

: 14499085H-A : 1 of 48

RADIO TEST REPORT

Test Report No.: 14499085H-A

Customer	Murata Manufacturing Co., Ltd.
Description of EUT	Communication Module
Model Number of EUT	2DV
FCC ID	VPYLBCA1ZZ2DV
Test Regulation	FCC Part 15 Subpart C
Test Result	Complied (Refer to SECTION 3)
Issue Date	December 22, 2022
Remarks	-

Representative Test Engineer	Approved By
(.doshida	T. Shimada
Tetsuro Yoshida	Takumi Shimada
Engineer	Engineer
	HOC-MRA ACCREDITED
	CERTIFICATE 5107.02
The testing in which "Non-accreditation" is display	ed is outside the accreditation scopes in UL Japan, Inc.
There is no testing item of "Non-accreditation".	

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 21.0

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided from the customer for this report is identified in Section 1.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 14499085H-A

Revision	Test Report No.	Date	Page Revised Contents
-	14499085H-A	December 22, 2022	-
(Original)			

Test Report No.	: 14499085H-A
Page	: 3 of 48

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard
AC	Alternating Current	IEC	International Electrotechnical Commission
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers
AM	Amplitude Modulation	IF	Intermediate Frequency
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada
Ant, ANT	Antenna	ISO	International Organization for Standardization
AP	Access Point	JAB	Japan Accreditation Board
ASK	Amplitude Shift Keying	LAN	Local Area Network
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System
AV	Average	MCS	Modulation and Coding Scheme
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement
BR	Bluetooth Basic Rate	N/A	Not Applicable
BT	Bluetooth	NIST	National Institute of Standards and Technology
BT LE	Bluetooth Low Energy	NS	No signal detect.
BW	BandWidth	NSA	Normalized Site Attenuation
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program
CCK	Complementary Code Keying	OBW	Occupied Band Width
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter
CW	Continuous Wave	PCB	Printed Circuit Board
DBPSK	Differential BPSK	PER	Packet Error Rate
DC	Direct Current	PHY	Physical Layer
D-factor	Distance factor	РК	Peak
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width
EN	European Norm	RDS	Radio Data System
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment
EU	European Union	RF	Radio Frequency
EUT	Equipment Under Test	RMS	Root Mean Square
Fac.	Factor	RSS	Radio Standards Specifications
FCC	Federal Communications Commission	Rx	Receiving
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer
FM	Frequency Modulation	SG	Signal Generator
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio
FSK	Frequency Shift Keying	TR	Test Receiver
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting
GNSS	Global Navigation Satellite System	VBW	Video BandWidth
GPS	Global Positioning System	Vert.	Vertical
Hori.	Horizontal	WLAN	Wireless LAN
11011.	TOTIZOTIAL	W LAIN	THEORY LAN

Reference: Abbreviations (Including words undescribed in this report)

CONTENTS

PAGE

SECTION 1:	Customer Information	5
SECTION 2:	Equipment Under Test (EUT)	5
SECTION 3:	Test Specification, Procedures & Results	
SECTION 4:	Operation of EUT during testing	
SECTION 5:	Conducted Emission	
SECTION 6:	Radiated Spurious Emission	
SECTION 7:	Antenna Terminal Conducted Tests	
APPENDIX 1 :	Test Data	
	ed Emission	
	cupied Bandwidth and 6 dB Bandwidth	
	m Peak Output Power	
	Output Power	
	e confirmation	
	Spurious Emission	
	ed Spurious Emission	
	ensity	
	Test Instruments	
APPENDIX 3 :		
	ed Emission	
	Spurious Emission	
	ase Position	
	Terminal Conducted Tests	

Test Report No.	: 14499085H-A
Page	: 5 of 48

SECTION 1: Customer Information

Company Name	Murata Manufacturing Co., Ltd.
Address	1-10-1 Higashikotari, Nagaokakyo-shi, Kyoto 617-8555 Japan
Telephone Number	+81-75-955-6736
Contact Person	Motoo Hayashi

The information provided from the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages

- Operating/Test Mode(s) (Mode(s)) on all the relevant pages

- SECTION 1: Customer Information

- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date

- SECTION 4: Operation of EUT during testing

* The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	Communication Module
Model Number	2DV
Serial Number	Refer to SECTION 4.2
Condition	Production model
Modification	No Modification by the test lab
Receipt Date	November 21, 2022
Test Date	November 21 and 22, 2022

2.2 Product Description

General Specification

Rating Typ. DC 3.3 V / Min. DC 2.4 V / Max. DC 4.75 V	Rating	Typ. DC 3.3 V / Min. DC 2.4 V / Max. DC 4.75 V
---	--------	--

Radio Specification

Bluetooth (Low Energy)

Equipment Type	Transceiver
Frequency of Operation	2402 MHz to 2480 MHz
Type of Modulation	GFSK
Antenna Gain	1.0 dBi

SECTION 3: Test Specification, Procedures & Results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart C
Title	FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators
	Section 15.207 Conducted limits
	Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,
	and 5725-5850 MHz

3.2 Procedures and Results

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
Conducted Emission	FCC: ANSI C63.10-	FCC: Section 15.207	33.37 dB	Complied	-
	2013		0.15000 MHz, N, QP	a)	
	6. Standard test methods				
	ISED: RSS-Gen 8.8	ISED: RSS-Gen 8.8			
6dB Bandwidth	FCC: KDB 558074 D01	FCC: Section	See data.	Complied	Conducted
	15.247	15.247(a)(2)		b)	
	Meas Guidance v05r02				
	ISED: -	ISED: RSS-247 5.2(a)			
Maximum Peak	FCC: KDB 558074 D01	FCC: Section		Complied	Conducted
Output Power	15.247	15.247(b)(3)		c)	
	Meas Guidance v05r02				
	ISED: RSS-Gen 6.12	ISED: RSS-247 5.4(d)			
Power Density	FCC: KDB 558074 D01	FCC: Section 15.247(e)		Complied	Conducted
	15.247			d)	
	Meas Guidance v05r02				
	ISED: -	ISED: RSS-247 5.2(b)			
Spurious Emission	FCC: KDB 558074 D01	FCC: Section15.247(d)	4.0 dB	Complied	Conducted
Restricted Band	15.247		2483.5 MHz, AV, Horizontal	e), f)	(below 30 MHz)/
Edges	Meas Guidance v05r02				Radiated
	ISED: RSS-Gen 6.13	ISED: RSS-247 5.5			(above 30 MHz)
		RSS-Gen 8.9			*1)
		RSS-Gen 8.10			

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593.

* In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

*1) Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 8.5 and 8.6.

a) Refer to APPENDIX 1 (data of Conducted Emission)

b) Refer to APPENDIX 1 (data of 6 dB Bandwidth and 99 % Occupied Bandwidth)

c) Refer to APPENDIX 1 (data of Maximum Peak Output Power)

d) Refer to APPENDIX 1 (data of Power Density)

e) Refer to APPENDIX 1 (data of Conducted Spurious Emission) f) Refer to APPENDIX 1 (data of Radiated Spurious Emission)

FCC Part 15.31 (e)

This EUT provides the stable voltage constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 203/212 Antenna requirement

The antenna is not removable from the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203

3.3 Addition to Standard

Item	Test Procedure	Specification	Worst Margin	Results	Remarks	
99% Occupied	ISED: RSS-Gen 6.7	ISED: -	N/A	-	Conducted	
Bandwidth				a)		
a) Refer to APPENDIX 1 (data of 6 dB Bandwidth and 99 % Occupied Bandwidth)						

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Conducted emission

Using Item	Frequency range	Uncertainty (+/-)
AMN (LISN)	0.009 MHz to 0.15 MHz	3.7 dB
	0.15 MHz to 30 MHz	3.3 dB

Radiated emission

Measurement distance	Frequency range	Frequency range		
3 m	9 kHz to 30 MHz	kHz to 30 MHz		
10 m			3.0 dB	
3 m	30 MHz to 200 MHz	Horizontal	4.8 dB	
		Vertical	5.0 dB	
	200 MHz to 1000 MHz	Horizontal	5.1 dB	
		Vertical	6.2 dB	
10 m	30 MHz to 200 MHz	Horizontal	4.8 dB	
		Vertical	4.8 dB	
	200 MHz to 1000 MHz	Horizontal	5.0 dB	
		Vertical	5.0 dB	
3 m	1 GHz to 6 GHz		4.9 dB	
	6 GHz to 18 GHz	6 GHz to 18 GHz		
1 m	10 GHz to 26.5 GHz	5.4 dB		
	26.5 GHz to 40 GHz	26.5 GHz to 40 GHz		
10 m	1 GHz to 18 GHz		5.4 dB	

Antenna Terminal test

Test Item	Uncertainty (+/-)
20 dB Bandwidth / 99 % Occupied Bandwidth	0.96 %
Maximum Peak Output Power / Average Output Power	1.5 dB
Carrier Frequency Separation	0.42 %
Dwell time / Burst rate	0.10 %
Conducted Spurious Emission	2.7 dB

: 14499085H-A : 8 of 48

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

*A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919 ISED Lab Company Number: 2973C / CAB identifier: JP0002 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	M aximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

* Size of vertical conducting plane (for Conducted Emission test) : 2.0 x 2.0 m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

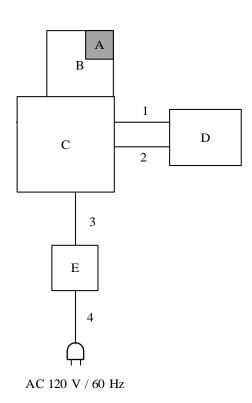
3.6 Test Data, Test Instruments, and Test Set Up

Refer to APPENDIX.

SECTION 4: Operation of EUT during testing

4.1 **Operating Mode(s)**

[BLE]


[DLL]					
Mode		Remarks*			
Bluetooth Low Energy (BLE) 1M-PHY Uncoded PHY (1M-PHY) Maximum Packet Size, PRBS9					
Bluetooth Low Er	Bluetooth Low Energy (BLE) 2M-PHY Uncoded PHY (2M-PHY) Maximum Packet Size, PRBS9				
*Power of the EU	T was set by the software as follows;				
Power Setting:	5 dBm, -18 dBm				
Software:	vare: SDK139				
	(Date: November 21, 2022, Storage location: Driven by connected PC)				
*This setting of so	*This setting of software is the worst case.				
Any conditions un	Any conditions under the normal use do not exceed the condition of setting.				
In addition, end u	sers cannot change the settings of the output power of the	the product.			

*The Details of Operating Mode(s)

Test Item	Operating Mode	Tested frequency				
Conducted Emission,	Tx BLE, 1M-PHY *1)	2402 MHz				
Radiated Spurious Emission (Below 1 GHz)						
Radiated Spurious Emission (Above 1 GHz),	Tx BLE, 1M-PHY	2402 MHz				
Maximum Peak Output Power,	Tx BLE, 2M-PHY	2440 MHz				
Power Density,		2480 MHz				
6dB Bandwidth,						
99% Occupied Bandwidth,						
Conducted Spurious Emission						
*1) Conducted emissions and Spurious emission	*1) Conducted emissions and Spurious emissions for frequencies below 1 GHz were limited to the channel that					
	had the highest power during the antenna terminal test, as preliminary testing indicated that changing the operating frequency had no significant impact on the emissions in those frequency bands.					

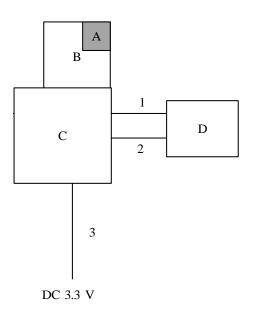
4.2 Configuration and Peripherals

< Conducted Emission Test>

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support Equipment

No.	Item	Model number	Serial Number	Manufacturer	Remarks
А	Communication	2DV	2905ES2Q	Murata Manufacturing	EUT
	Module			Co., Ltd.	
В	Jig Board	P2ML10527	-	Murata Manufacturing	-
				Co., Ltd.	
С	Jig Board	P2ML3635	-	Murata Manufacturing	-
				Co., Ltd.	
D	Jig Board	P2ML7727	-	Murata Manufacturing	-
				Co., Ltd.	
Е	DC Power Supply	PMC35-2A	2871	KIKUSUI	-


List of Cables Used

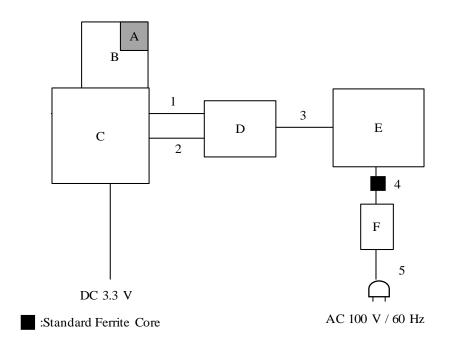
No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	Signal Cable	0.05	Unshielded	Unshielded	-
2	Signal Cable	0.20	Unshielded	Unshielded	-
3	DC Cable	0.70	Unshielded	Unshielded	-
4	AC Cable	1.80	Unshielded	Unshielded	-

 Test Report No.
 : 14499085H-A

 Page
 : 11 of 48

< Radiated Emission Test>

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.


Description of EUT and Support Equipment

No.	Item	Model number	Serial Number	Manufacturer	Remarks
А	Communication	2DV	2905ES2Q	Murata Manufacturing	EUT
	Module			Co., Ltd.	
В	Jig Board	P2ML10527	-	Murata Manufacturing	-
				Co., Ltd.	
С	Jig Board	P2ML3635	-	Murata Manufacturing	-
	-			Co., Ltd.	
D	Jig Board	P2ML7727	-	Murata Manufacturing	-
	-			Co., Ltd.	

List of Cables Used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	Signal Cable	0.05	Unshielded	Unshielded	-
2	Signal Cable	0.20	Unshielded	Unshielded	-
3	DC Cable	2.70	Unshielded	Unshielded	-

< Antenna Terminal Conducted Test>

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

No.	Item	Model number	Serial Number	Manufacturer	Remarks
А	Communication	2DV	2818ES15	Murata Manufacturing	EUT
	Module			Co., Ltd.	
В	Jig Board	P2ML10467	-	Murata Manufacturing	-
				Co., Ltd.	
С	Jig Board	P2ML3635	-	Murata Manufacturing	-
				Co., Ltd.	
D	Jig Board	P2ML7727	-	Murata Manufacturing	-
				Co., Ltd.	
Е	Laptop PC	X1 Carbon	R9-OH8OBW 15/9	Lenovo	-
F	AC Adapter	ADLX45NCC2A	36200281	Lenovo	-

Description of EUT and Support Equipment

List of Cables Used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	Signal Cable	0.05	Unshielded	Unshielded	-
2	Signal Cable	0.20	Unshielded	Unshielded	-
3	USB Cable	1.00	Shielded	Shielded	-
4	DC Cable	1.90	Unshielded	Unshielded	-
5	AC Cable	0.90	Unshielded	Unshielded	-

SECTION 5: Conducted Emission

Test Procedure and Conditions

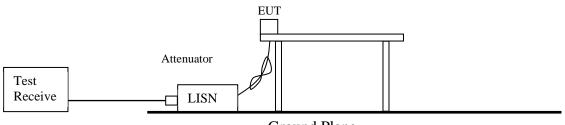
EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The rear of tabletop was located 40 cm to the vertical conducting plane. The rear of EUT, including peripherals aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80 cm from a Line Impedance Stabilization Network (LISN) / Artificial mains Network (AMN) and excess AC cable was bundled in center.

For the tests on EUT with other peripherals (as a whole system)

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30 cm to 40 cm long and were hanged at a 40 cm height to the ground plane. All unused 500hm connectors of the LISN (AMN) were resistivity terminated in 50 ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT in a Semi Anechoic Chamber.


The EUT was connected to a LISN (AMN).

An overview sweep with peak detection has been performed.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Detector	: QP and CISPR AV
Measurement Range	: 0.15 MHz to 30 MHz
Test Data	: APPENDIX
Test Result	: Pass

Figure 1: Test Setup

Ground Plane

SECTION 6: Radiated Spurious Emission

Test Procedure

It was measured based on "8.5 and 8.6 of KDB 558074 D01 15.247 Meas Guidance v05r02".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane. Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

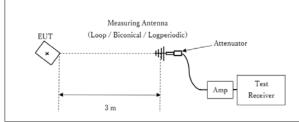
When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz		
Antenna Type	Biconical	Logperiodic	Horn		

In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(ISED) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).


Frequency	Below 1 GHz	Above 1 GHz		20 dBc
Instrument Used	Test Receiver	Spectrum Analy	yzer	Spectrum Analyzer
Detector	QP	РК	AV *1)	РК
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	<u>11.12.2.5.1</u>	RBW: 100 kHz
		VBW: 3 MHz	RBW: 1 MHz	VBW: 300 kHz
			VBW: 3 MHz	
			Detector:	
			Power Averaging (RMS)	
			Trace: 100 traces	
			<u>11.12.2.5.2</u>	
			The duty cycle was less	
			than 98% for detected	
			noise, a duty factor was	
			added to the 11.12.2.5.1	
			results.	

*1) Average Power Measurement was performed based on ANSI C63.10-2013.

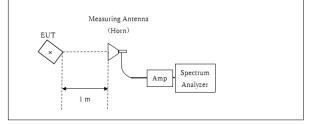
Test Distance: 3 m

Figure 2: Test Setup

Below 1 GHz

× : Center of turn table

1 GHz to 10 GHz


Distance Factor: 20 x log (3.95 m / 3.0 m) = 2.39 dB* Test Distance: (3 + SVSWR Volume / 2) - r = 3.95 m

SVSWR Volume : 2.0 m (SVSWR Volume has been calibrated based on CISPR 16-1-4.) r = 0.05m

r : Radius of an outer periphery of EUT

× : Center of turn table

10 GHz to 26.5 GHz

Distance Factor: 20 x log (1.0 m / 3.0 m) = -9.5 dB*Test Distance: 1 m

× : Center of turn table

The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement Range	: 30 MHz to 26.5 GHz
Test Data	: APPENDIX
Test Result	: Pass

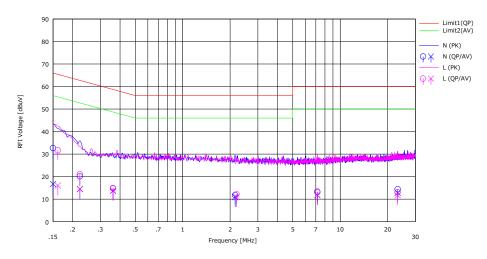
SECTION 7: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument Used
6dB Bandwidth	3 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied	Enough width to display	1 to 5 %	Three times	Auto	Peak	Max Hold	Spectrum Analyzer
Bandwidth *1)	emission skirts	of OBW	of RBW				
Maximum Peak	-	-	-	Auto	Peak/	-	Power Meter
Output Power					Average *2)		(Sensor: 50 MHz BW)
Peak Power Density	1.5 times the 6dB Bandwidth	3 kHz	10 kHz	Auto	Peak	Max Hold	Spectrum Analyzer *3)
Conducted Spurious	9kHz to 150kHz	200 Hz 620 Hz		Auto	Peak	Max Hold	Spectrum Analyzer
Emission *4) *5)	150kHz to 30MHz	9.1 kHz	27 kHz				
 *2) Reference data *3) Section 11.10.2 M *4) In the frequency r Then, wide-band no (9 kHz - 150 kHz: F *5) The limits in CFR measurements are p using the free space 	lethod PKPSD (peak PSD) ange below 30MHz, RBW bise near the limit was chec BW = 200 Hz, 150 kHz - 3 47, Part 15, Subpart C, par berformed in terms of magn is impedance of 377 Ohmes. to 45.5 - 51.5 = -6.0 dBuA	of "ANSI C was narrowe ked separate 0 MHz: RB ragraph 15.2 etic field str For exampl	ed to separate the dy, however the $W = 9.1 \text{ kHz}$ O9(a), are identicated ength and convert engine of $O(A)$ and $O($	e noise was ical to thos erted to ele nent at freq	not detected as e in RSS-Gen s ctric field streng uency 9 kHz re	ection 8.9, Tab gth levels (as r sulted in a leve	ble 6, since the eported in the table) el of 45.5 dBuV/m,

The test results and limit are rounded off to two decimals place, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.


Test Data	: APPENDIX
Test Result	: Pass

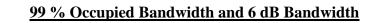
APPENDIX 1: Test Data

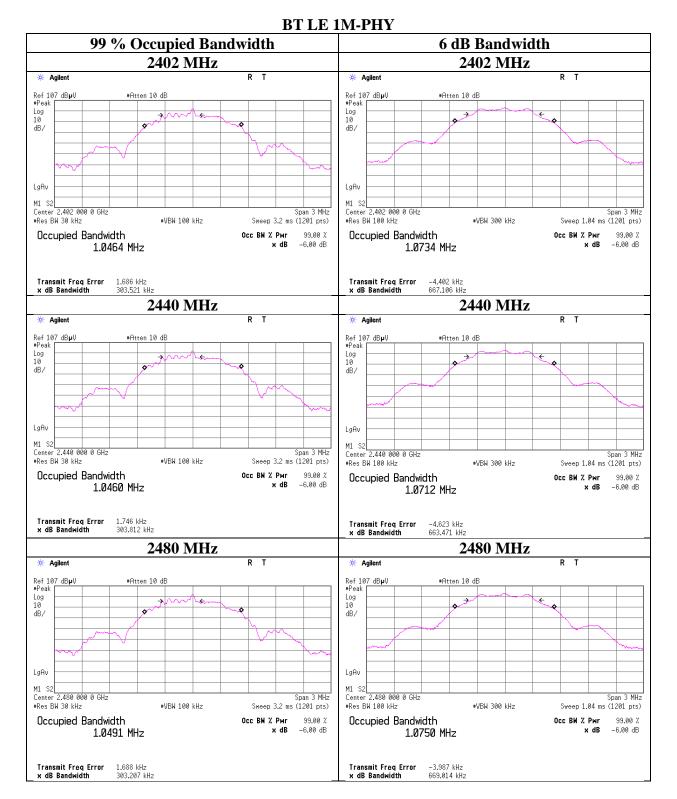
Conducted Emission

Test placeIse EMC Lab. No.1 Semi Anechoic ChamberDateNovember 22, 2022Temperature / Humidity20 deg. C / 50 % RHEngineerTetsuro YoshidaModeTx BT LE_Uncoded 1M-PHY, 2402 MHz

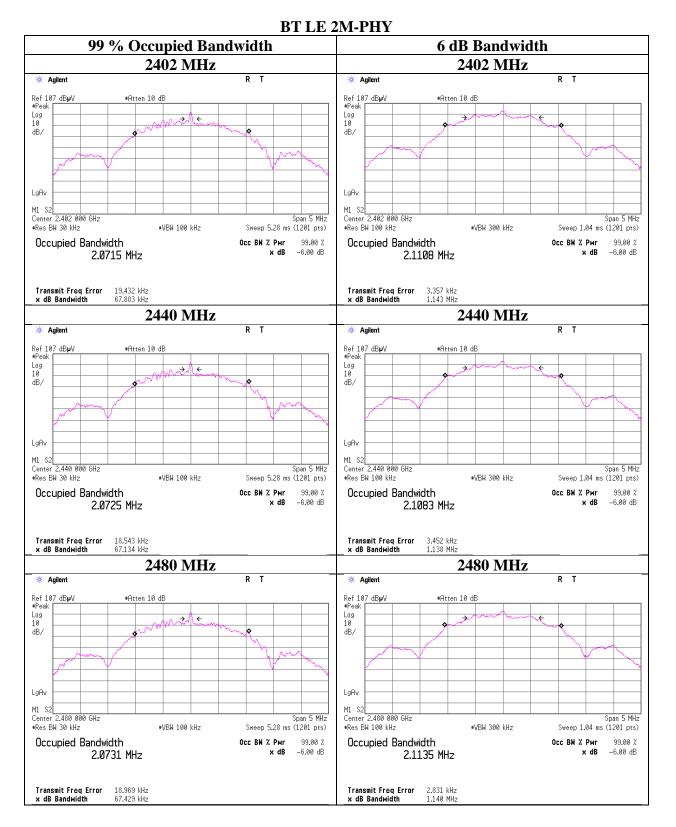
Limit : FCC_Part 15 Subpart C(15.207)

	F	Reading		LISN	LOSS	Res	ults	Lir	nit	Mar	rgin		
No.	Freq.	(QP)	<av></av>	LIDIN	LU55	(QP)	<av></av>	(QP)	(AV)	(QP)	<av></av>	Phase	Comment
	[MHz]	[dBuV]	[dBuV]	[dB]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
1	0.15000	19.50	3.60	0.04	13.09	32.63	16.73	66.00	56.00	33.37	39.27	Ν	
2	0.22225	7.00	1.30	0.04	13.11	20.15	14.45	62.73	52.73	42.58	38.28	Ν	
3	0.36115	1.70	0.50	0.04	13.14	14.88	13.68	58.70	48.70	43.82	35.02	Ν	
4	2.15200	-1.70	-2.60	0.06	13.41	11.77	10.87	56.00	46.00	44.23	35.13	Ν	
5	7.16500	-0.80	-2.10	0.14	13.80	13.14	11.84	60.00	50.00	46.86	38.16	Ν	
6	23.20000	-0.50	-2.10	0.37	14.52	14.39	12.79	60.00	50.00	45.61	37.21	Ν	
7	0.16105	18.50	2.90	0.07	13.09	31.66	16.06	65.41	55.41	33.75	39.35	L	
8	0.22225	7.90	1.40	0.06	13.11	21.07	14.57	62.73	52.73	41.66	38.16	L	
9	0.36115	1.60	0.60	0.07	13.14	14.81	13.81	58.70	48.70	43.89	34.89	L	
10	2.19700	-1.30	-2.60	0.08	13.41	12.19	10.89	56.00	46.00	43.81	35.11	L	
11	7.15600	-0.60	-2.20	0.16	13.80	13.36	11.76	60.00	50.00	46.64	38.24	L	
12	23.16000	- 1.90	- 3.20	0.41	14.51	13.02	11.72	60.00	50.00	46.98	38.28	L	


CHART: WITH FACTOR Peak hold data. CALCULATION : RESULT = READING + LISN + LOSS (CABLE + ATT) Except for the above table: adequate margin data below the limits.


: 14499085H-A : 18 of 48

99 % Occupied Bandwidth and 6 dB Bandwidth


Test placeIse EMC Lab. No.8 Measurement RoomDateNovember 21, 2022Temperature / Humidity22 deg. C / 60 % RHEngineerKeiya IdoModeTx BT LE

Mode	Frequency	99 % Occupied	6 dB Bandwidth	Limit for
		Bandwidth		6 dB Bandwidth
	[MHz]	[kHz]	[MHz]	[MHz]
1M-PHY	2402	1046.4	0.667	> 0.5000
	2440	1046.0	0.663	> 0.5000
	2480	1049.1	0.669	> 0.5000
2M-PHY	2402	2071.5	1.143	> 0.5000
	2440	2072.5	1.138	> 0.5000
	2480	2073.1	1.140	> 0.5000

: 14499085H-A : 20 of 48

99 % Occupied Bandwidth and 6 dB Bandwidth

: 14499085H-A : 21 of 48

Maximum Peak Output Power

Test placeIse EMC Lab. No.8 Measurement RoomDateNovember 21, 2022Temperature / Humidity22 deg. C / 60 % RHEngineerKeiya IdoModeTx BT LE 1M-PHY 2402 MHz

Power Setting 5 dBm

1M-PHY Conducted Power									e.i.r.p. for RSS-247					
Freq.	Reading	Cable	Atten.	Res	sult Limit		Margin	Antenna	Result		Li	nit	Margin	
		Loss	Loss						Gain					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2402	-7.13	1.87	9.79	4.53	2.84	30.00	1000	25.47	1.00	5.53	3.57	36.02	4000	30.49
2440	-7.22	1.88	9.79	4.45	2.79	30.00	1000	25.55	1.00	5.45	3.51	36.02	4000	30.57
2480	-7.34	1.90	9.79	4.35	2.72	30.00	1000	25.65	1.00	5.35	3.43	36.02	4000	30.67

2M-PHY					e.i.r.p. for RSS-247									
Freq.	Reading	Cable	Atten.	Res	sult	Limit		Margin	Antenna	Result		Limit		Margin
		Loss	Loss					Gain						
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2402	-7.16	1.87	9.79	4.50	2.82	30.00	1000	25.50	1.00	5.50	3.55	36.02	4000	30.52
2440	-7.21	1.88	9.79	4.46	2.79	30.00	1000	25.54	1.00	5.46	3.52	36.02	4000	30.56
2480	-7.37	1.90	9.79	4.32	2.70	30.00	1000	25.68	1.00	5.32	3.40	36.02	4000	30.70

Sample Calculation:

 $Result = Reading + Cable \ Loss + Attenuator \ Loss$

e.i.r.p. Result = Conducted Power Result + Antenna Gain

*The equipment and cables were not used for factor 0 dB of the data sheets.

Power Setting -18 dBm

1M-PHY	U				Conducted Power					e.i.r.p. for RSS-247					
Freq.	Reading	AMP	Cable	Atten.	Re	Result		Limit		Antenna	Result		Limit		Margin
		Gain	Loss	Loss						Gain					
[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2402	-7.61	32.87	1.87	19.54	-19.07	0.01	30.00	1000	49.07	1.00	-18.07	0.02	36.02	4000	54.09
2440	-7.77	32.85	1.88	19.54	-19.20	0.01	30.00	1000	49.20	1.00	-18.20	0.02	36.02	4000	54.22
2480	-7.87	32.84	1.90	19.54	-19.27	0.01	30.00	1000	49.27	1.00	-18.27	0.01	36.02	4000	54.29

2M-PHY						Con	ducted Po	wer		e.i.r.p. for RSS-247					
Freq.	Reading	AMP	Cable	Atten.	Re	Result		Limit		Antenna	Result		Limit		Margin
		Gain	Loss	Loss						Gain					
[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2402	-7.66	32.87	1.87	19.54	-19.12	0.01	30.00	1000	49.12	1.00	-18.12	0.02	36.02	4000	54.14
2440	-7.79	32.85	1.88	19.54	-19.22	0.01	30.00	1000	49.22	1.00	-18.22	0.02	36.02	4000	54.24
2480	-7.92	32.84	1.90	19.54	-19.32	0.01	30.00	1000	49.32	1.00	-18.32	0.01	36.02	4000	54.34

Sample Calculation:

Result = Reading - AMP Gain + Cable Loss + Attenuator Loss

e.i.r.p. Result = Conducted Power Result + Antenna Gain

*The equipment and cables were not used for factor $0 \, dB$ of the data sheets.

: 14499085H-A : 22 of 48

<u>Average Output Power</u> (Reference data for RF Exposure / SAR testing)

Test place	Ise EMC Lab. No.8 Measurement Room
Date	November 21, 2022
Temperature / Humidity	22 deg. C / 60 % RH
Engineer	Keiya Ido
Mode	Tx BT LE

Power Setting 5 dBm 1M-PHY

-	ІМ-РПІ								
	Freq.	Reading	Cable	Atten.	Result		Duty	Result	
			Loss	Loss	(Time average)		factor	(Burst power average	
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
	2402	-9.30	1.87	9.79	2.36	1.72	1.80	4.16	2.61
	2440	-9.35	1.88	9.79	2.32	1.71	1.80	4.12	2.58
	2480	-9.50	1.90	9.79	2.19	1.66	1.80	3.99	2.51

2M-PHY

Freq.	Reading	Cable	Atten.	Re	Result		Re	esult
		Loss	Loss	(Time average)		factor	(Burst power average	
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
2402	-11.96	1.87	9.79	-0.30	0.93	4.36	4.06	2.55
2440	-12.00	1.88	9.79	-0.33	0.93	4.36	4.03	2.53
2480	-12.15	1.90	9.79	-0.46	0.90	4.36	3.90	2.45

Sample Calculation:

Result (Time average) = Reading + Cable Loss + Attenuator Loss

Result (Burst power average) = Time average + Duty factor

*The equipment and cables were not used for factor 0 dB of the data sheets.

Power Setting -18 dBm

1M-PHY

ſ	Freq.	Reading	AMP	Cable	Atten.	Re	sult	Duty	Re	esult
			Gain	Loss	Loss	(Time a	verage)	factor	(Burst pov	ver average)
	[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
ſ	2402	-9.79	32.87	1.87	19.54	-21.25	0.01	1.80	-19.45	0.01
	2440	-9.93	32.85	1.88	19.54	-21.36	0.01	1.80	-19.56	0.01
	2480	-10.05	32.84	1.90	19.54	-21.45	0.01	1.80	-19.65	0.01

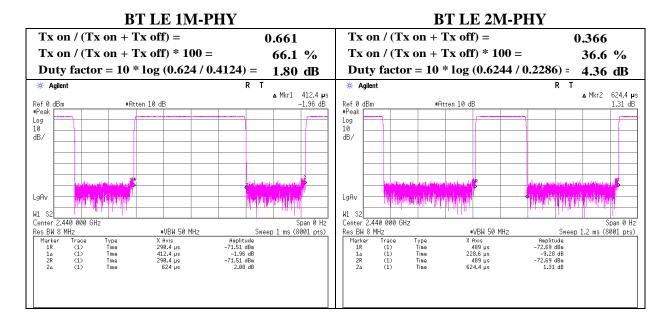
2M-PHY

Freq.	Reading	AMP	Cable	Atten.	Re	sult	Duty	Re	esult
		Gain	Loss	Loss	(Time a	verage)	factor	(Burst pov	ver average)
[MHz]	[dBm]	[dB]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
2402	-12.44	32.87	1.87	19.54	-23.90	0.00	4.36	-19.54	0.01
2440	-12.57	32.85	1.88	19.54	-24.00	0.00	4.36	-19.64	0.01
2480	-12.71	32.84	1.90	19.54	-24.11	0.00	4.36	-19.75	0.01

Sample Calculation:

Result (Time average) = Reading - AMP Gain + Cable Loss + Attenuator Loss

Result (Burst power average) = Time average + Duty factor


*The equipment and cables were not used for factor 0 dB of the data sheets.

The average output power was measured with the lowest order modulation and lowest data rate configuration in each IEEE 802.11 mode based on KDB 248227 D01.

: 14499085H-A : 23 of 48

Burst rate confirmation

Ise EMC Lab. No.8 Measurement Room
November 21, 2022
22 deg. C / 60 % RH
Keiya Ido
Tx BT LE

* Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

: 14499085H-A : 24 of 48

Radiated Spurious Emission

Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.1
Date	November 22, 2022
Temperature / Humidity	20 deg. C / 50 % RH
Engineer	Tetsuro Yoshida
	(Above 1 GHz)
Mode	Tx BT LE 1M-PHY 2402 MHz

	_	Reading	Reading	Ant.	_		Duty	Result	Result	Limit	Limit	M argin	Margin	
Polarity	Frequency	(QP / PK)	(AV)	Factor	Loss	Gain	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	36.8	33.5	-	16.0	7.4	39.0	-	17.8	-	40.0	-	22.2	-	
Hori.	80.0	38.1	-	7.0	8.1	39.1	-	14.1	-	40.0	-	25.9	-	
Hori.	114.7	31.2	-	12.2	8.6	39.1	-	12.8	-	43.5	-	30.7	-	
Hori.	186.5	27.7	-	16.3	9.4	39.1	-	14.2	-	43.5	-	29.3	-	
Hori.	222.4	30.4	-	12.8	9.7	39.1	-	13.8	-	46.0	-	32.2	-	
Hori.	491.3	29.2	-	18.2	11.8	38.6	-	20.6	-	46.0	-	25.4	-	
Hori.	2390.0	50.0	36.9	27.6	5.6	36.3	1.8	47.0	35.7	73.9	53.9	26.9	18.2	*1)
Hori.	4804.0	42.1	34.4	31.5	7.8	35.8	-	45.8	38.1	73.9	53.9	28.2	15.8	Floor noise
Hori.	7206.0	42.9	35.0	35.9	9.1	35.9	-	52.1	44.1	73.9	53.9	21.9	9.8	Floor noise
Hori.	9608.0	43.4	35.6	38.7	9.7	36.3	-	55.5	47.8	73.9	53.9	18.4	6.2	Floor noise
Vert.	36.8	33.4	-	16.0	7.4	39.0	-	17.7	-	40.0	-	22.3	-	
Vert.	80.0	37.9	-	7.0	8.1	39.1	-	13.9	-	40.0	-	26.1	-	
Vert.	114.7	34.3	-	12.2	8.6	39.1	-	15.9	-	43.5	-	27.6	-	
Vert.	186.5	27.9	-	16.3	9.4	39.1	-	14.4	-	43.5	-	29.1	-	
Vert.	222.4	30.3	-	12.8	9.7	39.1	-	13.7	-	46.0	-	32.3	-	
Vert.	491.3	29.3	-	18.2	11.8	38.6	-	20.7	-	46.0	-	25.3	-	
Vert.	2390.0	49.9	37.0	27.6	5.6	36.3	1.8	46.9	35.8	73.9	53.9	27.1	18.1	*1)
Vert.	4804.0	42.1	34.4	31.5	7.8	35.8	-	45.7	38.0	73.9	53.9	28.2	15.9	Floor noise
Vert.	7206.0	42.9	36.0	35.9	9.1	35.9	-	52.0	45.1	73.9	53.9	21.9	8.8	Floor noise
Vert.	9608.0	43.3	35.6	38.7	9.7	36.3	-	55.4	47.7	73.9	53.9	18.5	6.2	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + Distance factor(above 1 GHz)) - Gain(Amplifier) + Cable + Attenuator + Filter + Distance factor(above 1 GHz)) - Gain(Amplifier) + Cable + Attenuator + Filter + Distance factor(above 1 GHz)) - Gain(Amplifier) + Cable + Attenuator + Filter + Distance factor(above 1 GHz)) - Gain(Amplifier) + Cable + Attenuator + Filter + Distance factor(above 1 GHz)) - Gain(Amplifier) + Cable + Attenuator + Filter + Distance factor(above 1 GHz)) - Gain(Amplifier) + Cable + Attenuator + Filter + Distance factor(above 1 GHz)) - Gain(Amplifier) + Cable + Attenuator + Filter + Distance factor(above 1 GHz)) - Gain(Amplifier) + Cable + Attenuator + Filter + Distance factor(above 1 GHz)) - Gain(Amplifier) + Cable + Cable + Attenuator + Filter + Distance factor(above 1 GHz)) - Gain(Amplifier) + Cable + Attenuator + Filter + Distance factor(above 1 GHz)) - Gain(Amplifier) + Cable + Attenuator + Filter + Distance factor(above 1 GHz)) - Gain(Amplifier) + Cable + Cabl

 $Result \; (AV) = Reading + Ant \; Factor + Loss \; (Cable + Attenuator + Filter + Distance \; factor (above \; 1 \; GHz)) - Gain (Amplifier) + Duty \; factor + Dut$

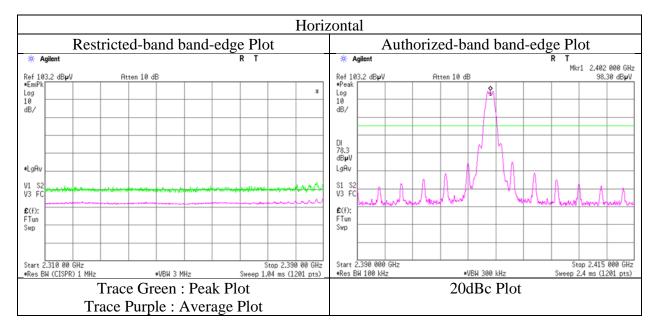
*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

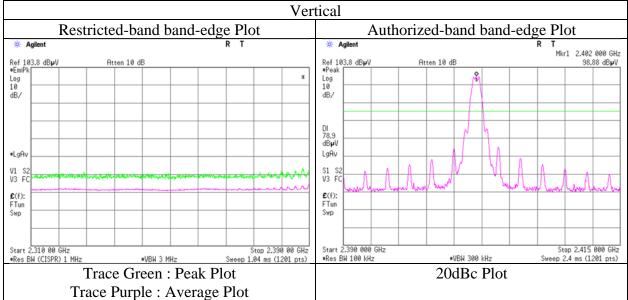
*QP detector was used up to 1GHz.

*1) Not Out of Band emission(Leakage Power)

20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.0	98.3	27.6	5.6	36.3	95.3	-	-	Carrier
Hori.	2400.0	57.2	27.6	5.6	36.3	54.2	75.3	21.1	
Vert.	2402.0	98.9	27.6	5.6	36.3	95.8	-	-	Carrier
Vert.	2400.0	57.9	27.6	5.6	36.3	54.8	75.8	21.0	


Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)


Distance factor: 1 GHz - 10 GHz 20log (3.95 m / 3.0 m) = 2.39 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

: 14499085H-A : 25 of 48

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.1
Date	November 22, 2022
Temperature / Humidity	20 deg. C / 50 % RH
Engineer	Tetsuro Yoshida
	(Above 1 GHz)
Mode	Tx BT LE 1M-PHY 2402 MHz

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions. Final result of restricted band edge was shown in tabular data.

: 14499085H-A : 26 of 48

Radiated Spurious Emission

Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.1
Date	November 22, 2022
Temperature / Humidity	20 deg. C / 50 % RH
Engineer	Tetsuro Yoshida
	(Above 1 GHz)
Mode	Tx BT LE 1M-PHY 2440 MHz

		Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	M argin	Margin	
Polarity	Frequency	(QP / PK)	(AV)	Factor	Loss	Gain	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	4880.0	42.3	34.3	31.6	7.8	35.7	-	46.0	38.0	73.9	53.9	27.9	15.9	Floor noise
Hori.	7320.0	42.7	35.2	36.1	9.1	35.9	-	52.0	44.5	73.9	53.9	21.9	9.4	Floor noise
Hori.	9760.0	43.4	35.2	39.1	9.7	36.4	-	55.9	47.7	73.9	53.9	18.0	6.2	Floor noise
Vert.	4880.0	42.1	34.5	31.6	7.8	35.7	-	45.8	38.2	73.9	53.9	28.1	15.7	Floor noise
Vert.	7320.0	42.9	35.8	36.1	9.1	35.9	-	52.2	45.1	73.9	53.9	21.7	8.8	Floor noise
Vert.	9760.0	43.1	35.1	39.1	9.7	36.4	-	55.6	47.6	73.9	53.9	18.3	6.3	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.

: 14499085H-A : 27 of 48

Radiated Spurious Emission

Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.1
Date	November 22, 2022
Temperature / Humidity	20 deg. C / 50 % RH
Engineer	Tetsuro Yoshida
	(Above 1 GHz)
Mode	Tx BT LE 1M-PHY 2480 MHz

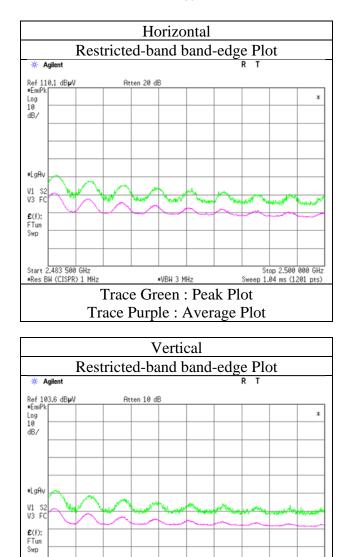
		Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	M argin	Margin	
Polarity	Frequency	(QP / PK)	(AV)	Factor	Loss	Gain	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	57.6	45.0	27.5	5.7	36.3	1.8	54.5	43.7	73.9	53.9	19.4	10.2	*1)
Hori.	2484.0	60.7	44.0	27.5	5.7	36.3	1.8	57.6	42.7	73.9	53.9	16.3	11.2	
Hori.	4960.0	42.3	34.3	31.7	7.8	35.7	-	46.1	38.1	73.9	53.9	27.8	15.8	Floor noise
Hori.	7440.0	42.5	35.3	36.3	9.1	35.9	-	52.0	44.7	73.9	53.9	22.0	9.2	Floor noise
Hori.	9920.0	43.4	35.1	39.1	9.8	36.4	-	55.8	47.5	73.9	53.9	18.1	6.4	Floor noise
Vert.	2483.5	52.6	40.3	27.5	5.7	36.3	1.8	49.5	39.0	73.9	53.9	24.5	14.9	*1)
Vert.	2484.0	55.9	39.9	27.5	5.7	36.3	1.8	52.8	38.6	73.9	53.9	21.1	15.3	
Vert.	4960.0	42.1	34.6	31.7	7.8	35.7	-	45.9	38.4	73.9	53.9	28.0	15.5	Floor noise
Vert.	7440.0	42.9	35.7	36.3	9.1	35.9	-	52.3	45.1	73.9	53.9	21.6	8.8	Floor noise
Vert.	9920.0	43.1	35.1	39.1	9.8	36.4	-	55.5	47.5	73.9	53.9	18.4	6.4	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

 $Result \ (AV) = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor + Dut$

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.


*1) Not Out of Band emission(Leakage Power)

Distance factor: 1 GHz - 10 GHz 20log (3.95 m / 3.0 m) = 2.39 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

: 14499085H-A : 28 of 48

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test placeIse EMC Lab.Semi Anechoic ChamberNo.1DateNovember 22, 2022Temperature / Humidity20 deg. C / 50 % RHEngineerTetsuro Yoshida
(Above 1 GHz)ModeTx BT LE 1M-PHY 2480 MHz

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions. Final result of restricted band edge was shown in tabular data.

 •VBH 3 MHz
 Swe

 Trace Green : Peak Plot

Start 2.483 500 GHz •Res BW (CISPR) 1 MH: Stop 2.500 000 GHz

: 14499085H-A : 29 of 48

Radiated Spurious Emission

Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.1
Date	November 22, 2022
Temperature / Humidity	20 deg. C / 50 % RH
Engineer	Tetsuro Yoshida
	(Above 1 GHz)
Mode	Tx BT LE 2M-PHY 2402 MHz

Polarity	Frequency	Reading (QP / PK)	Reading (AV)	Ant. Factor	Loss	Gain	Duty Factor	Result (QP / PK)	Result (AV)	Limit (QP / PK)	Limit (AV)	Margin (QP / PK)	Margin (AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2390.0	51.7	38.2	27.6	5.6	36.3	4.4	48.6	39.5	73.9	53.9	25.3	14.4	*1)
Hori.	4804.0	42.2	34.5	31.5	7.8	35.8	-	45.9	38.1	73.9	53.9	28.0	15.8	Floor noise
Hori.	7206.0	42.8	35.1	35.9	9.1	35.9	-	51.9	44.2	73.9	53.9	22.0	9.7	Floor noise
Hori.	9608.0	43.4	35.5	38.7	9.7	36.3	-	55.5	47.6	73.9	53.9	18.4	6.3	Floor noise
Vert.	2390.0	47.9	36.2	27.6	5.6	36.3	4.4	44.9	37.5	73.9	53.9	29.1	16.4	*1)
Vert.	4804.0	42.2	34.4	31.5	7.8	35.8	-	45.8	38.1	73.9	53.9	28.1	15.9	Floor noise
Vert.	7206.0	42.9	35.3	35.9	9.1	35.9	-	52.0	44.4	73.9	53.9	21.9	9.5	Floor noise
Vert.	9608.0	43.3	35.6	38.7	9.7	36.3	-	55.4	47.7	73.9	53.9	18.5	6.2	Floor noise

 $Result \; (QP \ / \ PK) = Reading + \\ Ant \; Factor + \\ Loss \; (Cable + \\ Attenuator + \\ Filter + \\ Distance \; factor(above \; 1 \; GHz)) - \\ Gain(Amplifier) = \\ Cable + \\ Attenuator + \\ Filter + \\ Distance \; factor(above \; 1 \; GHz)) - \\ Gain(Amplifier) = \\ Cable + \\ Attenuator + \\ Filter + \\ Distance \; factor(above \; 1 \; GHz)) - \\ Gain(Amplifier) = \\ Cable + \\ Attenuator + \\ Filter + \\ Distance \; factor(above \; 1 \; GHz)) - \\ Gain(Amplifier) = \\ Cable + \\ Attenuator + \\ Filter + \\ Distance \; factor(above \; 1 \; GHz)) - \\ Cable + \\ Attenuator + \\ Filter + \\ Distance \; factor(above \; 1 \; GHz)) - \\ Cable + \\ Attenuator + \\ Filter + \\ Distance \; factor(above \; 1 \; GHz)) - \\ Cable + \\ Cable + \\ Attenuator + \\ Filter + \\ Distance \; factor(above \; 1 \; GHz)) - \\ Cable + \\ Cable + \\ Cable + \\ Cable + \\ Distance \; factor(above \; 1 \; GHz)) - \\ Cable + \\ Cabl$

 $Result \ (AV) = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor + Dut$

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.

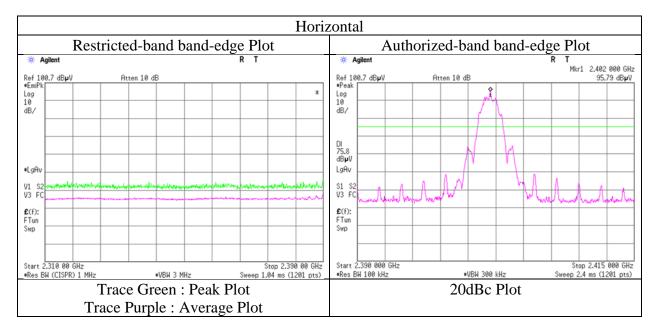
*1) W126

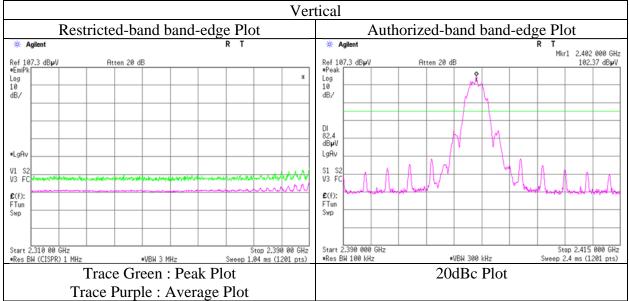
20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.0	95.8	27.6	5.6	36.3	92.7	-	-	Carrier
Hori.	2400.0	64.6	27.6	5.6	36.3	61.6	72.7	11.2	
Vert.	2402.0	102.4	27.6	5.6	36.3	99.3	-	-	Carrier
Vert.	2400.0	71.3	27.6	5.6	36.3	68.3	79.3	11.1	

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amprifier)$

Distance factor:


 1 GHz - 10 GHz
 20log (3.95 m / 3.0 m) = 2.39 dB


 10 GHz - 26.5 GHz
 20log (1.0 m / 3.0 m) = -9.5 dB

: 14499085H-A : 30 of 48

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.1
Date	November 22, 2022
Temperature / Humidity	20 deg. C / 50 % RH
Engineer	Tetsuro Yoshida
	(Above 1 GHz)
Mode	Tx BT LE 2M-PHY 2402 MHz

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions. Final result of restricted band edge was shown in tabular data.

: 14499085H-A : 31 of 48

Radiated Spurious Emission

Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.1
Date	November 22, 2022
Temperature / Humidity	20 deg. C / 50 % RH
Engineer	Tetsuro Yoshida
-	(Above 1 GHz)
Mode	Tx BT LE 2M-PHY 2440 MHz

		Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	M argin	M argin	
Polarity	Frequency	(QP / PK)	(AV)	Factor	Loss	Gain	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	4880.0	42.3	34.4	31.6	7.8	35.7	-	46.0	38.1	73.9	53.9	28.0	15.8	Floor noise
Hori.	7320.0	42.7	35.3	36.1	9.1	35.9	-	51.9	44.6	73.9	53.9	22.0	9.3	Floor noise
Hori.	9760.0	43.4	35.2	39.1	9.7	36.4	-	55.9	47.7	73.9	53.9	18.0	6.2	Floor noise
Vert.	4880.0	42.2	34.4	31.6	7.8	35.7	-	45.9	38.1	73.9	53.9	28.0	15.8	Floor noise
Vert.	7320.0	42.9	35.8	36.1	9.1	35.9	-	52.2	45.1	73.9	53.9	21.8	8.8	Floor noise
Vert.	9760.0	43.1	35.1	39.1	9.7	36.4	-	55.6	47.6	73.9	53.9	18.3	6.3	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.

: 14499085H-A : 32 of 48

Radiated Spurious Emission

Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.1
Date	November 22, 2022
Temperature / Humidity	20 deg. C / 50 % RH
Engineer	Tetsuro Yoshida
	(Above 1 GHz)
Mode	Tx BT LE 2M-PHY 2480 MHz

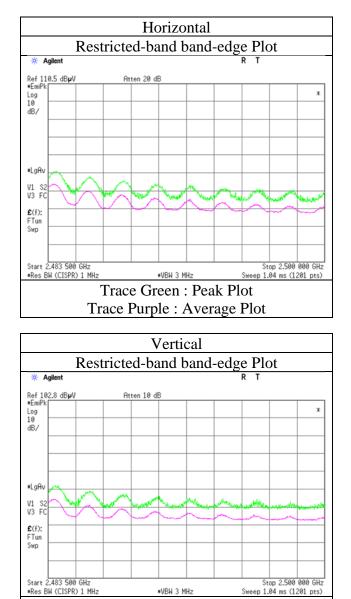
		Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	M argin	Margin	
Polarity	Frequency	(QP / PK)	(AV)	Factor	Loss	Gain	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	58.0	48.7	27.5	5.7	36.3	4.4	54.9	49.9	73.9	53.9	19.0	4.0	*1)
Hori.	2484.0	61.8	48.2	27.5	5.7	36.3	4.4	58.7	49.5	73.9	53.9	15.2	4.5	
Hori.	4960.0	42.4	34.3	31.7	7.8	35.7	-	46.2	38.1	73.9	53.9	27.7	15.8	Floor noise
Hori.	7440.0	42.5	35.3	36.3	9.1	35.9	-	51.9	44.7	73.9	53.9	22.0	9.2	Floor noise
Hori.	9920.0	43.4	35.1	39.1	9.8	36.4	-	55.8	47.5	73.9	53.9	18.1	6.4	Floor noise
Vert.	2483.5	51.8	42.2	27.5	5.7	36.3	4.4	48.7	43.5	73.9	53.9	25.2	10.4	*1)
Vert.	2484.0	54.2	42.0	27.5	5.7	36.3	4.4	51.1	43.2	73.9	53.9	22.8	10.7	
Vert.	4960.0	42.1	34.5	31.7	7.8	35.7	-	45.9	38.3	73.9	53.9	28.0	15.6	Floor noise
Vert.	7440.0	42.8	35.7	36.3	9.1	35.9	-	52.2	45.1	73.9	53.9	21.7	8.8	Floor noise
Vert.	9920.0	43.0	35.1	39.1	9.8	36.4	-	55.5	47.5	73.9	53.9	18.5	6.4	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) - Gain (Amplifie

 $Result \ (AV) = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor + Dut$

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.


*1) Not Out of Band emission(Leakage Power)

Distance factor: 1 GHz - 10 GHz 20log (3.95 m / 3.0 m) = 2.39 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

: 14499085H-A : 33 of 48

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test placeIse EMC Lab.Semi Anechoic ChamberNo.1DateNovember 22, 2022Temperature / Humidity20 deg. C / 50 % RHEngineerTetsuro Yoshida
(Above 1 GHz)ModeTx BT LE 2M-PHY 2480 MHz

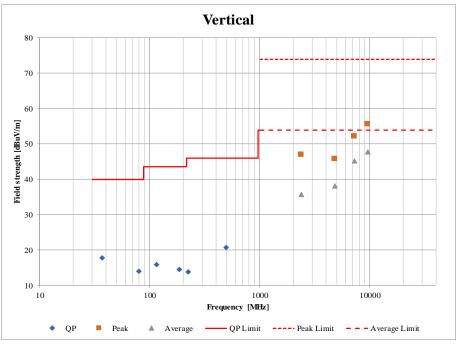
Trace Green : Peak Plot <u>Trace Purple : Average Plot</u> * The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions Final result of restricted band edge was shown in tabular data.

 Test Report No.
 : 14499085H-A

 Page
 : 34 of 48


<u>Radiated Spurious Emission</u> (Plot data, Worst case mode for Maximum Peak Output Power)


Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Ise EMC Lab. No.1 November 22, 2022 20 deg. C / 50 % RH Tetsuro Yoshida

Mode

Tx BT LE 1M-PHY 2402 MHz

*These plots data contains sufficient number to show the trend of characteristic features for EUT.

: 14499085H-A : 35 of 48

Conducted Spurious Emission

Test placeIse EMC Lab. No.8 Measurement RoomDateNovember 21, 2022Temperature / Humidity22 deg. C / 60 % RHEngineerKeiya IdoModeTx BT LE 1M-PHY 2402 MHz

	9 kHz - 150 kHz			150	kHz - 🤅	30 MHz		
🔆 Agilent	RT	*	Agilent				RT	
Ref -50 dBm Peak	Mkr1 11 #Atten 10 dB -96.	.12 kHz 61 dBm Ref Peak	-50 dBm	#Atter	10 dB			Mkr1 150 kHz -88.33 dBm
Log 10 dB/		Coupled Log 10 Coupled dB/						DC Coupled
1			1 A					
LgAv L	non and a superior a	LgAv	52	989-6-4/10-999-6-6-4/10-6-6-6-4-4	8 ,817+,942,343,943,1 ₄ 7,947	Vitesterterterter	hirionana ann	hadarthill film and a far the state
£ (f): f<50k FFT		£(f): FTun Swp						
Start 9.00 kHz	Stop 150	.00 kHz Start	150 kHz					itop 30.000 MHz
*Res BW 200 Hz_	#VBW 620 Hz Sweep 2.279 s (120		BW 9.1 kH	z	#VBW 27 k	Hz		ms (1201 pts)_

Frequency	Reading	Cable	Attenuator	Antenna	Ν	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
11.12	-96.6	0.00	9.7	2.0	1	-84.9	300	6.0	-23.7	46.6	70.3	
150.00	-88.3	0.00	9.7	2.0	1	-76.7	300	6.0	-15.4	24.0	39.4	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

 $\label{eq:expectation} EIRP[dBm] = Reading \ [dBm] + Cable \ loss \ [dB] + Attenuator \ Loss \ [dB] + Antenna \ gain \ [dBi] + 10 \ * \ log \ (N) \ N: \ Number \ of \ output$

: 14499085H-A : 36 of 48

Conducted Spurious Emission

Test placeIse EMC Lab. No.8 Measurement RoomDateNovember 21, 2022Temperature / Humidity22 deg. C / 60 % RHEngineerKeiya IdoModeTx BT LE 1M-PHY 2440 MHz

	9 kHz - 150 kHz			150 kHz	z - 30 MHz	
🔆 Agilent	R	Т	🔆 Agilent		F	τ γ
Ref -50 dBm Peak	#Atten 10 dB	Mkr1 11.23 kHz -97.97 dBm	Ref -50 dBm Peak	#Atten 10 dB		Mkr1 150 kHz -88.76 dBm
Log 10 dB/		DC Coupled	Log 10 dB/			DC Coupled
			1			
LgAv S1 S2 M3 FS	nanintation of the local states and the second states	Set in first for the start of the second of	LgAv S1 S2 M3 FS	verhautistegen-trainsplatingsfilligt.org/14	nhemmerskanskrinskrinskrinskrinskrinskrinskrinskri	nddanaddagarayd ar ar affir ffrankara.
£(f): f<50k FFT			£(f): FTun Swp			
Start 9.00 kHz		Stop 150.00 kHz	Start 150 kHz			Stop 30.000 MHz
#Res BW 200 Hz	#VBW 620 Hz Swe	ep 2.279 s (1201 pts)_	#Res BW 9.1 kHz	#VE	3W 27 kHzSv	veep 344.8 ms (1201 pts)_

Frequency	Reading	Cable	Attenuator	Antenna	Ν	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
11.23	-98.0	0.00	9.7	2.0	1	-86.3	300	6.0	-25.0	46.5	71.5	
150.00	-88.8	0.00	9.7	2.0	1	-77.1	300	6.0	-15.8	24.0	39.8	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

 $\label{eq:expectation} EIRP[dBm] = Reading \ [dBm] + Cable \ loss \ [dB] + Attenuator \ Loss \ [dB] + Antenna \ gain \ [dBi] + 10 \ * \ log \ (N) \ N: \ Number \ of \ output$

: 14499085H-A : 37 of 48

Conducted Spurious Emission

Test placeIse EMC Lab. No.8 Measurement RoomDateNovember 21, 2022Temperature / Humidity22 deg. C / 60 % RHEngineerKeiya IdoModeTx BT LE 1M-PHY 2480 MHz

	9 kHz - 150 k	Hz		150 kHz - 30 M	Hz
💥 Agilent		RT	💥 Agilent		RT
Ref — 50 dBm Peak	*Atten 10 dB	Mkr1 13.00 kHz -98.22 dBm	Ref -50 dBm Peak	•Atten 10 dB	Mkr1 150 kHz -87.70 dBm
Log 10 dB/		DC Coupled	Log 10 dB/		DC Coupled
1			i de la companya de l	der gehannter son en son en son ander gestaat de ser gestaat verken de son	
LgAv S1 S2 M3 FS	haman and a star and a star and a star and a star a sta	Man Des general Marine and an	LgAv S1 S2 M3 FS		
£ (f): f<50k FFT			£(f): FTun Swp		
Start 9.00 kHz		Stop 150.00 kHz	Start 150 kHz		Stop 30.000 MHz
*Res BW 200 Hz	#VBW 620 Hz	Stop 150.00 kHz Sweep 2.279 s (1201 pts)	#Res BW 9.1 kHz	₩VBW 27 kHz	Stop 30.000 MHZ Sweep 344.8 ms (1201 pts)

Frequency	Reading	Cable	Attenuator	Antenna	Ν	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
13.00	-98.2	0.00	9.7	2.0	1	-86.5	300	6.0	-25.3	45.3	70.6	
150.00	-87.7	0.00	9.7	2.0	1	-76.0	300	6.0	-14.8	24.0	38.8	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

 $EIRP[dBm] = Reading \ [dBm] + Cable \ loss \ [dB] + Attenuator \ Loss \ [dB] + Antenna \ gain \ [dBi] + 10 \ * \ log \ (N)$

N: Number of output

: 14499085H-A : 38 of 48

Conducted Spurious Emission

Test placeIse EMC Lab. No.8 Measurement RoomDateNovember 21, 2022Temperature / Humidity22 deg. C / 60 % RHEngineerKeiya IdoModeTx BT LE 2M-PHY 2402 MHz

	9 kHz - 150 kHz	1		150 kHz - 30 M	MHz
💥 Agilent		RT	🔆 Agilent		RT
Ref -50 dBm Peak	*Atten 10 dB	Mkr1 11.12 kHz -97.05 dBm	Ref -50 dBm Peak	≢Atten 10 dB	Mkr1 150 kHz -88.87 dBm
Log 10 dB/		DC Coupled	Log 10 dB/		DC Coupled
LgAv			Lafiv	Matrice and a factories of the second s	a harman and a second an add and a second
S1 S2 M3 FS	naphalanan kapatan shi kababa adalara asa biya yara	dial my tay and a second second and a second se	S1 S2 M3 FS		
£(f): f<50k FFT			£(f): FTun Swp		
Start 9.00 kHz #Res BW 200 Hz		Stop 150.00 kHz Sweep 2.279 s (1201 pts)	Start 150 kHz #Res BW 9.1 kHz	#VBW 27 kHz	Stop 30.000 MHz Sweep 344.8 ms (1201 pts)

Frequency	Reading	Cable	Attenuator	Antenna	Ν	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
11.12	-97.1	0.00	9.7	2.0	1	-85.4	300	6.0	-24.1	46.6	70.7	
150.00	-88.9	0.00	9.7	2.0	1	-77.2	300	6.0	-15.9	24.0	39.9	

 $E \left[dBuV/m \right] = EIRP \left[dBm \right] - 20 \log \left(Distance \left[m \right] \right) + Ground \text{ bounce } \left[dB \right] + 104.8 \left[dBuV/m \right]$

 $EIRP[dBm] = Reading \ [dBm] + Cable \ loss \ [dB] + Attenuator \ Loss \ [dB] + Antenna \ gain \ [dBi] + 10 * log \ (N)$

N: Number of output

: 14499085H-A : 39 of 48

Conducted Spurious Emission

Test placeIse EMC Lab. No.8 Measurement RoomDateNovember 21, 2022Temperature / Humidity22 deg. C / 60 % RHEngineerKeiya IdoModeTx BT LE 2M-PHY 2440 MHz

	9 kHz - 150 kHz			150 kHz - 30 M	Hz
💥 Agilent		RT	🔆 Agilent		RT
Ref -50 dBm Peak	#Atten 10 dB	Mkr1 10.29 kHz -96.47 dBm	Ref — 50 dBm Peak	#Atten 10 dB	Mkr1 399 kHz -90.17 dBm
Log 10 dB/		DC Coupled	Log 10 dB/		DC Coupled
1					
LgAv S1 S2 M3 FS	ymathalangalaineyllana alartan dayta ang daytan da	Ant the international states of	LgAv S1 S2 M3 FS	ของหมากการเขาะสับสร้างกระกองกลากการแก่งกับไม่ไปสมัยไม่ไม่ไม่หาะเขาะสร้าง	nde gelange higt for gelange og besker og en besker og besker og besker og besker og besker og besker og beske I
£ (f): f<50k FFT			£(f): FTun Swp		
Start 9.00 kHz		Stop 150.00 kHz	Start 150 kHz		Stop 30.000 MHz
*Res BW 200 Hz	•VBW 620 Hz		#Res BW 9.1 kHz	#VBW 27 kHz	

Frequency	Reading	Cable	Attenuator	Antenna	Ν	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
10.29	-96.5	0.00	9.7	2.0	1	-84.8	300	6.0	-23.5	47.3	70.8	
399.00	-90.2	0.01	9.7	2.0	1	-78.5	300	6.0	-17.2	15.5	32.7	

 $E \left[dBuV/m \right] = EIRP \left[dBm \right] - 20 \log \left(Distance \left[m \right] \right) + Ground \text{ bounce } \left[dB \right] + 104.8 \left[dBuV/m \right]$

 $EIRP[dBm] = Reading \ [dBm] + Cable \ loss \ [dB] + Attenuator \ Loss \ [dB] + Antenna \ gain \ [dBi] + 10 * log \ (N)$

N: Number of output

: 14499085H-A : 40 of 48

Conducted Spurious Emission

Test placeIse EMC Lab. No.8 Measurement RoomDateNovember 21, 2022Temperature / Humidity22 deg. C / 60 % RHEngineerKeiya IdoModeTx BT LE 2M-PHY 2480 MHz

	9 kHz - 150 kHz			150 kHz - 3	30 MHz	
🔆 Agilent		RT	🔆 Agilent		RT	
Ref -50 dBm Peak Log	#Atten 10 dB	Mkr1 9.47 kHz -98.48 dBm	Ref -50 dBm Peak	#Atten 10 dB		Mkr1 150 kHz -87.92 dBm
10 dB/		DC Coupled	Log 10 dB/			DC Coupled
			1 •			
LgAv	When With Marin Annaly man and a strate and a	enternething/whereignernethicket	LgAv S1 S2 M3 FS	na para na manana ana ang ang ang ang ang ang ang an	terieripennektiserene mehniteken ker	Alder Manager Halder
£(f): f<50k FFT			£(f): FTun Swp			
Start 9.00 kHz		Stop 150.00 kHz	Start 150 kHz			Stop 30.000 MHz
#Res BW 200 Hz	•VBW 620 Hz		#Res BW 9.1 kHz	#VBW 27 k		8 ms (1201 pts)_

Frequency	Reading	Cable	Attenuator	Antenna	Ν	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
9.47	-98.5	0.00	9.7	2.0	1	-86.8	300	6.0	-25.5	48.0	73.5	
150.00	-87.9	0.00	9.7	2.0	1	-76.2	300	6.0	-15.0	24.0	39.0	

 $E \left[dBuV/m \right] = EIRP \left[dBm \right] - 20 \log \left(Distance \left[m \right] \right) + Ground \text{ bounce } \left[dB \right] + 104.8 \left[dBuV/m \right]$

 $EIRP[dBm] = Reading \ [dBm] + Cable \ loss \ [dB] + Attenuator \ Loss \ [dB] + Antenna \ gain \ [dBi] + 10 * log \ (N)$

N: Number of output

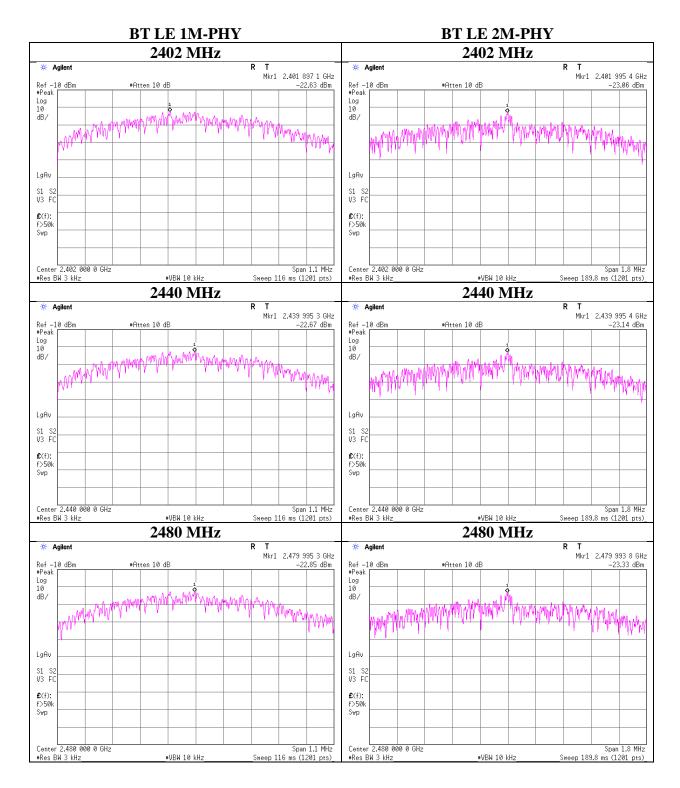
Power Density

Test place	Ise EMC Lab. No.8 Measurement Room
Date	November 21, 2022
Temperature / Humidity	22 deg. C / 60 % RH
Engineer	Keiya Ido
Mode	Tx BT LE

1M-PHY

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm / 3 kHz]	[dB]	[dB]	[dBm / 3 kHz]	[dBm/3 kHz]	[dB]
2402	-22.63	1.87	9.79	-10.97	8.00	18.97
2440	-22.67	1.88	9.79	-11.00	8.00	19.00
2480	-22.85	1.90	9.79	-11.16	8.00	19.16

2M-PHY


Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm / 3 kHz]	[dB]	[dB]	[dBm / 3 kHz]	$[dBm / 3 \; kHz]$	[dB]
2402	-23.06	1.87	9.79	-11.40	8.00	19.40
2440	-23.14	1.88	9.79	-11.47	8.00	19.47
2480	-23.33	1.90	9.79	-11.64	8.00	19.64

Sample Calculation:

 $Result = Reading + Cable \ Loss \ + \ Attenuator \ Loss$

*The equipment and cables were not used for factor 0 dB of the data sheets.

Power Density

APPENDIX 2: Test Instruments

Test Equipment (1/2)

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
CE	COTS-	178648	EMI measurement	TSJ	TEPTO-DV	-	-	-
	MEMI-02		program	(Techno Science Japan)				
CE	MAEC-01	141998	AC1_Semi Anechoic	TDK	Semi Anechoic	DA-06881	06/28/2022	24
			Chamber(NSA)		Chamber 10m			
CE	MAT-67	141248	Attenuator	JFW Industries, Inc.	50FP-013H2 N	-	12/17/2021	12
CE	MCC-03	141215	Coaxial Cable	Fujikura/Suhner/TSJ	5D-2W/3D- 2W/RG400u/RFM- E421(SW)	-/01068(Switcher)	06/11/2022	12
CE	MJM-25	142226	Measure	KOMELON	KMC-36	-	-	-
CE	MLS-26	141538	LISN(AMN)	Schwarzbeck Mess-Elektronik OHG	NSLK8127	8127-732	07/25/2022	12
CE	MMM-09	141533	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201195	01/16/2022	12
CE	MOS-27	141566	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	A08Q26	01/10/2022	12
CE	MTR-10	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	07/25/2022	12
RE	COTS- MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	KBA-05	141198	Biconical Antenna	Schwarzbeck Mess-Elektronik OHG	VHA9103+BBA9106	2513	05/14/2022	12
RE	MAEC-01	141998	AC1_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 10m	DA-06881	06/28/2022	24
RE	MAEC-01- SVSWR	141994	AC1_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 10m	DA-06881	04/05/2021	24
RE	MAT-08	141213	Attenuator(6dB)	Weinschel Corp	2	BK7971	11/19/2022	12
RE	MCC-02	141350	Coaxial Cable	Suhner/storm/Agilent/TSJ	-	-	03/08/2022	12
RE	MCC-217	141393	Microwave Cable	Junkosha	MWX221	1604S254(1 m) / 1608S088(5 m)	08/02/2022	12
RE	MHA-05	141511	Horn Antenna 1-18GHz	Schwarzbeck Mess-Elektronik OHG	BBHA9120D	253	09/20/2022	12
RE	MHA-16	141513	Horn Antenna 15-40GHz	Schwarzbeck Mess-Elektronik OHG	BBHA9170	BBHA9170306	07/05/2022	12
RE	MHF-25	141232	High Pass Filter 3.5-18.0GHz	UL Japan	HPF SELECTOR	001	09/07/2022	12
RE	MJM-25	142226	Measure	KOMELON	KMC-36	-	-	-
RE	MLA-20	141264	Logperiodic Antenna(200- 1000MHz)	Schwarzbeck Mess-Elektronik OHG	VUSLP9111B	189	05/14/2022	12
RE	MMM-09	141533	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201195	01/16/2022	12
RE	MOS-27	141566	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	A08Q26	01/10/2022	12
RE	MPA-01	141576	Pre Amplifier	Keysight Technologies Inc	8449B	3008A01671	02/22/2022	12
RE	MPA-19	141585	Pre Amplifier	MITEQ	MLA-10K01-B01-35	1237616	02/28/2022	12
RE	MRENT-130	141855	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46187750	11/28/2021	12
RE	MTR-10	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	07/25/2022	12

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
AT	MAT-26	141244	Attenuator(10dB)	Weinschel - API Technologies Corp	WA8-10-34	A198	02/25/2022	12
AT	MAT-89	141419	Attenuator	Weinschel Associates	WA56-10	56100305	05/12/2022	12
AT	MAT-92	141421	Attenuator	Weinschel Associates	WA56-10	56100308	05/12/2022	12
AT	MCC-138	141410	Microwave cable	Huber+Suhner	SUCOFLEX 102	37953/2	09/11/2022	12
AT	MCC-206	141286	Microwave Cable	RS Pro	R-132G7210200CD	-	02/28/2022	12
AT	MCC-38	141395	Coaxial Cable	UL Japan	-	-	11/18/2022	12
AT	MMM-17	141557	DIGIITAL HITESTER	HIOKI E.E. CORPORATION	3805	70900530	01/16/2022	12
AT	MOS-28	141567	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0008	01/10/2022	12
AT	MPA-11	141580	MicroWave System Amplifier	Keysight Technologies Inc	83017A	MY39500779	03/17/2022	12
AT	MPM-16	141812	Power Meter	Keysight Technologies Inc	8990B	MY51000271	08/05/2022	12
AT	MPSE-22	141842	Power sensor	Keysight Technologies Inc	N1923A	MY54070003	08/05/2022	12
AT	MSA-16	141903	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46186390	01/07/2022	12

Toot Fauir + (2/2)

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month. As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

CE: Conducted Emission RE: Radiated Emission AT: Antenna Terminal Conducted