

Hermon Laboratories Ltd. 66 HaTachana str., P.O. Box 23, Binyamina 3055001, Israel

Tel. +972 4628 8001 Fax. +972 4628 8277

E-mail: mail@hermonlabs.com

TEST REPORT

ACCORDING TO: FCC 47CFR part 15 subpart C §15.247 (Hybrid), RSS-247 Issue 3:2023, RSS-Gen Issue 5

FOR:

ARAD TECHNOLOGIES

Allegro Cellular

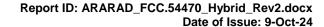
Models: PIT Unit X

PIT_Unit X

FCC ID: 2A7AA-CM2R1PIT4G

IC: 28664-CM2R1PIT4G

This report is in conformity with ISO/ IEC 17025. The "A2LA Accredited" symbol endorsement applies only to the tests and calibrations that are listed in the scope of Hermon Laboratories accreditation. The test results relate only to the items tested. This test report shall not be reproduced in any form except in full with the written approval of Hermon Laboratories Ltd.


Report ID: ARARAD_FCC.54470_Hybrid_Rev2.docx

Date of Issue: 9-Oct-24

Table of contents

1	Applicant information	3
2	Equipment under test attributes	3
3	Manufacturer information	3
4	Test details	3
5	Tests summary	4
6	EUT description	5
6.1	General information	5
6.2	Test configuration	5
6.3	Transmitter characteristics	6
7	Transmitter tests according to 47CFR part 15 subpart C and RSS-247 requirements	7
7.1	20 dB bandwidth	7
7.2	Carrier frequency separation	11
7.3	Number of hopping frequencies	13
7.4	Average time of occupancy	17
7.5	Peak output power	20
7.1	Peak spectral power density	26
7.2	Field strength of spurious emissions	30
7.3	Band edge radiated emissions	48
7.4	Antenna requirements	52
8	APPENDIX A Test equipment and ancillaries used for tests	53
9	APPENDIX B Test equipment correction factors	54
10	APPENDIX C Measurement uncertainties	57
11	APPENDIX D Test laboratory description	58
12	APPENDIX E Specification references	59
13	APPENDIX F Abbreviations and acronyms	60
14	APPENDIX G Manufacturer's declaration	61

1 Applicant information

Client name: ARAD TECHNOLOGIES

Address: POB 537, HaMada 4, Yokneam Ind. Zone, Yokneam Ilit 20692, Israel

Telephone: 04-9935222, Ext: 271

Fax: 04-9935227

E-mail: viorel.negreanu@aradtec.com

Contact name: Mr. Vily Negreanu

2 Equipment under test attributes

Product name: Allegro Cellular
Product type: Transceiver
Model(s): PIT Unit X*
Serial number: 80E12696A18F
Hardware version: PCB00266
Software release: 74.1.12
Receipt date 23-May-24

3 Manufacturer information

Manufacturer name: ARAD TECHNOLOGIES

Address: POB 537, HaMada 4, Yokneam Ind. Zone, Yokneam Ilit 20692, Israel

Telephone: 04-9935222, Ext: 271

Fax: 04-9935227

E-Mail: viorel.negreanu@aradtec.com

Contact name: Mr. Vily Negreanu

4 Test details

Project ID: 54470

Location: Hermon Laboratories Ltd. 66 HaTachana str., P.O. Box 23, Binyamina 3055001, Israel

Test started:27-Jun-24Test completed:03-Sep-24

Test specification(s): FCC 47CFR part 15 subpart C §15.247 (Hybrid),

RSS-247 Issue 3:2023, RSS-Gen Issue 5

^{*}According to manufacturer's declaration provided in Appendix G the PIT Unix X is a Super Set product that is fully identical to PIT_Unix X, some components were added/replaced because they are required for the functionality of their specific application. This component does not change the radio functions. Therefore, only the model PIT Unix X was tested.

5 Tests summary

Test	Status
Transmitter characteristics	
Section 15.247(a)1 / RSS-247 section 5.1(c), 20 dB bandwidth	Pass
Section 15.247(b) / RSS-247 section 5.4(a), Peak output power	Pass
Section 15.247(e)/ RSS-247 section 5.4(1), Peak spectral density	Pass
Section 15.247(d) / RSS-247 section 5.5, Radiated spurious emissions	Pass*
Section 15.247(a)1 / RSS-247 section 5.1(b), Frequency separation	Pass
Section 15.247(a)1 / RSS-247 section 5.1(c), Number of hopping frequencies	Pass
Section 15.247(a)1 / RSS-247 section 5.1(c), Average time of occupancy	Pass
Section 15.247(i)5 / RSS-102 section 2.5, RF exposure	Pass, the exhibit to the application of certification is provided
Section 15.247(d) / RSS-247 section 5.5, Emissions at band edges	Pass
Section 15.207(a) / RSS-Gen section 8.8, Conducted emission	Not required
Section 15.203 / RSS-Gen section 8.3, Antenna requirements	Pass

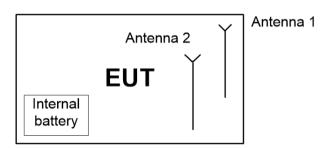
^{*}This test result reuse from previous test data (from FCC ID: 2A7AA-CM2R1PIT4G, certified on 23/08/2024 of initial application), the original EUT configuration approved under FCC ID: 2A7AA-CM2R1PIT4G was not changed. The hardware-wise identical and only the changes have been made that the "Hybrid" mode operation was opened by software.

This test report supersedes the previously issued test report identified by Doc ID: ARARAD_FCC.54470_Hybrid_Rev1

Testing was completed against all relevant requirements of the test standard. However, results obtained indicate that the product under test complies in full with the requirements tested.

The test results relate only to the items tested. Pass/ fail decision was based on nominal values.

	Name and Title	Date	Signature
Tested by:	Mrs. E. Pitt, test engineer, EMC & Radio	27-Jun-24 – 03-Sep-24	BH
Reviewed by:	Mrs. S. Peysahov Sheynin, certification specialist, EMC & Radio	20-Sep-24	
Approved by:	Mr. M. Nikishin, group leader, EMC & Radio	09-Oct-24	ff b


6 EUT description

Note: The following data in this clause is provided by the customer and represents his sole responsibility

6.1 General information

The Allegro cellular PIT booster Module is a battery-operated radio module designed for automated water meter reading. The Allegro cellular is capable of reading water consumption data from residential and commercial water meters equipped with an Encoder or Solid-State Register. It uses CAT-M cellular / LoRaWAN radio for relaying water consumption data to the utility. And Bluetooth short range wireless technology for unit parameters configuration and maintenance interface.

6.2 Test configuration

6.3 Transmitter characteristics

T	-f!											
	of equipment	/Equipmo	nt with or with	out ito o	wn con	trol pr	ovisions	.1				
Х	Stand-alone (Equipment with or without its own control provisions) Combined equipment (Equipment where the radio part is fully integrated within another type of equipment)											
			nt intended for					egrated within	ii anc	orner type or equipm	ient)	
lutana	<u> </u>	(Equipino			ty or no	or sys	items)					
X	ded use fixed		Condition of		mara th	.on 2	m fram	مار موسال				
^	mobile	., .,										
	portable		May operate a	at a dist	ance cl	oser t	nan 20 (cm to human	body	J		
Assigned frequency ranges 902 – 928 MHz												
	ating frequenc				- 903.7							
	<u> </u>						RF out	out connecto	r		dBm	1
Maxin	num rated out	put power	r		output p		• • • •		•		14.70) dBm
				X	No						(
								continuous	varia	ble		
Is trar	nsmitter outpu	ıt power v	ariable?		.,			stepped var	iable	with stepsize		dB
					Yes	m	minimum RF power				dBm	
						m	maximum RF power			dBm		
Anten	ına connectioi	n										
					dard connector		X integral			with temporary RI	- conn	ector
	unique coup	oling	star	idard co					Χ	without temporary	RF co	onnector
Anten	na/s technica	l characte	ristics									
Туре			Manufac	turer	rer Model number Gai			Gain				
Interg	rated		Inhouse	design			N/A			0dBi		
Trans	mitter aggreg	ate data ra	ate/s			980bp 5470b						
Type	of modulation					CSS	•					
	lating test sig		oand)			_oRa						
	mitter power s		•									
Χ	Battery		inal rated volt	age	3	3.6 VE	C	Battery t	уре	Lithium Inorgar	nic batt	tery
	DC		inal rated volt					•				•
	AC mains	Nom	inal rated volt	age				Frequen	су			
Comn	non power so	urce for tr	ansmitter and	receiv	er			Χ	_	yes		no
								hopping (FF				
Spread spectrum technique used			L	Digital transmission system (DTS)								
				- 1	Χ	Hyl						
Sprea	d spectrum pa	arameters	for transmitte	ers test	ted per	FCC	15.247	only				
		otal numbe			8							
FHSS Bandwidth per					144.9 k							
	Max. separation of hops				200 kHz							

Test specification:	on: Section 15.247(a)1, RSS-247 section 5.1(3), 20 dB bandwidth					
Test procedure:	ANSI C63.10, section 7.8.7					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	02-Sep-24	verdict:	PASS			
Temperature: 23 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3.6 VDC			
Remarks:						

7 Transmitter tests according to 47CFR part 15 subpart C and RSS-247 requirements

7.1 20 dB bandwidth

7.1.1 General

This test was performed to measure the 20 dB bandwidth of the transmitter hopping channel. Specification test limits are given in Table 7.1.1.

Table 7.1.1 The 20 dB bandwidth limits

Assigned frequency, MHz	Maximum bandwidth, kHz	Modulation envelope reference points*, dB		
902.0 - 928.0	No Requirements	20		

^{* -} Modulation envelope reference points provided in terms of attenuation below the peak of modulated carrier.

7.1.2 Test procedure

- 7.1.2.1 The EUT was set up as shown in Figure 7.1.1, energized and its proper operation was checked.
- **7.1.2.2** The EUT was set to transmit modulated carrier at maximum data rate.
- **7.1.2.3** The transmitter bandwidth was measured with spectrum analyzer as frequency delta between reference points on modulation envelope and provided in Table 7.1.2 and associated plot.
- **7.1.2.4** The test was repeated for each data rate and each modulation format.

Figure 7.1.1 The 20 dB bandwidth test setup

Test specification:	Section 15.247(a)1, RSS-247 section 5.1(3), 20 dB bandwidth					
Test procedure:	ANSI C63.10, section 7.8.7					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	02-Sep-24	verdict:	PASS			
Temperature: 23 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3.6 VDC			
Remarks:						

Table 7.1.2 The 20 dB bandwidth test results

ASSIGNED FREQUENCY BAND: 902-928 MHz

DETECTOR USED: Peak
SWEEP TIME: Auto

VIDEO BANDWIDTH: ≥ RBW
FREQUENCY HOPPING: Disabled

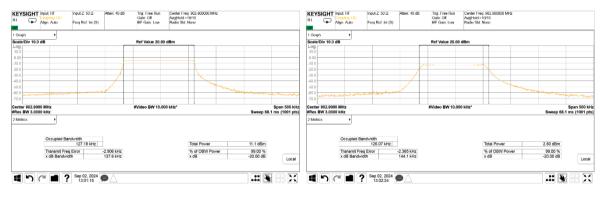
FREQUENCT HOFFII	NG.		Disal				
Carrier frequency, MHz	Type of modulation	Data rate, bps	99% OBW kHz	20 dB bandwidth, kHz	Limit, kHz	Margin, kHz	Verdict
Low frequency							
000.0	LaDa	980	127.39	137.80	NA	NA	Pass
902.3	LoRa	5470	126.37	144.90	NA	NA	Pass
Mid frequency							
002.0	LoRa	980	127.18	137.60	NA	NA	Pass
902.9		5470	126.07	144.10	NA	NA	Pass
High frequency							
903.7	LaDa	980	127.13	137.50	NA	NA	Pass
903.7	LoRa	5470	125.97	144.30	NA	NA	Pass

Reference numbers of test equipment used

HL 5288	HL 5902	HL 3903							

Test specification:	Section 15.247(a)1, RSS-247 section 5.1(3), 20 dB bandwidth					
Test procedure:	ANSI C63.10, section 7.8.7					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	02-Sep-24	verdict:	PASS			
Temperature: 23 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3.6 VDC			
Remarks:						

Plot 7.1.1 20 dB bandwidth test result at low frequency



Data rate 5470 bps

Plot 7.1.2 The 20 dB bandwidth test result at mid frequency

Data rate 5470 bps



Test specification:	st specification: Section 15.247(a)1, RSS-247 section 5.1(3), 20 dB bandwidth					
Test procedure:	ANSI C63.10, section 7.8.7					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	02-Sep-24	verdict.	PASS			
Temperature: 23 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3.6 VDC			
Remarks:						

Plot 7.1.3 The 20 dB bandwidth test result at high frequency

Data rate 5470 bps

Test specification:	Section 15.247(a)1, RSS-247 section 5.1(2), Frequency separation					
Test procedure:	ANSI C63.10, section 7.8.2					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	01-Sep-24	verdict.	PASS			
Temperature: 25 °C	Relative Humidity: 47 %	Air Pressure: 1003 hPa	Power: 3.6 VDC			
Remarks:						

7.2 Carrier frequency separation

7.2.1 General

This test was performed to measure frequency separation between the peaks of adjacent channels. Specification test limits are given in Table 7.2.1.

Table 7.2.1 Carrier frequency separation limits

Assigned frequency range,	Carrier frequency separation			
MHz	Output power 30 dBm	Output power 21 dBm		
902.0 - 928.0	25 kHz or 20 dB bandwidth of the	25 kHz or two-thirds of the 20 dB		
2400.0 - 2483.5	hopping channel,	bandwidth of the hopping channel,		
5725.0 - 5850.0	whichever is greater	whichever is greater		

7.2.2 Test procedure

- **7.2.2.1** The EUT was set up as shown in Figure 7.2.1, energized with frequency hopping function enabled and its proper operation was checked.
- **7.2.2.2** The spectrum analyzer span was set to capture the carrier frequency and both of adjacent channels, the lower and the higher. The resolution bandwidth was set wider than 1 % of the frequency span.
- 7.2.2.3 The spectrum analyzer was set in max hold mode and allowed trace to stabilize.
- **7.2.2.4** The frequency separation between the peaks of adjacent channels was measured as provided in Table 7.2.2 and associated plots.

Figure 7.2.1 Carrier frequency separation test setup

Test specification: Section 15.247(a)1, RSS-247 section 5.1(2), Frequency separation

Test procedure: ANSI C63.10, section 7.8.2

Test mode: Compliance Verdict: PASS

Date(s): 01-Sep-24

Temperature: 25 °C Relative Humidity: 47 % Air Pressure: 1003 hPa Power: 3.6 VDC

Remarks:

Table 7.2.2 Carrier frequency separation test results

ASSIGNED FREQUENCY: 902.0 – 928.0 MHz

MODULATION: LoRa DETECTOR USED: Peak

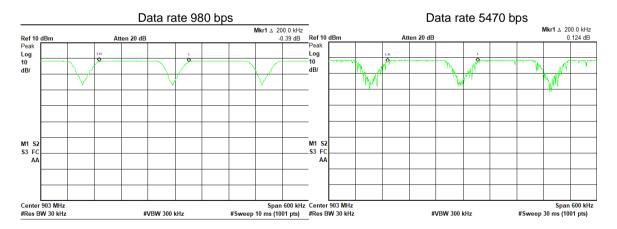
RESOLUTION BANDWIDTH: ≥ 1% of the span

VIDEO BANDWIDTH: ≥ RBW FREQUENCY HOPPING: Enabled

BIT RATE: 980 bps 20 dB BANDWIDTH: 137.80 kHz

Carrier frequency separation, kHz	Limit, kHz	Margin, kHz*	Verdict
200	137.80	-55.64	Pass

BIT RATE: 5470 bps 20 dB BANDWIDTH: 144.90kHz


Carrier frequency separation, kHz	Limit, kHz	Margin, kHz*	Verdict
200	144.90	-60.14	Pass

^{* -} Margin = Carrier frequency separation - specification limit.

Reference numbers of test equipment used

HL 2780 HL 3434 HL 4136 HL 7546 HL 5622

Plot 7.2.1 Carrier frequency separation

Test specification:	tion: Section 15.247(a)1, RSS-247 section 5.1(2), Frequency separation				
Test procedure:	ANSI C63.10, section 7.8.2				
Test mode:	Compliance	Varidiet: DACC			
Date(s):	01-Sep-24	Verdict: PASS			
Temperature: 25 °C	Relative Humidity: 47 %	Air Pressure: 1003 hPa	Power: 3.6 VDC		
Remarks:					

7.3 Number of hopping frequencies

7.3.1 General

This test was performed to calculate the number of hopping frequencies used by the EUT. Specification test limits are given in Table 7.3.1.


Table 7.3.1 Minimum number of hopping frequencies

Assigned frequency range, MHz	Number of hopping frequencies
902.0 - 928.0	No Requirements

7.3.2 Test procedure

- **7.3.2.1** The EUT was set up as shown in Figure 7.3.1, energized with frequency hopping function enabled and its proper operation was checked.
- **7.3.2.2** Initially the spectrum analyzer span was set equal to frequency band of operation and the resolution bandwidth was set wider than 1 % of the frequency span. If the separate hopping channels were not clearly resolved the frequency band of operation was broken to sections and the resolution bandwidth was set wider than 1 % of the frequency span of each section.
- 7.3.2.3 The spectrum analyzer was set in max hold mode and allowed trace to stabilize.
- **7.3.2.4** The number of frequency hopping channels was calculated as provided in Table 7.3.2 and associated plots.

Figure 7.3.1 Hopping frequencies test setup

Test specification:	Section 15.247(a)1, RSS-247 section 5.1(2), Frequency separation				
Test procedure:	ANSI C63.10, section 7.8.2				
Test mode:	Compliance	Vardiet: DACC			
Date(s):	01-Sep-24	Verdict: PASS			
Temperature: 25 °C	Relative Humidity: 47 %	Air Pressure: 1003 hPa	Power: 3.6 VDC		
Remarks:					

Table 7.3.2 Hopping frequencies test results

ASSIGNED FREQUENCY: 902.0 – 928.0 MHz

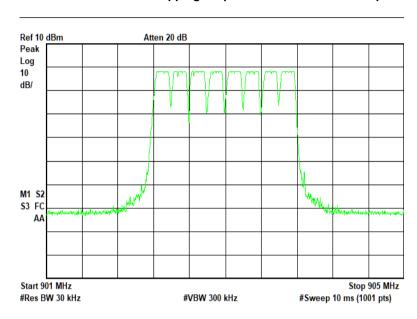
MODULATION: LoRa
DETECTOR USED: Peak
FREQUENCY HOPPING: Enabled

BIT RATE: 980 bps

Number of hopping frequencies	Minimum number of hopping frequencies	Margin	Verdict
8	NA	NA	Pass

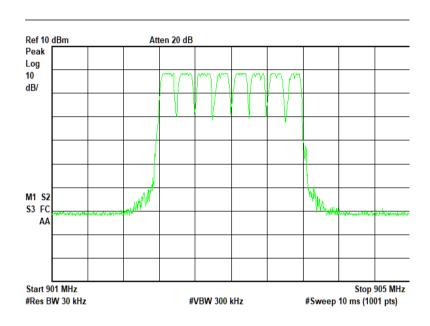
BIT RATE: 5470 bps

Number of hopping frequencies	Minimum number of hopping frequencies	Margin	Verdict
8	NA	NA	Pass


Reference numbers of test equipment used

HL 2780	HL 4136	HL 3434	HL 7546	HL 5622		

Test specification:	tion: Section 15.247(a)1, RSS-247 section 5.1(2), Frequency separation				
Test procedure:	ANSI C63.10, section 7.8.2				
Test mode:	Compliance	Varidiet: DACC			
Date(s):	01-Sep-24	Verdict: PASS			
Temperature: 25 °C	Relative Humidity: 47 %	Air Pressure: 1003 hPa	Power: 3.6 VDC		
Remarks:					


Plot 7.3.1 Number of hopping frequencies with bit rate 980 bps

Test specification:	Section 15.247(a)1, RSS-247 section 5.1(3), Number of hopping frequencies				
Test procedure:	ANSI C63.10, section 7.8.3				
Test mode:	Compliance	Verdict: PASS			
Date(s):	01-Jul-24				
Temperature: 25 °C	Relative Humidity: 47 %	Air Pressure: 1003 hPa	Power: 3.6 VDC		
Remarks:					

Plot 7.3.2 Number of hopping frequencies with bit rate 5470 bps

Test specification:	Section 15.247(a)1, RSS-24	7 section 5.1(3), Average t	ime of occupancy
Test procedure:	ANSI C63.10, section 7.8.4		
Test mode:	Compliance	Verdict:	PASS
Date(s):	01-Sep-24	verdict:	PASS
Temperature: 25 °C	Relative Humidity: 47 %	Air Pressure: 1003 hPa	Power: 3.6 VDC
Remarks:			

7.4 Average time of occupancy

7.4.1 General

This test was performed to calculate the average time of occupancy (dwell time) on any frequency channel of the EUT. Specification test limits are given in Table 7.4.1.

Table 7.4.1 Average time of occupancy limits

Assigned frequency range, MHz	Maximum average time of occupancy, s	Investigated period, s*
902.0 - 928.0	0.4	3.2

^{*}The Investigared Period equal to the number of hopping frequencies employed multiplied by 0.4.

7.4.2 Test procedure

- **7.4.2.1** The EUT was set up as shown in Figure 7.4.1, energized with frequency hopping function enabled and its proper operation was checked.
- **7.4.2.2** The spectrum analyzer span was set to zero centered on a hopping channel.
- **7.4.2.3** The single transmission duration and period were measured with oscilloscope.
- **7.4.2.4** The average time of occupancy was calculated as the single transmission time multiplied by the investigated period and divided by the single transmission period.
- **7.4.2.5** The test was repeated at each data rate and modulation type as provided in Table 7.4.2 and associated plots.

Figure 7.4.1 Average time of occupancy test setup

Test specification: Section 15.247(a)1, RSS-247 section 5.1(3), Average time of occupancy

Test procedure: ANSI C63.10, section 7.8.4

Test mode: Compliance Verdict: PASS

Date(s): 01-Sep-24

Temperature: 25 °C Relative Humidity: 47 % Air Pressure: 1003 hPa Power: 3.6 VDC

Remarks:

Table 7.4.2 Average time of occupancy test results

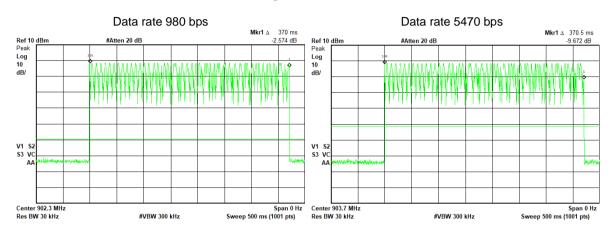
ASSIGNED FREQUENCY: 902.0 – 928.0 MHz

MODULATION: LoRa
DETECTOR USED: Peak
NUMBER OF HOPPING FREQUENCIES: 8
INVESTIGATED PERIOD: 3.2 s
FREQUENCY HOPPING: Enabled

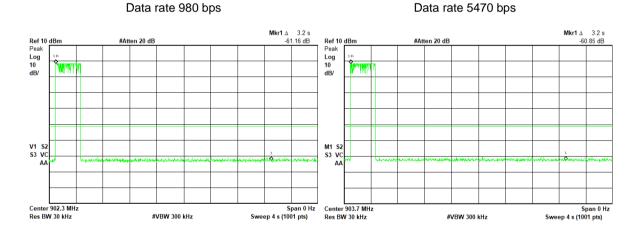
	Carrier frequency, MHz	Single transmission duration, s	Number of transmissions within investigated period	Average time of occupancy*, s	Bit rate, bps	Limit, s	Margin, s**	Verdict
I	902.3	0.370	1	0.37	980	0.4	-0.03	Pass
ľ	903.7	0.375	1	0.37	5470	0.4	-0.03	Pass

^{* -} Average time of occupancy = (Single transmission duration × Investigated period) / (Single transmission period × number of hopping channels).

Reference numbers of test equipment used


_						
	HL 2780	HL 4136	HL 7546	HL 5622		

^{** -} Margin = Average time of occupancy - specification limit.



Test specification:	specification: Section 15.247(a)1, RSS-247 section 5.1(3), Average time of occupancy						
Test procedure:	ANSI C63.10, section 7.8.4						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	01-Sep-24	verdict.	PASS				
Temperature: 25 °C	Relative Humidity: 47 %	Air Pressure: 1003 hPa	Power: 3.6 VDC				
Remarks:							

Plot 7.4.1 Single transmission duration

Plot 7.4.2 Number of transmissions within investigated period

Test specification: Section 15.247(b), RSS-247 section 5.4(1), Peak output power							
Test procedure:	ANSI C63.10, section 7.8.5	ANSI C63.10, section 7.8.5					
Test mode:	Compliance	Verdict: PASS					
Date(s):	03-Sep-24	verdict:	PASS				
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3.6 VDC				
Remarks:							

7.5 Peak output power

7.5.1 General

This test was performed to measure the maximum peak output power radiated by transmitter. Specification test limits are given in Table 7.5.1.

Table 7.5.1 Peak output power limits

Assigned	Peak outp	out power*	Equivalent field strength limit	Maximum
frequency range, MHz	W dBm		@ 3m, dB(μV/m)*	antenna gain, dBi
902.0 – 928.0		24.0(<50 hopping channels) 30.0 (≥50 hopping channels)	125.2 (<50 hopping channels) 131.2 (≥50 hopping channels)	6.0*

^{*-} Equivalent field strength limit was calculated from the peak output power as follows: E=sqrt(30×P×G)/r, where P is peak output power in Watts, r is antenna to EUT distance in meters and G is transmitter antenna gain in dBi.

- by 1 dB for every 3 dB that the directional gain of antenna exceeds 6 dBi for fixed point-to-point transmitters operate in 2400-2483.5 MHz band;
- without any corresponding reduction for fixed point-to-point transmitters operate in 5725-5850 MHz band;
- by the amount in dB that the directional gain of antenna exceeds 6 dBi for the rest of transmitters.

7.5.2 Test procedure

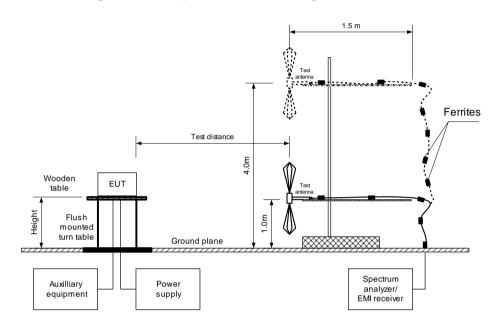
- 7.5.2.1 The EUT was set up as shown in Figure 7.5.1, energized and its proper operation was checked.
- 7.5.2.2 The EUT was adjusted to produce maximum available to end user RF output power.
- **7.5.2.3** The frequency span of spectrum analyzer was set approximately 5 times wider than 20 dB bandwidth of the EUT and the resolution bandwidth was set wider than 20 dB bandwidth of the EUT. To find maximum radiation the turntable was rotated 360° and the measuring antenna height was swept in both vertical and horizontal polarizations.
- **7.5.2.4** The maximum field strength of the EUT carrier frequency was measured as provided in Table 7.5.2 and associated plots.
- **7.5.2.5** The maximum peak output power was calculated from the field strength of carrier as follows:

$$P = (E \times d)^2 / (30 \times G),$$

where P is the peak output power in W, E is the field strength in V/m, d is the test distance and G is the transmitter numeric antenna gain over an isotropic radiator.

The above equation was converted in logarithmic units for 3 m test distance:

Peak output power in dBm = Field strength in dB(μ V/m) - Transmitter antenna gain in dBi – 95.2 dB


7.5.2.6 The worst test results (the lowest margins) were recorded in Table 7.5.2.

^{**-} The limit is provided in terms of conducted RF power at the antenna connector. If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power limit shall be reduced below the stated value as follows:

Test specification:	Test specification: Section 15.247(b), RSS-247 section 5.4(1), Peak output power								
Test procedure:	ANSI C63.10, section 7.8.5	ANSI C63.10, section 7.8.5							
Test mode:	Compliance	Verdict:	PASS						
Date(s):	03-Sep-24	verdict:	PASS						
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3.6 VDC						
Remarks:									

Figure 7.5.1 Setup for carrier field strength measurements

Test specification:	Test specification: Section 15.247(b), RSS-247 section 5.4(1), Peak output power							
Test procedure:	ANSI C63.10, section 7.8.5							
Test mode:	Compliance	Verdict:	PASS					
Date(s):	03-Sep-24	verdict.	PASS					
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3.6 VDC					
Remarks:								

Table 7.5.2 Peak output power test results

ASSIGNED FREQUENCY: 902-928 MHz

TEST DISTANCE: 3 m

TEST SITE: Semi anechoic chamber

EUT HEIGHT: 0.8 m DETECTOR USED: Peak

TEST ANTENNA TYPE: Biconilog (30 MHz – 1000 MHz)

MODULATION: LoRa
DETECTOR USED: Peak
EUT 20 dB BANDWIDTH: 144.9 kHz
RESOLUTION BANDWIDTH: 300 kHz
VIDEO BANDWIDTH: 1 MHz
FREQUENCY HOPPING: Disabled

NUMBER OF FREQUENCY HOPPING CHANNELS:

BIT RATE 980 bps

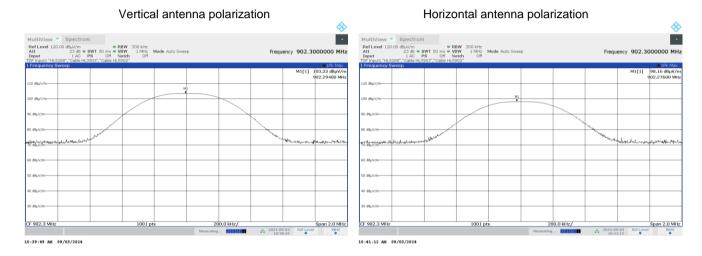
Frequency, MHz	Field strength, dB(μV/m)	Antenna polarization	Antenna height, m	Azimuth, degrees*	EUT antenna gain, dBi	Peak output power, dBm**	Limit, dBm	Margin, dB***	Verdict
902.3	103.33	V	1.2	65	0	8.13	24	-15.87	Pass
902.9	103.53	V	1.2	180	0	8.33	24	-15.67	Pass
903.7	103.52	V	1.2	180	0	8.32	24	-15.68	Pass

BIT RATE 5470 bps

Frequency, MHz	Field strength, dB(μV/m)	Antenna polarization	Antenna height, m	Azimuth, degrees*	EUT antenna gain, dBi	Peak output power, dBm**	Limit, dBm	Margin, dB***	Verdict
902.3	108.89	V	1.2	180	0	13.69	24	-10.31	Pass
902.9	109.46	V	1.2	50	0	14.26	24	-9.74	Pass
903.7	109.90	V	1.2	180	0	14.70	24	-9.30	Pass

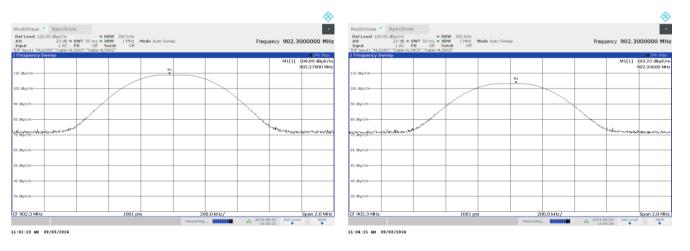
^{*-} EUT front panel refer to 0 degrees position of turntable.

Reference numbers of test equipment used


_			=			
	HL 5288	HL 5902	HL 3903			

^{**-} Peak output power was calculated from the field strength of carrier as follows: $P = (E \times d)^2 / (30 \times G)$, where P is the peak output power in W, E is the field strength in V/m, d is the test distance in meters and G is the transmitter numeric antenna gain over an isotropic radiator. The above equation was converted in logarithmic units for 3 m test distance: Peak output power in dBm = Field strength in $dB(\mu V/m)$ - Transmitter antenna gain in dBi - 95.2 dB***- Margin = Peak output power – specification limit.

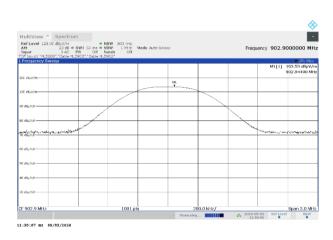
Test specification:	Section 15.247(b), RSS-247 section 5.4(1), Peak output power				
Test procedure:	ANSI C63.10, section 7.8.5				
Test mode:	Compliance	Verdict: PASS			
Date(s):	03-Sep-24	verdict.	PASS		
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3.6 VDC		
Remarks:					

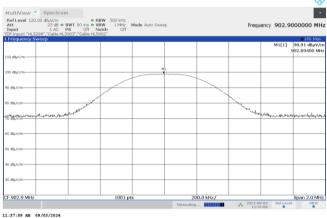

Plot 7.5.1 Field strength of carrier at low frequency

Data rate 5470 bps

Vertical antenna polarization

Horizontal antenna polarization

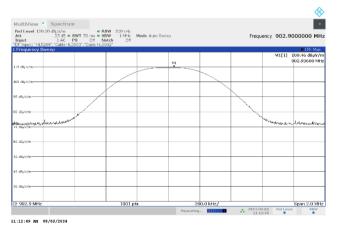


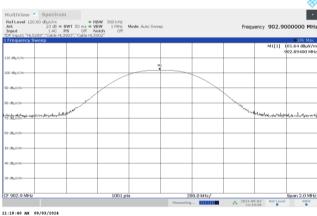

Test specification:	Section 15.247(b), RSS-247 section 5.4(1), Peak output power				
Test procedure:	ANSI C63.10, section 7.8.5				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	03-Sep-24	verdict.	PASS		
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3.6 VDC		
Remarks:					

Plot 7.5.2 Field strength of carrier at mid frequency

Vertical antenna polarization

Horizontal antenna polarization

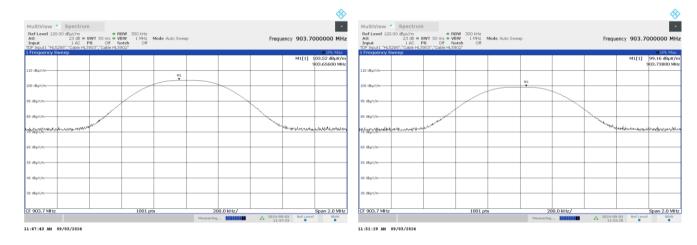




Data rate 5470 bps

Vertical antenna polarization

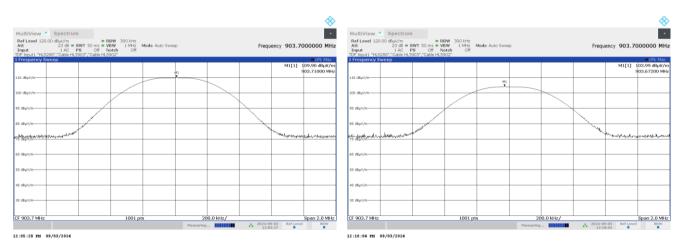
Horizontal antenna polarization



Test specification:	Section 15.247(b), RSS-247 section 5.4(1), Peak output power				
Test procedure:	ANSI C63.10, section 7.8.5				
Test mode:	Compliance	Verdict: PASS			
Date(s):	03-Sep-24	verdict.	PASS		
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3.6 VDC		
Remarks:					

Plot 7.5.3 Field strength of carrier at high frequency

Vertical antenna polarization


Horizontal antenna polarization

Data rate 5470 bps

Vertical antenna polarization

Horizontal antenna polarization

Test specification:	Section 15.247(e) / RSS-247 section 5.2(2), Maximum power spectral density				
Test procedure:	ANSI C63.10 section 11.10.2				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	03-Sep-24	verdict:	PASS		
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3.6 VDC		
Remarks:					

7.1 Peak spectral power density

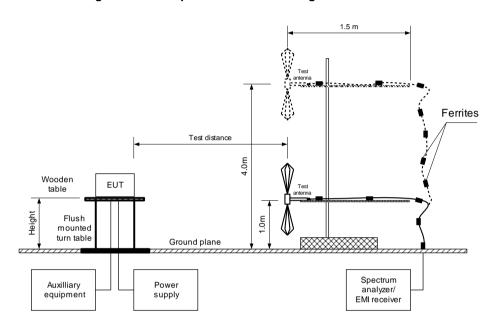
7.1.1 General

This test was performed to measure the peak spectral power density radiated by the transmitter RF antenna. Specification test limits according to FCC part 15 section 15.247(d) and RSS-210 section A8.2(b) are given in Table 7.1.1

Table 7.1.1 Peak spectral power density limits

Assigned frequency range, MHz	Measurement bandwidth, kHz	Peak spectral power density, dBm	Equivalent field strength limit @ 3m, dB(μV/m)*
902.0 – 928.0	3.0	8.0	103.2

^{* -} Equivalent field strength limit was calculated from the peak spectral power density as follows: E=sqrt(30xP)/r, where P is peak spectral power density and r is antenna to EUT distance in meters.


7.1.2 Test procedure for field strength measurements

- 7.1.2.1 The EUT was set up as shown in Figure 7.1.1, energized and its proper operation was checked.
- 7.1.2.2 The EUT was adjusted to produce maximum available to end user RF output power.
- **7.1.2.3** The field strength of the EUT carrier frequency was measured with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360⁰ and the measuring antenna height was swept in both vertical and horizontal polarizations.
- 7.1.2.4 The frequency span of spectrum analyzer was set to capture the entire 6 dB band of the transmitter, in peak hold mode with resolution bandwidth set to 3.0 kHz, video bandwidth wider than resolution bandwidth, auto sweep time and sufficient number of sweeps was allowed for trace stabilization. The spectrum lines spacing was verified to be wider than 3 kHz. Otherwise the resolution bandwidth was reduced until individual spectrum lines were resolved and the power of individual spectrum lines was integrated over 3 kHz band.
- **7.1.2.5** The peak of emission was zoomed with span set just wide enough to capture the emission peak area and sweep time was set equal to span width divided by resolution bandwidth. Spectrum analyzer was set in peak hold mode, sufficient number of sweeps was allowed for trace stabilization and peak spectral power density was measured as provided in Table 7.1.2 and associated plots.

Test specification:	Section 15.247(e) / RSS-247 section 5.2(2), Maximum power spectral density				
Test procedure:	ANSI C63.10 section 11.10.2				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	03-Sep-24	verdict:	PASS		
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3.6 VDC		
Remarks:	•				

Figure 7.1.1 Setup for carrier field strength measurements

Test specification:	Section 15.247(e) / RSS-247	7 section 5.2(2), Maximum	power spectral density
Test procedure:	ANSI C63.10 section 11.10.2		
Test mode:	Compliance	Verdict: PASS	
Date(s):	03-Sep-24	verdict.	PASS
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3.6 VDC
Remarks:			

Table 7.1.2 Field strength measurement of peak spectral power density

ASSIGNED FREQUENCY: 902.0-928.0 MHz

TEST DISTANCE: 3 m

TEST SITE: Semi anechoic chamber

EUT HEIGHT: 0.8 m
DETECTOR USED: Peak
RESOLUTION BANDWIDTH: 3 kHz
VIDEO BANDWIDTH: 10 kHz

TEST ANTENNA TYPE: Biconilog (30 MHz – 1000 MHz)

MODULATION: LoRa MODULATING SIGNAL: PRBS

BIT RATE: 980 Mbps

TRANSMITTER OUTPUT POWER:

8.13 dBm at low carrier frequency
8.33 dBm at mid carrier frequency

8.33 dBm at mid carrier frequency8.32 dBm at high carrier frequency

Frequency, MHz	Field strength, dB(μV/m)	EUT antenna gain, dBi	Limit, dB(μV/m)	Margin, dB*	Antenna polarization	Antenna height, m	Turn-table position**, degrees
902.3	102.86	0	103.2	-0.34	V	1.2	65
902.9	103.01	0	103.2	-0.19	V	1.2	180
903.7	102.99	0	103.2	-0.21	V	1.2	180

BIT RATE: 5470 Mbps

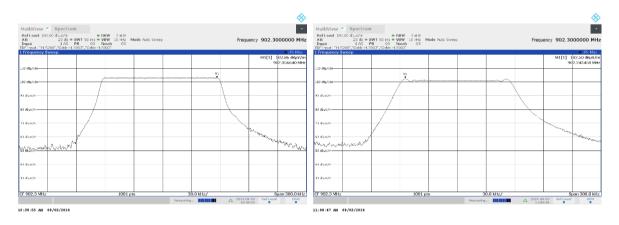
TRANSMITTER OUTPUT POWER:

13.69 dBm at low carrier frequency
14.26 dBm at mid carrier frequency
14.70 dBm at high carrier frequency

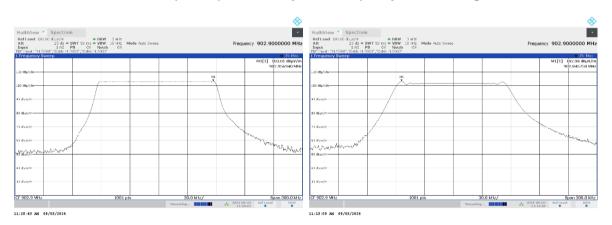
	· ··· · · · · · · · · · · · · · · · ·							
Frequency, MHz	Field strength, dB(μV/m)	EUT antenna gain, dBi	Limit, dB(μV/m)	Margin, dB*	Antenna polarization	Antenna height, m	Turn-table position**, degrees	
902.3	102.50	0	103.2	-0.70	V	1.2	180	
902.9	102.98	0	103.2	-0.22	V	1.2	50	
903.7	103.09	0	103.2	-0.11	V	1.2	180	

^{*-} Margin = Field strength - EUT antenna gain - calculated field strength limit.

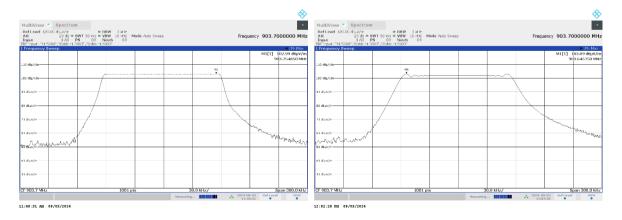
Reference numbers of test equipment used


HL 7585	HL 5288	HL 3903	HL 5902		

^{**-} EUT front panel refer to 0 degrees position of turntable.



Test specification:	Section 15.247(e) / RSS-247	7 section 5.2(2), Maximum	power spectral density
Test procedure:	ANSI C63.10 section 11.10.2		
Test mode:	Compliance	Verdict:	PASS
Date(s):	03-Sep-24	verdict:	PASS
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3.6 VDC
Remarks:			


Plot 7.1.1 Peak spectral power density at low frequency at low and high bit rate

Plot 7.1.2 Peak spectral power density at mid frequency at low and high bit rate

Plot 7.1.3 Peak spectral power density at high frequency at low and high bit rate

Test specification:	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions					
Test procedure:	ANSI C63.10, sections 6.5, 6.6					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	08-Jul-24 - 11-Jul-24	verdict:	PASS			
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3.6 VDC			
Remarks:						

7.2 Field strength of spurious emissions

7.2.1 General

This test was performed to measure field strength of spurious emissions from the EUT. Specification test limits are given in Table 7.2.1.

Table 7.2.1 Radiated spurious emissions limits

Frequency, MHz	Field streng	th at 3 m within res dB(μV/m)***	Attenuation of field strength of spurious versus		
1 requestoy, IM12	Peak	Quasi Peak	Average	carrier outside restricted bands, dBc***	
0.009 - 0.090	148.5 – 128.5	NA	128.5 – 108.5**		
0.090 - 0.110	NA	108.5 – 106.8**	NA		
0.110 - 0.490	126.8 – 113.8	NA	106.8 - 93.8**		
0.490 - 1.705		73.8 – 63.0**			
1.705 - 30.0*		69.5		20.0	
30 – 88	NΙΔ	40.0	1	20.0	
88 – 216	NA	43.5	NA		
216 – 960		46.0			
960 - 1000		54.0			
1000 – 10 th harmonic	74.0	NA	54.0		

^{*-} The limit for 3 m test distance was calculated using the inverse square distance extrapolation factor as follows: Lims₂ = Lims₁ + 40 log (S₁/S₂),

where S_1 and S_2 – standard defined and test distance respectively in meters.

7.2.2 Test procedure for spurious emission field strength measurements in 9 kHz to 30 MHz band

- 7.2.2.1 The EUT was set up as shown in Figure 7.2.1, energized and the performance check was conducted.
- **7.2.2.2** The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360⁰ and the measuring antenna was rotated around its vertical axis.
- **7.2.2.3** The worst test results (the lowest margins) were recorded and shown in the associated plots.

7.2.3 Test procedure for spurious emission field strength measurements above 30 MHz

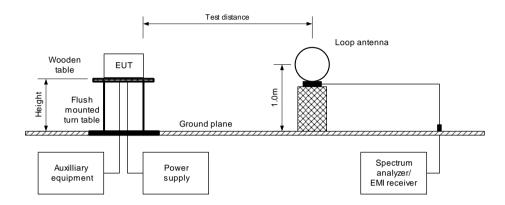
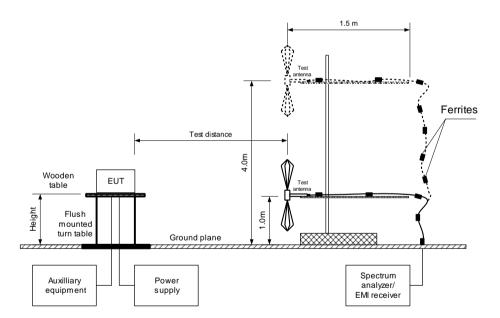
- **7.2.3.1** The EUT was set up as shown in Figure 7.2.2, Figure 1.1.3, energized and the performance check was conducted.
- **7.2.3.2** The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360°, the measuring antenna height was changed from 1 to 4 m, its polarization was switched from vertical to horizontal.
- 7.2.3.3 The worst test results (the lowest margins) were recorded and shown in the associated plots.

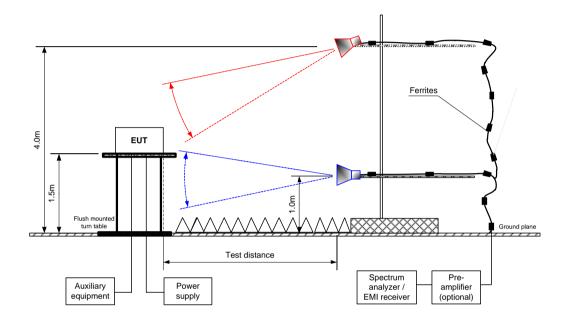
^{**-} The limit decreases linearly with the logarithm of frequency.

^{*** -} The field strength limits applied from the lowest radio frequency generated in the device, without going below 9 kHz up to the tenth harmonic of the highest fundamental frequency.

Test specification:	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions						
Test procedure:	ANSI C63.10, sections 6.5, 6.6						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	08-Jul-24 - 11-Jul-24	verdict.	PASS				
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3.6 VDC				
Remarks:							

Figure 7.2.1 Setup for spurious emission field strength measurements below 30 MHz


Figure 7.2.2 Setup for spurious emission field strength measurements from 30 to 1000 MHz

Test specification:	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions						
Test procedure:	ANSI C63.10, sections 6.5, 6.6						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	08-Jul-24 - 11-Jul-24	verdict.	PASS				
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3.6 VDC				
Remarks:							

Figure 7.2.3 Setup for spurious emission field strength measurements above1000 MHz

Test specification:	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions						
Test procedure:	ANSI C63.10, sections 6.5, 6.6						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	08-Jul-24 - 11-Jul-24	verdict.	PASS				
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3.6 VDC				
Remarks:							

Table 7.2.2 Field strength of spurious emissions below 1 GHz within restricted bands

ASSIGNED FREQUENCY: 902-928 MHz INVESTIGATED FREQUENCY RANGE: 0.009 - 1000 MHz

TEST DISTANCE: 3 m MODULATION: LoRa

RESOLUTION BANDWIDTH: 0.2 kHz (9 kHz - 150 kHz)

9.0 kHz (150 kHz – 30 MHz) 120 kHz (30 MHz – 1000 MHz)

VIDEO BANDWIDTH: > Resolution bandwidth **TEST ANTENNA TYPE:** Active loop (9 kHz - 30 MHz) Biconilog (30 MHz - 1000 MHz) Disabled

FREQUENCY HOPPING:

	Peak	Qua	si-peak		Antonno	Antonno	Turn-table	
Frequency, MHz	emission, dB(μV/m)	Measured emission, dB(μV/m)	Limit, dB(μV/m)	Margin, dB*	Antenna polarization	Antenna height, m	position**, degrees	Verdict
Low, mid, h	igh carrier fre	equency						
		No spu	rious emissior	ns were found			_	Pass

^{*-} Margin = Measured emission - specification limit.

Table 7.2.3 Field strength of emissions outside restricted bands

ASSIGNED FREQUENCY: 902-928 MHz INVESTIGATED FREQUENCY RANGE: 0.009 - 9500 MHz

TEST DISTANCE: 3 m MODULATION: LoRa **DETECTOR USED:** Peak

TEST ANTENNA TYPE: Active loop (9 kHz - 30 MHz) Biconilog (30 MHz - 1000 MHz)

Double ridged guide (above 1000 MHz)

Disabled

FREQUENCY HOPPING:

TREGOLITO	REQUENCT HOLLING: Disabled											
Frequency, MHz	Field strength of spurious, dB(μV/m)	Antenna polarization	Antenna height, m	Azimuth, degrees*	Field strength of carrier, dB(μV/m)	Attenuation below carrier, dBc	Limit, dBc	Margin, dB**	Verdict			
Low carrier	Low carrier frequency											
1804.6	61.89	Horizontal	1.5	-41	122.86	60.97	20.0	40.97	Pass			
7218.4	51.71	Vertical	1.5	-19	122.00	71.15	20.0	51.15	Pass			
Mid carrier f	requency											
1817.4	62.93	Horizontal	1.5	-40	123.10	60.17	20.0	40.17	Pass			
6360.9	47.96	Vertical	1.5	67	123.10	75.14	20.0	55.14	Pass			
High carrier	High carrier frequency											
1829.8	62.23	Horizontal	1.5	-36	123.14	60.91	20.0	40.91	Pass			

^{*-} EUT front panel refers to 0 degrees position of turntable.

^{**-} EUT front panel refer to 0 degrees position of turntable.

^{**-} Margin = Attenuation below carrier – specification limit.

Test specification:	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions							
Test procedure:	ANSI C63.10, sections 6.5, 6.6							
Test mode:	Compliance	Verdict: PASS						
Date(s):	08-Jul-24 - 11-Jul-24	verdict.	PASS					
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3.6 VDC					
Remarks:								

Table 7.2.4 Field strength of spurious emissions above 1 GHz within restricted bands

ASSIGNED FREQUENCY: 902-928 MHz
INVESTIGATED FREQUENCY RANGE: 1000 - 9500 MHz

TEST DISTANCE: 3 m

MODULATION: LoRa

DETECTOR USED: Peak

RESOLUTION BANDWIDTH: 1000 kHz

TEST ANTENNA TYPE: Double ridged guide

FREQUENCY HOPPING: Disabled

INLQUEN	CITIOITIN	U .			וט	Sabicu					
	Anten		A!		field stren	gth	A	Average field	strength		
Frequency, MHz	Polarization	Height, m	Azimuth, degrees**	Measured, dB(μV/m)	Limit, dB(μV/m)	Margin, dB***	Measured, dB(μV/m)	Calculated, dB(μV/m)	Limit, dB(μV/m)	Margin, dB***	Verdict
Low carrie	r frequency										
2706.9	Vertical	1.3	-170	48.34	74	-25.66	45.57	NA	54	-8.43	Pass
8120.7	Vertical	1.5	-24	58.30	74	-15.7	53.45	NA	54	-0.55	газэ
Mid carrie	rfrequency										
2726.1	Vertical	1.5	180	47.26	74	-26.74	47.26	NA	54	-6.74	
4543.5	Vertical	1.5	100	44.48	74	-29.52	44.48	NA	54	-9.52	Doos
7269.6	Vertical	1.5	-17	50.70	74	-23.30	44.13	NA	54	-9.87	Pass
8178.3	Horizontal	1.5	0	54.82	74	-19.18	47.54	NA	54	-6.46	
High carrie	er frequency										
2744.7	Vertical	1.5	180	47.16	74	-26.84	47.16	NA	54	-6.84	
7319.2	Vertical	1.5	-48	50.12	74	-23.88	42.62	NA	54	-11.38	Pass
8234.1	Horizontal	1.5	-20	57.43	74	-16.57	52.21	NA	54	-1.79	

^{*-} EUT front panel refers to 0 degrees position of turntable.

where Calculated field strength = Measured field strength + average factor.

Table 7.2.5 Average factor calculation

Transmission pulse		Transmis	nsmission burst Transmission		Average factor,	
Duration, ms	Period, ms	Duration, ms	Period, ms	duration, ms	dB	
NA	NA	NA	NA	NA	NA	

^{*-} Average factor was calculated as follows

for pulse train shorter than 100 ms: $\frac{Pulse\ duration}{Pulse\ period} \times \frac{Burst\ duration}{Train\ duration} \times \frac{Burst\ duration}{Number\ of\ bursts\ within\ pulse\ train}$

for pulse train longer than 100 ms: $\frac{100 \text{ Pulse duration}}{\text{Pulse period}} \times \frac{\text{Burst duration}}{100 \text{ ms}} \times \frac{\text{Number of bursts within } 100 \text{ ms}}{100 \text{ ms}}$

^{**-} Margin = Measured field strength - specification limit.

^{***-} Margin = Calculated field strength - specification limit,

Test specification:	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions						
Test procedure:	ANSI C63.10, sections 6.5, 6.6						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	08-Jul-24 - 11-Jul-24	verdict.	PASS				
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3.6 VDC				
Remarks:							

Table 7.2.6 Restricted bands according to FCC section 15.205

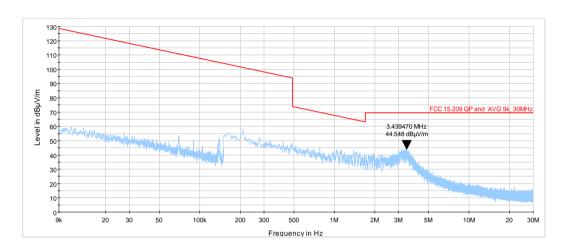
MHz	MHz	MHz	MHz	MHz	GHz
0.09 - 0.11	8.37625 - 8.38675	73 - 74.6	399.9 - 410	2690 - 2900	10.6 - 12.7
0.495 - 0.505	8.41425 - 8.41475	74.8 - 75.2	608 - 614	3260 - 3267	13.25 - 13.4
2.1735 - 2.1905	12.29 - 12.293	108 - 121.94	960 - 1240	3332 - 3339	14.47 - 14.5
4.125 - 4.128	12.51975 - 12.52025	123 - 138	1300 - 1427	3345.8 - 3358	15.35 - 16.2
4.17725 - 4.17775	12.57675 - 12.57725	149.9 - 150.05	1435 - 1626.5	3600 - 4400	17.7 - 21.4
4.20725 - 4.20775	13.36 - 13.41	156.52475 - 156.52525	1645.5 - 1646.5	4500 - 5150	22.01 - 23.12
6.215 - 6.218	16.42 - 16.423	156.7 - 156.9	1660 - 1710	5350 - 5460	23.6 - 24
6.26775 - 6.26825	16.69475 - 16.69525	162.0125 - 167.17	1718.8 - 1722.2	7250 - 7750	31.2 - 31.8
6.31175 - 6.31225	16.80425 - 16.80475	167.72 - 173.2	2200 - 2300	8025 - 8500	36.43 - 36.5
8.291 - 8.294	25.5 - 25.67	240 - 285	2310 - 2390	9000 - 9200	Above 38.6
8.362 - 8.366	37.5 - 38.25	322 - 335.4	2483.5 - 2500	9300 - 9500	ADOVE 36.6

Table 7.2.7 Restricted bands according to RSS-Gen

MHz	MHz	MHz	MHz	MHz	GHz
0.09 - 0.11	8.291 - 8.294	16.80425 - 16.80475	399.9 - 410	3260 - 3267	10.6 - 12.7
2.1735 - 2.1905	8.362 - 8.366	25.5 - 25.67	608 - 614	3332 - 3339	13.25 - 13.4
3.020 - 3.026	8.37625 - 8.38675	37.5 - 38.25	960 – 1427	3345.8 - 3358	14.47 – 14.5
4.125 – 4.128	8.41425 - 8.41475	73 - 74.6	1435 – 1626.5	3500 - 4400	15.35 – 16.2
4.17725 – 4.17775	12.29 – 12.293	74.8 - 75.2	1645.5 - 1646.5	4500 - 5150	17.7 – 21.4
4.20725 - 4.20775	12.51975 – 12.52025	108 – 138	1660 - 1710	5350 - 5460	22.01 - 23.12
5.677 - 5.683	12.57675 – 12.57725	156.52475 - 156.52525	1718.8 - 1722.2	7250 - 7750	23.6 - 24
6.215 - 6.218	13.36 – 13.41	156.7 - 156.9	2200 - 2300	8025 - 8500	31.2 - 31.8
6.26775 - 6.26825	16.42 - 16.423	240 - 285	2310 - 2390	9000 - 9200	36.43 - 36.5
6.31175 - 6.31225	16.69475 - 16.69525	322 - 335.4	2655 - 2900	9300 - 9500	Above 38.6

Reference numbers of test equipment used

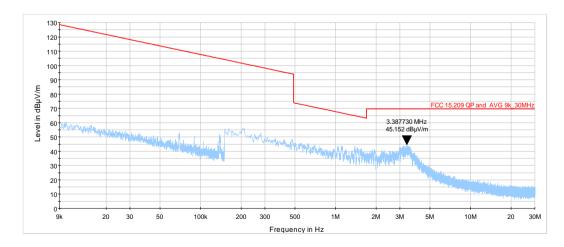
					• •			
HL 4	146	HL 5288	HL 4933	HL 3903	HL 5902	HL 7585	HL 4339	HL



Test specification:	Section 15.247(d), RSS-247	section 5.5, Radiated spur	rious emissions	
Test procedure:	ANSI C63.10, sections 6.5, 6.6			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	08-Jul-24 - 11-Jul-24	verdict.	PASS	
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3.6 VDC	
Remarks:				

Plot 7.2.1 Radiated emission measurements from 9 kHz to 30 MHz at the low carrier frequency

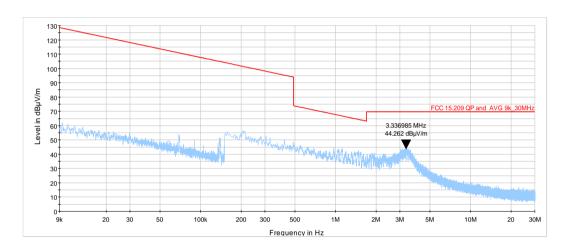
TEST SITE: Semi anechoic chamber


TEST DISTANCE: 3 m ANTENNA POLARIZATION: Vertical

Plot 7.2.2 Radiated emission measurements from 9 kHz to 30 MHz at the mid carrier frequency

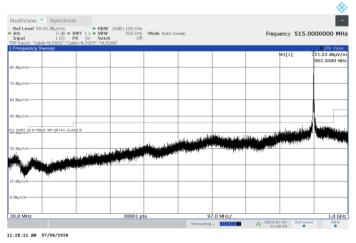
TEST SITE: Semi anechoic chamber

TEST DISTANCE: 3 m ANTENNA POLARIZATION: Vertical



Test specification:	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions			
Test procedure:	ANSI C63.10, sections 6.5, 6.6			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	08-Jul-24 - 11-Jul-24	verdict.	PASS	
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3.6 VDC	
Remarks:				

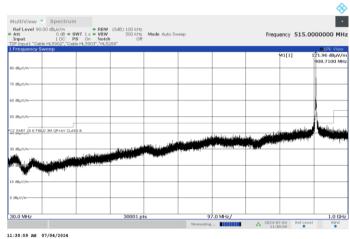
Plot 7.2.3 Radiated emission measurements from 9 kHz to 30 MHz at the high carrier frequency


TEST DISTANCE: 3 m ANTENNA POLARIZATION: Vertical

Plot 7.2.4 Radiated emission measurements from 30 to 1000 MHz at the low carrier frequency

TEST SITE: Semi anechoic chamber

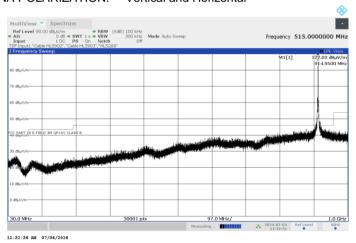
TEST DISTANCE: 3 m



Test specification:	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions		
Test procedure:	ANSI C63.10, sections 6.5, 6.6		
Test mode:	Compliance	Verdict: PASS	
Date(s):	08-Jul-24 - 11-Jul-24	Verdict:	PASS
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3.6 VDC
Remarks:	-		

Plot 7.2.5 Radiated emission measurements from 30 to 1000 MHz at the mid carrier frequency

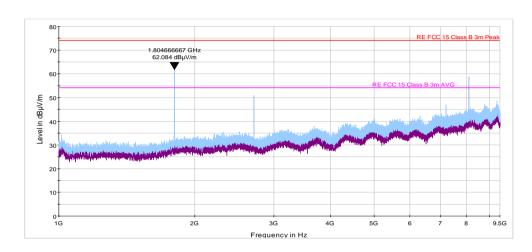
TEST DISTANCE: 3 m


ANTENNA POLARIZATION: Vertical and Horizontal

Plot 7.2.6 Radiated emission measurements from 30 to 1000 MHz at the high carrier frequency

TEST SITE: Semi anechoic chamber

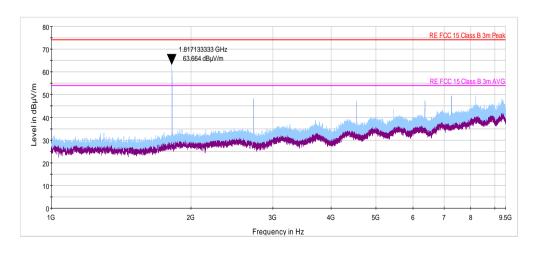
TEST DISTANCE: 3 m



Test specification:	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions		
Test procedure:	ANSI C63.10, sections 6.5, 6.6		
Test mode:	Compliance	Verdict: PASS	
Date(s):	08-Jul-24 - 11-Jul-24	Verdict:	PASS
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3.6 VDC
Remarks:	-		

Plot 7.2.7 Radiated emission measurements from 1000 to 9500 MHz at the low carrier frequency

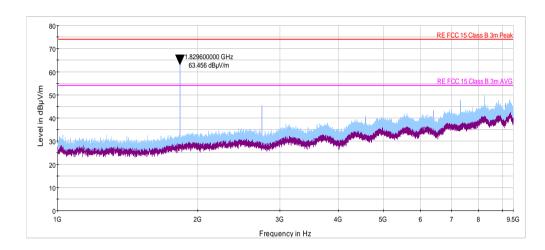
TEST DISTANCE: 3 m


ANTENNA POLARIZATION: Vertical and Horizontal

Plot 7.2.8 Radiated emission measurements from 1000 to 9500 MHz at the mid carrier frequency

TEST SITE: Semi anechoic chamber

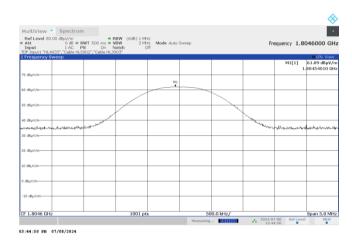
TEST DISTANCE: 3 m



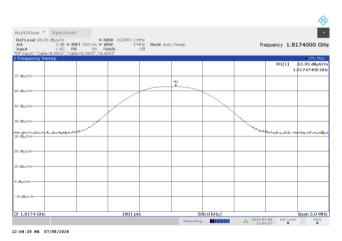
Test specification:	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions			
Test procedure:	ANSI C63.10, sections 6.5, 6.6			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	08-Jul-24 - 11-Jul-24	verdict.	PASS	
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3.6 VDC	
Remarks:				

Plot 7.2.9 Radiated emission measurements from 1000 to 9500 MHz at the high carrier frequency

TEST DISTANCE: 3 m



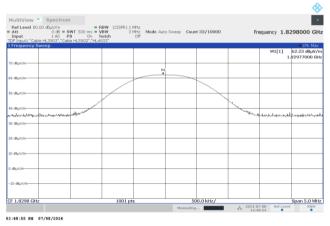
Test specification:	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions		
Test procedure:	ANSI C63.10, sections 6.5, 6.6		
Test mode:	Compliance	Verdict: PASS	
Date(s):	08-Jul-24 - 11-Jul-24	verdict:	PASS
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3.6 VDC
Remarks:			


Plot 7.2.10 Radiated emission measurements at the second harmonic of low carrier frequency

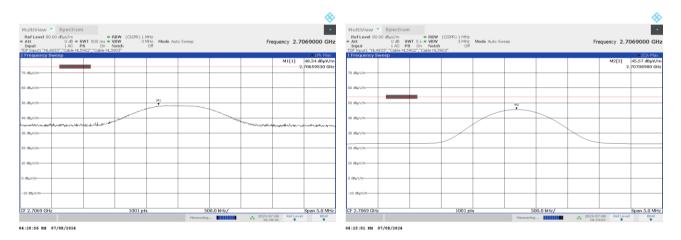
TEST DISTANCE: 3 m

Plot 7.2.11 Radiated emission measurements at the second harmonic of mid carrier frequency

TEST SITE: Semi anechoic chamber



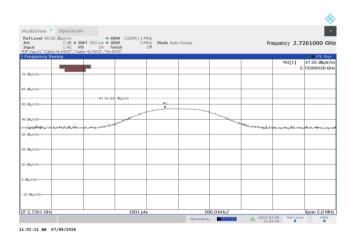
Test specification:	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions			
Test procedure:	ANSI C63.10, sections 6.5, 6.6			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	08-Jul-24 - 11-Jul-24	verdict.	PASS	
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3.6 VDC	
Remarks:				


Plot 7.2.12 Radiated emission measurements at the second harmonic of high carrier frequency

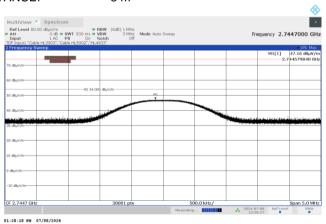
TEST DISTANCE: 3 m

Plot 7.2.13 Radiated emission measurements at the 3 harmonic of low carrier frequency

TEST SITE: Semi anechoic chamber



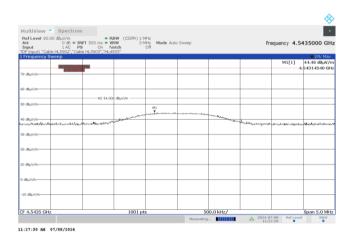
Test specification:	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions			
Test procedure:	ANSI C63.10, sections 6.5, 6.6			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	08-Jul-24 - 11-Jul-24	verdict.	PASS	
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3.6 VDC	
Remarks:				


Plot 7.2.14 Radiated emission measurements at the 3 harmonic of mid carrier frequency

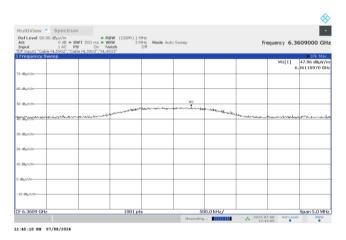
TEST DISTANCE: 3 m

Plot 7.2.15 Radiated emission measurements at the 3 harmonic of high carrier frequency

TEST SITE: Semi anechoic chamber



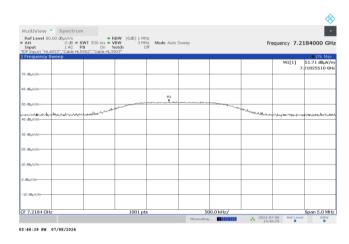
Test specification:	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions			
Test procedure:	ANSI C63.10, sections 6.5, 6.6			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	08-Jul-24 - 11-Jul-24	verdict.	PASS	
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3.6 VDC	
Remarks:				


Plot 7.2.16 Radiated emission measurements at the 5 harmonic of mid carrier frequency

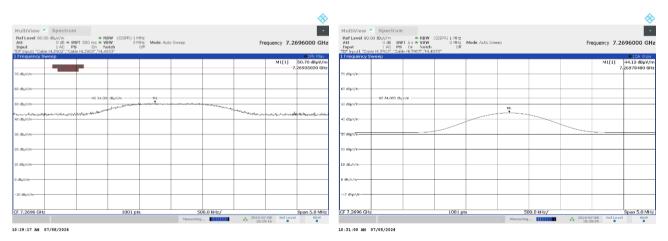
TEST DISTANCE: 3 m

Plot 7.2.17 Radiated emission measurements at the 7 harmonic of mid carrier frequency

TEST SITE: Semi anechoic chamber



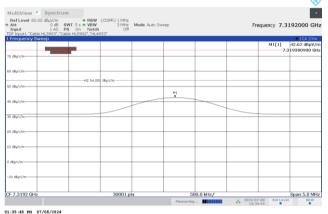
Test specification:	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions		
Test procedure:	ANSI C63.10, sections 6.5, 6.6		
Test mode:	Compliance	Verdict: PASS	
Date(s):	08-Jul-24 - 11-Jul-24	verdict:	PASS
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3.6 VDC
Remarks:			


Plot 7.2.18 Radiated emission measurements at the eighth harmonic of low carrier frequency

TEST DISTANCE: 3 m

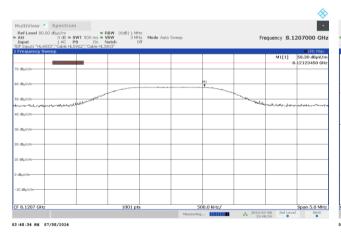
Plot 7.2.19 Radiated emission measurements at the eighth harmonic of mid carrier frequency

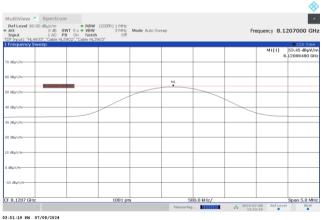
TEST SITE: Semi anechoic chamber



01:34:03 PM 07/08/2024

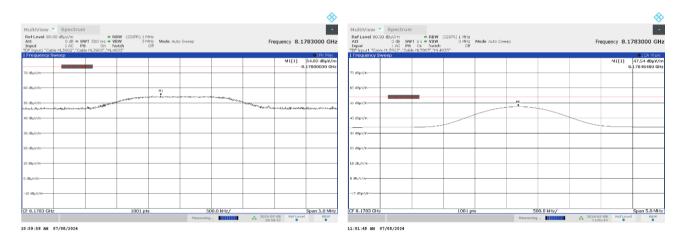
Test specification:	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions			
Test procedure:	ANSI C63.10, sections 6.5, 6.6			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	08-Jul-24 - 11-Jul-24	verdict.	PASS	
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3.6 VDC	
Remarks:				


Plot 7.2.20 Radiated emission measurements at the eighth harmonic of high carrier frequency

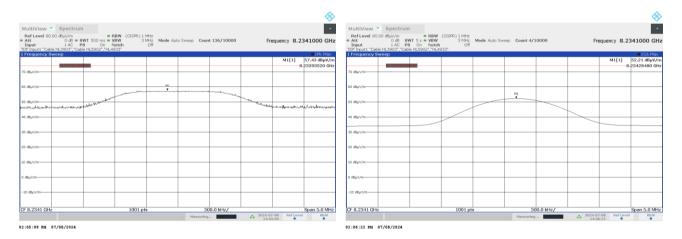

TEST SITE: Semi anechoic chamber TEST DISTANCE: 3 m

Plot 7.2.21 Radiated emission measurements at the 9 harmonic of low carrier frequency

TEST SITE: Semi anechoic chamber



Test specification:	Section 15.247(d), RSS-247 section 5.5, Radiated spurious emissions			
Test procedure:	ANSI C63.10, sections 6.5, 6.6			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	08-Jul-24 - 11-Jul-24	verdict.	PASS	
Temperature: 24 °C	Relative Humidity: 58 %	Air Pressure: 1012 hPa	Power: 3.6 VDC	
Remarks:				


Plot 7.2.22 Radiated emission measurements at the 9 harmonic of mid carrier frequency

TEST DISTANCE: 3 m

Plot 7.2.23 Radiated emission measurements at the 9harmonic of high carrier frequency

TEST SITE: Semi anechoic chamber

Test specification:	Section 15.247(d), RSS-247 section 5.5, Emissions at band edges		
Test procedure:	ANSI C63.10, section 7.8.6		
Test mode:	Compliance	Verdict:	
Date(s):	01-Sep-24		
Temperature: 25 °C	Relative Humidity: 47 %	Air Pressure: 1003 hPa	Power: 3.6 VDC
Remarks:	-		

7.3 Band edge radiated emissions

7.3.1 General

This test was performed to measure emissions, radiated from the EUT at the assigned frequency band edges. Specification test limits are given in Table 7.3.1.

Table 7.3.1 Band edge emission limits

Assigned frequency, MHz	Attenuation below carrier*, dBc
902.0 – 928.0	20.0

^{* -} Band edge emission limit is provided in terms of attenuation below the peak of modulated carrier measured with the same resolution bandwidth.

7.3.2 Test procedure

- **7.3.2.1** The EUT was set up as shown in Figure 7.3.1, energized normally modulated at the maximum data rate with its hopping function disabled and its proper operation was checked.
- 7.3.2.2 The EUT was adjusted to produce maximum available to end user RF output power at the lowest carrier frequency.
- **7.3.2.3** The spectrum analyzer span was set to capture the carrier frequency and associated modulation products. The resolution bandwidth was set wider than 1 % of the frequency span.
- **7.3.2.4** The spectrum analyzer was set in max hold mode and allowed trace to stabilize. The highest emission level within the authorized band was measured.
- **7.3.2.5** The maximum band edge emission and modulation product outside of the band were measured as provided in Table 7.3.2 and associated plots and referenced to the highest emission level measured within the authorized band.
- **7.3.2.6** The above procedure was repeated with the EUT adjusted to produce maximum RF output power at the highest carrier frequency.
- **7.3.2.7** The above procedure was repeated with the frequency hopping function enabled.

Figure 7.3.1 Band edge emission test setup

Test specification:	Section 15.247(d), RSS-247 section 5.5, Emissions at band edges			
Test procedure:	ANSI C63.10, section 7.8.6			
Test mode:	Compliance Verdict:			
Date(s):	01-Sep-24	verdict:		
Temperature: 25 °C	Relative Humidity: 47 %	Air Pressure: 1003 hPa	Power: 3.6 VDC	
Remarks:				

Table 7.3.2 Band edge emission test results

ASSIGNED FREQUENCY RANGE: 902-928 MHz

DETECTOR USED:

MODULATION:

RESOLUTION BANDWIDTH:

VIDEO BANDWIDTH:

Peak

LoRa

100 kHz

≥ RBW

Bitrate 980 bps

Frequency, MHz	Band edge emission, dBm	Emission at carrier, dBm	Attenuation below carrier, dBc	Limit, dBc	Margin, dB*	Verdict
Frequency hop	ping disabled					
902.3	-12.02	16.00	28.02	20.0	8.02	Pass
903.7	-36.61	15.96	52.57	20.0	32.57	Pass
Frequency hop	ping enabled					
902.3	-10.00	19.16	29.16	20.0	9.16	Pass
903.7	-38.46	19.11	57.57	20.0	37.57	F d55

Bitrate 5470 bps

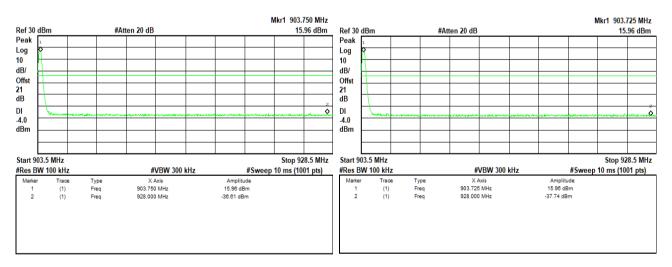
Frequency, MHz	Band edge emission, dBm	Emission at carrier, dBm	Attenuation below carrier, dBc	Limit, dBc	Margin, dB*	Verdict
Frequency hop	ping disabled					
902.3	-12.36	15.99	28.35	20.0	8.35	Dana
903.7	-37.74	15.96	53.70	20.0	33.70	Pass
Frequency hopping enabled						
902.3	-9.12	19.18	28.30	20.0	8.30	Pass
903.7	-37.23	19.19	56.42	20.0	36.42	Pass

^{*-} Margin = Attenuation below carrier – specification limit.

Reference numbers of test equipment used


HL 3818 HL 5644 HL 4136 HL 3768	_						
		HL 3818	HL 5644	HL 4136	HL 3768		

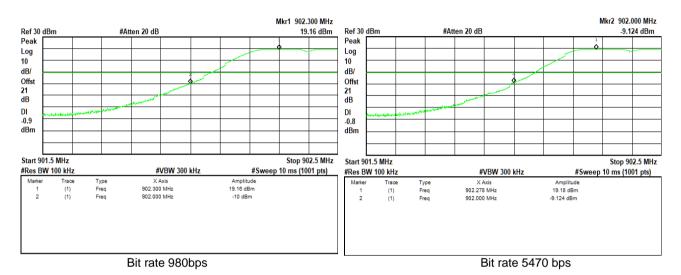
Full description is given in Appendix A.


Test specification:	Section 15.247(d), RSS-247 section 5.5, Emissions at band edges		
Test procedure:	ANSI C63.10, section 7.8.6		
Test mode:	Compliance Verdict:		
Date(s):	01-Sep-24	verdict	
Temperature: 25 °C	Relative Humidity: 47 %	Air Pressure: 1003 hPa	Power: 3.6 VDC
Remarks:	-		

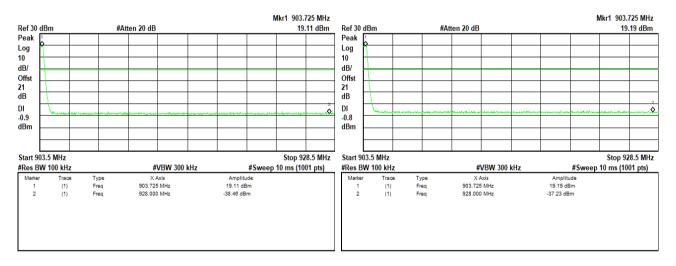
Plot 7.3.1 The highest band edge emission at low carrier frequency with hopping function disabled

Bit rate 980 bps Bit rate 5470 bps

Plot 7.3.2 The highest band edge emission at high carrier frequency with hopping function disabled



Bit rate 980bps Bit rate 5470 bps



Test specification:	Section 15.247(d), RSS-247 section 5.5, Emissions at band edges		
Test procedure:	ANSI C63.10, section 7.8.6		
Test mode:	Compliance Verdict:		
Date(s):	01-Sep-24	verdict	
Temperature: 25 °C	Relative Humidity: 47 %	Air Pressure: 1003 hPa	Power: 3.6 VDC
Remarks:	-		

Plot 7.3.3 The highest band edge emission at low carrier frequency with hopping function enabled

Plot 7.3.4 The highest band edge emission at high carrier frequency with hopping function enabled

Bit rate 980bps Bit rate 5470 bps

Test specification:	FCC Section 15.203/ RSS-Gen, Section 7.1.4, Antenna requirement					
Test procedure:	Visual inspection / supplier declaration					
Test mode:	Compliance	ppliance Verdict:				
Date(s):	08-Jul-24 - 11-Jul-24	verdict:				
Temperature: 25 °C	Relative Humidity: 47 %	Air Pressure: 1003 hPa	Power: 3.6 VDC			
Remarks:						

7.4 Antenna requirements

The EUT was verified for compliance with antenna requirements. A transmitter shall be designed to ensure that no antenna other than that furnished by the responsible party will be used with the device. It may be either permanently attached or employs a unique antenna connector for every antenna proposed for use with the EUT. This requirement does not apply to professionally installed transmitters.

The rationale for compliance with the above requirements was either visual inspection results or supplier declaration. The summary of results is provided in Table 7.4.1.

Table 7.4.1 Antenna requirements

Requirement	Rationale	Verdict
The transmitter antenna is permanently attached	Visual inspection	
The transmitter employs a unique antenna connector	NA	Comply
The transmitter requires professional installation	NA	

8 APPENDIX A Test equipment and ancillaries used for tests

HL No	Description	Manufacturer	Model	Ser. No.	Last Cal./ Check	Due Cal./ Check
0446	Antenna, Loop, Active, 10 (9) kHz - 30 MHz	EMCO	6502	2857	29-Feb-24	28-Feb-25
2780	EMC analyzer, 100 Hz to 26.5 GHz	Agilent Technologies	E7405A	MY451024 62	17-Oct-23	17-Oct-24
3434	Test Cable , DC-18 GHz, 1.5 m, SMA - SMA	Mini-Circuits	CBL-5FT- SMSM+	25683	06-May-24	06-May-25
3768	Attenuator, N-type, 20 dB, DC to 18 GHz, 5 W	Mini-Circuits	BW- N20W5+	NA	30-Jul-24	30-Jul-25
3818	PSA Series Spectrum Analyzer, 3 Hz- 44 GHz	Agilent Technologies	E4446A	MY482502 88	23-Jul-23	01-Sep-24
3903	Microwave Cable Assembly, 40.0 GHz, 1.5 m, SMA/SMA	Huber-Suhner	SUCOFL EX 102A	1226/2A	06-May-24	06-May-25
4136	Shield Box	TESCOM CO., LTD	TC-5916A	5916A000 137	20-May-24	20-May-25
4339	High pass Filter, 50 Ohm, 1000 to 18000 MHz, SMA-FM / SMA-M	Micro-Tronics	HPM5011 5-02	001	21-Jun-23	21-Jun-25
4933	Active Horn Antenna, 1 GHz to 18 GHz	COM-POWER CORPORATI ON	AHA-118	701046	20-Feb-24	20-Feb-25
5288	Trilog Antenna, 25 MHz - 8 GHz, 100W	Frankonia	ALX- 8000E	00809	24-Mar-22	24-Mar-25
5622	Precision Fixed Attenuator, 50 Ohm, 5 W, 20 dB, DC to 18 GHz	Mini Circuits	BW- N20W5+	NA	14-Aug-24	14-Aug-25
5644	Cable, 50 Ohm, DC to 18 GHz, 1.8 m, SMA/SMA	Mini Circuits	CBL-6FT- SMSM+	NA	06-May-24	06-May-25
5902	RF cable, 18 GHz, 6.0m, N-type	Huber-Suhner	SF126EA/ 11N/11N/ 6000	NA	19-Nov-23	19-Nov-24
7546	Power supply 60VDC/12.5A	Agilent Technologies	N5747A	US25F676 2C	29-May-24	29-May-25
7585	EMI Test Receiver, 1 Hz to 44 GHz	Rohde & Schwarz	ESW44	103130	21-Sep-23	21-Sep-24

9 APPENDIX B **Test equipment correction factors**

HL 5288: Trilog Antenna Frankonia, model: ALX-8000E, s/n: 00809 30-1000 MHz

	30-
Frequency, MHz	Antenna factor, dB/m
30	14.96
35	15.33
40	16.37
45	17.56
50	17.95
60	16.87
70	13.22
80	10.56
90	13.61
100	15.46
120	14.03
140	12.23

Frequency, MHz	Antenna factor, dB/m
160	12.67
180	13.34
200	15.40
250	16.42
300	17.28
400	19.98
500	21.11
600	22.90
700	24.13
800	25.25
900	26.35
1000	27.18

The antenna factor shall be added to receiver reading in $dB_{\mu}V$ to obtain field strength in $dB_{\mu}V/m$. **above 1000 MHz**

Frequency, MHz	Antenna factor, dB/m
1000	26.9
1100	28.1
1200	28.4
1300	29.6
1400	29.1
1500	30.4
1600	30.7
1700	31.5
1800	32.3
1900	32.6
2000	32.5
2100	32.9
2200	33.5
2300	33.2
2400	33.7
2500	34.6
2600	34.7
2700	34.6
2800	35.0
2900	35.5
3000	36.2
3100	36.8
3200	36.8
3300	37.0
3400	37.5
3500	38.2

IVII 12	T A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Frequency, MHz	Antenna factor, dB/m
3600	38.9
3700	39.4
3800	39.4
3900	39.6
4000	39.7
4100	39.8
4200	40.5
4300	40.9
4400	41.1
4500	41.4
4600	41.3
4700	41.6
4800	41.9
4900	42.3
5000	42.7
5100	43.0
5200	42.9
5300	43.5
5400	43.6
5500	44.3
5600	44.7
5700	45.0
5800	45.0
5900	45.3
6000	45.9

The antenna factor shall be added to receiver reading in $dB_{\mu}V$ to obtain field strength in $dB_{\mu}V/m$.

HL 0446: Active Loop Antenna EMCO, model: 6502, s/n 2857

Frequency,	Measured antenna factor, dBS/m	Measurement uncertainty, dB
10	-33.4	±1.0
20	-37.8	±1.0
50	-40.5	±1.0
75	-41.0	±1.0
100	-41.2	±1.0
150	-41.2	±1.0
250	-41.1	±1.0
500	-41.2	±1.0
750	-41.3	±1.0
1000	-41.3	±1.0

Frequency,	Measured antenna factor, dBS/m	Measurement uncertainty, dB
2000	-41.4	±1.0
3000	-41.4	±1.0
4000	-41.5	±1.0
5000	-41.5	±1.0
10000	-41.7	±1.0
15000	-42.1	±1.0
20000	-42.7	±1.0
25000	-44.2	±1.0
30000	-45.8	±1.0

The antenna factor shall be added to receiver reading in dB μ V to obtain field strength in dB μ A/m.

HL 4933: Active Horn Antenna

COM-POWER CORPORATION, model: AHA-118, s/n 701046

	COMPROVER CORPORAT
Frequency, MHz	Measured antenna factor (with preamplifier), dB/m
1000	-16.1
1500	-15.1
2000	-10.9
2500	-11.9
3000	-11.1
3500	-10.6
4000	-8.6
4500	-8.3
5000	-5.9
5500	-5.7
6000	-3.3
6500	-4.0
7000	-2.2
7500	-1.7
8000	1.1
8500	-0.8
9000	-1.5
9500	-0.2

Frequency, MHz	Measured antenna factor (with preamplifier), dB/m
10000	1.8
10500	1.0
11000	0.3
11500	-0.5
12000	3.1
12500	1.4
13000	-0.3
13500	-0.4
14000	2.5
14500	2.2
15000	1.9
15500	0.5
16000	2.1
16500	1.2
17000	0.6
17500	3.1
18000	4.2

The antenna factor shall be added to receiver reading in dB_μV to obtain field strength in dB_μV/m.

10 APPENDIX C Measurement uncertainties

Expanded uncertainty at 95% confidence in Hermon Labs EMC measurements

Test description	Expanded uncertainty
Conducted carrier power at RF antenna connector	Below 12.4 GHz: ± 1.7 dB
	12.4 GHz to 40 GHz: ± 2.3 dB
Conducted emissions at RF antenna connector	9 kHz to 2.9 GHz: ± 2.6 dB
	2.9 GHz to 6.46 GHz: ± 3.5 dB
	6.46 GHz to 13.2 GHz: ± 4.3 dB
	13.2 GHz to 22.0 GHz: ± 5.0 dB
	22.0 GHz to 26.8 GHz: ± 5.5 dB
	26.8 GHz to 40.0 GHz: ± 4.8 dB
Occupied bandwidth	± 8.0 %
Duty cycle, timing (Tx ON / OFF) and average factor measurements	± 1.0 %
Conducted emissions with LISN	9 kHz to 150 kHz: ± 3.9 dB
	150 kHz to 30 MHz: ± 3.8 dB
Radiated emissions at 3 m measuring distance	
Horizontal polarization	Biconilog antenna: ± 5.3 dB
	Biconical antenna: ± 5.0 dB
	Log periodic antenna: ± 5.3 dB
Ar e i i i e	Double ridged horn antenna: ± 5.3 dB
Vertical polarization	Biconilog antenna: ± 6.0 dB
	Biconical antenna: ± 5.7 dB
	Log periodic antenna: ± 6.0 dB
	Double ridged horn antenna: ± 6.0 dB

Hermon Laboratories is accredited by A2LA for calibration according to present requirements of ISO/IEC 17025 and NCSL Z540-1. The accreditation is granted to perform calibration of parameters that are listed in the Scope of Hermon Laboratories Accreditation.

Hermon Laboratories calibrates its reference and transfer standards by calibration laboratories accredited to ISO/IEC 17025 by a mutually recognized Accreditation Body or by a recognized national metrology institute. All reference and transfer standards used in the calibration system are traceable to national or international standards.

In-house calibration of all test and measurement equipment is performed on a regular basis according to Hermon Laboratories calibration procedures, manufacturer calibration/verification procedures or procedures defined in the relevant standards. The Hermon Laboratories test and measurement equipment is calibrated within the tolerances specified by the manufacturers and/or by the relevant standards.

11 APPENDIX D Test laboratory description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private, EMC, Radio, Safety, Environmental and Telecommunication testing facility.

Hermon Laboratories is recognized and accredited by the Federal Communications Commission (USA) for relevant parts of Code of Federal Regulations 47 (CFR 47), Test Firm Registration Number is 927748, Designation Number is IL1001; Recognized by Innovation, Science and Economic Development Canada for wireless and terminal testing (ISED), ISED #2186A, CAB identifier is IL1001; Certified by VCCI, Japan (the registration numbers are R-10808 for OATS, R-1082 for anechoic chamber, G-10869 for RE measurements above 1 GHz, C-10845 for conducted emissions site and T-11606 for conducted emissions at telecommunication ports).

The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for electromagnetic compatibility, product safety, telecommunications testing, environmental simulation and calibration (for exact scope please refer to Certificate No. 839.01, 839.03 and 839.04).

Address: P.O. Box 23, Binyamina 3055001, Israel.

Telephone: +972 4628 8001 Fax: +972 4628 8277 e-mail: mail@hermonlabs.com website: www.hermonlabs.com

Person for contact: Mr. Michael Nikishin, EMC&Radio group manager

12 APPENDIX E

Specification references

FCC 47CFR part 15: 2022

ANSI C63.10: 2013

RSS-247 Issue 3: 2023

RSS-Gen Issue 5

with_amendment_1_2: 2021

Radio Frequency Devices

American National Standard of Procedures for Compliance Testing of Unlicensed

Wireless Devices

Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence- Exempt Local Area Network (LE-LAN) Devices

General Requirements and Information for the Certification of Radiocommunication

Equipment

13 APPENDIX F Abbreviations and acronyms

A ampere

AC alternating current
A/m ampere per meter
AM amplitude modulation
AVRG average (detector)

cm centimeter dB decibel

 $\begin{array}{ll} \text{dBm} & \text{decibel referred to one milliwatt} \\ \text{dB}(\mu V) & \text{decibel referred to one microvolt} \end{array}$

 $dB(\mu V/m)$ decibel referred to one microvolt per meter $dB(\mu A)$ decibel referred to one microampere

 $\begin{array}{ll} \text{dB}(\mu A) & \text{decibel referred} \\ \text{DC} & \text{direct current} \end{array}$

EIRP equivalent isotropically radiated power

ERP effective radiated power EUT equipment under test

F frequency GHz gigahertz GND ground H height

HL Hermon laboratories

Hz hertz kilo k kHz kilohertz LO local oscillator m meter MHz megahertz min minute millimeter mm millisecond ms

μs microsecond
NA not applicable
NB narrow band
OATS open area test site

 $\Omega \qquad \qquad \mathsf{Ohm}$

PM pulse modulation PS power supply ppm part per million (10⁻⁶)

QP quasi-peak
RE radiated emission
RF radio frequency
rms root mean square

Rx receive s second T temperature Tx transmit V volt WB wideband

14 APPENDIX G Manufacturer's declaration

Model Difference Letter

We, the undersigned hereby declare, that the following equipment:

Product Name: Allegro Cellular

Model: PIT_Unit X

Is electrically equal to:

Models: PIT Unit X

Their Difference is:

These is a subset product of the product Allegro Cellular. For this product some components were added/replaced because they are required for the functionality of their specific application. (please relate to **Appendix A** for further details). The subset product is identical externally which includes mechanical housing dimensions and labelling (please relate to **Appendix B** for further details).

Point of contact:

Signature: Date: Negreanu Vily

26/09/2024

Negreanu Vily Name:

Company Name: Arad Technologies Ltd.

Appendix A

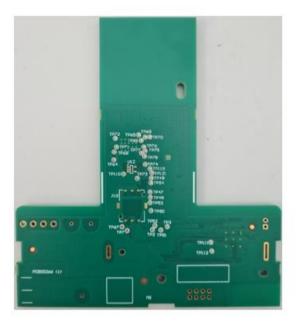
The following equipment:

Brand/Item Type/Model **Short Product description**

Allegro Cellular PIT Unit X Spread Spectrum Transceiver

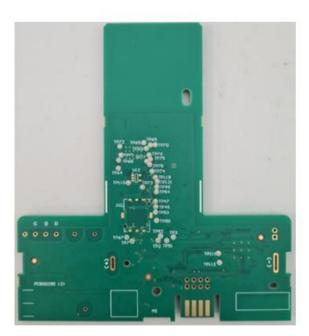
Is a Superset to the following equipment (including Software/Hardware version(s)):

Brand/Item Type/Model **Short Product description**


Allegro Cellular PIT Unit X Spread Spectrum Transceiver

External and internal photos of each Model:

PIT Unit X



PIT_Unit X

Appendix B

Allegro Cellular PIT_Unit X, is a battery-operated radio module designed for automated water meter reading. The Allegro cellular is capable of reading water consumption data from residential and commercial water meters equipped with an Encoder or Solid-State Register.

Subset product of: Allegro Cellular

PIT Unit X has a subset product which is listed in this document. The subset product has the same enclosure and the same electronic card as its superset product but for the subset product certain components are added to the electronic card compared to the corresponding superset product. The components that are added are not changing the radio functions. The reason for adding these components is because they are required for the functionality of their specific application.

END OF DOCUMENT