

RF Test Report

For

Shenzhen Hangshi Electronic Technology Co.,Ltd

Test Standards: Part 15C Subpart C §15.247

Product Name: Bluetooth Keyboard

Tested Model: <u>HB098S</u>

HB098S-G,HB098S-G01,HB098S-G02,

Additional Model No.: <u>HB098S-G03</u>

FCC ID: <u>2AKHJ-HB098S</u>

Classification <u>Digital Spread Spectrum (DSS)</u>

Report No.: <u>EC2304029RF01</u>

Tested Date: <u>2023-04-14 to 2023-05-12</u>

Issued Date: <u>2023-05-18</u>

Prepared By:

Luo xiang / Engineer

Approved By:

Tiny Yang / RF Manager

Testing laboratory:

Hunan Ecloud Testing Technology Co., Ltd.

Building A1, Changsha E Center, No. 18 Xiangtai Avenue, Liuyang Economic and Technological Development Zone, Hunan, P.R.C

Tel.: +86-731-89634887 Fax.: +86-731-89634887

www.hn-ecloud.com

Note: The test results in this report apply exclusively to the tested model / sample. Without written approval of Hunan Ecloud Testing Technology Co., Ltd., the test report shall not be reproduced except in full.

Report Revise Record

Repo	ort Version	Revise Time	Issued Date	Valid Version	Notes
	V1.0	/	2023.05.18	Valid	Original Report

Tel.:+86-731-89634887

TABLE OF CONTENTS

1 TEST LABORATORY	5
1.1 Test facility	5
2 GENERAL DESCRIPTION	6
2.1 Applicant	6
2.2 Manufacturer	
2.3 General Description Of EUT	6
2.4 Modification of EUT	7
2.5 Applicable Standards	7
3 TEST CONFIGURATION OF EQUIPMENT UNDER TEST	8
3.1 Descriptions of Test Mode	8
3.2 Test Mode	8
3.3 Support Equipment	9
3.4 Test Setup	10
3.5 Measurement Results Explanation Example	13
4 TEST RESULT	14
4.1 20dB and 99% Bandwidth Measurement	14
4.2 Peak Output Power Measurement	15
4.3 Carrier Frequency Separation Measurement	
4.4 Time of Occupancy Measurement	17
4.5 Number of Hopping Channels Measurement	18
4.6 Conducted Band Edges Measurement	19
4.7 Conducted Spurious Emission Measurement	20
4.8 Radiated Band Edges and Spurious Emission Measurement	21
4.9 AC Conducted Emission Measurement	46
4.10 Antenna Requirements	47
5 LIST OF MEASURING EQUIPMENT	48
6 UNCERTAINTY OF EVALUATION	50
Appendix A: 20dB Emission Bandwidth	51
Appendix B: Occupied Channel Bandwidth	53
Appendix C: Maximum conducted output power	55
Appendix D: Carrier frequency separation	57
Appendix E: Time of occupancy	58
Appendix F: Number of hopping channels	62
Appendix G: Band edge measurements	63
Appendix H: Conducted Spurious Emission	66
Appendix I. Setup Photographs	71

Summary of Test Result

FCC Rule	ule Description Limit		Result	Remark
15.247(a)(1)	20dB Bandwidth	NA	Pass	Test Engineer: Luo Xiang
-	99% Bandwidth	-	Pass	Test Engineer: Luo Xiang
15.247(a)(1)	Hopping Channel Separation	≥ 2/3 of 20dB BW	Pass	Test Engineer: Luo Xiang
15.247(a)(1)	Number of Channels	≥ 15Chs	Pass	Test Engineer: Luo Xiang
15.247(a)(1)	Average Time of Occupancy	≤ 0.4sec in 31.6sec period	Pass	Test Engineer: Luo Xiang
15.247(b)(1)	Peak Output Power	≤ 125 mW	Pass	Test Engineer: Luo Xiang
15.247(d)	Conducted Band Edges	≤ 20dBc	Pass	Test Engineer: Luo Xiang
15.247(d)	Conducted Spurious Emission	≤ 20dBc	Pass	Test Engineer: Luo Xiang
15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 3.51 dB at 9920 MHz
15.207	AC Conducted Emission	15.207(a)	Not Required	Not Required
15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

Tel.:+86-731-89634887

1 Test Laboratory

1.1 Test facility

CNAS (accreditation number:L11138)

Hunan Ecloud Testing Technology Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS).

FCC (Designation number: CN1244, Test Firm Registration

Number:793308)

Hunan Ecloud Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

ISED(CAB identifier: CN0012, ISED# :24347)

Hunan Ecloud Testing Technology Co., Ltd. has been listed on the Wireless Device Testing Laboratories list of innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements.

A2LA (Certificate Number: 4895.01)

Hunan Ecloud Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

2 **General Description**

2.1 **Applicant**

Shenzhen Hangshi Electronic Technology Co.,Ltd

2nd Floor,A1 Building,G Area,Democracy West Industry Area,Shajing TownBao'an District, Shenzhen China

2.2 Manufacturer

Shenzhen Hangshi Electronic Technology Co.,Ltd

2nd Floor,A1 Building,G Area,Democracy West Industry Area,Shajing TownBao'an District, Shenzhen China

General Description Of EUT 2.3

Product	Bluetooth Keyboard		
Model No.	HB098S		
Additional NO.	HB098S-G,HB098S-G01,HB098S-G02,HB098S-G03		
	HB098S-G, HB098S-G01, HB098S-G02, HB098S-G03		
Difference Description	and HB098S,Only the name is different and does not		
	affect any RF parameters.		
FCC ID	2AKHJ-HB098S		
Power Supply	3Vdc from Dry battery		
Modulation Technology	FHSS		
Modulation Type	GFSK		
Operating Frequency	2402MHz~2480MHz		
Number Of Channel	79		
Max. Output Power	Bluetooth BR(1Mbps) : -1.11 dBm (0.0008W)		
Antenna Type	PCB Antenna type with 1.87dBi gain		
HW Version	V1.0		
SW Version	V1.0		
Sample no.	2304029R-1/2~2/2		
Sample Received Date	2023/04/14		
I/O Ports	Refer to user's manual		
Cable Supplied	Refer to user's manual		

FCC ID: 2AKHJ-HB098S www.hn-ecloud.com

Liuyang Economic and Technological Development Zone, Hunan, P.R.C

NOTE:

- 1. The above EUT information is declared by manufacturer. The laboratory is not responsible for the information provided by the manufacturer.
- 2. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 3. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.

2.4 Modification of EUT

No modifications are made to the EUT during all test items.

2.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- ANSI C63.10-2013
- KDB 558074 D01 15.247 Meas Guidance v05r02

Remark:

1. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

3 Test Configuration of Equipment Under Test

3.1 Descriptions of Test Mode

The transmitter has a maximum peak conducted output power as follows:

Mode	Mode Channel Fr		Bluetooth RF Output Power
	Ch00	2402MHz	-1.11
GFSK	Ch39	2441MHz	-3.02
	Ch78	2480MHz	-3.77

Remark:

- 1. All the test data for each data rate were verified, but only the worst case was reported.
- 2. The data rate was set in 1Mbps for all the test items due to the highest RF output power.

3.2 Test Mode

3.2.1 Antenna Port Conducted Measurement

Summary table of Test Cases					
Test Item	Data Rate / Modulation				
rest item	Bluetooth BR 1Mbps GFSK				
Conducted	Mode 1: CH00_2402 MHz				
Test Cases	Mode 2: CH39_2441 MHz				
rest Cases	Mode 3: CH78_2480 MHz				

3.2.2 Radiated Emission Test (Below 1GHz)

Radiated	Bluetooth BR 1Mbps GFSK
Test Cases	Mode 3: CH78_2480 MHz

Note: 1. Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type. X orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

2. Following channel(s) was (were) selected for the final test as listed above

Page 8 of 72

3.2.3 Radiated Emission Test (Above 1GHz)

	Bluetooth BR 1Mbps GFSK			
Radiated	Mode 1: CH00_2402 MHz			
Test Cases	Mode 2: CH39_2441 MHz			
	Mode 3: CH78_2480 MHz			

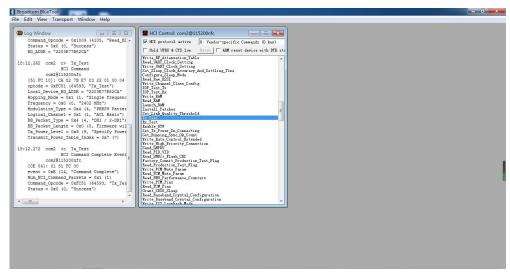
- Note: 1. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z it was determined that X orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.
 - 2. Following channel(s) was (were) selected for the final test as listed above
 - 3. For frequency above 18GHz, the measured value is much lower than the limit, therefore, it is not reflected in the report.

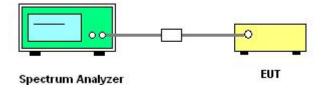
3.2.4 Power Line Conducted Emission Test:

Not Required

3.3 Support Equipment

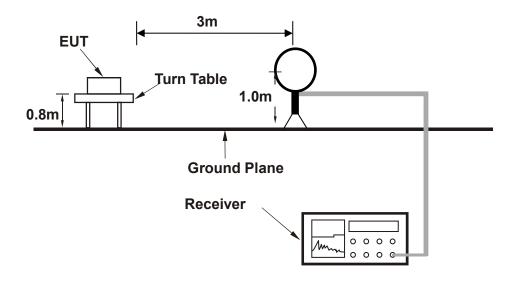
Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1	MicroUSB	N/A	N/A	N/A	N/A	unshielded
1.	Cable	IN/A				0.8m
2.	Notebook	Lenovo	E470C	FCC sDoC	N/A	shielded cable DC O/P 1.8 m unshielded AC I/P cable1.2 m

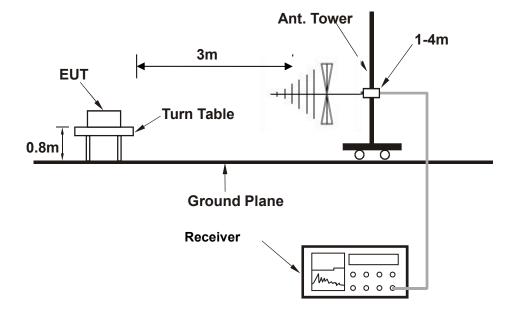

Tel.:+86-731-89634887


3.4 Test Setup

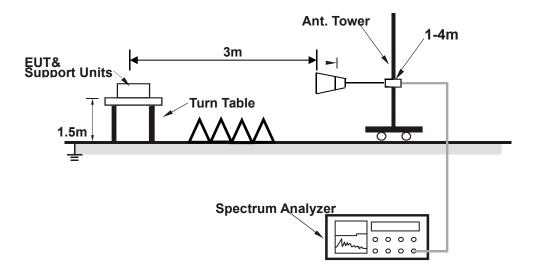
The EUT is continuously communicating to the Bluetooth tester during the tests.

EUT was set in the Hidden menu mode to enable BT communications.

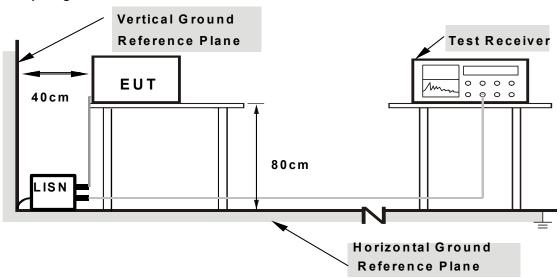

Setup diagram for Conducted Test


Page 10 of 72

Setup diagram for Radiation(9KHz~30MHz) Test



Setup diagram for Radiation(Below 1G) Test



Setup diagram for Radiation(Above1G) Test

Setup diagram for AC Conducted Emission Test

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

Report No.: EC2304029RF01

3.5 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 5 dB and 10dB attenuator.

 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$ = 5 + 10 = 15 (dB)

For all radiated test items:

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level Over Limit (dB μ V/m) = Level(dB μ V/m) - Limit Level (dB μ V/m)

4 Test Result

4.1 20dB and 99% Bandwidth Measurement

4.1.1 Limit of 20dB and 99% Bandwidth

None; for reporting purposes only.

4.1.2 Test Procedures

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument.
- 3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement.

Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;

RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;

Trace = max hold.

4. Use the following spectrum analyzer settings for 99 % Bandwidth measurement.

Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;

RBW \geq 1% of the 99% bandwidth; VBW \geq RBW; Sweep = auto; Detector function = sample;

Trace = max hold.

4.1.3 Test Result of 20dB Bandwidth

Refer to Appendix A of this test report.

4.1.4 Test Result of 99% Bandwidth

Refer to Appendix B of this test report.

4.2 Peak Output Power Measurement

4.2.1 Limit of Peak Output Power

Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

4.2.2 Test Procedures

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument.
- 3. The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.

4.2.3 Test Result of Peak Output Power

Refer to Appendix C of this test report.

4.3 Carrier Frequency Separation Measurement

4.3.1 Limit of Hopping Channel Separation

FCC §15.247 (a) (1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

4.3.2 Test Procedures

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument.
- 3. The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

4.3.3 Test Result of Hopping Channel Separation

Refer to Appendix D of this test report.

4.4 Time of Occupancy Measurement

4.4.1 Limit of Average Time of Occupancy

FCC §15.247 (a) (1) (iii)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.4.2 Test Procedures

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument.
- 3. The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.
- 4. The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements.

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

Test channel: 2441MHz as below:

DH1 time slot= Burst Width (ms)*(1600/ (2*79))*31.6

DH3 time slot= Burst Width (ms)*(1600/ (4*79))*31.6

DH5 time slot= Burst Width (ms)*(1600/ (6*79))*31.6

4.4.3 Test Result of Dwell Time

Refer to Appendix E of this test report.

Page 17 of 72

4.5 Number of Hopping Channels Measurement

4.5.1 Limits of Number of Hopping Channels

FCC § 15.247(a)(1)(iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

4.5.2 Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument.
- 3. The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to 100KHz. The analyzer is set to Max Hold.

4.5.3 Test Result of Number of Hopping Channels

Refer to Appendix F of this test report.

Tel.:+86-731-89634887

4.6 Conducted Band Edges Measurement

4.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

4.6.2 Test Procedures

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument.
- 3.Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 1~3.

4.6.3 Test Result of Conducted Band Edges

Refer to Appendix G of this test report.

Tel.:+86-731-89634887 Fax.: +86-731-89634887

4.7 Conducted Spurious Emission Measurement

4.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

4.7.2 Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4.Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

4.7.3 Test Result of Conducted Spurious Emission

Refer to Appendix H of this test report.

4.8 Radiated Band Edges and Spurious Emission Measurement

4.8.1 Limit of Radiated Band Edges and Spurious Emission

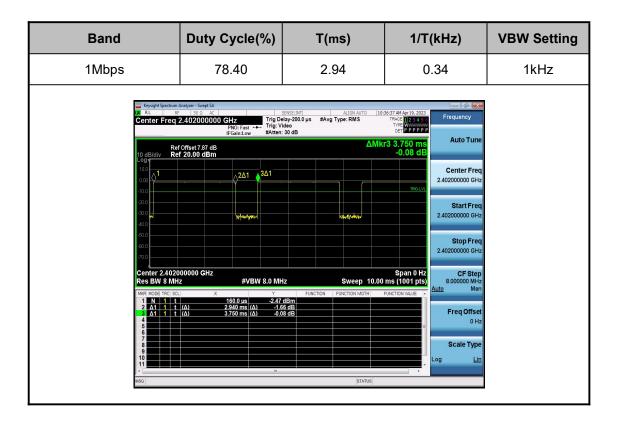
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

Note: The frequency range from 9KHz to 10th harmonic (25GHz) are checked, and no any emissions were found from 18GHz to 25GHz, So the radiated emissions from 18GHz to 25GHz were not record.

Tel.:+86-731-89634887

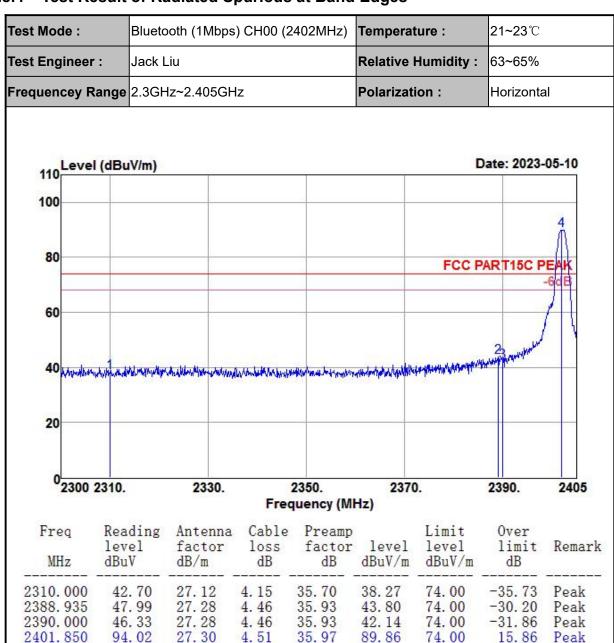
4.8.2 Test Procedures


- The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The measurement distance is 3 meter.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) The EUT shall be configured to operate at the maximum achievable duty cycle.
 - (2) Measure the duty cycle D of the transmitter output signal as described in 11.6.
 - (3) RBW = 1 MHz (unless otherwise specified).
 - (4) $VBW \geqslant [3 \times RBW]$.
 - (5) Detector = RMS (power averaging), if span / (# of points in sweep) ≤ (RBW / 2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.
 - (6) Averaging type = power (i.e., rms):
 - As an alternative, the detector and averaging type may be set for linear voltage averaging.
 - Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.
 - (7) Sweep time = auto.
 - (8) Perform a trace average of at least 100 traces.
 - (9) A correction factor shall be added to the measurement results prior to comparing with the emission limit to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:
 - a. If power averaging (rms) mode was used in step f), then the applicable correction factor is [10 log (1 / D)], where D is the duty cycle.
 - b. If linear voltage averaging mode was used in step f), then the applicable correction factor is [20 log (1 / D)], where D is the duty cycle.
 - c. If a specific emission is demonstrated to be continuous (D \geqslant 98%) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

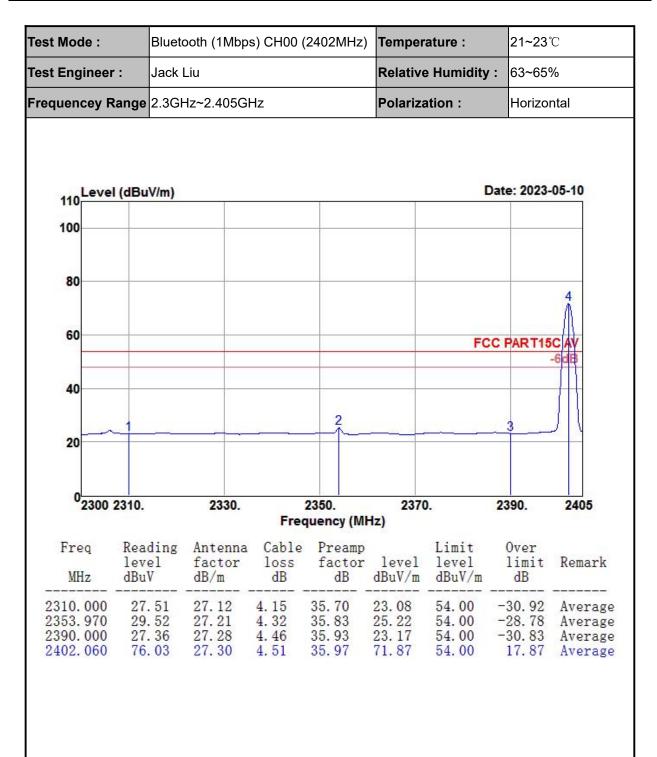
Liuyang Economic and Technological Development Zone, Hunan, P.R.C Fax.: +86-731-89634887

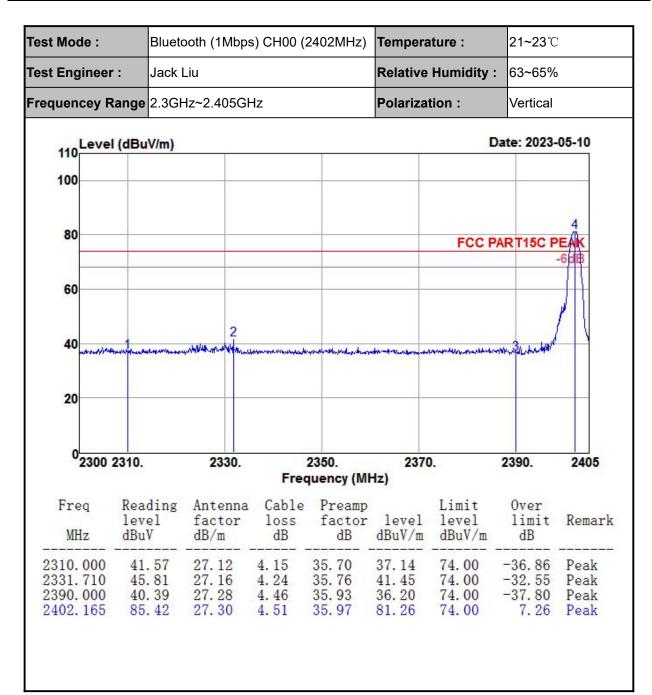
Tel.:+86-731-89634887

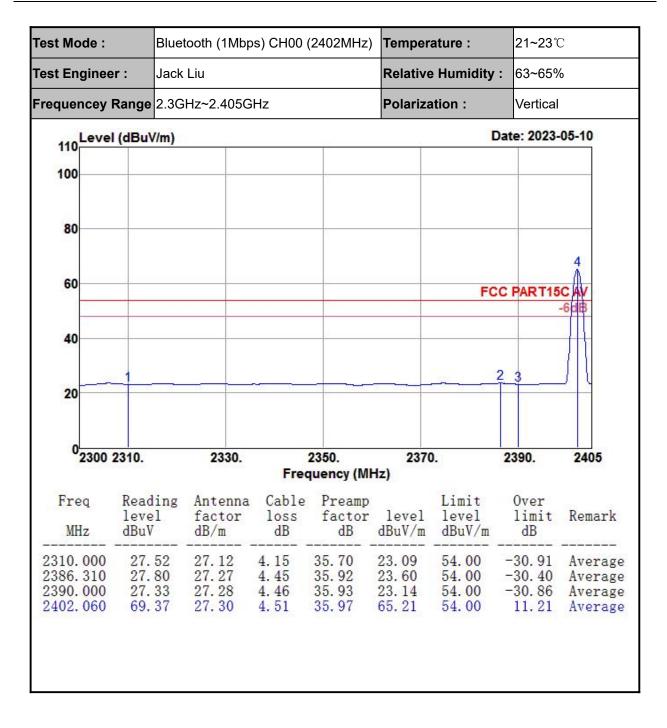
(10) Reduction of the measured emission amplitude levels to account for operational duty cycle is not permitted. Determining compliance is based on emission levels occurring during transmission; it is not based on an average across ON and OFF times of the transmitter.

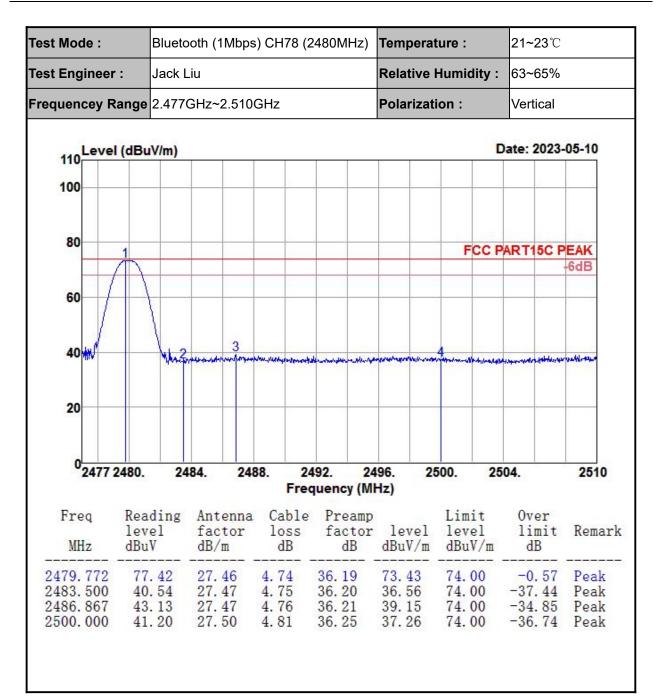


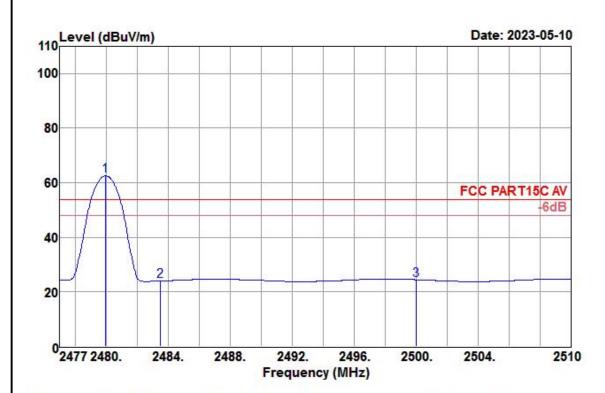
4.8.3 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

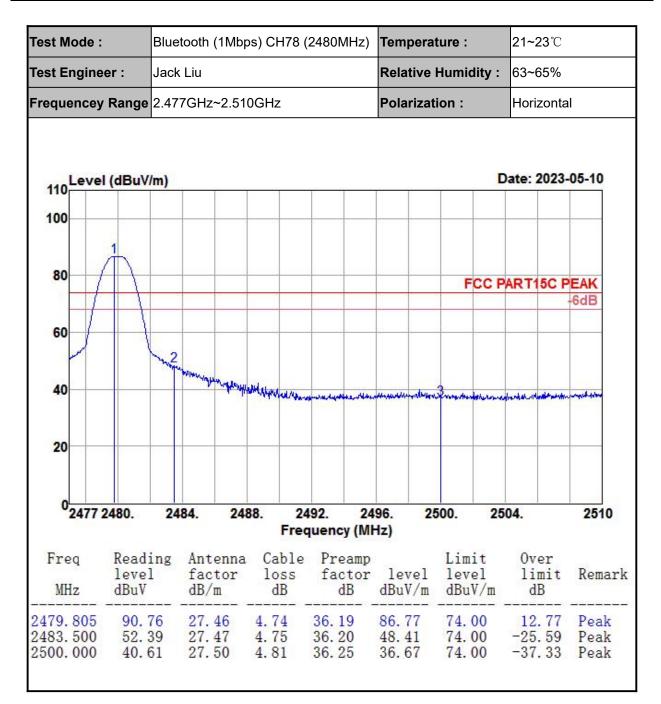

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.


4.8.4 Test Result of Radiated Spurious at Band Edges

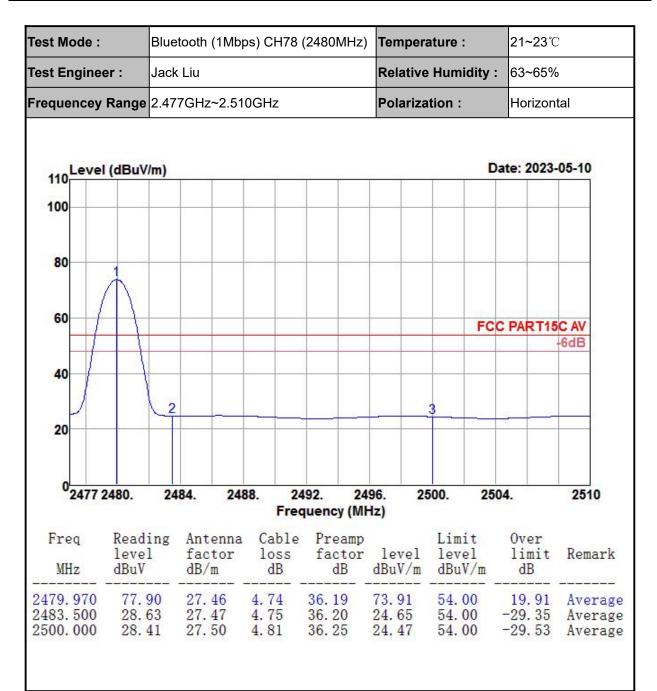




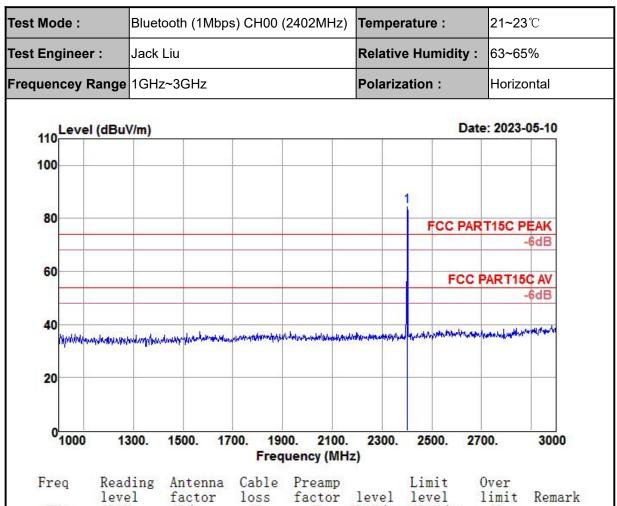


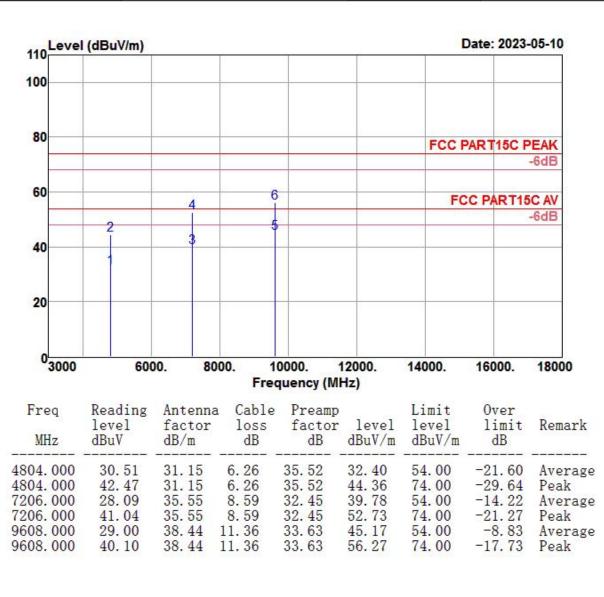


Test Mode: Bluetooth (1Mbps) CH78 (2480MHz)		Temperature :	21~23℃
Test Engineer :	Jack Liu	Relative Humidity :	63~65%
Frequencey Range	2.477GHz~2.510GHz	Polarization :	Vertical

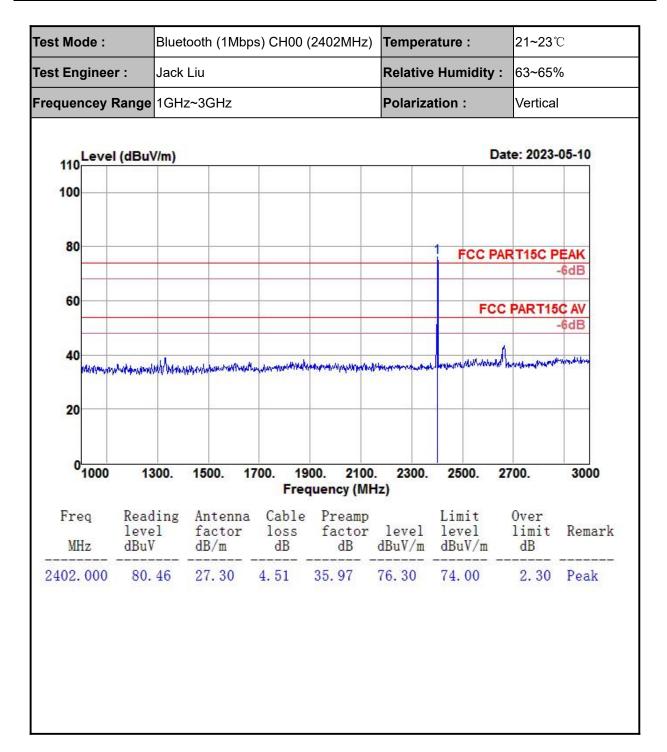


Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level	Limit level dBuV/m	Over limit dB	Remark
2479. 970	66. 55	27. 46	4. 74	36. 19	62. 56	54. 00	-29.99	Average
2483. 500	27. 99	27. 47	4. 75	36. 20	24. 01	54. 00		Average
2500. 000	28. 43	27. 50	4. 81	36. 25	24. 49	54. 00		Average

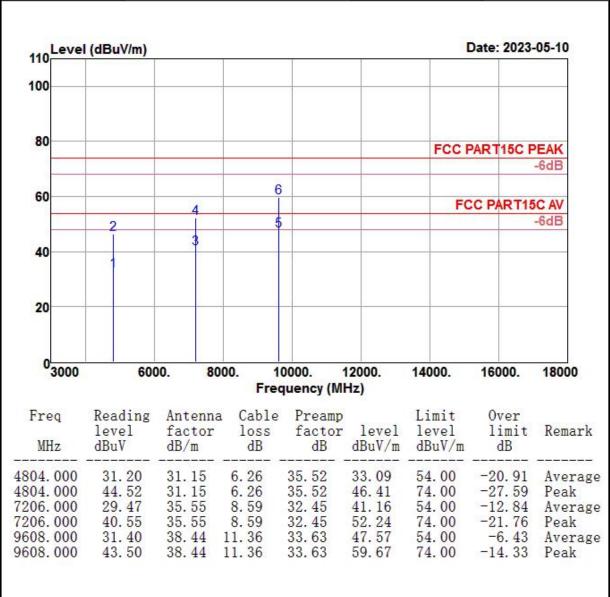


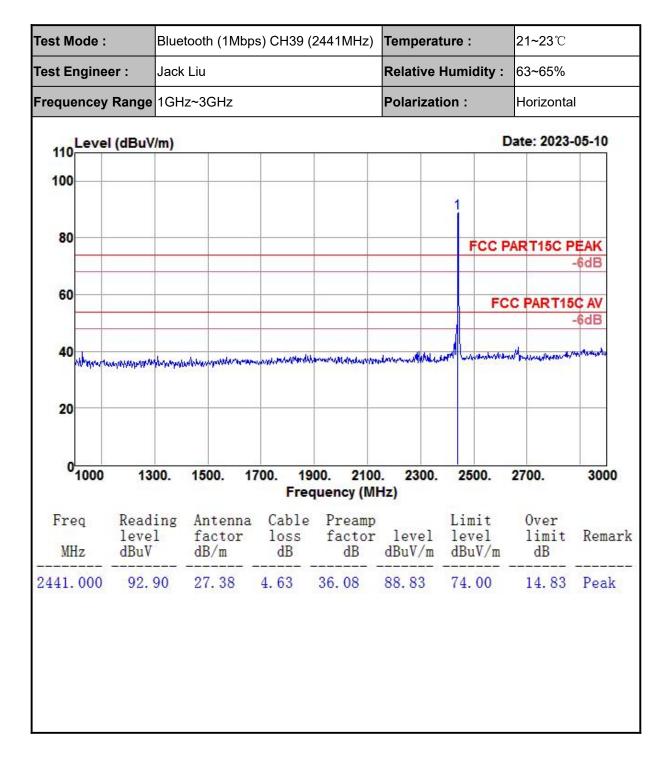


4.8.5 Test Result of Radiated Spurious Emission (1GHz ~ 10th Harmonic)

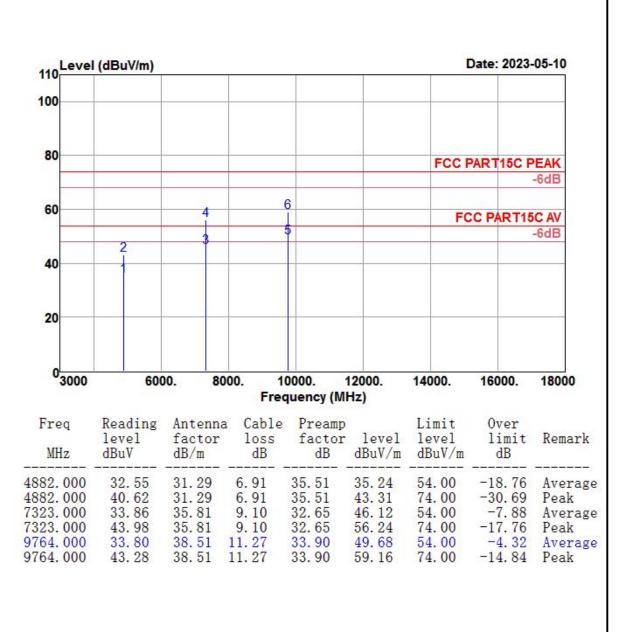


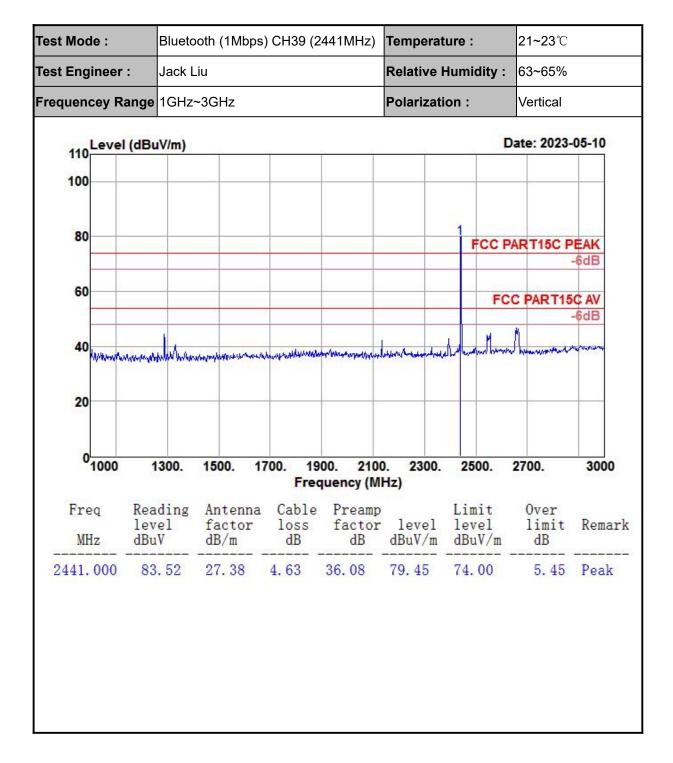
Test Mode :	Bluetooth (1Mbps) CH00 (2402MHz)	Temperature :	21~23℃
Test Engineer :	Jack Liu	Relative Humidity :	63~65%
Frequencey Range	3GHz~18GHz	Polarization :	Horizontal



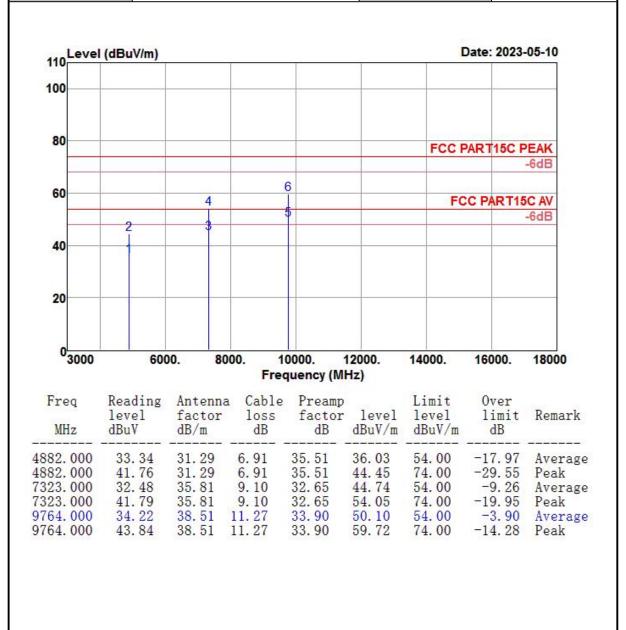


Test Mode :	Bluetooth (1Mbps) CH00 (2402MHz)	Temperature :	21~23℃
Test Engineer :	Jack Liu	Relative Humidity :	63~65%
Frequencey Range	3GHz~18GHz	Polarization :	Vertical

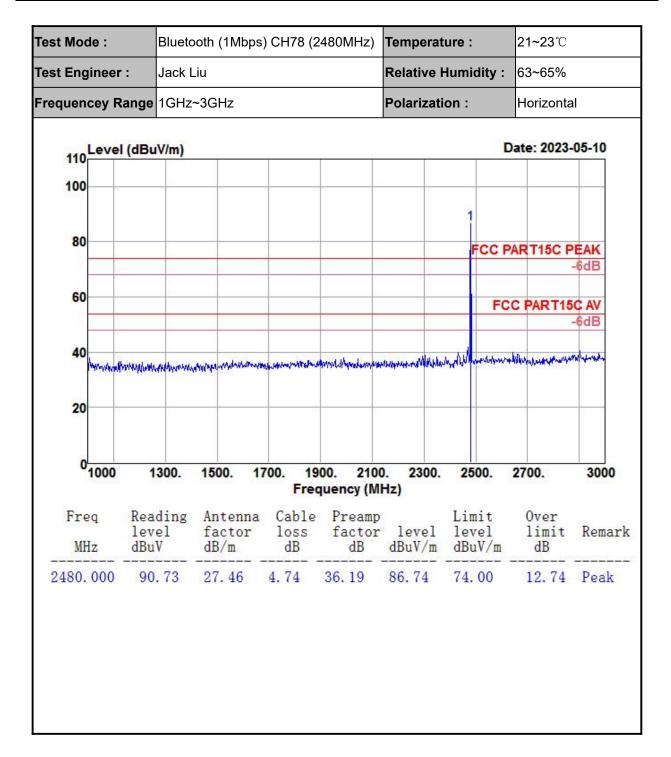




Test Mode :	Bluetooth (1Mbps) CH39 (2441MHz)	Temperature :	21~23℃
Test Engineer :	Jack Liu	Relative Humidity :	63~65%
Frequencey Range	3GHz~18GHz	Polarization :	Horizontal



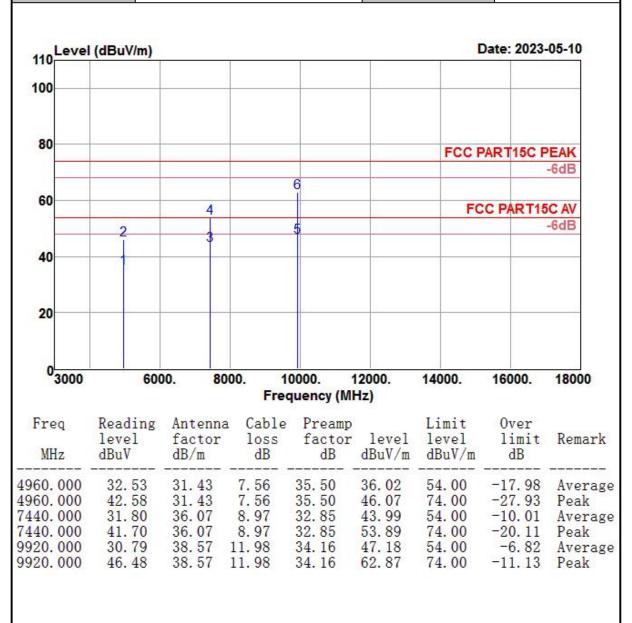
Test Mode :	Bluetooth (1Mbps) CH39 (2441MHz)	Temperature :	21~23℃
Test Engineer :	Jack Liu	Relative Humidity :	63~65%
Frequencey Range	3GHz~18GHz	Polarization :	Vertical

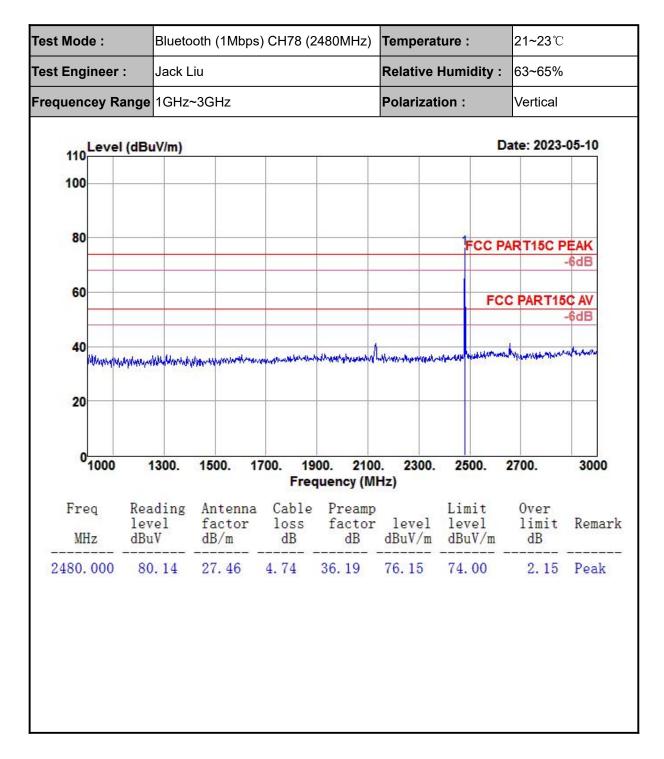


FCC ID: 2AKHJ-HB098S

www.hn-ecloud.com

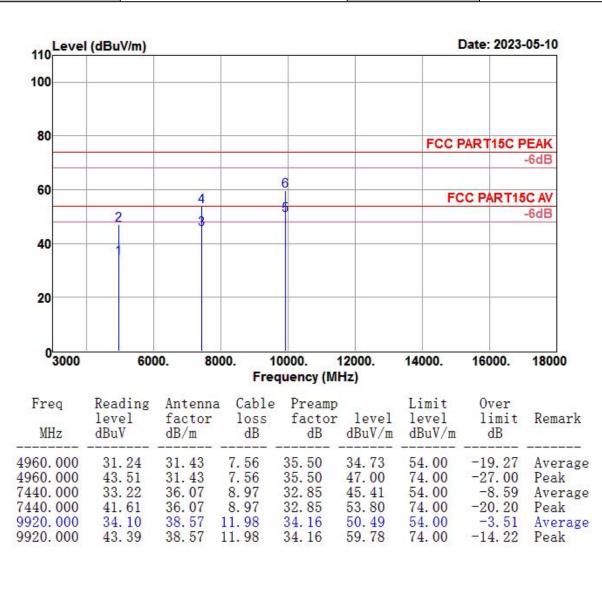
Tel.:+86-731-89634887



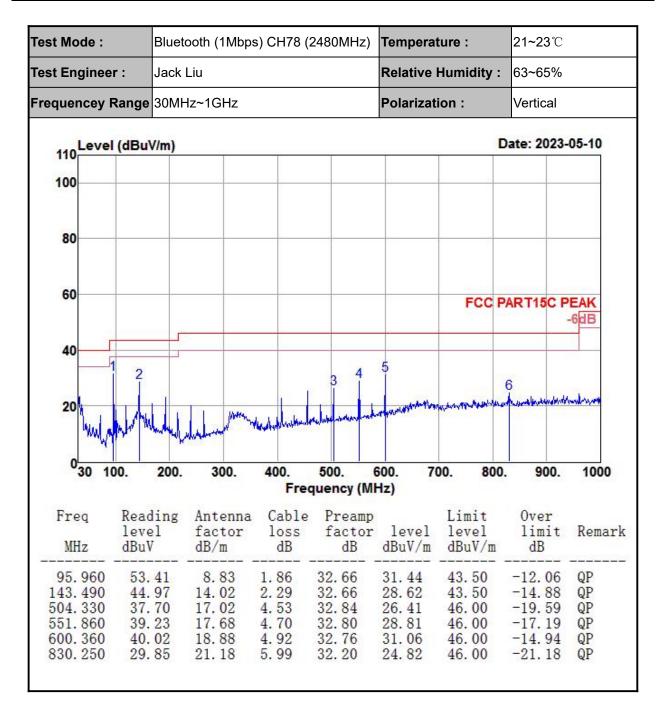

 Test Mode :
 Bluetooth (1Mbps) CH78 (2480MHz)
 Temperature :
 21~23℃

 Test Engineer :
 Jack Liu
 Relative Humidity :
 63~65%

 Frequencey Range
 3GHz~18GHz
 Polarization :
 Horizontal



Test Mode :	Bluetooth (1Mbps) CH78 (2480MHz)	Temperature :	21~23℃
Test Engineer :	Jack Liu	Relative Humidity :	63~65%
Frequencey Range	3GHz~18GHz	Polarization :	Vertical



4.8.6 Test Result of Radiated Spurious Emission (30MHz ~ 1GHz)

4.9 AC Conducted Emission Measurement

4.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Eroquency of emission (MUz)	Conducted limit (dBμV)			
Frequency of emission (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*}Decreases with the logarithm of the frequency.

4.9.2 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8.Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

ECLOUD

4.9.3 Test Result of AC Conducted Emission

Not Required

4.10 Antenna Requirements

4.10.1 Standard Applicable

According to antenna requirement of §15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the

responsible party shall be used with the device. The use of a permanently attached antenna or of an

antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to

comply with the provisions of this Section. The manufacturer may design the unit so that a broken

antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector

is prohibited. This requirement does not apply to carrier current devices or to devices operated under

the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does

not apply to intentional radiators that must be professionally installed, such as perimeter protection

systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be

responsible for ensuring that the proper antenna is employed so that the limits in this Part are not

exceeded..

And according to §15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used

exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain

greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1

dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

4.10.2 Antenna Connected Construction

An PCB antenna design is used.

4.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum

peak output power limit.

Building A1, Changsha E Center, No. 18 Xiangtai Avenue,

Liuyang Economic and Technological Development Zone, Hunan, P.R.C

Tel.:+86-731-89634887 Fax.: +86-731-89634887

5 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Due Date	Remark
Spectrum Analyzer	Keysight	N9010A	MY56070788	2022-12-26	2023-12-25	Conducted
Power Sensor	Keysight	U2021XA	MY56510025	2022-12-27	2023-12-26	Conducted
Power Sensor	Keysight	U2021XA	MY57030005	2022-12-27	2023-12-26	Conducted
Power Sensor	Keysight	U2021XA	MY56510018	2022-12-27	2023-12-26	Conducted
Power Sensor	Keysight	U2021XA	MY56480002	2022-12-27	2023-12-26	Conducted
Thermal Chamber	Howkin	UHL-34	19111801	2022-12-23	2023-12-22	Conducted
Base Station	R&S	CMW 270	101231	2022-12-26	2023-12-25	Conducted
Signal Generator (Interferer)	Keysight	N5182B	MY56200384	2022-12-26	2023-12-25	Conducted
Signal Generator (Blocker)	Keysight	N5171B	MY56200661	2022-12-26	2023-12-25	Conducted

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Due Date	Remark
Test Software	Audix	E3	6.111221a	N/A	N/A	Radiation
Filter	Micro-Tronics	BRM 50702	G266	N/A	N/A	Radiation
Spectrum Analyzer	R&S	FSV 30	103728	2022-12-26	2023-12-25	Radiation
Amplifier	Sonoma	310	363917	2022-12-26	2023-12-25	Radiation
Amplifier	Schwarzbeck	BBV 9718	327	2022-12-27	2023-12-26	Radiation
Amplifier	Narda	TTA1840-35-HG	2034380	2023-01-04	2024-01-03	Radiation
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-051	2023-02-12	2026-02-11	Radiation
Broadband Antenna	Schwarzbeck	VULB 9168	9168-757	2020-09-27	2023-09-26	Radiation
Horn Antenna	Schwarzbeck	BBHA 9120 D	1677	2023-02-12	2026-02-11	Radiation
Horn Antenna	COM-POWER	AH-1840	101117	2021-06-05	2024-06-04	Radiation
LISN	R&S	ENV216	102125	2022-12-19	2023-12-20	Conducted
LISN	R&S	ENV432	101327	2022-12-19	2023-12-20	Conducted

www.hn-ecloud.com

Tel.:+86-731-89634887

Report No.: EC2304029RF01

Γ	EMI Test	R&S	ESR3	102143	2022-12-19	2023-12-20	Conducted
ı	Receiver	Nao	LOINO	102140	2022-12-13	2020-12-20	Ooridacted

N/A: No Calibration Required

6 Uncertainty of Evaluation

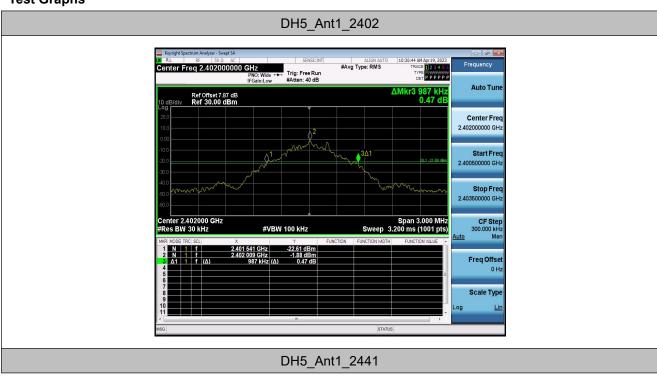
Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY	
Conducted emissions	9kHz~30MHz	3.29dB	
	30MHz ~ 1GHz	5.40dB	
Radiated emission	1GHz ~ 18GHz	5.03dB	
	18GHz ~ 40GHz	5.21dB	

MEASUREMENT	UNCERTAINTY
Occupied Channel Bandwidth	±57.212Hz
RF output power, conducted	±1.04dB
Power density, conducted	±2.31dB
Emissions, conducted	±2.18dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Tel.:+86-731-89634887



Appendix A: 20dB Emission Bandwidth

Test Result

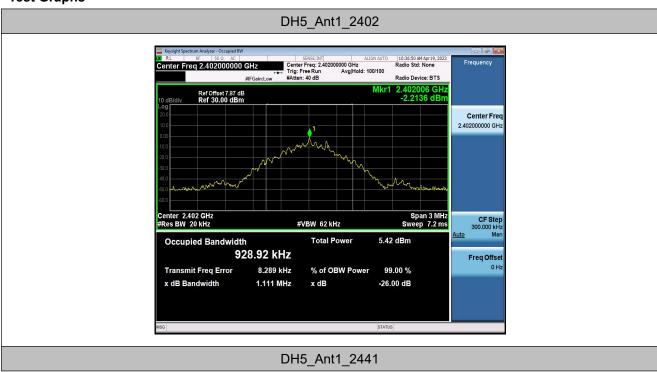
TestMode	Antenna	Channel	20db EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.987	2401.541	2402.528		
DH5	Ant1	2441	1.032	2440.496	2441.528		
		2480	1.047	2479.475	2480.522		

Test Graphs

Tel.:+86-731-89634887

DH5_Ant1_2480

Tel.:+86-731-89634887



Appendix B: Occupied Channel Bandwidth

Test Result

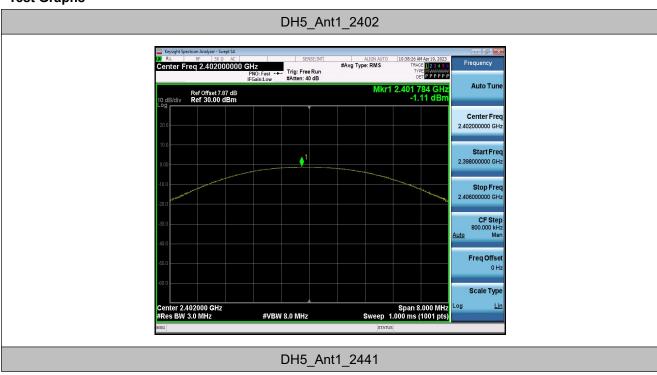
TestMode	Antenna	Channel	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.92892	2401.5438	2402.4728		
DH5	Ant1	2441	0.93883	2440.5495	2441.4883		
		2480	0.94297	2479.5464	2480.4894		


Test Graphs

Tel.:+86-731-89634887

DH5_Ant1_2480

Tel.:+86-731-89634887

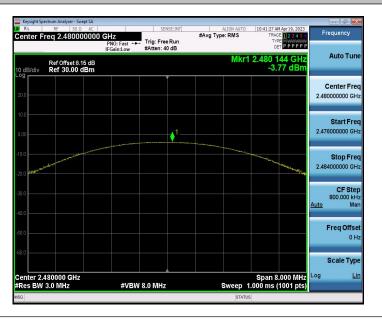


Appendix C: Maximum conducted output power

Test Result

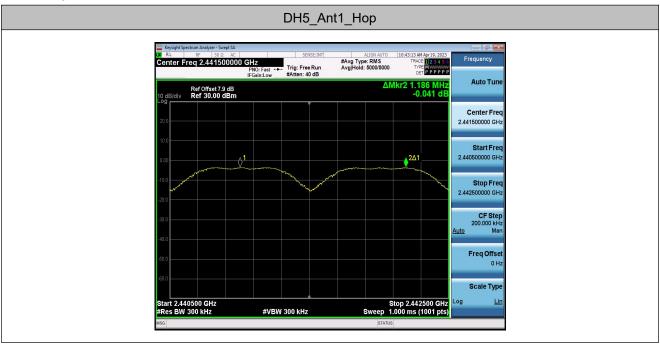
TestMode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
	Ant1	2402	-1.11	≤20.97	PASS
DH5		2441	-3.02	≤20.97	PASS
		2480	-3.77	≤20.97	PASS

Test Graphs



DH5_Ant1_2480

Tel.:+86-731-89634887

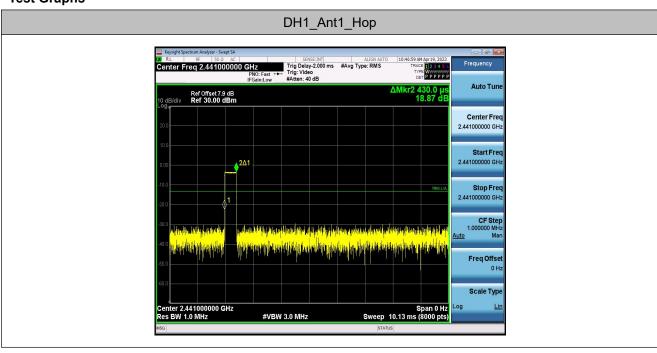


Appendix D: Carrier frequency separation

Test Result

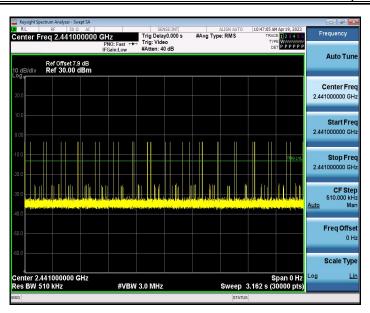
TestMode	Antenna	Channel	Result[Mhz]	Limit[Mhz]	Verdict
DH5	Ant1	Нор	1.186	≥1.047	PASS

Test Graphs

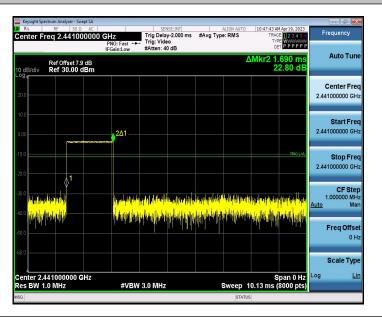


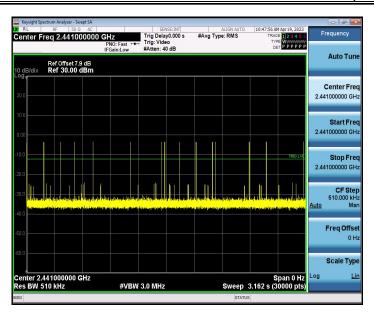
Appendix E: Time of occupancy

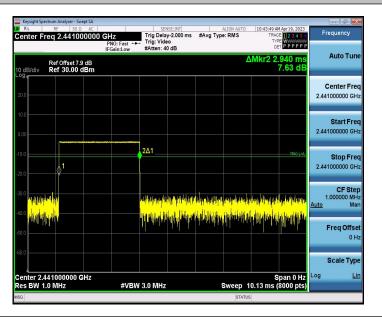
Test Result

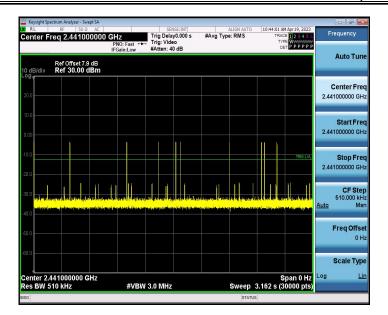

TestMode	Antenna	Channel	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.43	330	0.142	≤0.4	PASS
DH3	Ant1	Нор	1.69	150	0.254	≤0.4	PASS
DH5	Ant1	Нор	2.94	100	0.294	≤0.4	PASS

Test Graphs

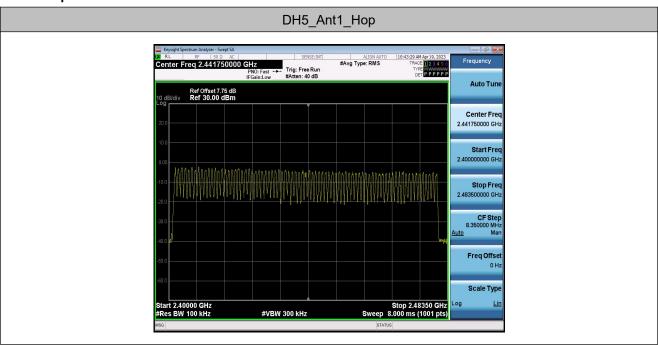



DH3_Ant1_Hop


Tel.:+86-731-89634887


DH5_Ant1_Hop

Tel.:+86-731-89634887



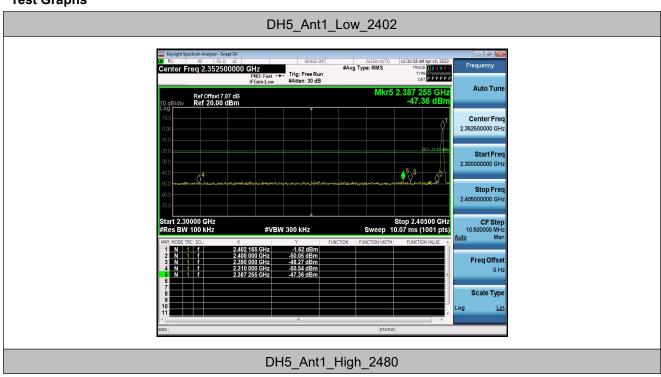
Appendix F: Number of hopping channels

Test Result

TestMode	Antenna	Channel	Result[Num]	Limit[Num]	Verdict
DH5	Ant1	Нор	79	≥15	PASS

Test Graphs

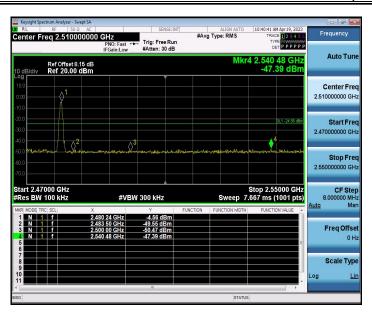
Tel.:+86-731-89634887

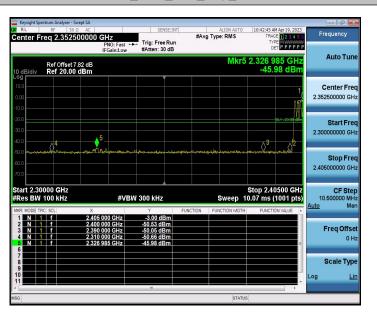


Appendix G: Band edge measurements

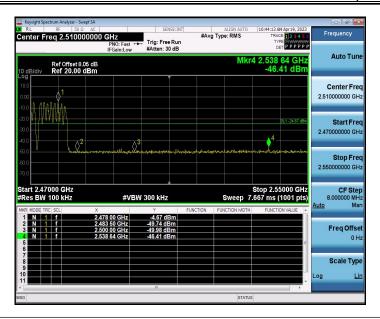
Test Result

TestMode	Antenna	ChName	Channel	RefLevel	Result	Limit	Verdict
				[dBm]	[dBm]	[dBm]	
DH5	Ant1	Low	2402	-1.62	-47.36	≤-21.62	PASS
		High	2480	-4.56	-47.39	≤-24.56	PASS
		Low	Hop_2402	-3.00	-45.98	≤-23	PASS
		High	Hop_2480	-4.67	-46.41	≤-24.67	PASS


Test Graphs

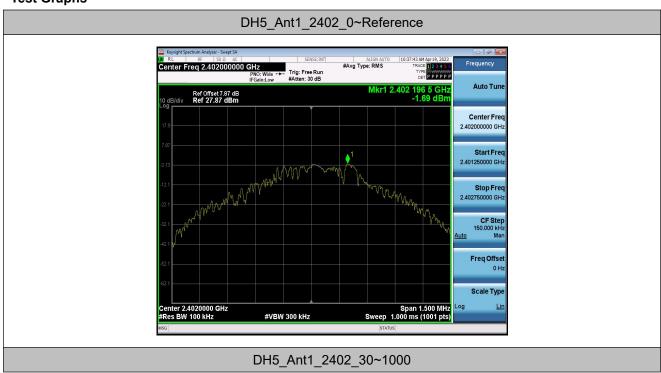

Tel.:+86-731-89634887

DH5_Ant1_Low_Hop_2402



DH5_Ant1_High_Hop_2480

Tel.:+86-731-89634887

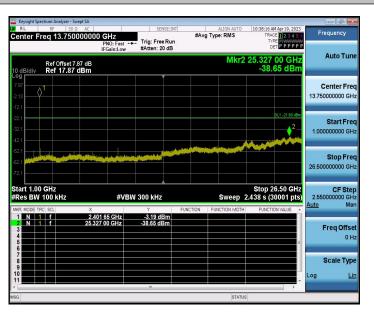


Appendix H: Conducted Spurious Emission

Test Result

TestMode	Antenna	Channel	FreqRange	RefLevel	Result	Limit	Verdict
			[MHz]	[dBm]	[dBm]	[dBm]	
DH5	Ant1	2402	Reference	-1.69	-1.69		PASS
			30~1000	-1.69	-58.68	≤-21.69	PASS
			1000~26500	-1.69	-38.65	≤-21.69	PASS
		2441	Reference	-4.71	-4.71		PASS
			30~1000	-4.71	-58.28	≤-24.71	PASS
			1000~26500	-4.71	-38.21	≤-24.71	PASS
			Reference	-5.30	-5.30		PASS
		2480	30~1000	-5.30	-57.86	≤-25.3	PASS
			1000~26500	-5.30	-38.39	≤-25.3	PASS

Test Graphs



DH5_Ant1_2402_1000~26500

Tel.:+86-731-89634887