FCC Certification Test Report Report No.: FC141001C29 Test Model: WLU6331 FCC ID: 2ABCB-WLU6331 Received Date: Oct. 01, 2014 Test Date: Oct. 06 ~ Oct. 08, 2014 **Issued Date:** Nov. 03, 2014 Applicant: Raspberry Pi Trading Ltd Address: Mount Pleasant House Mount Pleasant, Cambridge, Cambridgeshire, CB3 0RN, United Kingdom Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lab Address: No. 19, Hwa Ya 2nd Rd., Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan E: 200837-0 2021 This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. Report No.: FC141001C29 Page No. 1 / 24 Report Format Version: 6.1.0 The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies. # **Table of Contents** | R | elease | e Control Record | 3 | |---|--|---|-------------| | 1 | Cer | rtificate of Conformity | 4 | | 2 | Sur | mmary of Test Results | 5 | | | 2.1
2.2 | Measurement Uncertainty | | | 3 | Gei | neral Information | 6 | | | 3.1
3.2
3.3
3.4
3.5
3.6 | Features of EUT General Description of EUT Operating Modes of EUT and Determination of Worst Case Operating Mode Test Program Used and Operation Descriptions Primary Clock Frequencies of Internal Source Miscellaneous | 6
6
6 | | 4 | Coi | nfiguration and Connections with EUT | 8 | | | 4.1
4.2 | Connection Diagram of EUT and Peripheral Devices | | | 5 | Coi | nducted Emissions at Mains Ports | 9 | | | 5.1
5.2
5.3
5.4 | Limits Test Instruments Test Arrangement Test Results | 9
10 | | 6 | Rad | diated Emissions up to 1 GHz | 13 | | | 6.1
6.2
6.3
6.4 | Limits Test Instruments Test Arrangement Test Results | 14
15 | | 7 | Rad | diated Emissions above 1 GHz | 18 | | | 7.1
7.2
7.3
7.4 | Limits Test Instruments Test Arrangement. Test Results | 19
20 | | 8 | Pic | tures of Test Arrangements | 23 | | Α | ppend | dix – Information on the Testing Laboratories | 24 | # **Release Control Record** | Issue No. | Description | Date Issued | |-------------|-------------------|---------------| | FC141001C29 | Original release. | Nov. 03, 2014 | # **Certificate of Conformity** Product: WiFi Adapter Brand: Raspberry Pi Test Model: WLU6331 Sample Status: Engineering sample Applicant: Raspberry Pi Trading Ltd **Test Date:** Oct. 06 ~ Oct. 08, 2014 Standards: 47 CFR FCC Part 15, Subpart B, Class B ICES-003:2012 Issue 5, Class B ANSI C63.4:2009 The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report. Polly Chien / Specialist Nov. 03, 2014 _______, Date: _________Nov. 03, 2014 Approved by : Ken Liu / Senior Manager # 2 Summary of Test Results 47 CFR FCC Part 15, Subpart B / ICES-003:2012 Issue 5, Class B ANSI C63.4:2009 | FCC
Clause | ICES-003
Clause | Test Item | Result/Remarks | Verdict | |---------------|--------------------|--------------------------------|--|---------| | 15.107 | | | Minimum passing Class B margin is -9.57 dB at 0.43906 MHz | Pass | | 15.109 | 6.2.1 | Radiated Emissions up to 1 GHz | Minimum passing Class B margin is -4.10 dB at 34.97 MHz | Pass | | 15.109 | 6.2.2 | Radiated Emissions above 1 GHz | Minimum passing Class B margin is -23.47 dB at 2597.91 MHz | Pass | Note: There is no deviation to the applied test methods and requirements covered by the scope of this report. # 2.1 Measurement Uncertainty Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT: The listed uncertainties are the worst case uncertainty for the entire range of measurement. Please note that the uncertainty values are provided for informational purposes only and are not used in determining the PASS/FAIL results. | Measurement | Frequency | Expended Uncertainty (k=2) (±) | |------------------------------------|----------------|--------------------------------| | Conducted Emissions at mains ports | 150kHz ~ 30MHz | 2.44 dB | | Radiated Emissions up to 1 GHz | 30MHz ~ 1GHz | 4.70 dB | | Radiated Emissions above 1 GHz | Above 1GHz | 2.26 dB | #### 2.2 Modification Record There were no modifications required for compliance. #### 3 General Information #### 3.1 Features of EUT The tests reported herein were performed according to the method specified by Raspberry Pi Trading Ltd, for detailed feature description, please refer to the manufacturer's specifications or user's manual. #### 3.2 General Description of EUT | Product | WiFi Adapter | |---------------------|-----------------------| | Brand | Raspberry Pi | | Test Model | WLU6331 | | Sample Status | Engineering sample | | Operating Software | NA | | Power Supply Rating | 5Vdc (host equipment) | | Accessory Device | NA | | Data Cable Supplied | NA | ### 3.3 Operating Modes of EUT and Determination of Worst Case Operating Mode The EUT consumes power from host, which designed with AC power supply of rating 100-240Vac, 50/60Hz. For radiated emission evaluation, 230Vac/50Hz (for EN 55022 & AS/NZS CISPR 22) and 120Vac/60Hz (for FCC Part 15) had been covered during the pre-test. The worst data was found at 120Vac/60Hz and recorded in the applied test report. EUT has been pre-tested under following test modes, and test mode 1 was the worst case for final test. | Mode | Test Condition | |------|------------------------| | 1 | 2.4G link, 120Vac/60Hz | | 2 | 2.4G link, 230Vac/50Hz | | 3 | 2.4G idle, 120Vac/60Hz | Test modes are presented in the report as below. | Mode | · | Test Condition | | | | | |------|-------------------------|----------------|--|--|--|--| | | Conducted emission test | | | | | | | - | - 2.4G link | | | | | | | | Radiated emission test | | | | | | | - | 2.4G link | | | | | | ### 3.4 Test Program Used and Operation Descriptions - a. Plugged EUT into the notebook and placed on the testing table. - b. The notebook sent "H" patterns to the screen and displayed them. - c. The notebook sent "H" patterns to the printer and the printer printed them. - d. The notebook read and wrote with the floppy. - e. The notebook linked with the wireless router via the EUT. - f. Steps b~e were repeated. # 3.5 Primary Clock Frequencies of Internal Source The highest frequency generated or used within the EUT or on which the EUT operates or tunes is 2.4 GHz provided by Raspberry Pi Trading Ltd, for detailed internal source, please refer to the manufacturer's specifications. #### 3.6 Miscellaneous ### **Labelling Requirements for Part 15 Devices:** #### Verification The specific labelling requirements for a device subject to the Verification procedure are contained in Section 15.19(a). These labelling requirements are: If the device is subject only to Verification, include a label bearing a unique identifier (Section 2.954) and one of three compliance statements specified in Section 15.19(a). If the labeling area for the device is so small, and/or it is not practical to place the compliance statement on the device, then the statement can be placed in the user manual or product packaging (Section 15.19(a)(5)). However, the device must still be labelled with the unique identifier (Verification). Generally, devices smaller than the palm of the hand are considered too small for the compliance statement. #### Certification If the device is subject to Certification: (1) Section 2.925 contains information on identification of the equipment; (2) include a label bearing an FCC Identifier (FCC ID) (Section 2.926) and (3) include the appropriate compliance statement in Section 15.19(a). If the device is considered too small and therefore it is impractical (smaller than the palm of the hand) to display the compliance statement, then the statement may be placed in the user manual or product packaging. However, the device must still be labelled with the FCC ID. If the device is unquestionably too small for the FCC ID to be readable (smaller than 4-6 points), the FCC ID may be placed in the user manual. However, it must be determined that the device itself is too small – the label area allocated to the FCC ID may not be reduced because of over crowded identification of other product and regulatory information. An electronic display of the FCC ID (see 9. Electronic Labelling below) may be used for Certification of Section 15.212 modular transmitters and software defined radios (Section 2.944). # Declaration of Conformity (DoC): The labelling requirements for a device subject to the DoC procedure are specified in Section 15.19(b). The label should include the FCC logo along with the Trade Name and Model Number, which satisfies the unique identifier requirement of Section 2.1074 if it represents the identical equipment tested for DoC compliance. For personal computers assembled from authorized components, the following additional text must also be included: "Assembled from tested components," "Complete system not tested." When the device is so small and/or when it is not practical to place the required additional text on the device, the text may be placed in the user manual or pamphlet supplied to the user. However, the FCC logo, Trade Name, and Model Number must still be displayed on the device (Section 15.19(b)(3)). Part 15 Declaration of Conformity (DoC) Label Examples Equipment certified as software defined radio may use a means that readily displays the FCC ID on an electronic display screen, instead of labelling the device (Section 2.925 (e)). Further information may refer to FCC KDB:784748 D01 Labelling Part 15 &18 Guidelines #### **Labelling Requirements for ICES-003 Devices:** ➤ Industry Canada ICES-003 Compliance Label: CAN ICES-3 (*)/NMB-3(*) Report No.: FC141001C29 Page No. 7 / 24 Report Format Version: 6.1.0 ^{*} Insert either "A" or "B" but not both to identify the applicable Class of ITE. # 4 Configuration and Connections with EUT # 4.1 Connection Diagram of EUT and Peripheral Devices Remote site # 4.2 Configuration of Peripheral Devices and Cable Connections | ID | Product | Brand | Model No. | Serial No. | FCC ID | Remarks | |----|-----------------------------|--------|----------------|---------------|------------------|---------| | A. | Notebook | DELL | Latitude E6420 | HPFC5Q1 | FCC DoC Approved | • | | B. | Printer | EPSON | T22 | MEEZ070388 | FCC DoC Approved | - | | C. | External USB 1.1 Floppy | SONY | MPF82E | 50010254 | FCC DoC Approved | - | | D. | Wireless N Dual band Router | D-LINK | DIR-815 | PVK21B5000399 | KA21R815A1 | - | #### Note: - 1. All power cords of the above support units are non-shielded (1.8m). - 2. Item D acted as a communication partner to transfer data. | ID | Descriptions | Qty. | Length (m) | Shielding
(Yes/No) | Cores (Qty.) | Remarks | |----|--------------|------|------------|-----------------------|--------------|---------| | 1. | USB | 1 | 1.8 | Υ | 0 | - | | 2. | USB | 1 | 0.5 | Y | 1 | - | Note: The core(s) is(are) originally attached to the cable(s). #### 5 Conducted Emissions at Mains Ports #### 5.1 Limits | Fraguency (MHz) | Class A | (dBuV) | Class B | Class B (dBuV) | | |-----------------|------------|---------|------------|----------------|--| | Frequency (MHz) | Quasi-peak | Average | Quasi-peak | Average | | | 0.15 - 0.5 | 79 | 66 | 66 - 56 | 56 - 46 | | | 0.50 - 5.0 | 73 | 60 | 56 | 46 | | | 5.0 - 30.0 | 73 | 60 | 60 | 50 | | Notes: 1. The lower limit shall apply at the transition frequencies. # 5.2 Test Instruments | Description &
Manufacturer | Model No. | Serial No. | Cal. Date | Cal. Due | |---|--------------------------|----------------|---------------|---------------| | Test Receiver ROHDE & SCHWARZ | ESCS30 | 100288 | Apr. 24, 2014 | Apr. 23, 2015 | | RF signal cable
Woken | 5D-FB | Cable-HYCO2-01 | Dec. 27, 2013 | Dec. 26, 2014 | | LISN
ROHDE & SCHWARZ
(EUT) | ESH2-Z5 | 100100 | Dec. 23, 2013 | Dec. 22, 2014 | | LISN
ROHDE & SCHWARZ
(Peripheral) | ESH3-Z5 | 100312 | Jul. 10, 2014 | Jul. 09, 2015 | | Software
ADT | BV ADT_Cond_
V7.3.7.3 | NA | NA | NA | Notes: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. - 2. The test was performed in HwaYa Shielded Room 2. - 3. The VCCI Site Registration No. is C-2047. ^{2.} The limit decreases linearly with the logarithm of the frequency in the range of 0.15 to 0.50 MHz. ### **5.3** Test Arrangement - a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument. - b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference. - c. The test results of conducted emissions at mains ports are recorded of six worst margins for quasi-peak (mandatory) [and average (if necessary)] values against the limits at frequencies of interest unless the margin is 20 dB or greater. Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz. Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes # 5.4 Test Results | Frequency Range | 150kHz ~ 30MHz | Detector Function & Resolution Bandwidth | Quasi-Peak (QP) /
Average (AV), 9kHz | |-----------------|-----------------------|--|---| | Input Power | 120Vac, 60Hz (System) | Environmental Conditions | 23℃, 66%RH | | Tested by | Mick Chou | Test Date | 2014/10/6 | | | Phase Of Power : Line (L) | | | | | | | | | | |----|---------------------------|------------|--------|---------------|-------|----------------|-------|-------|--------|--------| | | Frequency | Correction | Readin | Reading Value | | Emission Level | | nit | Mai | rgin | | No | | Factor | (dB | uV) | (dB | uV) | (dB | uV) | (d | B) | | | (MHz) | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | 1 | 0.34141 | 0.29 | 33.90 | 32.43 | 34.19 | 32.72 | 59.17 | 49.17 | -24.97 | -16.44 | | 2 | 0.44297 | 0.30 | 39.13 | 34.16 | 39.43 | 34.46 | 57.01 | 47.01 | -17.57 | -12.54 | | 3 | 0.54453 | 0.31 | 28.07 | 19.35 | 28.38 | 19.66 | 56.00 | 46.00 | -27.62 | -26.34 | | 4 | 0.86484 | 0.33 | 32.48 | 23.40 | 32.81 | 23.73 | 56.00 | 46.00 | -23.19 | -22.27 | | 5 | 1.13281 | 0.34 | 29.48 | 22.57 | 29.82 | 22.91 | 56.00 | 46.00 | -26.18 | -23.09 | | 6 | 2.02734 | 0.36 | 32.82 | 26.99 | 33.18 | 27.35 | 56.00 | 46.00 | -22.82 | -18.65 | - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value | Frequency Range | 150kHz ~ 30MHz | Detector Function & Resolution Bandwidth | Quasi-Peak (QP) /
Average (AV), 9kHz | |-----------------|-----------------------|--|---| | Input Power | 120Vac, 60Hz (System) | Environmental Conditions | 23°C, 66%RH | | Tested by | Mick Chou | Test Date | 2014/10/6 | | | Phase Of Power : Neutral (N) | | | | | | | | | | |----|------------------------------|----------------------|-------|----------------|-------|----------------|-------|------------|-----------|------------| | No | Frequency | Correction
Factor | | g Value
uV) | | n Level
uV) | | nit
uV) | Mai
(d | rgin
B) | | | (MHz) | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | ÁV. | Q.P. | AV. | | 1 | 0.23594 | 0.28 | 33.59 | 25.13 | 33.87 | 25.41 | 62.24 | 52.24 | -28.36 | -26.82 | | 2 | 0.39609 | 0.30 | 39.47 | 37.60 | 39.77 | 37.90 | 57.93 | 47.93 | -18.17 | -10.04 | | 3 | 0.43906 | 0.30 | 38.10 | 37.21 | 38.40 | 37.51 | 57.08 | 47.08 | -18.68 | -9.57 | | 4 | 0.48203 | 0.31 | 32.28 | 23.71 | 32.59 | 24.02 | 56.30 | 46.30 | -23.72 | -22.29 | | 5 | 2.07813 | 0.37 | 33.71 | 27.15 | 34.08 | 27.52 | 56.00 | 46.00 | -21.92 | -18.48 | | 6 | 2.42188 | 0.38 | 30.45 | 25.34 | 30.83 | 25.72 | 56.00 | 46.00 | -25.17 | -20.28 | - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value # 6 Radiated Emissions up to 1 GHz # 6.1 Limits Emissions radiated outside of the specified bands, shall be according to the general radiated limits as following: | ionowing. | Tollowing. | | | | | | | | |-------------------|---|-------------------|-------------------|----|--|--|--|--| | | Radiated Emissions Limits at 10 meters (dBµV/m) | | | | | | | | | Frequencies (MHz) | FCC 15B / ICES-003,
Class A | CISPR 22, Class A | CISPR 22, Class B | | | | | | | 30-88 | 39 | 29.5 | | | | | | | | 88-216 | 43.5 | 33.1 | 40 | 30 | | | | | | 216-230 | 46.4 | 25.6 | | | | | | | | 230-960 | 40.4 | 35.6 | 47 | 37 | | | | | | 960-1000 | 49.5 | 43.5 | 4/ | 31 | | | | | | | Radiated Emissions Limits at 3 meters (dBµV/m) | | | | | | | | |-------------------|--|--------------------------------|-------------------|-------------------|--|--|--|--| | Frequencies (MHz) | FCC 15B / ICES-003,
Class A | FCC 15B / ICES-003,
Class B | CISPR 22, Class A | CISPR 22, Class B | | | | | | 30-88 | 49.5 | 40 | | | | | | | | 88-216 | 54 | 43.5 | 50.5 | 40.5 | | | | | | 216-230 | 56.9 | 46 | | | | | | | | 230-960 | 50.9 | 40 | 57.5 | 47.5 | | | | | | 960-1000 | 60 | 54 | 57.5 | 47.5 | | | | | Notes: 1. The lower limit shall apply at the transition frequencies. - 2. Emission level (dBuV/m) = 20 log Emission level (uV/m). - 3. QP detector shall be applied if not specified. # 6.2 Test Instruments | Description &
Manufacturer | Model No. | Serial No. | Cal. Date | Cal. Due | |--------------------------------------|------------------------------|----------------|---------------|---------------| | Test Receiver
ROHDE & SCHWARZ (V) | ESR-7 | 101240 | Sep. 29, 2014 | Sep. 28, 2015 | | Test Receiver ROHDE & SCHWARZ (H) | ESR-7 | 101264 | Nov. 29, 2013 | Nov. 28, 2014 | | BILOG Antenna
SCHWARZBECK (V) | VULB9168 | 9168-148 | Feb. 25, 2014 | Feb. 24, 2015 | | BILOG Antenna
SCHWARZBECK (H) | VULB9168 | 9168-149 | Feb. 25, 2014 | Feb. 24, 2015 | | Preamplifier
Agilent (V) | 8447D | 2944A10636 | Oct. 18, 2013 | Oct. 17, 2014 | | Preamplifier
Agilent (H) | 8447D | 2944A10637 | Oct. 18, 2013 | Oct. 17, 2014 | | Preamplifier
Agilent | 8449B | 3008A01959 | Oct. 18, 2013 | Oct. 17, 2014 | | RF signal cable
Woken (V) | 8D-FB | Cable-Hych1-01 | Oct. 26, 2013 | Oct. 25, 2014 | | RF signal cable
Woken (H) | 8D-FB | Cable-Hych1-02 | Oct. 26, 2013 | Oct. 25, 2014 | | Software
BV ADT | BV ADT_Radiated_
V 8.7.07 | NA | NA | NA | | Antenna Tower (V) | MFA-440 | 9707 | NA | NA | | Antenna Tower (H) | MFA-440 | 970705 | NA | NA | | Turn Table | DS430 | 50303 | NA | NA | | Controller (V) | MF7802 | 074 | NA | NA | | Controller (H) | MF7802 | 08093 | NA | NA | Notes: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. - 2. The test was performed in HwaYa Chamber 1. - 3. The FCC Site Registration No. is 477732. - 4. The IC Site Registration No. is IC 7450F-1. - 5. The VCCI Site Registration No. is R-1893. ### **6.3** Test Arrangement - a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at an accredited test facility. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz. Note: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for quasi-peak detection (QP) at frequency below 1GHz. # 6.4 Test Results | Frequency Range | 30MHz ~ 1GHz | Detector Function & Resolution Bandwidth | Quasi-Peak (QP), 120kHz | |--------------------------|--------------|--|-------------------------| | Environmental Conditions | 23℃, 67%RH | Test Date | 2014/10/7 | | Tested by | Daniel Lin | | | | | Antenna Polarity & Test Distance : Horizontal at 10 m | | | | | | | | |----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | No | Frequency
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Height
(m) | Table
Angle
(Degree) | Raw
Value
(dBuV) | Correction
Factor
(dB/m) | | 1 | 46.98 | 14.38 QP | 30.00 | -15.62 | 1.50 H | 122 | 29.09 | -14.71 | | 2 | 166.58 | 19.86 QP | 30.00 | -10.14 | 4.00 H | 161 | 34.13 | -14.27 | | 3 | 209.90 | 23.35 QP | 30.00 | -6.65 | 3.50 H | 343 | 40.01 | -16.66 | | 4 | 278.87 | 24.20 QP | 37.00 | -12.80 | 3.00 H | 298 | 36.94 | -12.74 | | 5 | 349.53 | 26.46 QP | 37.00 | -10.54 | 2.50 H | 221 | 37.22 | -10.76 | | 6 | 383.39 | 22.81 QP | 37.00 | -14.19 | 2.00 H | 15 | 32.54 | -9.73 | | 7 | 439.99 | 20.72 QP | 37.00 | -16.28 | 3.00 H | 176 | 29.19 | -8.47 | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) - Pre-Amplifier Factor (dB) - 3. The other emission levels were very low against the limit. - 4. Margin value = Emission level Limit value | Frequency Range | 30MHz ~ 1GHz | Detector Function & Resolution Bandwidth | Quasi-Peak (QP), 120kHz | |--------------------------|--------------|--|-------------------------| | Environmental Conditions | 23℃, 67%RH | Test Date | 2014/10/7 | | Tested by | Daniel Lin | | | | | Antenna Polarity & Test Distance : Vertical at 10 m | | | | | | | | |----|---|-------------------------------|---------------|--------------------------|----------------------------|------------------------|--------------------------------|--------| | No | Frequency
(MHz) | Emission
Level
(dBuV/m) | (dBuV/m) (dB) | Antenna
Height
(m) | Table
Angle
(Degree) | Raw
Value
(dBuV) | Correction
Factor
(dB/m) | | | 1 | 34.97 | 25.90 QP | 30.00 | -4.10 | 1.50 V | 148 | 41.12 | -15.22 | | 2 | 44.70 | 23.70 QP | 30.00 | -6.30 | 3.00 V | 204 | 37.81 | -14.11 | | 3 | 149.22 | 25.78 QP | 30.00 | -4.22 | 1.50 V | 2 | 39.32 | -13.54 | | 4 | 166.58 | 24.96 QP | 30.00 | -5.04 | 1.50 V | 81 | 38.50 | -13.54 | | 5 | 279.64 | 23.64 QP | 37.00 | -13.36 | 1.00 V | 140 | 35.44 | -11.80 | | 6 | 439.99 | 24.40 QP | 37.00 | -12.60 | 3.00 V | 143 | 32.40 | -8.00 | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) - Pre-Amplifier Factor (dB) - 3. The other emission levels were very low against the limit. - 4. Margin value = Emission level Limit value # 7 Radiated Emissions above 1 GHz #### 7.1 Limits Emissions radiated outside of the specified bands, shall be according to the general radiated limits as following: | - | | | | | | | | |---|---|------------|-------------|-------------|--|--|--| | | Radiated Emissions Limits at 10 meters (dBµV/m) | | | | | | | | | Frequencies FCC 15B / ICES-003, FCC 15B / ICES-003, CISPR 22, Class A CISPR 22, Class B | | | | | | | | | (MHz) Class A Class B Clork 22, Class A Clork 22, Class | | | | | | | | | 1000-3000 Avg: 49.5 Avg: 43.5 | | Not defined | Not defined | | | | | | Above 3000 | Peak: 69.5 | Not defined | Not defined | | | | | | Radiated Emissions Limits at 3 meters (dBµV/m) | | | | | | | |---|--|----------|---------------------|---------------------|--|--|--| | Frequencies (MHz) FCC 15B / ICES-003, FCC 15B / ICES-003, Class B CISPR 22, Class A CISPR 22, Class E | | | | | | | | | 1000-3000 | Avg: 60 | Avg: 54 | Avg: 56
Peak: 76 | Avg: 50
Peak: 70 | | | | | Above 3000 | Peak: 80 | Peak: 74 | Avg: 60
Peak: 80 | Avg: 54
Peak: 74 | | | | Notes: 1. The lower limit shall apply at the transition frequencies. - 2. Emission level (dBuV/m) = 20 log Emission level (uV/m). - 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation. Frequency Range (For unintentional radiators) | Highest frequency generated or used in the device or on which the device operates or tunes (MHz) | Upper frequency of measurement range (MHz) | |--|--| | Below 1.705 | 30 | | 1.705-108 | 1000 | | 108-500 | 2000 | | 500-1000 | 5000 | | Above 1000 | 5th harmonic of the highest frequency or 40GHz, whichever is lower | #### 7.2 Test Instruments | Description &
Manufacturer | Model No. | Serial No. | Cal. Date | Cal. Due | |---|---------------------------------|----------------------------|---------------|---------------| | Test Receiver ROHDE & SCHWARZ | ESCI | 100613 | Oct. 24, 2013 | Oct. 23, 2014 | | Spectrum Analyzer
Agilent | E4446A | MY44360124 | Feb. 12, 2014 | Feb. 11, 2015 | | BILOG Antenna
SCHWARZBECK | VULB9168 | 9168-157 | Feb. 26, 2014 | Feb. 25, 2015 | | RF signal cable
Woken | 8D-FB | NA | Mar. 21, 2014 | Mar. 20, 2015 | | HORN Antenna
SCHWARZBECK | BBHA 9120 D | 9120D-404 | Jan. 05, 2014 | Jan. 04, 2015 | | Preamplifier
Agilent
(Below 1GHz) | 8447D | 2944A10629 | Oct. 18, 2013 | Oct. 17, 2014 | | Preamplifier Agilent (Above 1GHz) | 8449B | 3008A01959 | Oct. 18, 2013 | Oct. 17, 2014 | | RF signal cable
HUBER+SUHNER | SUCOFLEX 104 | MWX322+MWX2211308
S0295 | Nov. 07, 2013 | Nov. 06, 2014 | | Software
BV ADT | BV ADT_Radiated_
V7.6.15.9.4 | NA | NA | NA | | Antenna Tower
BV ADT | AT100 | AT93021702 | NA | NA | | Turn Table
BV ADT | TT100 | TT93021702 | NA | NA | | Controller
BV ADT | SC100 | SC93021702 | NA | NA | | HORN Antenna
SCHWARZBECK | BBHA 9170 | BBHA9170243 | Jan. 09, 2014 | Jan. 08, 2015 | | RF signal cable
HUBER+SUHNNER | SUCOFLEX 102 | 38218/2+
37433/2 | Oct. 26, 2013 | Oct. 25, 2014 | | Fix tool for Boresight antenna tower | BAF-01 | 2 | NA | NA | - Notes: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. - 2. The test was performed in HwaYa Chamber 2. - 3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested. - 4. The FCC Site Registration No. is 686814. - 5. The IC Site Registration No. is IC 7450F-2. - 6. The VCCI Site Registration No. is G-18. # 7.3 Test Arrangement - a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at an accredited chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. The height of antenna can be varied from one meter to four meters, the height of adjustment depends on the EUT height and the antenna 3dB beamwidth both, to detect the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The spectrum analyzer system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. Note: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection (PK) at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz for Average detection (AV) at frequency above 1GHz. # 7.4 Test Results | Frequency Range | 1GHz ~ 18GHz | Detector Function & Resolution Bandwidth | Peak (PK) /
Average (AV), 1MHz | |-----------------|-----------------------|--|-----------------------------------| | Input Power | 120Vac, 60Hz (System) | Environmental Conditions | 22℃, 62%RH | | Tested by | Rolan Zheng | Test Date | 2014/10/8 | | | Antenna Polarity & Test Distance : Horizontal at 3 m | | | | | | | | |----|--|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | No | Frequency
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Height
(m) | Table
Angle
(Degree) | Raw
Value
(dBuV) | Correction
Factor
(dB/m) | | 1 | 1614.34 | 41.55 PK | 74.00 | -32.45 | 1.72 H | 211 | 48.32 | -6.77 | | 2 | 1614.34 | 27.77 AV | 54.00 | -26.23 | 1.72 H | 211 | 34.54 | -6.77 | | 3 | 2010.38 | 41.51 PK | 74.00 | -32.49 | 1.32 H | 267 | 47.08 | -5.57 | | 4 | 2010.38 | 27.84 AV | 54.00 | -26.16 | 1.32 H | 267 | 33.41 | -5.57 | | 5 | 2890.11 | 42.56 PK | 74.00 | -31.44 | 1.30 H | 95 | 45.17 | -2.61 | | 6 | 2890.11 | 26.39 AV | 54.00 | -27.61 | 1.30 H | 95 | 29.00 | -2.61 | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) - Pre-Amplifier Factor (dB) - 3. The other emission levels were very low against the limit. - 4. Margin value = Emission level Limit value | Frequency Range | 1GHz ~ 18GHz | I RASOII ITION | Peak (PK) /
Average (AV), 1MHz | |-----------------|-----------------------|--------------------------|-----------------------------------| | Input Power | 120Vac, 60Hz (System) | Environmental Conditions | 22℃, 62%RH | | Tested by | Rolan Zheng | Test Date | 2014/10/8 | | | Antenna Polarity & Test Distance : Vertical at 3 m | | | | | | | | |----|--|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | No | Frequency
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Height
(m) | Table
Angle
(Degree) | Raw
Value
(dBuV) | Correction
Factor
(dB/m) | | 1 | 1635.96 | 41.63 PK | 74.00 | -32.37 | 1.22 V | 284 | 48.34 | -6.71 | | 2 | 1635.96 | 24.58 AV | 54.00 | -29.42 | 1.22 V | 284 | 31.29 | -6.71 | | 3 | 2345.23 | 43.41 PK | 74.00 | -30.59 | 1.00 V | 261 | 47.62 | -4.21 | | 4 | 2345.23 | 27.41 AV | 54.00 | -26.59 | 1.00 V | 261 | 31.62 | -4.21 | | 5 | 2597.91 | 44.72 PK | 74.00 | -29.28 | 1.24 V | 138 | 48.08 | -3.36 | | 6 | 2597.91 | 30.53 AV | 54.00 | -23.47 | 1.24 V | 138 | 33.89 | -3.36 | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) - Pre-Amplifier Factor (dB) - 3. The other emission levels were very low against the limit. - 4. Margin value = Emission level Limit value | 8 Pictures of Test Arrangements | | | | | | | |---|--|--|--|--|--|--| | Please refer to the attached file (Test Setup Photo). | Report No.: FC141001C29 Page No. 23 / 24 Report Format Version: 6.1.0 # **Appendix – Information on the Testing Laboratories** We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025. If you have any comments, please feel free to contact us at the following: Linko EMC/RF Lab Hsin Chu EMC/RF/Telecom Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Tel: 886-3-5935343 Fax: 886-3-5935342 Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892 Email: service.adt@tw.bureauveritas.com Web Site: www.bureauveritas-adt.com The address and road map of all our labs can be found in our web site also. --- END ---