

FCC RADIO TEST REPORT

FCC ID	: GKRRMLN1
Equipment	: 5G LGA Module
Brand Name	: COMPAL
Model Name	: RML-N1
Marketing Name	: 5G LGA Module
Applicant	: Compal Electronics, Inc. No.581 & 581-1, Ruiguang Rd., Neihu District, Taipei, (114) Taiwan
Manufacturer	 Compal Electronics, Inc. No.581 & 581-1, Ruiguang Rd., Neihu District, Taipei, (114) Taiwan
Standard	: FCC 47 CFR Part 2, Part 27(D)

The product was received on Mar. 31, 2021 and testing was started from Apr. 01, 2021 and completed on Jun. 16, 2021. We, Sporton International Inc. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI / TIA-603-E and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu Sporton International Inc. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)

Page Number: 1 of 23Issued Date: Jul. 07, 2021Report Version: 02

Table of Contents

	-	f this test report	
Su		/ of Test Result	
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Site	5
	1.4	Applied Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Test Mode	
	2.2	Connection Diagram of Test System	8
	2.3	Support Unit used in test configuration and system	8
	2.4	Measurement Results Explanation Example	8
	2.5	Frequency List of Low/Middle/High Channels	9
3	Cond	ucted Test Items	.10
	3.1	Measuring Instruments	.10
	3.2	Conducted Output Power Measurement	.11
	3.3	Peak-to-Average Ratio	.12
	3.4	Effective Isotropic Radiated Power	.13
	3.5	Occupied Bandwidth	.14
	3.6	Conducted Band Edge	15
	3.7	Conducted Spurious Emission	.16
	3.8	Frequency Stability	.17
4	Radia	ated Test Items	18
	4.1	Measuring Instruments	18
	4.2	Radiated Spurious Emission Measurement	20
5	List c	of Measuring Equipment	21
6		rtainty of Evaluation	23
		A. Test Results of Conducted Test	
Ap	pendix	CB. Test Results of Radiated Test	

Appendix C. Test Setup Photographs

History of this test report

Report No.	Version	Description	Issued Date
FG133040-02C	01	Initial issue of report	Jul. 01, 2021
FG133040-02C	02	 Revise Product Feature of Equipment Under Test, Support Unit used in test configuration and system, List of Measuring Equipment, and Test Setup Photographs Revise note for Frequency Stability 	Jul. 07, 2021

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.2	§2.1046	Conducted Output Power	Reporting only	-
3.3	-	Peak-to-Average Ratio	-	
3.4	§27.50 (a)(3)	Effective Isotropic Radiated Power	Pass	-
3.5	§2.1049	Occupied Bandwidth	Reporting only	-
3.6	§2.1051 §27.53 (a)(4)	Conducted Band Edge Measurement	Pass	-
3.7	§2.1051 §27.53 (a)(4)	Conducted Spurious Emission	Pass	-
3.8	§2.1055 §27.54	Frequency Stability Temperature & Voltage	Pass	
4.2	§2.1053 §27.53 (a)(4)	Radiated Spurious Emission	Pass	Under limit 0.48 dB at 4608.000 MHz

Summary of Test Result

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Keven Cheng Report Producer: Lucy Wu

1 General Description

1.1 Product Feature of Equipment Under Test

LTE/5G NR, and GNSS.

Product Specification subjective to this standard						
Test Antenna Type	Monopole Antenna					
Test Antenna Gain	<ant. 0="">: LTE Band 30: -1.1 dBi <ant. 2="">: LTE Band 30: -1.2 dBi</ant.></ant.>					

Remark: The above EUT's information was declared by manufacturer. Please refer to Comments and Explanations in report summary.

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Testing Site

Test Site	Sporton International Inc. EMC & Wire	less Communications Laboratory				
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978	aoyuan City 333, Taiwan (R.O.C.) EL: +886-3-327-3456				
Test Site No.	Sporton Site No.					
	TH03-HY	03CH07-HY				
Test Engineer	George Chen	Jesse Wang, Stan Hsieh and Ken Wu				
Temperature	23~26 ℃	19~27 ℃				
Relative Humidity	52~58%	48~63%				

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC Designation No.: TW1190

1.4 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- ANSI C63.26-2015
- FCC 47 CFR Part 2, Part 27(D)
- ANSI / TIA-603-E
- FCC KDB 971168 Power Meas License Digital Systems D01 v03r01
- FCC KDB 412172 D01 Determining ERP and EIRP v01r01
- FCC KDB 414788 D01 Radiated Test Site v01r01

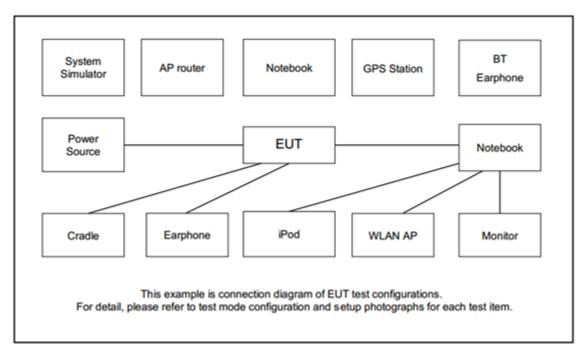
Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.
- 3. The TAF code is not including all the FCC KDB listed without accreditation.

Test Configuration of Equipment Under Test 2

2.1 Test Mode

Antenna port conducted and radiated test items listed below are performed according to KDB 971168 D01 Power Meas. License Digital Systems v03r01 with maximum output power.


For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Y plane) were recorded in this report.

Testites	David	Bandwidth (MHz)				Modulation			RB #		:	Test Channel					
Test Items	Band	1.4	3	5	10	15	20	QPSK	16QAM	64QAM	256QAM	1	Half	Full	L	М	н
Max. Output Power	30	-	-	v	v	-	-	v	v	v	v	v	v	v	v	v	v
Peak-to-Avera ge Ratio	30	-	-		v	-	-	v	v	v	v			v		v	
E.I.R.P	30	-	-	v	v	-	-	v	v	v	v			Max. Po	ower		
26dB and 99% Bandwidth	30	-	-	v	v	-	-	v	v	v	v			v		v	
Conducted Band Edge	30	-	-	v	v	-	-	v	v	v	v	v		v	v		v
Conducted Spurious Emission	30	-	-	v	v	-	-	v				v			v	v	v
Frequency Stability	30	-	-		v	-	-	v						v		v	
Radiated Spurious Emission	30							Wors	st Case						v	v	v
Remark	 The r The of difference of the other sectors o	mark "- device ent RE ted.	-" mea is inve 3 size/ 30 sup	ns tha estigat offset a port A	t this t ed froi and m	oandw m 30M odulat	idth is 1Hz to ions ir	not supp 10 times n explorat	of fundar ory test.	mental sig Subseque	gnal for ra ently, only nt. 2; ther	the w	orst ca	ise emis	sions	are	

TEL : 886-3-327-3456	Page Number	: 7 of 23
FAX : 886-3-328-4978	Issued Date	: Jul. 07, 2021
Report Template No.: BU5-FGLTE27D Version 2.4	Report Version	: 02

2.2 Connection Diagram of Test System

2.3 Support Unit used in test configuration and system

ltem	Equipment	Brand Name	Model No.	FCC ID	Data Cable	Power Cord
1.	Radio Communication Analyzer	Anritsu	MT8821C	N/A	N/A	Unshielded, 1.8 m
2.	Fixture	Compal	ZM52	N/A	N/A	N/A

2.4 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

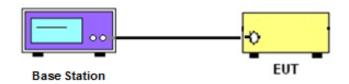
Example :

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

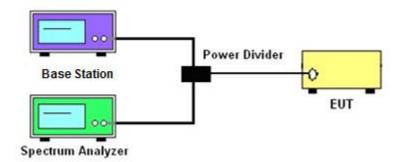
= 4.2 + 10 = 14.2 (dB)

2.5 Frequency List of Low/Middle/High Channels

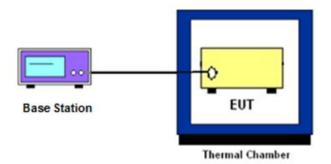
	LTE Band 30 Channel and Frequency List									
BW [MHz]	Channel/Frequency(MHz)	Lowest	Middle	Highest						
10	Channel	-	27710	-						
10	Frequency	-	2310	-						
F	Channel	27685	27710	27735						
5	Frequency	2307.5	2310	2312.5						


3 Conducted Test Items

3.1 Measuring Instruments


See list of measuring instruments of this test report.

3.1.1 Test Setup


3.1.2 Conducted Output Power

3.1.3 Peak-to-Average Ratio, Occupied Bandwidth, 26dB Bandwidth ,Band-Edge and Conducted Spurious Emission

3.1.4 Frequency Stability

3.1.5 Test Result of Conducted Test

Please refer to Appendix A.

3.2 Conducted Output Power Measurement

3.2.1 Description of the Conducted Output Power Measurement

A base station simulator was used to establish communication with the EUT. Its parameters were set to transmit the maximum power on the EUT. The measured power in the radio frequency on the transmitter output terminals shall be reported.

3.2.2 Test Procedures

- 1. The transmitter output port was connected to the system simulator.
- 2. Set EUT at maximum power through the system simulator.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure and record the power level from the system simulator.

3.3 Peak-to-Average Ratio

3.3.1 Description of the PAR Measurement

Power Complementary Cumulative Distribution Function (CCDF) curves provide a means for characterizing the power peaks of a digitally modulated signal on a statistical basis. A CCDF curve depicts the probability of the peak signal amplitude exceeding the average power level. Most contemporary measurement instrumentation include the capability to produce CCDF curves for an input signal provided that the instrument's resolution bandwidth can be set wide enough to accommodate the entire input signal bandwidth. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

3.3.2 Test Procedures

The testing follows ANSI C63.26-2015 Section 5.2.6

- 1. The EUT was connected to spectrum and system simulator via a power divider.
- 2. Set the CCDF (Complementary Cumulative Distribution Function) option in spectrum analyzer.
- 3. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of 0.1 %.
- 4. Record the deviation as Peak to Average Ratio.

3.4 Effective Isotropic Radiated Power

3.4.1 Description of Effective Isotropic Radiated Power

For mobile and portable stations transmitting in the 2305-2315 MHz band or the 2350-2360 MHz band, the average EIRP must not exceed 50 milliwatts within any 1 megahertz of authorized bandwidth, *except that* for mobile and portable stations compliant with 3GPP LTE standards or another advanced mobile broadband protocol that avoids concentrating energy at the edge of the operating band the average EIRP must not exceed 250 milliwatts within any 5 megahertz of authorized bandwidth but may exceed 50 milliwatts within any 1 megahertz of authorized bandwidth. For mobile and portable stations using time division duplexing (TDD) technology, the duty cycle must not exceed 38 percent in the 2305-2315 MHz and 2350-2360 MHz bands. Mobile and portable stations using FDD technology are restricted to transmitting in the 2305-2315 MHz band. Power averaging shall not include intervals in which the transmitter is off.

Remark: EIRP use worst case measure the total power to cover per 5MHz Power.

According to KDB 412172 D01 Power Approach,

 $EIRP = P_T + G_T - L_C$, where

 P_T = transmitter output power in dBm

 G_T = gain of the transmitting antenna in dBi

 L_{C} = signal attenuation in the connecting cable between the transmitter and antenna in dB

3.4.2 Test Procedures

The testing follows ANSI C63.26-2015 Section 5.2.4.5

1. Determine the EIRP by adding the effective antenna gain to the adjusted power level.

3.5 Occupied Bandwidth

3.5.1 Description of Occupied Bandwidth Measurement

The occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean transmitted power.

The 26 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth.

3.5.2 Test Procedures

The testing follows ANSI C63.26-2015 Section 5.4.3 (26dB) and Section 5.4.4 (99OB)

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the spectrum analyzer shall be between two and five times the anticipated OBW.
- 3. The nominal resolution bandwidth (RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.
- 4. Set the detection mode to peak, and the trace mode to max hold.
- Determine the reference value: Set the EUT to transmit a modulated signal. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace. (this is the reference value)
- 6. Determine the "-26 dB down amplitude" as equal to (Reference Value X).
- 7. Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display such that each marker is at or slightly below the "-X dB down amplitude" determined in step 6. If a marker is below this "-X dB down amplitude" value it shall be placed as close as possible to this value. The OBW is the positive frequency difference between the two markers.
- 8. Use the 99 % power bandwidth function of the spectrum analyzer and report the measured bandwidth.

3.6 Conducted Band Edge

3.6.1 Description of Conducted Band Edge Measurement

27.53 (a)(4)

For mobile and portable stations operating in the 2305-2315 MHz and 2350-2360 MHz bands:

(i) By a factor of not less than: $43 + 10 \log (P) dB$ on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, not less than 55 + 10 log (P) dB on all frequencies between 2320 and 2324 MHz and on all frequencies between 2341 and 2345 MHz, not less than 61 + 10 log (P) dB on all frequencies between 2324 and 2328 MHz and on all frequencies between 2337 and 2341 MHz, and not less than 67 + 10 log (P) dB on all frequencies between 2327 MHz.

(ii) By a factor of not less than $43 + 10 \log (P) dB$ on all frequencies between 2300 and 2305 MHz, 55 + 10 log (P) dB on all frequencies between 2296 and 2300 MHz, 61 + 10 log (P) dB on all frequencies between 2292 and 2296 MHz, 67 + 10 log (P) dB on all frequencies between 2288 and 2292 MHz, and 70 + 10 log (P) dB below 2288 MHz.

(iii) By a factor of not less than $43 + 10 \log (P) dB$ on all frequencies between 2360 and 2365 MHz, and not less than $70 + 10 \log (P) dB$ above 2365 MHz.

3.6.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 6.1.

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- 2. The band edges of low and high channels for the highest RF powers were measured.
- 3. Set RBW >= 1% EBW in the 1MHz band immediately outside and adjacent to the band edge.
- 4. Beyond the 1 MHz band from the band edge, RBW=1MHz was used.
- 5. Set spectrum analyzer with RMS detector.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- Checked that all the results comply with the emission limit line.
 The limit line is derived from 43 + 10log(P)dB below the transmitter power P(Watts)

3.7 Conducted Spurious Emission

3.7.1 Description of Conducted Spurious Emission Measurement

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 70 + 10 log (P) dB.

It is measured by means of a calibrated spectrum analyzer and scanned from 9 kHz up to a frequency including its 10th harmonic.

3.7.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 6.1.

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. The middle channel for the highest RF power within the transmitting frequency was measured.
- 4. The conducted spurious emission for the whole frequency range was taken.
- 5. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz.
- 6. Set spectrum analyzer with RMS detector.
- 7. Taking the record of maximum spurious emission.
- 8. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 9. The limit line is derived from 70 + 10log(P)dB below the transmitter power P(Watts)

3.8 Frequency Stability

3.8.1 Description of Frequency Stability Measurement

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

3.8.2 Test Procedures for Temperature Variation

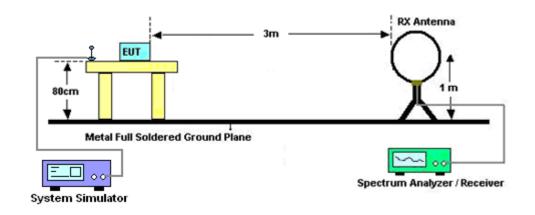
The testing follows FCC KDB 971168 D01 v03r01 Section 9.0.

- 1. The EUT was set up in the thermal chamber and connected with the system simulator.
- 2. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.
- 3. With power OFF, the temperature was raised in 10°C step up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

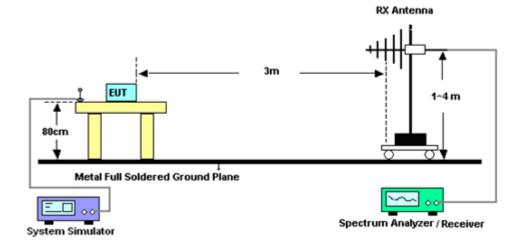
3.8.3 Test Procedures for Voltage Variation

The testing follows FCC KDB 971168 D01 v03r01 Section 9.0.

- 1. The EUT was placed in a temperature chamber at 20±5° C and connected with the system simulator.
- 2. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
- 3. The variation in frequency was measured for the worst case.

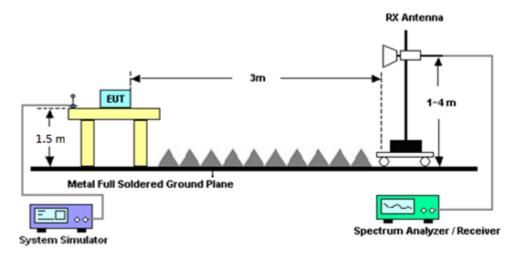

4 Radiated Test Items

4.1 Measuring Instruments


See list of measuring instruments of this test report.

4.1.1 Test Setup

For radiated test below 30MHz



For radiated test from 30MHz to 1GHz

For radiated test above 1GHz

4.1.2 Test Result of Radiated Test

Please refer to Appendix B.

Note:

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

4.2 Radiated Spurious Emission Measurement

4.2.1 Description of Radiated Spurious Emission Measurement

The radiated spurious emission was measured by substitution method according to ANSI / TIA-603-E The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least 70 + 10 log (P) dB.

The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

4.2.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 7 and ANSI / TIA-603-E Section 2.2.12.

- 1. The EUT was placed on a turntable with 0.8 meter height for frequency below 1GHz and 1.5 meter height for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the receiving antenna mounted on the antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest spurious emission.
- 4. The height of the receiving antenna is varied between 1m to 4m to search the maximum spurious emission for both horizontal and vertical polarizations.
- 5. During the measurement, the system simulator parameters were set to force the EUT transmitting at maximum output power.
- 6. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking the record of maximum spurious emission.
- 7. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
- 8. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.

EIRP (dBm) = S.G. Power - Tx Cable Loss + Tx Antenna Gain ERP (dBm) = EIRP - 2.15

9. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

The limit line is derived from 70 + 10log(P)dB below the transmitter power P(Watts)

= P(W) - [70 + 10log(P)] (dB)

= [30 + 10log(P)] (dBm) - [70 + 10log(P)] (dB)

= -40dBm.

List of Measuring Equipment 5

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Bilog Antenna	Schaffner	CBL 6111C & N-6-06	2725 & AT-N0601	30MHz~1GHz	Jan. 08, 2021	Apr. 21, 2021~ Jun. 16, 2021	Jan. 07, 2022	Radiation (03CH07-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01 N-06	35419 & 03	30MHz~1GHz	Apr. 29, 2020	Apr. 21, 2021~ Apr. 27, 2021	Apr. 28, 2021	Radiation (03CH07-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01 N-06	35419 & 03	30MHz~1GHz	Apr. 28, 2021	Apr. 28, 2021~ Jun. 16, 2021	Apr. 27, 2022	Radiation (03CH07-HY)
Double Ridge Horn Antenna	ESCO	3117	00075962	1GHz ~ 18GHz	Dec. 01, 2020	Apr. 21, 2021~ Jun. 16, 2021	Nov. 30, 2021	Radiation (03CH07-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Jan. 04, 2021	Apr. 21, 2021~ Jun. 16, 2021	Jan. 03, 2022	Radiation (03CH07-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590075	1GHz~18GHz	Apr. 23, 2020	Apr. 21, 2021	Apr. 22, 2021	Radiation (03CH07-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590075	1GHz~18GHz	Apr. 22, 2021	Apr. 22, 2021~ Jun. 16, 2021	Apr. 21, 2022	Radiation (03CH07-HY)
Preamplifier	COM-POWER	PA-103A	161241	10MHz~1GHz	May 19, 2020	Apr. 21, 2021~ May 17, 2021	May 18, 2021	Radiation (03CH07-HY)
Preamplifier	COM-POWER	PA-103A	161241	10MHz~1GHz	May 18, 2021	May 18, 2021~ Jun. 16, 2021	May 17, 2022	Radiation (03CH07-HY)
Preamplifier	Agilent	8449B	3008A023 62	1GHz~26.5GHz	Oct. 31, 2020	Apr. 21, 2021~ Jun. 16, 2021	Oct. 30, 2021	Radiation (03CH07-HY)
Preamplifier	EMEC	EM18G40G	0600789	18-40GHz	Jul. 31, 2020	Apr. 21, 2021~ Jun. 16, 2021	Jul. 30, 2021	Radiation (03CH07-HY)
Spectrum Analyzer	Agilent	N9030A	MY523502 76	3Hz~44GHz	Jun. 09, 2020	Apr. 21, 2021~ Jun. 07, 2021	Jun. 08, 2021	Radiation (03CH07-HY)
Spectrum Analyzer	Keysight	N9010A	MY542004 86	10Hz~44GHz	Oct. 23, 2020	Jun. 08, 2021~ Jun. 16, 2021	Oct. 22, 2021	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY15682- 4	30MHz to 18GHz	Feb. 24, 2021	Apr. 21, 2021~ Jun. 16, 2021	Feb. 23, 2022	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24971- 4	9kHz to 18GHz	Feb. 24, 2021	Apr. 21, 2021~ Jun. 16, 2021	Feb. 23, 2022	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY28655- 4	9kHz to 18GHz	Feb. 24, 2021	Apr. 21, 2021~ Jun. 16, 2021	Feb. 23, 2022	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2858/2, 801606/2	18GHz~40GHz	Feb. 24, 2021	Apr. 21, 2021~ Jun. 16, 2021	Feb. 23, 2022	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126	532078/12 6E	30MHz~18GHz	Sep. 18, 2020	Apr. 21, 2021~ Jun. 16, 2021	Sep. 17, 2021	Radiation (03CH07-HY)
Controller	EMEC	EM1000	N/A	Control Ant Mast	N/A	Apr. 21, 2021~ Jun. 16, 2021	N/A	Radiation (03CH07-HY)
Controller	MF	MF-7802	N/A	Control Turn table	N/A	Apr. 21, 2021~ Jun. 16, 2021	N/A	Radiation (03CH07-HY)
Antenna Mast	EMEC	AM-BS-4500E	N/A	Boresight mast 1M~4M	N/A	Apr. 21, 2021~ Jun. 16, 2021	N/A	Radiation (03CH07-HY)
Turn Table	ChainTek	Chaintek 3000	N/A	0~360 Degree	N/A	Apr. 21, 2021~ Jun. 16, 2021	N/A	Radiation (03CH07-HY)
Software	Audix	E3 6.2009-8-24	N/A	N/A	N/A	Apr. 21, 2021~ Jun. 16, 2021	N/A	Radiation (03CH07-HY)

Page Number : 21 of 23 Issued Date Report Version : 02

: Jul. 07, 2021

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
USB Data Logger	TECPEL	TR-32	HE17XB24 95	N/A	N/A	Apr. 21, 2021~ Jun. 16, 2021	N/A	Radiation (03CH07-HY)
Horn Antenna	EMCO	3117	00143261	1GHz~18GHz	Jan. 26, 2021	Apr. 21, 2021~ Jun. 16, 2021	Jan. 25, 2022	Radiation (03CH07-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 251	18GHz~40GHz	Dec. 02, 2020	Apr. 21, 2021~ Jun. 16, 2021	Dec. 01, 2021	Radiation (03CH07-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA9170	00994	18GHz-40GHz	Nov. 19, 2020	Apr. 21, 2021~ Jun. 16, 2021	Nov. 18, 2021	Radiation (03CH07-HY)
Base Station(Measure)	Anritsu	MT8821C	626200253 41	N/A	Oct. 05, 2020	Apr. 01, 2021~ Jun. 16, 2021	Oct. 04, 2021	Conducted (TH03-HY)
Spectrum Analyzer	Rohde & Schwarz	FSV40	101397	10Hz~40GHz	Nov. 27, 2020	Apr. 01, 2021~ Jun. 16, 2021	Nov. 26, 2021	Conducted (TH03-HY)
Thermal Chamber	Ten Billion	TTH-D3SP	TBN-9307 01	N/A	Aug. 05, 2020	Apr. 01, 2021~ Jun. 16, 2021	Aug. 04, 2021	Conducted (TH03-HY)
Programmable Power Supply	GW Instek	PSS-2005	EL890094	1V~20V 0.5A~5A	Oct. 05, 2020	Apr. 01, 2021~ Jun. 16, 2021	Oct. 04, 2021	Conducted (TH03-HY)
Coupler	Warison	20dB 25W SMA Directional Coupler	#B	1-18GHz	Jan. 09, 2021	Apr. 01, 2021~ Jun. 16, 2021	Jan. 08, 2022	Conducted (TH03-HY)

6 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	3.35dB
Confidence of 95% (U = 2Uc(y))	3.350B

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of	3.81dB
Confidence of 95% (U = 2Uc(y))	

Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of	4.85dB
Confidence of 95% (U = 2Uc(y))	4.00UD

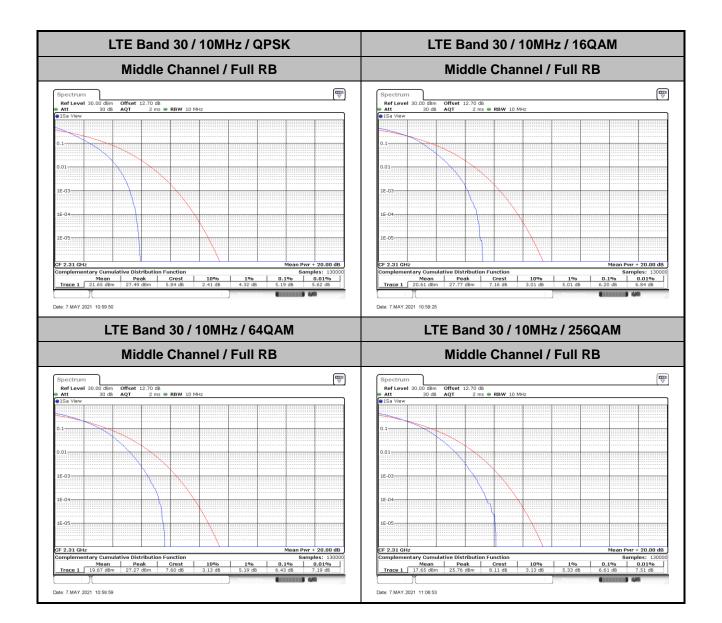
Appendix A. Test Results of Conducted Test

Conducted Output Power (Average power & EIRP)

	LTE	Band 30 N	laximum A	verage Po	wer [dBm]	(GT - LC =	= -1.2 dB)	
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest	EIRP (dBm)	EIRP (W)
10	1	0			23.69			
10	1	25			23.52			
10	1	49			23.37			
10	25	0	QPSK		22.27		22.49	0.1774
10	25	12			22.40			
10	25	25			22.47			
10	50	0			22.39			
10	1	0			22.55			
10	1	25			22.45			
10	1	49			22.38			
10	25	0	16-QAM		21.34		21.35	0.1365
10	25	12			21.44			
10	25	25			21.47			
10	50	0			21.38			
10	1	0		-	21.48	-		
10	1	25			21.42			
10	1	49			21.48			
10	25	0	64-QAM		20.42		20.28	0.1067
10	25	12			20.51			
10	25	25			20.38			
10	50	0			20.05			
10	1	0			18.46			
10	1	25			18.43			
10	1	49			18.36			
10	25	0	256-QAM		18.40		17.39	0.0548
10	25	12			18.59			
10	25	25			18.37			
10	50	0			18.03			
Limit	EIRP	< 250mW/	5MHz		Result		Pa	ISS

Report No. : FG133040-02C

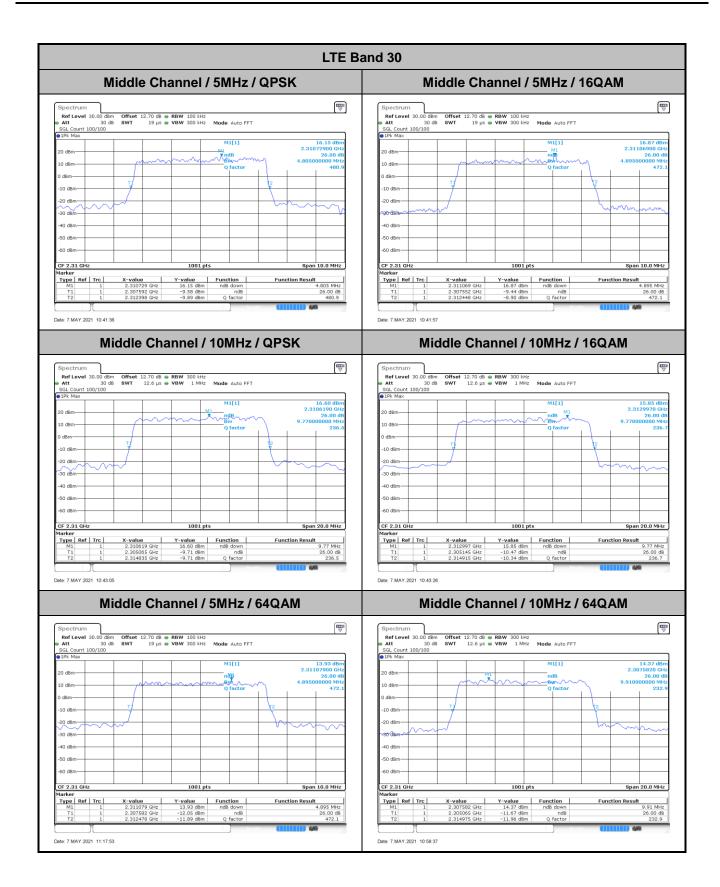
	LTE	Band 30 N	laximum A	verage Po	wer [dBm]	(GT - LC =	= -1.2 dB)	
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest	EIRP (dBm)	EIRP (W)
5	1	0		23.62	23.56	23.68		
5	1	12		23.54	23.59	23.65		
5	1	24		23.55	23.46	23.57		
5	12	0	QPSK	22.41	22.33	22.45	22.48	0.1770
5	12	7		22.52	22.43	22.59		
5	12	13		22.63	22.49	22.61		
5	25	0		22.49	22.48	22.51		
5	1	0		22.63	22.56	22.65		
5	1	12		22.45	22.50	22.55		
5	1	24		22.67	22.44	22.60		
5	12	0	16-QAM	21.48	21.43	21.56	21.47	0.1403
5	12	7		21.48	21.45	21.62		
5	12	13	-	21.56	21.54	21.55		
5	25	0		21.54	21.39	21.55		
5	1	0		21.59	21.53	21.58		
5	1	12		21.61	21.52	21.52		0.1099
5	1	24		21.59	21.48	21.54		
5	12	0	64-QAM	20.54	20.44	20.49	20.41	
5	12	7		20.56	20.53	20.60		
5	12	13		20.62	20.48	20.48		
5	25	0		20.01	20.05	20.08		
5	1	0		18.49	18.47	18.56		
5	1	12		18.47	18.49	18.53		
5	1	24		18.52	18.38	18.54		
5	12	0	256-QAM	18.50	18.42	18.46	17.41	0.0551
5	12	7	-	18.52	18.61	18.56		
5	12	13		18.56	18.39	18.47		
5	25	0		18.07	18.10	18.08		
Limit	EIRP	< 250mW/	5MHz		Result		Pa	ISS

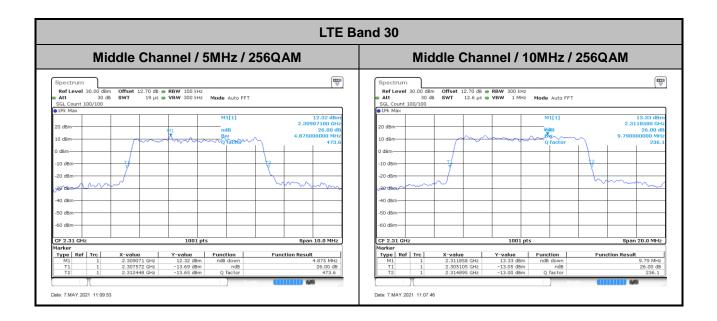


LTE Band 30

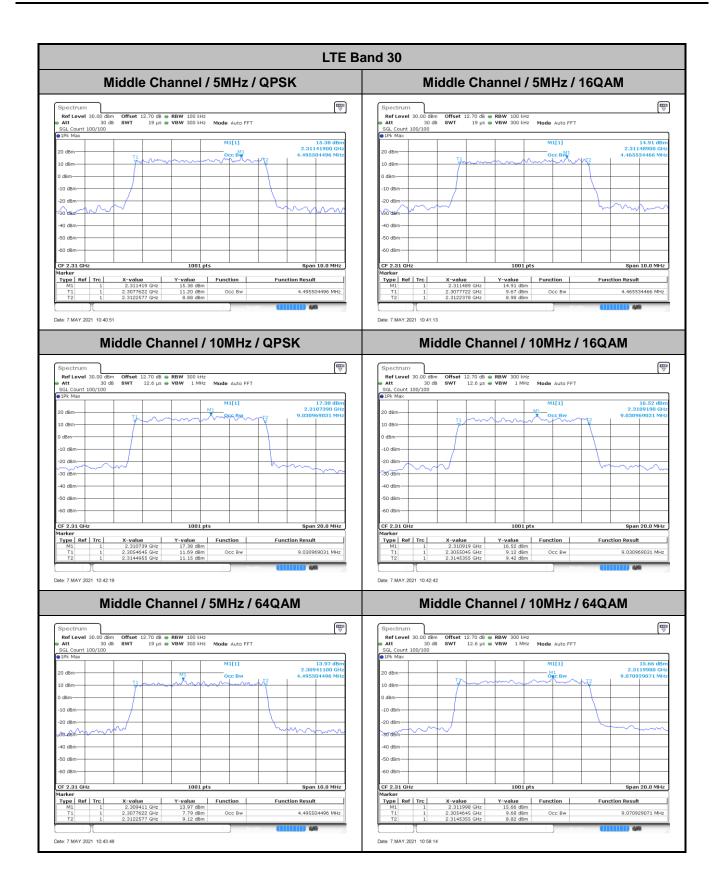
Peak-to-Average Ratio

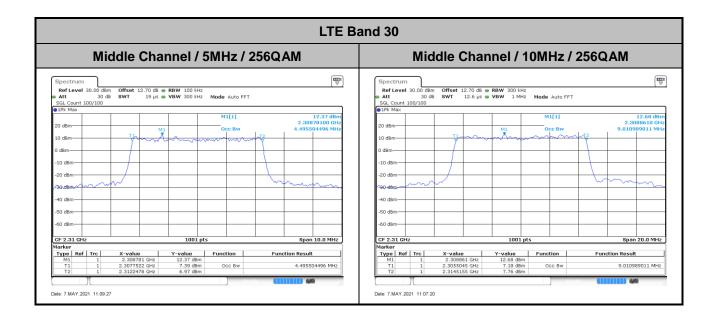
Mode					
Mod.	QPSK	Limit: 13dB			
RB Size	Full RB	Full RB	Full RB	Full RB	Result
Middle CH	5.19	6.20	6.43	6.61	PASS



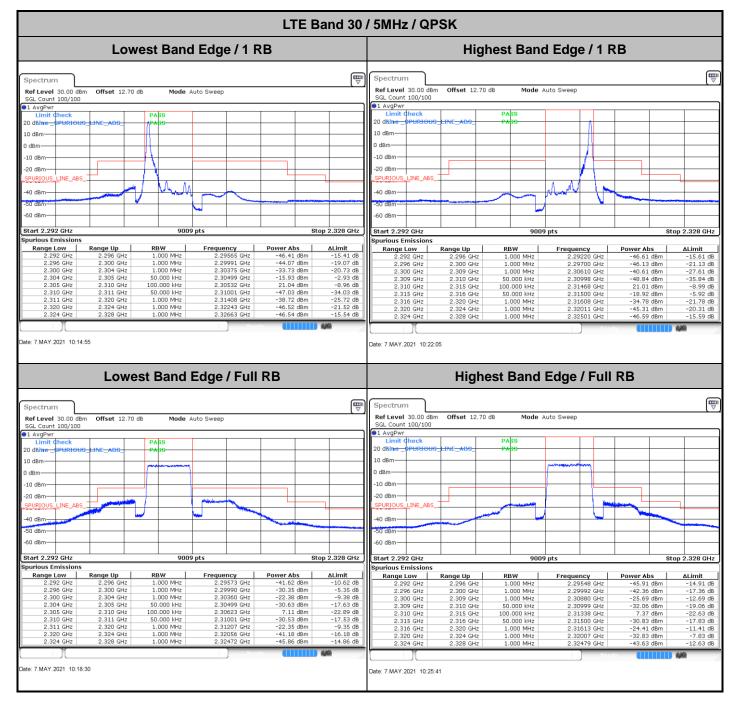

26dB Bandwidth

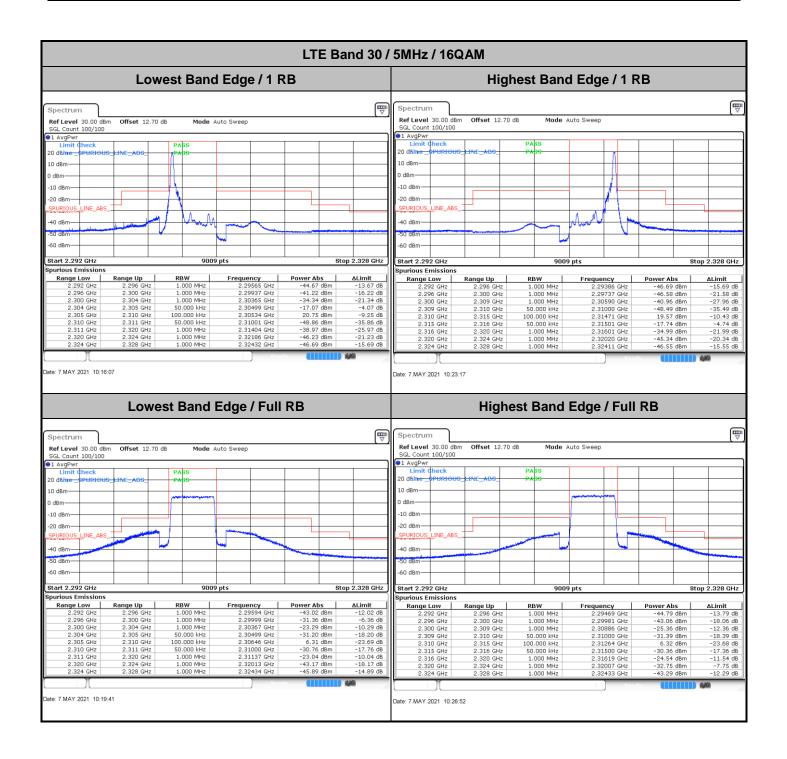
Mode		LTE Band 30 : 26dB BW(MHz)											
BW	1.4MHz		3MHz		5N	5MHz		10MHz		ЛНz	20MHz		
Mod.	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	
Middle CH	-	-	-	-	4.81	4.90	9.77	9.77	-	-	-	-	
Mode					LTE Ba	and 30 :	26dB BV	V(MHz)					
BW	1.4	٨Hz	3 M	lHz	5N	5MHz 10MHz		15MHz		20MHz			
Mod.	64QAM	256 QAM	64QAM	256 QAM	64QAM	256 QAM	64QAM	256 QAM	64QAM	256 QAM	64QAM	256 QAM	
Middle CH	-	-	-	-	4.90	4.88	9.91	9.79	-	-	-	-	

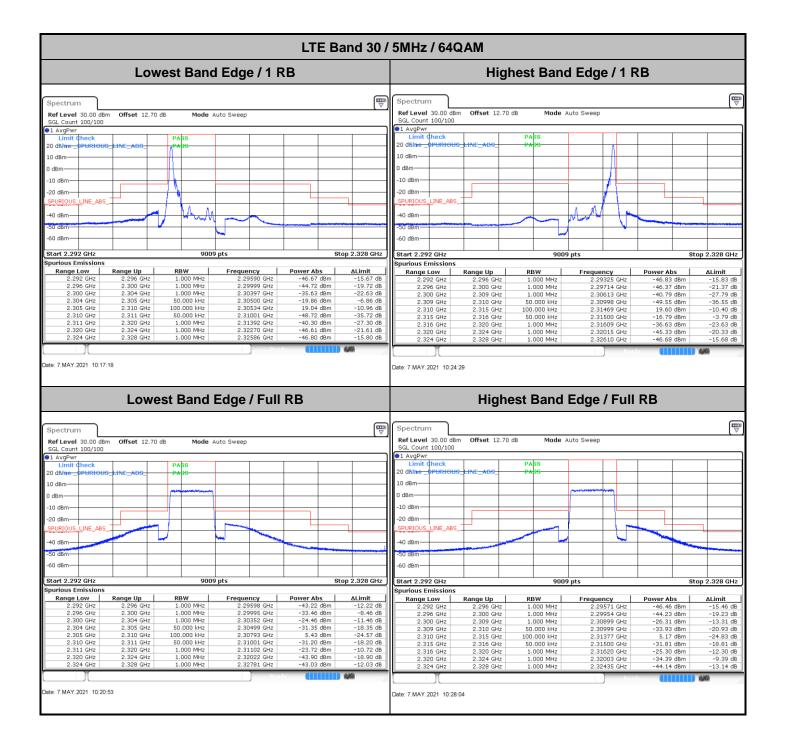


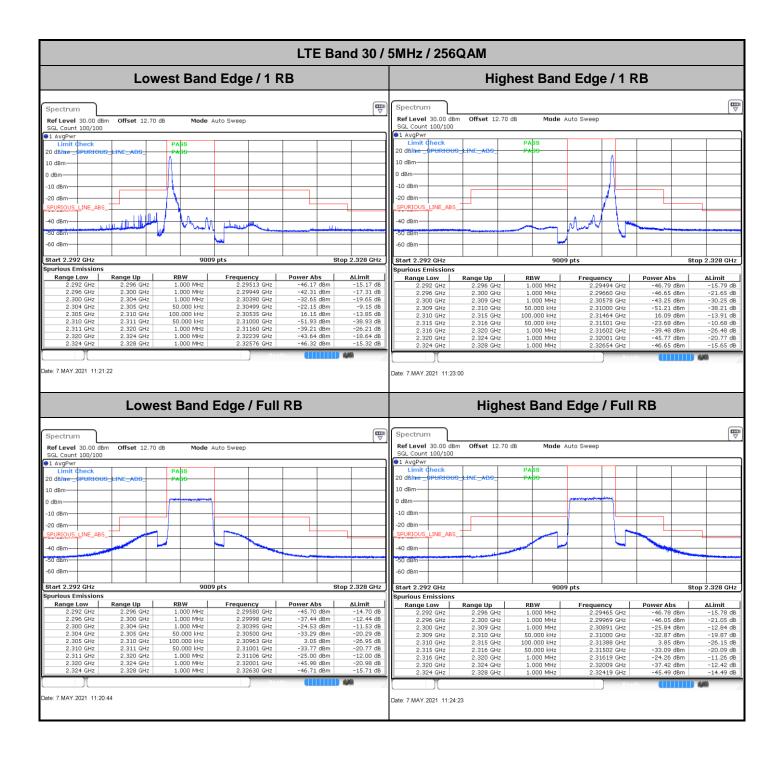

Occupied Bandwidth

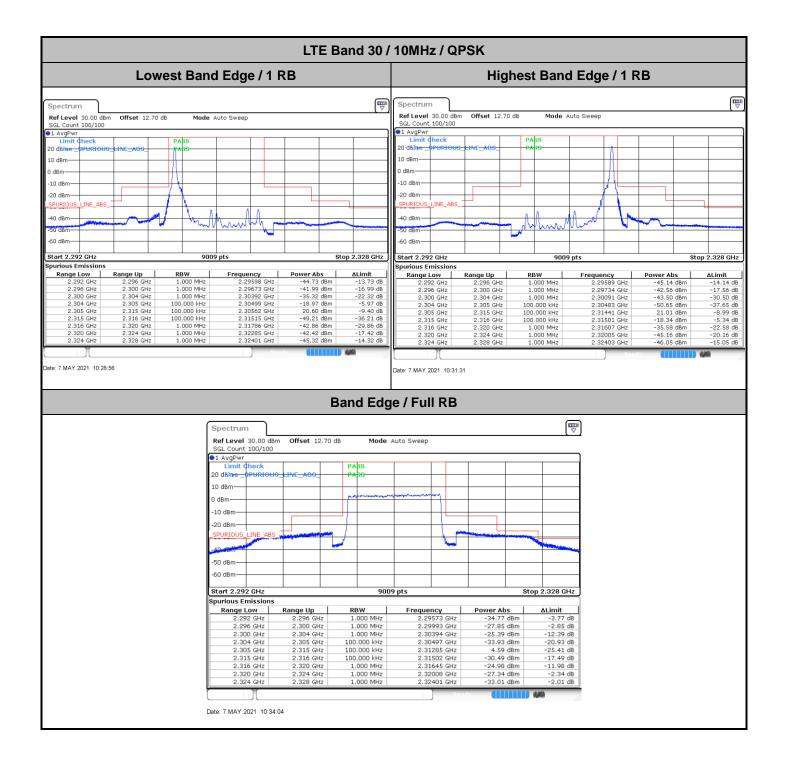
Mode		LTE Band 30 : 99%OBW(MHz)											
BW	1.4MHz		3MHz		5M	5MHz		10MHz		/IHz	20MHz		
Mod.	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	
Middle CH	-	-	-	-	4.50	4.47	9.03	9.03	-	-	-	-	
Mode					LTE Ba	and 30 :	99%OBV	V(MHz)					
BW	1.4	MHz	3M	SMHz 51		5MHz		10MHz		15MHz		20MHz	
Mod.	64QAM	256 QAM	64QAM	256 QAM	64QAM	256 QAM	64QAM	256 QAM	64QAM	256 QAM	64QAM	256 QAM	
Middle CH	-	-	-	-	4.50	4.50	9.07	9.01	-	-	-	-	

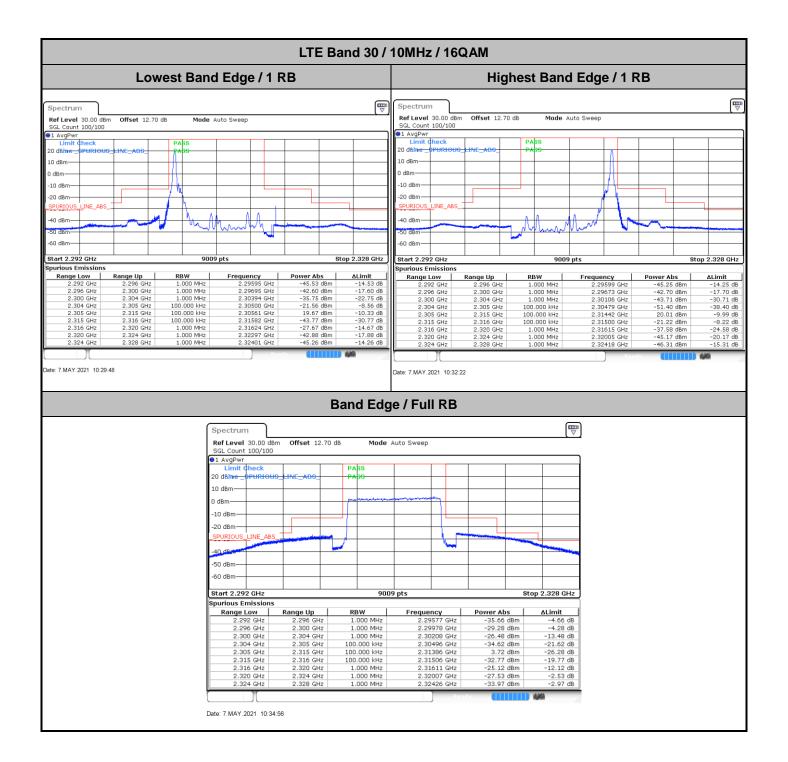


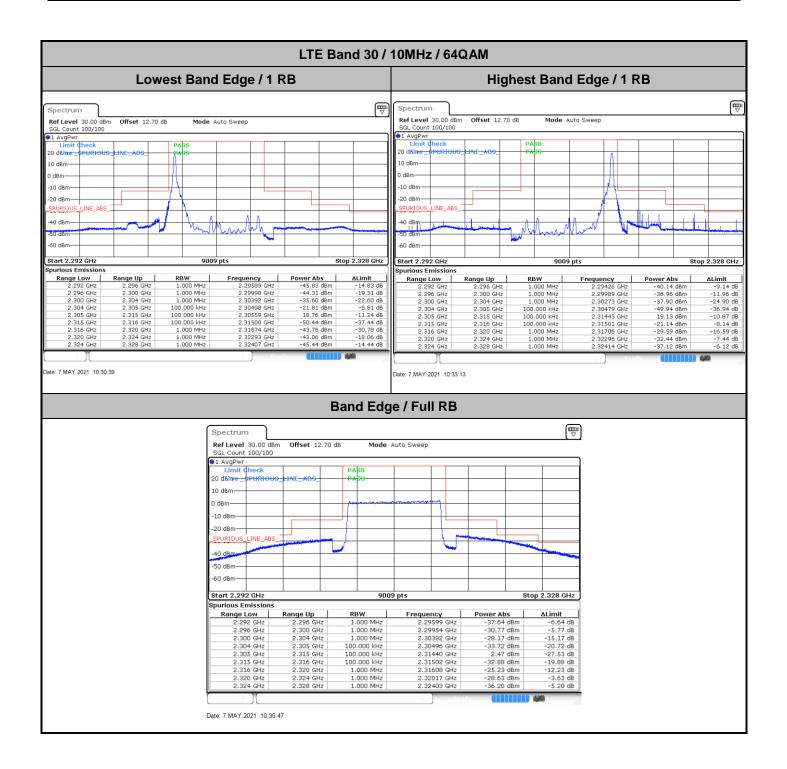


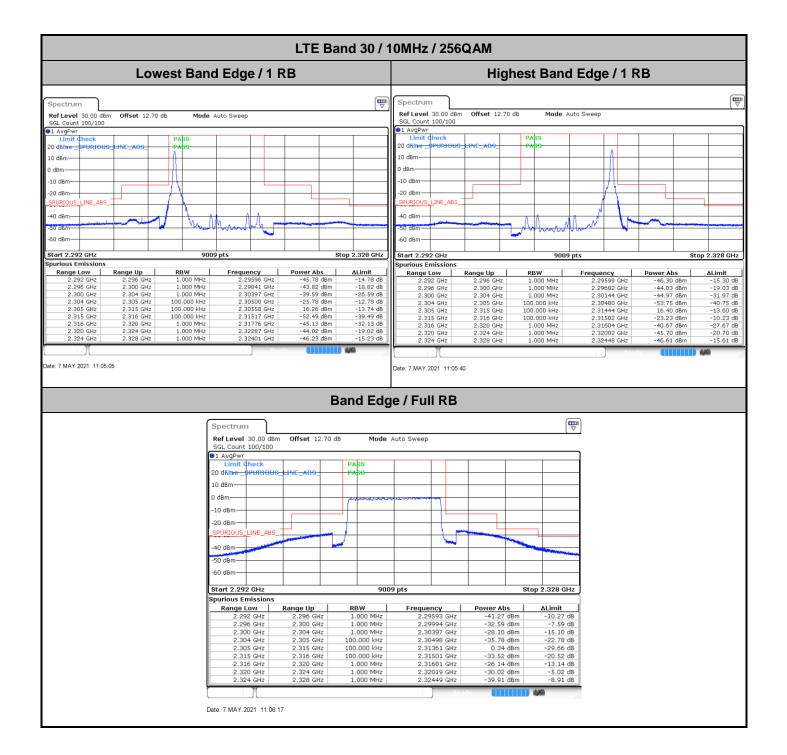

Conducted Band Edge

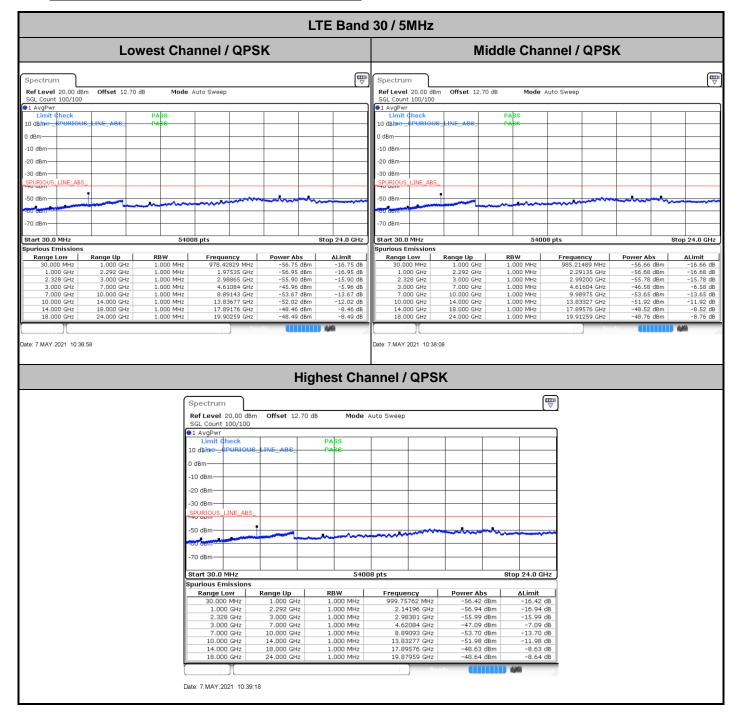


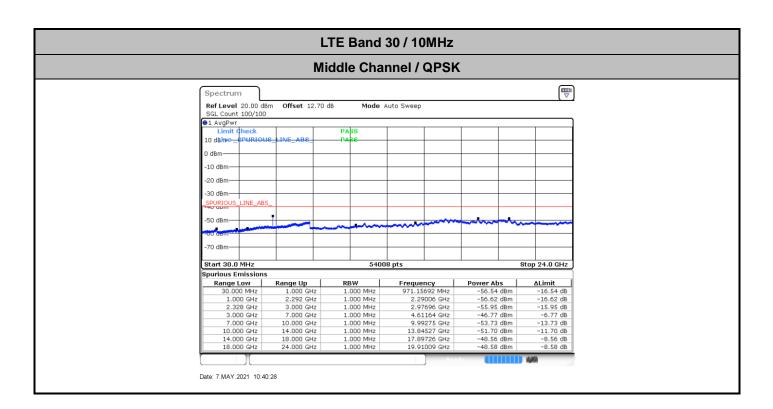












Conducted Spurious Emission

Frequency Stability

Test (Conditions	LTE Band 30 (QPSK) / Middle Channel	Limit
Temperature	Voltage	BW 10MHz	Note 2.
(°C)	(Volt)	Deviation (ppm)	Result
50	Normal Voltage	0.0002	
40	Normal Voltage	0.0007	
30	Normal Voltage	0.0053	
20(Ref.)	Normal Voltage	0.0000	
10	Normal Voltage	0.0019	
0	Normal Voltage	0.0038	PASS
-10	Normal Voltage	0.0037	PASS
-20	Normal Voltage	0.0037	
-30	Normal Voltage	0.0067	
20	Maximum Voltage	0.0020	
20	Normal Voltage	0.0000	
20	Minimum Voltage	0.0038	

Note:

1. Normal Voltage =3.8 V. ; Minimum Voltage =3.4 V. ; Maximum Voltage =4.3 V.

2. The frequency fundamental emissions stay within the authorized frequency block.

Appendix B. Test Results of Radiated Test

<Ant. 2>

LTE Band 30

			Ľ	TE Band 30	/ 10MHz / QF	PSK			
Channel	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Over Limit (dB)	SPA Reading (dBm)	S.G. Power (dBm)	TX Cable loss (dB)	TX Antenna Gain (dBi)	Polarization (H/V)
	4614	-41.30	-40	-1.30	-64.06	-48.11	2.11	8.93	н
	6918	-48.95	-40	-8.95	-75.82	-57.03	2.62	10.70	н
	9216	-49.23	-40	-9.23	-79.21	-59.31	2.53	12.61	Н
									Н
									Н
									Н
Middle									Н
Midule	4614	-41.31	-40	-1.31	-64.07	-48.12	2.11	8.93	V
	6918	-49.83	-40	-9.83	-76.7	-57.91	2.62	10.70	V
	9216	-48.75	-40	-8.75	-79.15	-58.83	2.53	12.61	V
									V
									V
									V
									V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

			L	TE Band 30	/ 5MHz / QP	SK			
Channel	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Over Limit (dB)	SPA Reading (dBm)	S.G. Power (dBm)	TX Cable loss (dB)	TX Antenna Gain (dBi)	Polarization (H/V)
	4608	-42.52	-40	-2.52	-65.24	-49.32	2.11	8.92	н
	6918	-50.48	-40	-10.48	-77.35	-58.56	2.62	10.70	н
	9216	-50.32	-40	-10.32	-80.3	-60.4	2.53	12.61	н
									н
									н
									н
Lowest									н
2011001	4608	-40.48	-40	-0.48	-63.21	-47.28	2.11	8.92	V
	6918	-46.89	-40	-6.89	-73.76	-54.97	2.62	10.70	V
	9216	-49.34	-40	-9.34	-79.74	-59.42	2.53	12.61	V
									V
									V
									V
									V
	4614	-42.73	-40	-2.73	-65.49	-49.54	2.11	8.93	н
	6924	-52.38	-40	-12.38	-79.26	-60.47	2.62	10.71	н
	9234	-47.94	-40	-7.94	-78.06	-58.01	2.53	12.61	н
									н
									н
									н
Middle									Н
	4614	-41.15	-40	-1.15	-63.91	-47.96	2.11	8.93	V
	6924	-51.16	-40	-11.16	-78.04	-59.25	2.62	10.71	V
	9234	-48.18	-40	-8.18	-78.71	-58.25	2.53	12.61	V
									V
									V
									V
									V

			L	TE Band 30	/ 5MHz / QP	SK			
Channel	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Over Limit (dB)	SPA Reading (dBm)	S.G. Power (dBm)	TX Cable loss (dB)	TX Antenna Gain (dBi)	Polarization (H/V)
	4620	-41.57	-40	-1.57	-64.33	-48.39	2.12	8.94	Н
	6930	-45.68	-40	-5.68	-72.58	-53.78	2.61	10.72	н
	9234	-47.89	-40	-7.89	-78.01	-57.96	2.53	12.61	Н
									Н
									Н
									Н
Llighaat									Н
Highest	4620	-40.88	-40	-0.88	-63.64	-47.7	2.12	8.94	V
	6930	-50.40	-40	-10.40	-77.3	-58.5	2.61	10.72	V
	9234	-45.03	-40	-5.03	-75.56	-55.1	2.53	12.61	V
									V
									V
									V
									V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.