

TEST REPORT

Product Name: Ecoer HVAC IoT Device(U)

FCC ID: 2BAPJ-ELO01

Trademark: ECCE

Model Number: ELO01

Prepared For: Ecoer, Inc

Address: 43671 Trade Center Place, Suite 100 Dulles, VA 20166

Manufacturer: Wuxi Mantoo Technology Co.,Ltd.

Address: Room 1001, building A2, Tian'an smart city, Xinwu District, Wuxi City, Jiangsu

Province

Prepared By: Shenzhen CTB Testing Technology Co., Ltd.

Address: 1&2/F., Building A, No.26, Xinhe Road, Xinqiao, Xinqiao Street, Bao'an

District, Shenzhen, Guangdong, China

Sample Received Date: Mar. 01, 2023

Sample tested Date: Mar. 01, 2023 to Mar. 16, 2023

Issue Date: Mar. 16, 2023

Report No.: CTB230316028RFX

Test Standards FCC Part15.247

ANSI C63.10:2013

Test Results PASS

Remark: This is LoRa radio test report.

Compiled by: Reviewed by: Approved by:

ChenZheng

Arroin Izu

Chen Zheng Arron Liu Bin Mei / Director

Note: If there is any objection to the inspection results in this report, please submit a written report to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen CTB Testing Technology Co., Ltd. this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client. "*" indicates the testing items were fulfilled by subcontracted lab. "#" indicates the items are not in CNAS accreditation scope.

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 1 of 33

TABLE OF CONTENT

Т	est Re	eport Declaration	Page
	1.	VERSION	
	2.	TEST SUMMARY	
	3.	MEASUREMENT UNCERTAINTY	
	4.	PRODUCT INFORMATION AND TEST SETUP	(
	4.1	Product Information	, <i>(</i>
	4.2	Test Setup Configuration	
	4.3	Support Equipment	(
	4.4	Channel List	
	4.5	Test Mode	
	4.6	Test Environment	
	5.	TEST FACILITY AND TEST INSTRUMENT USED	
	5.1	Test Facility	8
	5.2	Test Instrument Used	
	6.	AC POWER LINE CONDUCTED EMISSION	1
	6.1	Block Diagram Of Test Setup	17
	6.2	Limit	1
	6.3	Test procedure	1
	6.4	Test Result	
	7.	RADIATED SPURIOUS EMISSION	14
	7.1	Block Diagram Of Test Setup	14
	7.2	Limit	
	7.3	Test procedure	
	7.4	Test Result	
	8.	BAND EDGE AND RF COUNDUCTED SPURIOUS EMISSIONS	
	8.1	Block Diagram Of Test Setup	
	8.2	Limit	
	8.3	Test procedure	
		Test Result	22
	9.	COUDUCTED PEAK OUTPUT POWER	
	9.1	Block Diagram Of Test Setup	
	9.2	Limit CCCCC	
	9.3	Test procedure	
		Test Result	
	10.	6DB OCCUPIED BANDWIDTH	2′
	10.1	Block Diagram Of Test Setup	
	10.2		
	10.3		
	10.4		
	11.	POWER SPECTRAL DENSITY	
	11.1	Block Diagram Of Test Setup	
	11.2		
	11.3		
	11.4	Test Result	
	12. 13.	EUT TEST SETUP PHOTOGRAPHS	
	J. J.	EUI IESI SEIUP PRUIUGRAPRS	

(Note: N/A means not applicable)

1. VERSION

Report No.	Issue Date	Description	Approved
CTB230316028RFX	Mar. 16, 2023	Original	Valid

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 3 of 33

2. TEST SUMMARY

The Product has been tested according to the following specifications:

Test Item	Test Requirement	Test method	Result
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	N/A
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Band edge and RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)/15.205(a)	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v05r02	PASS
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (b)	\$ 50 B	PASS

Remark:

Test according to ANSI C63.10-2013.

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 4 of 33

Report No.: CTB230316028RFX

3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Item	Uncertainty
Occupancy bandwidth	54.3kHz
Conducted output power Above 1G	0.9dB
Conducted output power below 1G	0.9dB
Power Spectral Density , Conduction	0.9dB
Conduction spurious emissions	2.0dB
Out of band emission	2.0dB
3m camber Radiated spurious emission(9K-30MHz)	4.8dB
3m camber Radiated spurious emission(30MHz-1GHz)	4.6dB
3m chamber Radiated spurious emission(1GHz-18GHz)	5.1dB
3m chamber Radiated spurious emission(18GHz-40GHz)	3.4dB
humidity uncertainty	5.5%
Temperature uncertainty	0.63℃
frequency	1×10-7
Conducted Emission (150KHz-30MHz)	3.2 dB
Radiated Emission(30MHz ~ 1000MHz)	4.8 dB
Radiated Emission(1GHz ~6GHz)	4.9 dB

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 5 of 33

4. PRODUCT INFORMATION AND TEST SETUP

4.1 Product Information

Model(s): ELO01

Model Description: N/A

Hardware Version: V1.2

Software Version: V3.8.1

Operation Frequency: 923.3-927.5MHz

Max. RF output power: 14.095dBm

Type of Modulation: LoRa

Antenna installation: FPC antenna

Antenna Gain: 1.08dBi
Ratings: DC 12V

4.2 Test Setup Configuration

See test photographs attached in EUT TEST SETUP PHOTOGRAPHS for the actual connections between Product and support equipment.

4.3 Support Equipment

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
c51. c5	Laptop	DELL	Vostro 5490	N/A	N/A
2	Battery	JUXIANG	6-QW-45(430)-C	50 1 5°	, sy s

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 6 of 33

Report No.: CTB230316028RFX

4.4 Channel List

923.3MHz-927.5MHz

CH No.	Frequency (MHz)	CH No.	Frequency (MHz)	CH No.	Frequency (MHz)	CH No.	Frequency (MHz)
0	923.30	2	924.50	4	925.70	6	926.90
1	923.90	3	925.10	5	926.30	7	927.50

4.5 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Test mode	Low channel	Middle channel	High channel
Transmitting (LoRa)	923.3MHz	925.1MHz	927.5MHz
Receiving (LoRa)	923.3MHz	925.1MHz	927.5MHz

4.6 Test Environment

Humidity(%):	54
Atmospheric Pressure(kPa):	101
Normal Voltage(DC):	12V
Normal Temperature(°C)	23
Low Temperature(°C)	
High Temperature(°C)	40

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 7 of 33

5. TEST FACILITY AND TEST INSTRUMENT USED

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Floor 1&2, Building A, No. 26 of Xinhe Road, Xinqiao Street, Baoan District, Shenzhen China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

5.2 Test Instrument Used

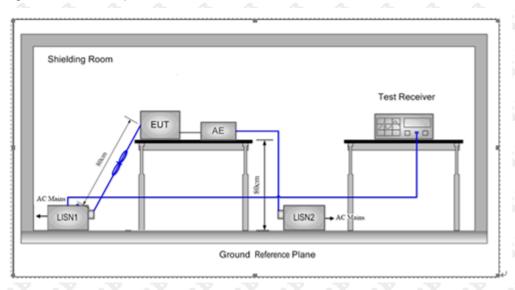
Item	Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
G 1	Spectrum Analyzer	Agilent	N9020A	MY52090073	2023.07.19
2	Power Sensor	Agilent	U2021XA	MY56120032	2023.07.19
3	Power Sensor	Agilent	U2021XA	MY56120034	2023.07.19
4	Communication test set	R&S	CMW500	108058	2023.07.19
5	Spectrum Analyzer	KEYSIGHT	N9020A	MY51289897	2023.07.19
6	Signal Generator	Agilent	N5181A	MY50140365	2023.07.19
7	Vector signal generator	Agilent	N5182A	MY47420195	2023.07.19
8	Communication test set	Agilent	E5515C	MY50102567	2023.07.19
9	2.4 GHz Filter	Shenxiang	MSF2400-2483. 5MS-1154	20181015001	2023.07.19
10	5 GHz Filter	Shenxiang	MSF5150-5850 MS-1155	20181015001	2023.07.19
11	Filter	Xingbo	XBLBQ-DZA12	190821-1-1	2023.07.19
12	BT&WI-FI Automatic test software	Micowave	MTS8000	Ver. 2.0.0.0	
13	Rohde & Schwarz SFU Broadcast Test System	R&S	SFU	101017	2022.10.30
14	Temperature humidity chamber	Hongjing	TH-80CH	DG-15174	2023.07.19
15	234G Automatic test software	Micowave	MTS8200	Ver. 2.0.0.0	
16	966 chamber	C.R.T.	966		2024.08.11
17	Receiver	R&S	ESPI	100362	2023.07.19
18	Amplifier	HP	8447E	2945A02747	2023.07.19
19	Amplifier	Agilent	8449B	3008A01838	2023.07.19
20	TRILOG Broadband Antenna	Schwarzbeck	VULB 9168	00869	2023.07.22

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 8 of 33

Shenzhen CTB Testing Technology Co., Ltd.

21	Double Ridged Broadband Horn Antenna	Schwarzbeck	BBHA9120D	01911	2023.07.22
22	EMI test software	Fala	EZ-EMC	FA-03A2 RE	
23	Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-224	2023.07.23
24	loop antenna	ZHINAN	ZN30900A	GTS534	2 6 16 6
25	40G Horn antenna	A/H/System	SAS-574	588	2024.10.30
26	Amplifier	AEROFLEX	Aeroflex	097	2024.10.30

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 9 of 33


		Radiated emi	ssion		
No.	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	Double Ridged Broadband Horn Antenna	Schwarzbeck	BBHA 9120 D	01911	2023.07.22
2	TRILOG Broadband Antenna	Schwarzbeck	VULB 9168	00869	2023.07.22
3	Amplifier	Agilent	8449B	3008A01838	2023.07.19
4	Amplifier	HP	8447E	2945A02747	2023.07.19
5	EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	100428/003	2023.07.19
6	Coaxial cable	ETS	RFC-SNS-100- NMS-80 NI	0,0	2023.07.19
7	Coaxial cable	ETS	RFC-SNS-100- NMS-20 NI		2023.07.19
8	Coaxial cable	ETS	RFC-SNS-100- SMS-20 NI	4 19 5	2023.07.19
9	Coaxial cable	ETS	RFC-NNS-100 -NMS-300 NI	4 /4	2023.07.19
10	Communication test set	Agilent	E5515C	MY50102567	2023.07.19
11	Communication test set	R&S	CMW500	108058	2023.07.19
12	EZ-EMC	Frad	EMC-con3A1.1	010	67,67

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 10 of 33

6. AC POWER LINE CONDUCTED EMISSION

6.1 Block Diagram Of Test Setup

62 Limit

Frequency (MHz)	Conducted limit (dBµV)	Conducted limit (dBµV)		
	Quasi-peak	Average		
0.15 - 0.5	66 to 56 ^{Note 1}	56 to 46 ^{Note 1}		
0.5 – 5	56	46		
5 - 30	60	50		

^{*} Decreasing linearly with the logarithm of the frequency

6.3 Test procedure

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0,4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0,8 m from the boundary of the unit under

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 11 of 33

test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0,8 m from the LISN 2.

- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
- 6) All modes were tested at AC 120V and 240V, only the worst result of AC 120V 60Hz was reported.
- 7) If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 12 of 33

6.4 Test Result

N/A

NOTE: This EUT is powered by DC power only, this test item is not applicable.

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 13 of 33

7. RADIATED SPURIOUS EMISSION

7.1 Block Diagram Of Test Setup

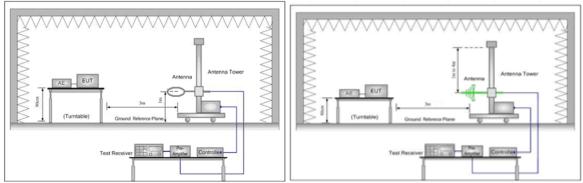
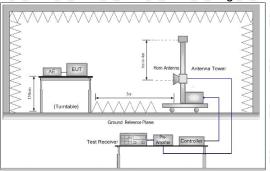



Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

7.2 Limit

Spurious Emissions:

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	- S-		300
0.490MHz-1.705MHz	24000/F(kHz)	h 2h	4) -4)	30
1.705MHz-30MHz	30	- C	, , ,	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 14 of 33

Report No.: CTB230316028RFX

7.3 Test procedure

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f.If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g.Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h.Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i.Repeat above procedures until all frequencies measured was complete.
- i. Full battery is usedduring test

Receiver set:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30KHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30KHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30KHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30KHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30KHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120 kHz	300KHz	Quasi-peak
Above 4CH=	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 15 of 33

7.4 Test Result

Worst case- LoRa (low channel)

Below 1GHz Test Results: Antenna polarity: H


Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
	46.9125	29.34	-6.57	22.77	40.00	-17.23	QP
	67.2022	33.02	-8.65	24.37	40.00	-15.63	QP
	145.3506	38.51	-5.48	33.03	43.50	-10.47	QP
* :	290.5262	44.02	-5.91	38.11	46.00	-7.89	QP
;	398.3312	34.92	-2.69	32.23	46.00	-13.77	QP
(803.1933	29.26	5.82	35.08	46.00	-10.92	QP
	*	MHz 46.9125 67.2022 145.3506	Mk. Freq. Level MHz dBuV 46.9125 29.34 67.2022 33.02 145.3506 38.51 * 290.5262 44.02 398.3312 34.92	Mk. Freq. Level Factor MHz dBuV dB 46.9125 29.34 -6.57 67.2022 33.02 -8.65 145.3506 38.51 -5.48 * 290.5262 44.02 -5.91 398.3312 34.92 -2.69	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 46.9125 29.34 -6.57 22.77 67.2022 33.02 -8.65 24.37 145.3506 38.51 -5.48 33.03 * 290.5262 44.02 -5.91 38.11 398.3312 34.92 -2.69 32.23	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dB/m 46.9125 29.34 -6.57 22.77 40.00 67.2022 33.02 -8.65 24.37 40.00 145.3506 38.51 -5.48 33.03 43.50 * 290.5262 44.02 -5.91 38.11 46.00 398.3312 34.92 -2.69 32.23 46.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dB/m dB 46.9125 29.34 -6.57 22.77 40.00 -17.23 67.2022 33.02 -8.65 24.37 40.00 -15.63 145.3506 38.51 -5.48 33.03 43.50 -10.47 * 290.5262 44.02 -5.91 38.11 46.00 -7.89 398.3312 34.92 -2.69 32.23 46.00 -13.77

Remark: Factor = Cable lose + Antenna factor - Pre-amplifier; Margin = Measurement - Limit

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 16 of 33

Worst case- LoRa (low channel)

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		46.9125	36.33	-6.57	29.76	40.00	-10.24	QP
2		86.6547	40.87	-10.30	30.57	40.00	-9.43	QP
3		142.8243	38.97	-5.50	33.47	43.50	-10.03	QP
4		398.3312	33.64	-2.69	30.95	46.00	-15.05	QP
5		601.4265	33.05	2.47	35.52	46.00	-10.48	QP
6	*	948.7610	31.67	7.63	39.30	46.00	-6.70	QP

Remark: Factor = Cable lose + Antenna factor - Pre-amplifier; Margin = Measurement - Limit

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 17 of 33

Above 1 GHz Test Results: CH Low

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Director of
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
1806	108.38	-5.84	52.69	74	-21.31	peak
1806	95.45	-5.84	43.65	54	-10.35	AVG
2709	56.24	-3.64	52.60	74	-21.40	peak
2709	47.07	-3.64	43.43	54	-10.57	AVG
3612	58.20	-0.95	57.25	74	-16.75	peak
3612	48.08	-0.95	47.13	54	-6.87	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
1806	108.33	-5.84	52.69	74	-21.31	peak
1806	95.63	-5.84	43.65	54	-10.35	AVG
2709	56.30	-3.64	52.66	74	-21.34	peak
2709	47.16	-3.64	43.52	54	-10.48	AVG
3612	58.21	-0.95	57.26	74	-16.74	peak
3612	48.02	-0.95	47.07	54	-6.93	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 18 of 33

CH Middle

Horizontal:

Reading	Factor	Emission Level	Limits	Margin	C C
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
108.33	-5.71	52.67	74	-21.33	peak
95.08	-5.71	45.61	54	-8.39	AVG
56.03	-3.51	52.52	74	-21.48	peak
46.76	-3.51	43.25	54	-10.75	AVG
58.06	-0.82	57.24	74	-16.76	peak
47.99	-0.82	47.17	54	-6.83	AVG
	(dBµV) 108.33 95.08 56.03 46.76 58.06	(dBµV) (dB) 108.33 -5.71 95.08 -5.71 56.03 -3.51 46.76 -3.51 58.06 -0.82	(dBμV) (dB) (dBμV/m) 108.33 -5.71 52.67 95.08 -5.71 45.61 56.03 -3.51 52.52 46.76 -3.51 43.25 58.06 -0.82 57.24	(dBμV) (dB) (dBμV/m) (dBμV/m) 108.33 -5.71 52.67 74 95.08 -5.71 45.61 54 56.03 -3.51 52.52 74 46.76 -3.51 43.25 54 58.06 -0.82 57.24 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 108.33 -5.71 52.67 74 -21.33 95.08 -5.71 45.61 54 -8.39 56.03 -3.51 52.52 74 -21.48 46.76 -3.51 43.25 54 -10.75 58.06 -0.82 57.24 74 -16.76

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	15 TO
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
1830	108.44	-5.71	52.67	74	-21.33	peak
1830	95.20	-5.71	45.61	54	-8.39	AVG
2475	55.95	-3.51	52.44	74	-21.56	peak
2475	46.88	-3.51	43.37	54	-10.63	AVG
3660	58.14	-0.82	57.32	74	-16.68	peak
3660	47.98	-0.82	47.16	54	-6.84	AVG

Report Tel: 4008-707-283

CH High

Horizontal:

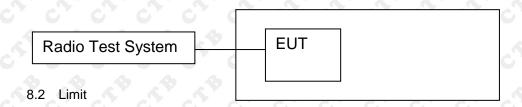
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Datasta
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
1854	56.45	-5.65	52.36	74	-21.64	peak
1854	47.19	-5.65	46.89	54	-7.11	AVG
2781	56.24	-3.43	52.81	74	-21.19	peak
2781	47.47	-3.43	44.04	54	-9.96	AVG
3708	57.35	-0.75	56.60	74	-17.40	peak
3708	47.59	-0.75	46.84	54	-7.16	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	D.41.46
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
1854	56.48	-5.65	52.36	74	-21.64	peak
1854	47.25	-5.65	46.89	54	-7.11	AVG
2781	56.26	-3.43	52.83	74	-21.17	peak
2781	47.42	-3.43	43.99	54	-10.01	AVG
3708	57.35	-0.75	56.60	74	-17.40	peak
3708	47.66	-0.75	46.91	54	-7.09	AVG

- (1) Measuring frequencies from 1 GHz to the 25 GHz \circ
- (2). All modes of operation were investigated and the worst-case emissions are reported.(3). Radiated emission test from 9kHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9kHz to 30MHz and not recorded in this report.


Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 20 of 33

Report No.: CTB230316028RFX

8. BAND EDGE AND RF COUNDUCTED SPURIOUS EMISSIONS

8.1 Block Diagram Of Test Setup

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

8.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

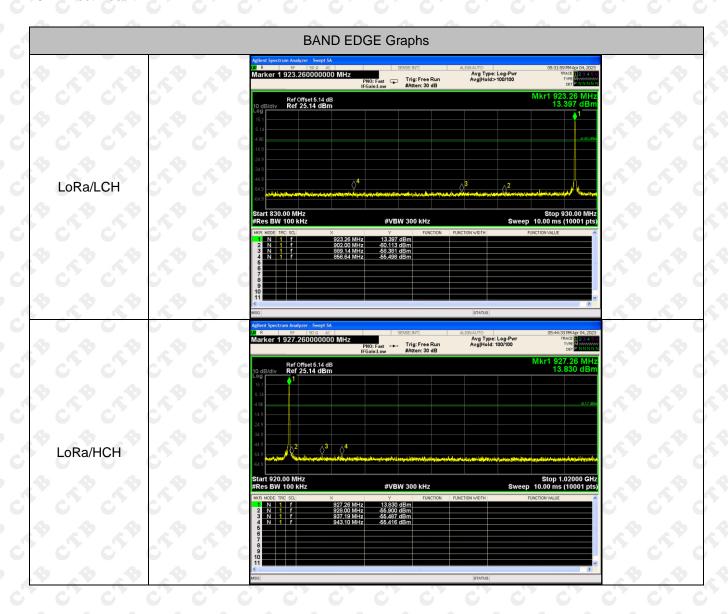
2. Set the spectrum analyzer:

Blow 30MHz:

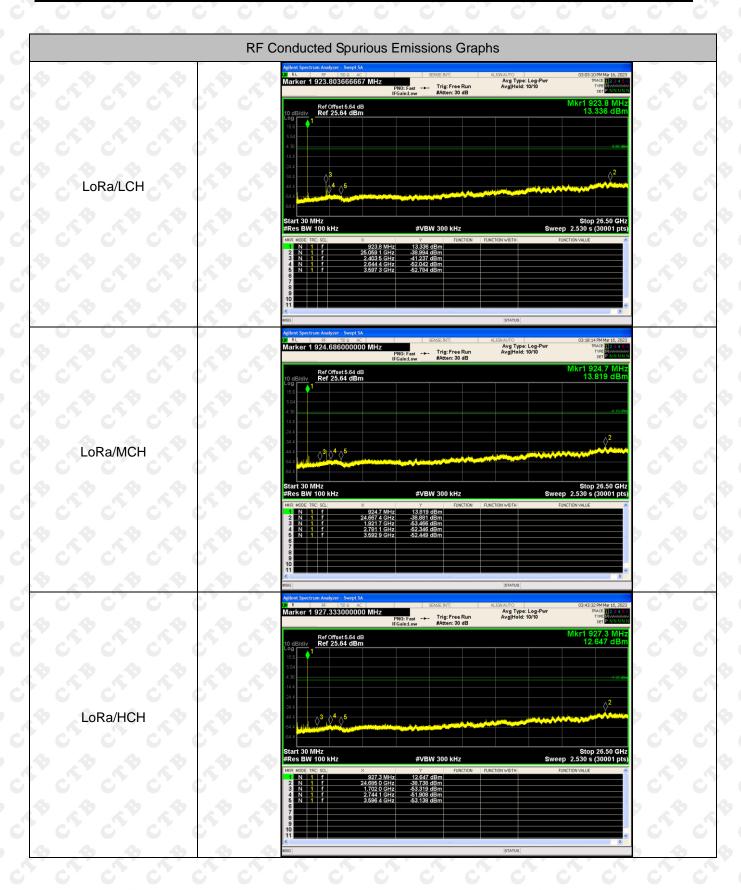
RBW = 100kHz, VBW = 300kHz, Sweep = auto

Detector function = peak, Trace = max hold

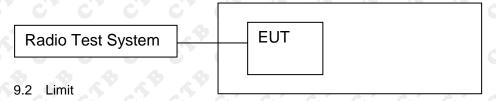
Above 30MHz:


RBW = 100KHz, VBW = 300KHz, Sweep = auto

Detector function = peak, Trace = max hold


Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 21 of 33

8.4 Test Result



Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 23 of 33

9. COUDUCTED OUTPUT POWER

9.1 Block Diagram Of Test Setup

FCC Part15 (15.247), Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5	PASS		

9.3 Test procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 2MHz. VBW = 6MHz. Channel power measurement. Sweep = auto; Detector Function = peak.
- 3. Keep the EUT in transmitting at lowest, middle and highest channel individually. Record the max value.

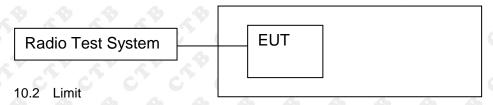
Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 24 of 33

9.4 Test Result

Mode	Channel.	Maximum Output Power [dBm]	Limit[dBm]	Verdict
	LCH	13.818	30	PASS
LoRa	МСН	14.087	30	PASS
0 0 0	нсн	14.095	30	PASS

Duty Cycle	CB CB	C	R R R R R R
Mode	Channel.	Duty Cycle(%)	Correction Factor (dB)
	LCH	100	0 0
LoRa	MCH	100	0 0
	НСН	100	0 0

Report Page 25 of 33 Tel: 4008-707-283 Web: http://www.ctb-lab.net



Test Graph: Avg Type: Log-Pwr Avg|Hold:>100/100 LoRa PNO: Fast Trig: Free Run Low channel 1 922.92 MF 13.818 dB Ref Offset 5.64 dB Ref 25.64 dBm enter 923.300 MHz Res BW 2.0 MHz #VBW 6.0 MHz LoRa Avg Type: Log-Pwr Avg|Hold>100/100 Mid channel PNO: Fast Trig: Free Run Ref Offset 5.64 dB Ref 25.64 dBm #VBW 6.0 MHz LoRa arker 1 927.070000000 MHz High channel Avg Type: Log-Pwr Avg|Hold>100/100 PNO: Fast Trig: Free Run /lkr1 927.07 M 14.095 dE Ref Offset 5.64 dB Ref 25.64 dBm

10. 6DB OCCUPIED BANDWIDTH

10.1 Block Diagram Of Test Setup

FCC Part15 (15.247), Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	902-928	PASS

10.3 Test procedure

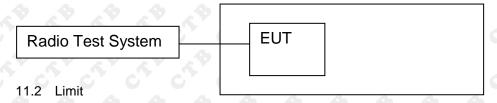
- 1. Rem1. Set RBW = 100kHz.
- 2. Set the video bandwidth (VBW) $\geq 3 \times RBW$.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

10.4 Test Result

Test Mode	Frequency	6dB Bandwidth (MHz)	Result
	Low channel	0.6411	PASS
LoRa	Mid channel	0.6396	PASS
A 4 4 6	High channel	0.6393	PASS

Note: All modes of operation were Pre-scan and the worst-case emissions are reported.

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 27 of 33


Test Graph:

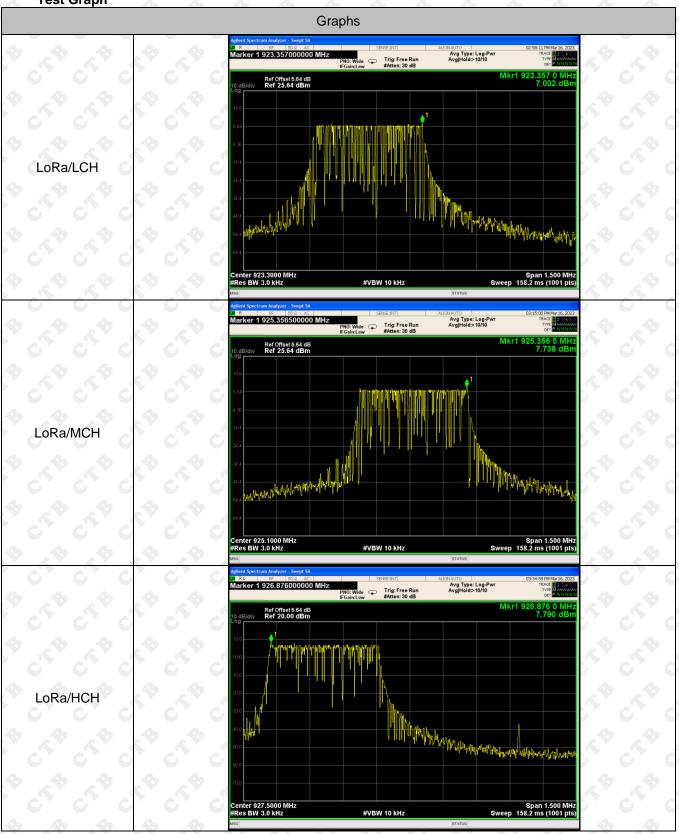
11. POWER SPECTRAL DENSITY

11.1 Block Diagram Of Test Setup

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247	Power Spectral Density	8 dBm (in any 3KHz)	902-928	PASS

11.3 Test procedure

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = \max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.


11.4 Test Result

Mode	Channel.	Power Spectral Density (dBm/3KHz)	Limit(dBm/3KHz)	Verdict
LoRa	LCH	7.002	8	PASS
LoRa	MCH	7.738	8	PASS
LoRa	HCH	7.790	8	PASS

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 29 of 33

Test Graph

Report No.: CTB230316028RFX

12. ANTENNA REQUIREMENT

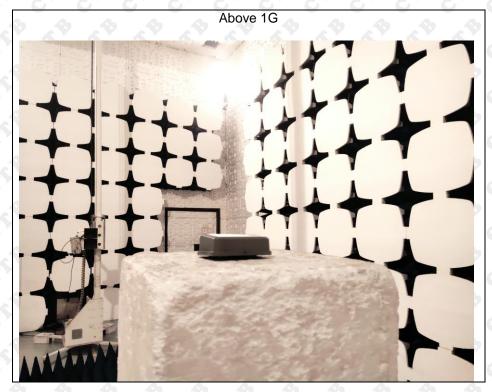
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The EUT antenna is FPC antenna. The best case gain of the antenna is 1.08dBi.


Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 31 of 33

13. EUT TEST SETUP PHOTOGRAPHS

Radiated Emissions

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 32 of 33

Conducted emissions

*** ** END OF REPORT ****

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 33 of 33