

TEST Report

Applicant:	Guangzhou Siyuetian Electronic Technology CO.,Ltd.
Address of Applicant:	4th Floor,No.75,Street 1,Xiajiao Lingnan E-commerce Park,Panyu District,Guangzhou,China
Manufacturer :	TPV Audio and Visual Technology (Shenzhen) Co., Ltd.
Address of Manufacturer :	4201,Block A, Building 2,Shenzhen Bay Innovation and Technology Park,Nanshan District,Shenzhen Guangdong China
Equipment Under Test (El	(TL
Product Name:	PHILIPS game controller
Model No.:	DLK 5090
Series model:	N/A
Trade Mark:	PHILIPS
Trade Mark:	PHILIPS
Trade Mark: FCC ID:	PHILIPS 2BMBA-DLK5090
Trade Mark: FCC ID: Applicable standards:	PHILIPS 2BMBA-DLK5090 FCC CFR Title 47 Part 15 Subpart C Section 15.247
Trade Mark: FCC ID: Applicable standards: Date of sample receipt:	PHILIPS 2BMBA-DLK5090 FCC CFR Title 47 Part 15 Subpart C Section 15.247 Mar. 13, 2025

* In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Mar. 19, 2025	Original

Tested/ Prepared By

Heber He Date:

Mar. 19, 2025

Check By:

Bruce Zhu Date:

Project Engineer

Mar. 19, 2025

Reviewer

Kein Oh Date: Authorized Signature

Mar. 19, 2025

Approved By :

2. Contents

. VERSION	2
. CONTENTS	3
. TEST SUMMARY	4
. GENERAL INFORMATION	5
 4.1. GENERAL DESCRIPTION OF EUT	7 7 7 7 7 7 7
. TEST INSTRUMENTS LIST	
. TEST RESULTS AND MEASUREMENT DATA	9
	9 12 13 16 19 21 23 23 25
TEST RESULTS AND MEASUREMENT DATA 6.1. CONDUCTED EMISSIONS 6.2. CONDUCTED OUTPUT POWER 6.3. CHANNEL BANDWIDTH. 6.4. POWER SPECTRAL DENSITY 6.5. BAND EDGES 6.5.1 Conducted Emission Method 6.5.2 Radiated Emission Method 6.6. SPURIOUS EMISSION. 6.6.1 Conducted Emission Method 6.6.2 Radiated Emission Method	9 12 13 16 19 21 23 23 25 32

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range Measurement Uncertainty		Notes
Radiated Emission	9KHz~30MHz	3.12 dB	(1)
Radiated Emission	30~1000MHz	4.37 dB	(1)
Radiated Emission	1~18GHz	5.40 dB	(1)
Radiated Emission	18-40GHz	5.45 dB	(1)
Conducted Disturbance	0.15~30MHz	2.68 dB	(1)
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of §	95%.

4. General Information

4.1. General Description of EUT

Product Name:	PHILIPS game controller
Model No.:	DLK 5090
Series model:	N/A
Test sample(s) ID:	HTT202503470-1(Engineer sample) HTT202503470-2(Normal sample)
Operation frequency	2402~2480 MHz
Number of Channels	40
Modulation Type	GFSK
Channel separation	2MHz
Antenna Type:	PCB antenna
Antenna Gain:	0.00 dBi
Power Supply:	DC 3.7V From Battery and DC 5V From External Circuit
Adapter Information (Auxiliary test provided by the lab):	Mode: GS-0500200 Input: AC100-240V, 50/60Hz, 0.3A max Output: DC 5V, 2A

Channel	Frequency(MHz)	Channel	Frequency(MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been accredited on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-23595200

Fax: 0755-23595201

4.8. Additional Instructions

Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

5. Test Instruments list

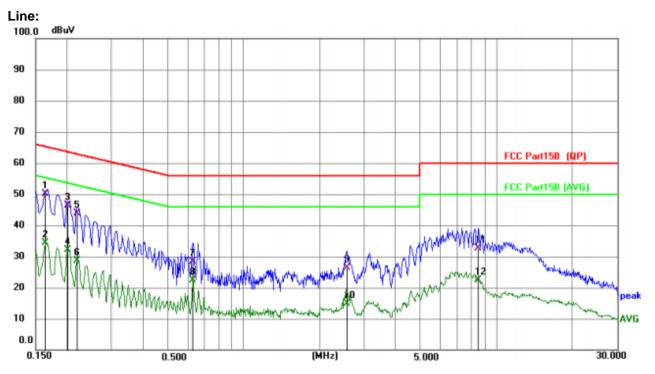
J.	rest mstrume					1
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2024	Aug. 09 2027
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0			Aug. 09 2027
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	Apr. 26 2024	Apr. 25 2025
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	Apr. 26 2024	Apr. 25 2025
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	Apr. 26 2024	Apr. 25 2025
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	Apr. 26 2024	Apr. 25 2025
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	Apr. 26 2024	Apr. 25 2025
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	Apr. 26 2024	Apr. 25 2025
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	May. 21 2024	May. 20 2025
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	May. 20 2024	May. 19 2025
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Apr. 26 2024	Apr. 25 2025
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Apr. 26 2024	Apr. 25 2025
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	Apr. 26 2024	Apr. 25 2025
14	high-frequency Amplifier	HP	8449B	HTT-E014	Apr. 26 2024	Apr. 25 2025
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	Apr. 26 2024	Apr. 25 2025
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	Apr. 26 2024	Apr. 25 2025
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May. 23 2024	May. 22 2025
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May. 23 2024	May. 22 2025
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	Apr. 26 2024	Apr. 25 2025
20	Attenuator	Robinson	6810.17A	HTT-E007	Apr. 26 2024	Apr. 25 2025
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	Apr. 26 2024	Apr. 25 2025
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	Aug. 10 2024	Aug. 09 2027
23	DC power supply	Agilent	E3632A	HTT-E023	Apr. 26 2024	Apr. 25 2025
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	Apr. 26 2024	Apr. 25 2025
25	Analog signal generator	Agilent	N5181A	HTT-E025	Apr. 26 2024	Apr. 25 2025
26	Vector signal generator	Agilent	N5182A	HTT-E026	Apr. 26 2024	Apr. 25 2025
27	Power sensor	Keysight	U2021XA	HTT-E027	Apr. 26 2024	Apr. 25 2025
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	Apr. 28 2024	Apr. 27 2025
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

Tel: 0755-23595200 Fax: 0755-23595201

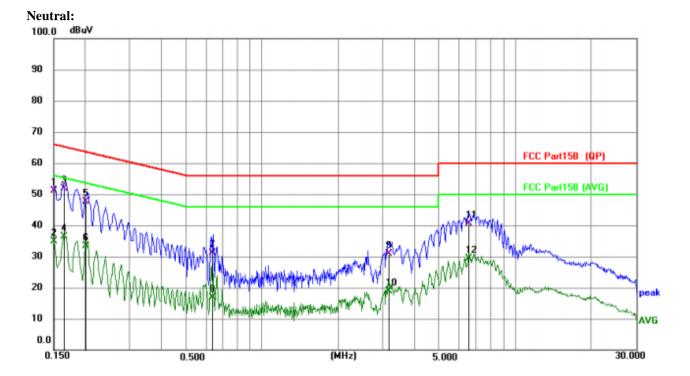
1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

6. Test results and Measurement Data

6.1. Conducted Emissions


Test Requirement:	FCC Part15 C Section 15.207							
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	150KHz to 30MHz							
Class / Severity:	Class B							
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto						
Limit:		Lin	nit (dBuV)					
	Frequency range (MHz)	Quasi-peak		erage				
	0.15-0.5							
	0.5-5	56		46				
	5-30	60		50				
Test setup:	* Decreases with the logarithr Reference Plane							
Test procedure:	LISN 40cm 80cm AUX Equipment E.U.T Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators at line impedance stabilization 500hm/50uH coupling impedence stabilization 500hm/50uH coupling impedence at 500hm termination. (Please refer to photographs). 3. Both sides of A.C. line are interference. In order to fin positions of equipment and according to ANSI C63.10:	EMI Receiver are connected to the n network (L.I.S.N.) edance for the mea also connected to m/50uH coupling in o the block diagram checked for maxim d the maximum em all of the interface 2013 on conducted). This provide isuring equipr the main pow pedance with n of the test s num conducte ission, the rel cables must	es a nent. ver through a n 50ohm etup and d lative be changed				
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details		-					
Test environment:	Temp.: 25 °C Hur	nid.: 52%	Press.:	1012mbar				
Test voltage:	AC 120V, 60Hz							

Remark: Based on all tested data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and withthe worst case as below:



Report No.: HTT202503470F01

Measurement data:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	Detector.
	MHz		dB	dBuV	dBuV	dB	Detector
1 *	0.1633	39.97	10.07	50.04	65.29	-15.25	QP
2	0.1633	24.29	10.07	34.36	55.29	-20.93	AVG
3	0.2007	36.14	10.19	46.33	63.58	-17.25	QP
4	0.2007	21.86	10.19	32.05	53.58	-21.53	AVG
5	0.2187	33.68	10.20	43.88	62.87	-18.99	QP
6	0.2187	18.37	10.20	28.57	52.87	-24.30	AVG
7	0.6289	18.18	10.22	28.40	56.00	-27.60	QP
8	0.6289	12.07	10.22	22.29	46.00	-23.71	AVG
9	2.5698	16.16	10.20	26.36	56.00	-29.64	QP
10	2.5698	4.68	10.20	14.88	46.00	-31.12	AVG
11	8.4664	22.50	10.10	32.60	60.00	-27.40	QP
12	8.4664	12.24	10.10	22.34	50.00	-27.66	AVG

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1	0.1502	40.88	10.15	51.03	65.99	-14.96	QP
2	0.1502	24.75	10.15	34.90	55.99	-21.09	AVG
3 *	0.1652	41.65	10.20	51.85	65.20	-13.35	QP
4	0.1652	26.19	10.20	36.39	55.20	-18.81	AVG
5	0.2014	37.54	10.20	47.74	63.55	-15.81	QP
6	0.2014	23.10	10.20	33.30	53.55	-20.25	AVG
7	0.6381	21.04	10.19	31.23	56.00	-24.77	QP
8	0.6381	6.69	10.19	16.88	46.00	-29.12	AVG
9	3.1711	20.74	10.24	30.98	56.00	-25.02	QP
10	3.1711	8.64	10.24	18.88	46.00	-27.12	AVG
11	6.5653	30.57	10.15	40.72	60.00	-19.28	QP
12	6.5653	19.28	10.15	29.43	50.00	-20.57	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Los

Shenzhen HTT Technology Co.,Ltd. Tel: 0755-23595200 Fax: 0755-23595201 1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)								
Test Method:	ANSI C63.1	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02							
Limit:	30dBm	30dBm							
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane								
Test Instruments:	Refer to see	ction 6.0 for d	letails						
Test mode:	Refer to section 5.2 for details								
Test results:	Pass								
Test environment:	Temp.:25 °CHumid.:52%Press.:1012mbar								

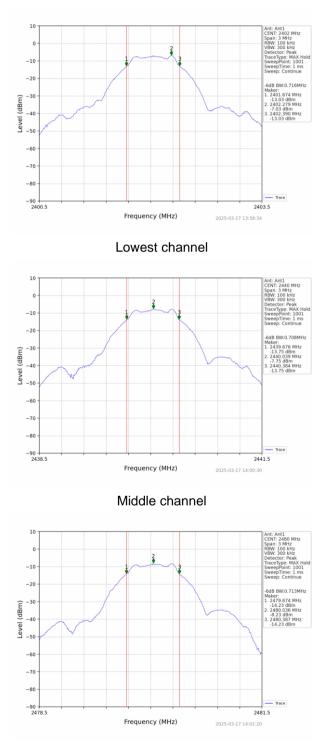
6.2. Conducted Output Power

Measurement Data

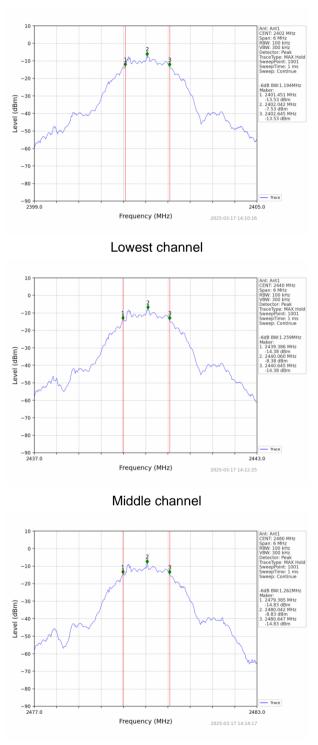
Mode	TX	Frequency	Maximum Peak Conduc	Verdict	
wode	Туре	(MHz)	ANT1	Limit	verdict
		2402	-5.88	<=30	Pass
1M	SISO	2440	-6.77	<=30	Pass
		2480	-7.28	<=30	Pass
		2402	-5.91	<=30	Pass
2M	SISO	2440	-6.80	<=30	Pass
		2480	-7.32	<=30	Pass

6.3. Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)								
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02								
Limit:	>500KHz								
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane								
Test Instruments:	Refer to section 6.0 for details								
Test mode:	Refer to section 5.2 for details								
Test results:	Pass								
Test environment:	Temp.:25 °CHumid.:52%Press.:1012mbar								


Measurement Data

Mada	Mode TX	Frequency	ANT	6dB Bandv	Verdict		
wode	Туре		ANT	Result	Limit	verdict	
		2402	1	0.716	>=0.5	Pass	
1M	SISO	2440	1	0.708	>=0.5	Pass	
		2480	1	0.713	>=0.5	Pass	
		2402	1	1.194	>=0.5	Pass	
2M	SISO	2440	1	1.259	>=0.5	Pass	
		2480	1	1.262	>=0.5	Pass	

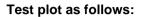

Test plot as follows:

1M:

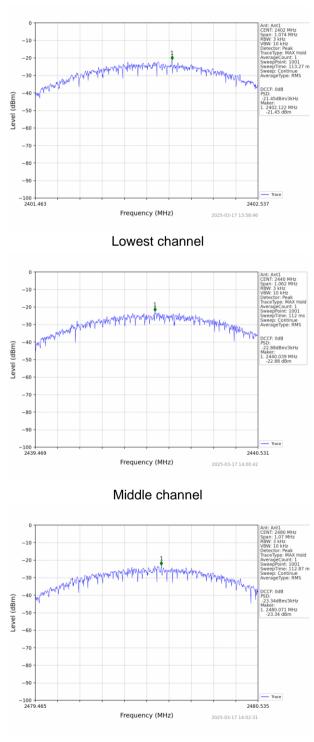
Highest channel

Highest channel

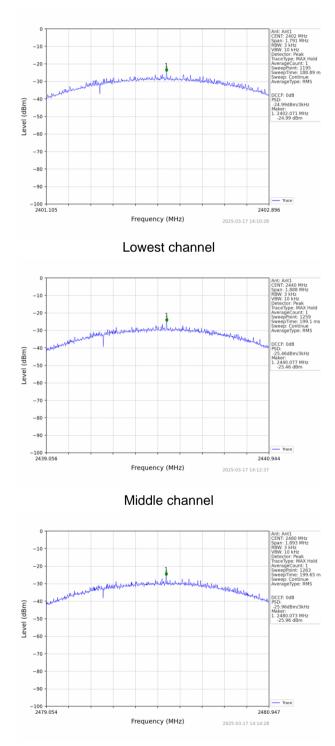
2M:


Test Requirement:	FCC Part15 C Section 15.247 (e)								
Test Method:	ANSI C63.1	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02							
Limit:	8dBm/3kHz	8dBm/3kHz							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane								
Test Instruments:	Refer to see	ction 6.0 for d	letails						
Test mode:	Refer to see	ction 5.2 for d	letails						
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			

6.4. Power Spectral Density


Measurement Data

Mode	TX	Frequency	Maximum PS	Verdict	
wode	Туре	(MHz)	ANT1	Limit	verdict
		2402	-21.45	<=8	Pass
1M	SISO	2440	-22.88	<=8	Pass
		2480	-23.34	<=8	Pass
		2402	-24.99	<=8	Pass
2M	SISO	2440	-25.46	<=8	Pass
		2480	-25.96	<=8	Pass



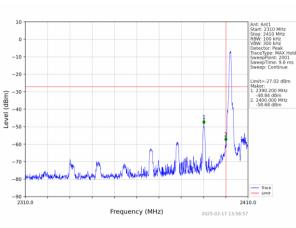
1M:

Highest channel

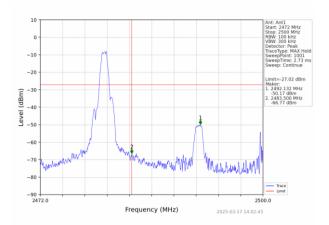
Highest channel

2M:

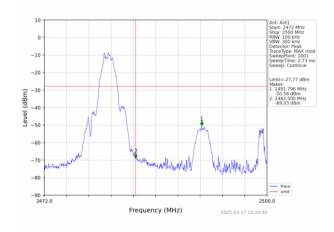
6.5. Band edges

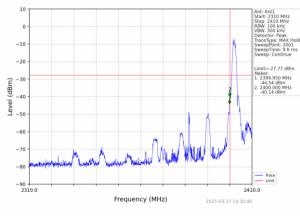

6.5.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)								
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02								
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.								
Test setup:	Fadiated measurement.								
Test Instruments:	Refer to section 6.0 for details								
Test mode:	Refer to section 5.2 for details								
Test results:	Pass								
Test environment:	Temp.:25 °CHumid.:52%Press.:1012mbar								



Test plot as follows:




Lowest channel

Highest channel

Highest channel

Lowest channel

Test Requirement:	FCC Part15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.1	ANSI C63.10:2013						
Test Frequency Range:	All of the re 2500MHz) d			ested, c	only the wor	st band's (2	2310MHz to	
Test site:		Measurement Distance: 3m						
Receiver setup:	Frequenc	y Deteo	ctor	RBV	V VBW	/ V	/alue	
		Pes		1MH			Peak	
	Above 1GF	Above 1GHz RMS				z Av	rerage	
Limit:	Fre	quency	L	imit (dl	BuV/m @3m		/alue	
	Aboy	ve 1GHz			54.00		erage	
	A00	Venonz		-	74.00	F	Peak	
Test setup:	< 3m > Test Antenna- EUT+ <150cm >- i							
Test Procedure:	 Receivery Preamplifiered The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 						degrees to eiving it antenna above the h. Both to make the worst case 4 meters es to find and wer than eak values it did not ak, quasi- a data	
Test Instruments:	Refer to sec	e mode is re						
Test mode:	Refer to sec							
Test results:	Pass							
		05.00		<u> </u>	500/	Dire	4040	
Test environment:	Temp.:	25 °C	Humio	d.:	52%	Press.:	1012mbar	

6.5.2 Radiated Emission Method

Shenzhen HTT Technology Co.,Ltd.

Tel: 0755-23595200 Fax: 0755-23595201

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Measurement Data

Remark: GFSK(1M), GFSK(2M) all have been tested, only worse case GFSK(1M) is reported.

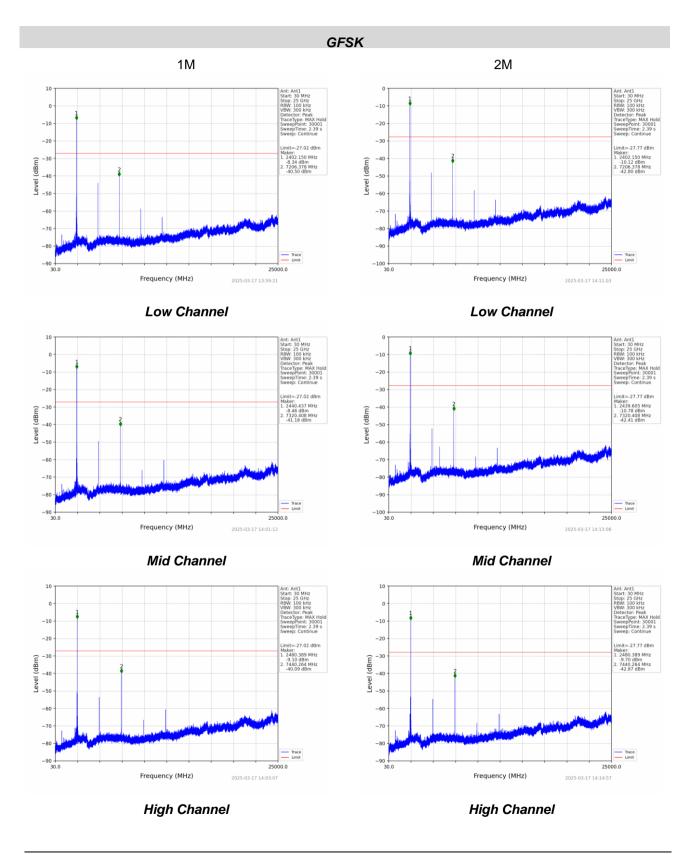
Operation Mode: GFSK (1M)

Freque	ncy(MHz)	:	24	02	Pola	arity:	Н		NL	
Frequency (MHz)	Emis Le ^v (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2390.00	60.26	PK	74	13.74	61.65	27.2	4.31	32.9	-1.39	
2390.00	45.35	AV	54	8.65	46.74	27.2	4.31	32.9	-1.39	
Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL		
Frequency (MHz)	Emis Le [.] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2390.00	59.86	PK	74	14.14	61.25	27.2	4.31	32.9	-1.39	
2390.00	46.08	AV	54	7.92	47.47	27.2	4.31	32.9	-1.39	
Freque	ncy(MHz)	:	24	2480		arity:	HORIZONTAL			
Frequency (MHz)	Emis Le [.] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2483.50	56.37	PK	74	17.63	57.30	27.4	4.47	32.8	-0.93	
2483.50	44.60	AV	54	9.40	45.53	27.4	4.47	32.8	-0.93	
Freque	ncy(MHz)	:	24	80	Pola	arity:		VERTICAL	VERTICAL	
Frequency (MHz)	Emis Le [.] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2483.50	55.87	PK	74	18.13	56.80	27.4	4.47	32.8	-0.93	
2483.50	43.48	AV	54	10.52	44.41	27.4	4.47	32.8	-0.93	

6.6. Spurious Emission

6.6.1 Conducted Emission Method

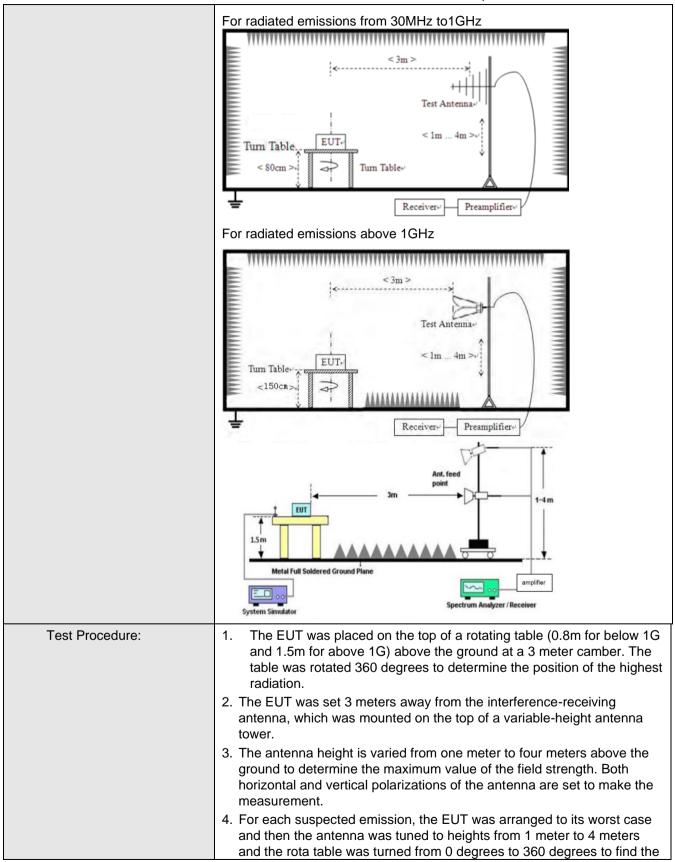
Test Requirement:	FCC Part1	5 C Section 1	5.247 (d)							
Test Method:	ANSI C63.	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02								
Limit:	spread spe power that below that highest leve	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.								
Test setup:	Sp	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane								
Test Instruments:	Refer to se	ction 6.0 for c	letails							
Test mode:	Refer to se	Refer to section 5.2 for details								
Test results:	Pass	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar				


Test plot as follows:

reference

Shenzhen HTT Technology Co.,Ltd.Tel: 0755-23595200Fax: 0755-235952011F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District,
Shenzhen, Guangdong, China

Shenzhen HTT Technology Co.,Ltd.Tel: 0755-23595200Fax: 0755-235952011F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District,
Shenzhen, Guangdong, China



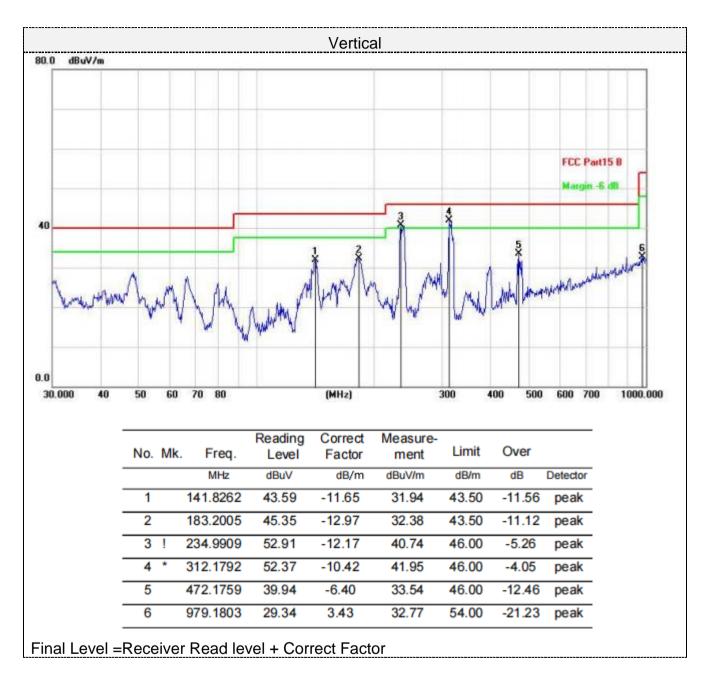
6.6.2 Radiated Emission Method Test Requirement: FCC Part15 C Section 15.209								
Measurement Distance: 3m								
Frequency	C							
		-				· · ·		
	· · · ·					· · · ·		
30MHz-1GHz Quasi-peak		120K	Hz	300KH	z Quasi-peak			
Above 1GHz		Peak						
		Peak	1MF	Ιz	10Hz	Average		
Frequency		Limit (u\	//m)	V	alue/	Measurement Distance		
0.009MHz-0.490M	Hz	2400/F(k	(Hz)		QP	300m		
0.490MHz-1.705M	Hz	24000/F(KHz)	QP		30m		
1.705MHz-30MH	Z	30		QP		30m		
30MHz-88MHz		100		QP				
88MHz-216MHz	-	150		QP		3m		
216MHz-960MH	Z	200		QP				
960MHz-1GHz		500		QP		0111		
Above 1GHz		500		Average				
		5000		F	Peak			
Above 1GHz								
	FCC Part15 C Section ANSI C63.10:2013 9kHz to 25GHz Measurement Distan Frequency 9KHz-150KHz 150KHz-30MHz 30MHz-1GHz Above 1GHz Crequency 0.009MHz-0.490M 0.490MHz-1.705M 1.705MHz-30MH 30MHz-88MHz 88MHz-216MHz 216MHz-960MH 960MHz-1GHz Above 1GHz	FCC Part15 C Section 15 ANSI C63.10:2013 9kHz to 25GHz Measurement Distance: 3 Frequency 9KHz-150KHz Qu 30MHz-1GHz Qu 30MHz-1GHz Qu Above 1GHz Frequency 0.009MHz-0.490MHz 0.490MHz-1.705MHz 1.705MHz-30MHz 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz	FCC Part15 C Section 15.209 ANSI C63.10:2013 9kHz to 25GHz Measurement Distance: 3m Frequency Detector 9KHz-150KHz Quasi-peak 150KHz-30MHz Quasi-peak 30MHz-1GHz Quasi-peak Above 1GHz Peak Peak Peak 0.009MHz-0.490MHz 2400/F(# 0.490MHz-1.705MHz 2400/F(# 0.490MHz-1.705MHz 2400/F(# 0.490MHz-1.705MHz 2400/F(# 0.490MHz-1.705MHz 2400/F(# 0.490MHz-1.705MHz 200 30MHz-88MHz 100 88MHz-216MHz 150 216MHz-960MHz 200 960MHz-1GHz 500 Above 1GHz 500 5000 5000 Above 1GHz 500 5000 5000 For radiated emissions from 9kHz to 500 Fun Table Sure	FCC Part15 C Section 15.209 ANSI C63.10:2013 9kHz to 25GHz Measurement Distance: 3m Frequency Detector RBN 9KHz-150KHz Quasi-peak Quasi-peak 9KHz-150KHz Quasi-peak 9KHz 30MHz-1GHz Quasi-peak 9Eak 120K Peak 1MH Above 1GHz Peak 1MH Peak 1MH 0.009MHz-0.490MHz 2400/F(KHz) 2400/F(KHz) 0.490MHz-1.705MHz 24000/F(KHz) 1.705MHz-300Hz 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30	FCC Part15 C Section 15.209 ANSI C63.10:2013 9kHz to 25GHz Measurement Distance: 3m Frequency Detector 9KHz-150KHz Quasi-peak 150KHz-30MHz Quasi-peak 30MHz-1GHz Quasi-peak Above 1GHz Peak Peak 1MHz Above 1GHz Peak Peak 1MHz 0.009MHz-0.490MHz 2400/F(KHz) 0.490MHz-1.705MHz 2400/F(KHz) 0.490MHz-1.705MHz 2400/F(KHz) 1.705MHz-30MHz 30 30MHz-88MHz 100 88MHz-216MHz 150 216MHz-960MHz 200 960MHz-1GHz 500 Above 1GHz 500 Above 1GHz 500 Above 1GHz 500 For radiated emissions from 9kHz to 30MHz	FCC Part15 C Section 15.209 ANSI C63.10:2013 9kHz to 25GHz Measurement Distance: 3m Frequency Detector RBW VBW 9KHz-150KHz Quasi-peak 200Hz 600Hz 150KHz-30MHz Quasi-peak 9KHz 30KHz 30MHz-1GHz Quasi-peak 120KHz 300KHz Above 1GHz Peak 1MHz 10Hz Peak 1MHz 10Hz 10Hz 0.009MHz-0.490MHz 2400/F(KHz) QP 0.490MHz-1.705MHz 24000/F(KHz) QP 0.490MHz-300MHz 30 QP 1.705MHz-300MHz 30 QP 30MHz-88MHz 100 QP 30MHz-88MHz 100 QP 216MHz-960MHz 200 QP 960MHz-1GHz 500 Average 5000 Peak Test Antenna Test Antenna Above 1GHz Som > Tum Table		

6.6.2 Radiated Emission Method

Report No.: HTT202503470F01

	 maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 					
Test Instruments:	Refer to see	ction 6.0 for	details			
Test mode:	Refer to see	ction 5.2 for	details			
Test environment:	Test environment:Temp.:25 °CHumid.:52%Press.:1012r					
Test voltage:	AC 120V, 60Hz					
Test results:	Pass					

Measurement data:


Remarks:

- 1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.
- 2. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.
- 3. Based on all tested data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case as BLE 1M 2402MHz as below:

0.0 dBuV/m					■ Horizo	ontal				
									FCC Part Margin -6	
	_					M		Mhu	abberry provident	wowyours
Whitewarthou	harman	hall	m	www.wheney	adumAp	had	W			
0	446-94-04 50	60	70 80	www.lowlowed	(MHz)		300 4	00 500	600 700	
0		60	70 80	Reading			WFGE 1 19			1000.000
0	50	60	70 80	Reading	(MHz) Correct	Measure-		00 500		
0	50	60 Mk.	70 80 Freq.	Reading	(MHz) Correct Factor	Measure- ment	Limit	00 500 Over	600 700	
0	50 No.	60 Mk.	70 80 Freq. MHz	Reading Level dBuV	(MHz) Correct Factor dB/m	Measure- ment dBuV/m	Limit dB/m	000 500 Over dB	600 700 Detector	
.0	50 No.	60 Mk.	70 80 Freq. MHz 239.9874	Reading Level dBuV 52.27	(MHz) Correct Factor dB/m -11.83	Measure- ment dBuV/m 40.44	Limit dB/m 46.00	00 500 Over dB -5.56	600 700 Detector peak	
0	50 No.	60 Mk.	70 80 Freq. MHz 239.9874 278.0668	Reading Level dBuV 52.27 46.46	(MHz) Correct Factor dB/m -11.83 -11.37	Measure- ment dBuV/m 40.44 35.09	Limit dB/m 46.00 46.00	00 500 Over dB -5.56 -10.91	600 700 Detector peak peak	
.0	50 No. 1 2 3	60 Mk.	70 80 Freq. MHz 239.9874 278.0668 319.9370	Reading Level dBuV 52.27 46.46 51.22	(MHz) Correct Factor dB/m -11.83 -11.37 -10.44	Measure- ment dBuV/m 40.44 35.09 40.78	Limit dB/m 46.00 46.00 46.00	000 500 Over dB -5.56 -10.91 -5.22	600 700 Detector peak peak peak	

Above 1-25GHz

Freque	ncy(MHz)	:	24	02	Pola	arity:	н	IORIZONTA	NL
Frequency	Emission		Limit	Margin	Raw	Antenna	Cable	Pre-	Correction
	Lev	vel	(dBuV/m)	U U	Value	Factor	Factor	amplifier	Factor
(MHz)	(dBu	V/m)	(ubuv/iii)	(dB)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
4804.00	58.71	PK	74	15.29	53.01	31	6.5	31.8	5.7
4804.00	42.63	AV	54	11.37	36.93	31	6.5	31.8	5.7
7206.00	54.18	PK	74	19.82	41.53	36	8.15	31.5	12.65
7206.00	44.62	AV	54	9.38	31.97	36	8.15	31.5	12.65

Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le [,] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	58.19	PK	74	15.81	52.49	31	6.5	31.8	5.7
4804.00	44.06	AV	54	9.94	38.36	31	6.5	31.8	5.7
7206.00	53.28	PK	74	20.72	40.63	36	8.15	31.5	12.65
7206.00	43.61	AV	54	10.39	30.96	36	8.15	31.5	12.65

Freque	ncy(MHz)	:	24	40	Pola	arity:	н	HORIZONTAL		
Frequency (MHz)	Emis Le [.] (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4880.00	61.04	PK	74	12.96	54.88	31.2	6.61	31.65	6.16	
4880.00	44.89	AV	54	9.11	38.73	31.2	6.61	31.65	6.16	
7320.00	52.49	PK	74	21.51	39.54	36.2	8.23	31.48	12.95	
7320.00	44.44	AV	54	9.56	31.49	36.2	8.23	31.48	12.95	

Freque	requency(MHz):		2440		Polarity:		VERTICAL		
Frequency (MHz)	Emis Le [.] (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	62.01	PK	74	11.99	55.85	31.2	6.61	31.65	6.16
4880.00	43.32	AV	54	10.68	37.16	31.2	6.61	31.65	6.16
7320.00	52.53	PK	74	21.47	39.58	36.2	8.23	31.48	12.95
7320.00	44.65	AV	54	9.35	31.70	36.2	8.23	31.48	12.95

Freque	ncy(MHz)	:	24	80	Polarity:		н	HORIZONTAL	
Frequency (MHz)	Emis Le [.] (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	61.75	, PK	74	12.25	55.09	31.4	6.76	31.5	6.66
4960.00	41.20	AV	54	12.80	34.54	31.4	6.76	31.5	6.66
7440.00	53.94	PK	74	20.06	40.64	36.4	8.35	31.45	13.3
7440.00	45.67	AV	54	8.33	32.37	36.4	8.35	31.45	13.3

Freque	ncy(MHz)):	24	80	Pola	arity:	VERTICAL		
Frequency	sion	Limit	Margin	Raw	Antenna	Cable	Pre-	Correction	
(MHz)	Le	vel	(dBuV/m)	U U	Value	Factor	Factor	amplifier	Factor
	(dBu	V/m)	(ubu v/m)	(dB)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
4960.00	63.35	PK	74	10.65	56.69	31.4	6.76	31.5	6.66
4960.00	43.23	AV	54	10.77	36.57	31.4	6.76	31.5	6.66
7440.00	54.94	PK	74	19.06	41.64	36.4	8.35	31.45	13.3
7440.00	45.24	AV	54	8.76	31.94	36.4	8.35	31.45	13.3

Remark:

(1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

(2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

Shenzhen HTT Technology Co.,Ltd.Tel: 0755-23595200Fax: 0755-235952011F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District,
Shenzhen, Guangdong, China

6.7. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was 0.00 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen HTT Technology Co., Ltd. does not assume any responsibility.

7. Test Setup Photo

Reference to the **appendix I** for details.

8. EUT Constructional Details

Reference to the **appendix II** for details.

-----End-----