB Bandwidth (₩z)	Limit (啦)	
GFSK	Low	2 402	0.680		
	Middle	2 440	0.683	500	
	High	2 480	0.677		

Report Number: F690501-RF-RTL000473-1


- Test plots

4. Maximum Peak Conducted Output Power

4.1. Test Setup

4.2. Limit

According to §15.247(b)(3), for systems using digital modulation in the 902-928 Mb, 2 400-2 483.5 Mb, and 5 725-5 850 Mb bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to \$15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antenna with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraph (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.3. Test Procedure

The test follows section 11.9.1.3 of ANSI C63.10-2013.

PKPM1 Peak-reading power meter method

- The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

The test follows section 11.9.2.3.2 of ANSI C63.10-2013.

Method AVGPM-G (Measurement using a gated RF average-reading power meter)

- Alternatively, measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since this measurement is made only during the ON time of the transmitter, no duty cycle correction is required.

Test program: (S/W name: R&S Power Viewer, Version: 3.2.0)

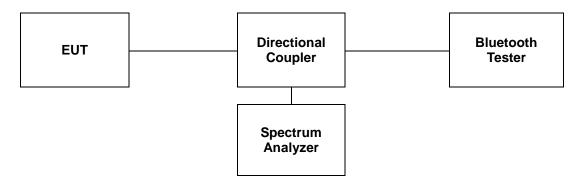
- 1. Initially overall offset for attenuator and cable loss is measured per frequency.
- 2. Measured offset is inserted in test program in advance of measurement for output power.
- 3. Power for each frequency (channel) of device is investigated as final result.
- 4. Final result reported on this section from R&S power viewer program includes with several factors and test program shows only final result.

Report Number: F690501-RF-RTL000473-1

4.4. Test Results

Ambient temperature	:	(23	± 1) ℃
Relative humidity	:	47	% R.H.

Mode	Channel	Frequency (Mb)	Average Power Result (dB m)	Peak Power Result (dB m)	Limit (dB m)
	Low	2 402	0.36	1.10	
GFSK	Middle	2 440	0.92	1.66	30
	High	2 480	<u>1.16</u>	<u>1.90</u>	


Remark:

Attenuator and cable offset was compensated in test program (R&S Power Viewer) before measuring.

5. Power Spectral Density

5.1. Test Setup

5.2. Limit

According to §15.247(e), for digitally modulated system, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dB m in any 3 kb band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

5.3. Test Procedure

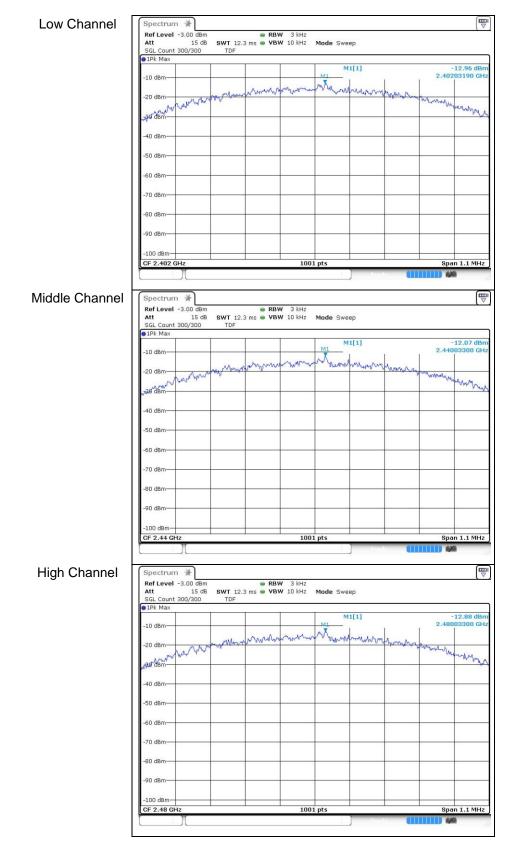
The measurements are recorded using the PKPSD measurement procedure in section 11.10.2 of ANSI C63.10-2013.

- This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to 3 kHz \leq RBW \leq 100 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds requirement, then reduce RBW (but no less than 3 km) and repeat.

Report Number: F690501-RF-RTL000473-1

5.4. Test Results


Ambient temperature	:	(23	3 ± 1) ℃
Relative humidity	:	47	% R.H.

Mode	Channel	Frequency (쌘)	Measured PSD (dB m/3 述)	Limit (dB m/3 kt/z)
	Low	2 402	-12.96	
GFSK	Middle	2 440	-12.07	8
	High	2 480	-12.88	

Report Number: F690501-RF-RTL000473-1

- Test plots

6. Antenna Requirement

6.1. Standard Applicable

For intentional device, according to FCC 47 CFR Section \$15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section \$15.247(b) if transmitting antennas of directional gain greater than 6 dB i are used, the power shall be reduced by the amount in dB that the gain of the antenna exceeds 6 dB i.

6.2. Antenna Connected Construction

Antenna used in this product is FPCB Antenna with gain of 3.33 dB i.

- End of the Test Report -