

RADIO TEST REPORT FCC ID: 2AAUI-GDIEXYMHSUB01

Product:	Subwoofer
Trade Mark:	ECOXGEAR
Model No.:	GDI-EXYMHSUB01
Family Model:	N/A
Report No.:	S20120901501002
Issue Date:	07 Jan. 2021

Prepared for

Grace Digital Inc. Grace Digital Inc.10531 4S Commons Drive#166 Suite#430,San Diego,CA 92127,USA

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel:400-800-6106, 0755-3699-5508 Website:http://www.ntek.org.cn

TABLE OF CONTENTS

ACCREDITED

Certificate #4298.01

1 TE	EST RESULT CERTIFICATION	3
2 SU	MMARY OF TEST RESULTS	4
3 FA	CILITIES AND ACCREDITATIONS	5
3.1	FACILITIES	5
3.2	LABORATORY ACCREDITATIONS AND LISTINGS	
3.3	MEASUREMENT UNCERTAINTY	5
4 GF	ENERAL DESCRIPTION OF EUT	6
5 DE	ESCRIPTION OF TEST MODES	8
6 SE	TUP OF EQUIPMENT UNDER TEST	9
6.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	9
6.2	SUPPORT EQUIPMENT.	
6.3	EQUIPMENTS LIST FOR ALL TEST ITEMS	
7 TE	CST REQUIREMENTS	
7.1	CONDUCTED EMISSIONS TEST	
7.2	RADIATED SPURIOUS EMISSION	
7.3	6DB BANDWIDTH	
7.4	DUTY CYCLE	
7.5	PEAK OUTPUT POWER	
7.6 7.7	POWER SPECTRAL DENSITY CONDUCTED BAND EDGE MEASUREMENT	
7.7	SPURIOUS RF CONDUCTED EMISSIONS	
7.9	ANTENNA APPLICATION	
8 TE	EST RESULTS	
Μορι	ULE 1:	36
8.1	MAXIMUM CONDUCTED OUTPUT POWER	
8.2	OCCUPIED CHANNEL BANDWIDTH.	
8.3	MAXIMUM POWER SPECTRAL DENSITY LEVEL	
8.4	BAND EDGE	
8.5	CONDUCTED RF SPURIOUS EMISSION	
Modu	ULE 2:	
8.6	MAXIMUM CONDUCTED OUTPUT POWER	
8.7	Occupied Channel Bandwidth.	
8.8 8.9	MAXIMUM POWER SPECTRAL DENSITY LEVEL BAND EDGE	
8.9 8.10	BAND EDGE Conducted RF Spurious Emission	
5.10		

Complied

1 TEST RESULT CERTIFICATION

Applicant's name:	Grace Digital Inc.	
Address:	Grace Digital Inc.10531 4S Commons Drive#166 Suite#430,San Diego, CA 92127,USA	
Manufacturer's Name:	Xingtel Xiamen Group Co., Ltd.	
Address:	XingtelBuilding,Chuangxin Road, Torch Hi-Tech Industrial District, Xiamen 361006, PR China	
Product description		
Product name:	Subwoofer	
Model and/or type reference:	GDI-EXYMHSUB01	
Family Model:	N/A	

Measurement Procedure Used:

APPLICABLE STANDARDS

APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J	
FCC 47 CFR Part 15, Subpart C	

ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	: 09 Dec. 2020 ~ 07 Jan. 2021	
Testing Engineer	:(Allen Liu)	
Technical Manager	: Jason Chen)	
Authorized Signatory	:(Alex Li)	

Version.1.3

FCC Part15 (15.247), Subpart C			
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	N/A	
15.247 (a)(2)	6dB Bandwidth	PASS	
15.247 (b)	Peak Output Power	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247 (e)	Power Spectral Density	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	03 Antenna Requirement PASS		

Remark:

 "N/A" denotes test is not applicable in this Test Report.
All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Laboratory has been assessed and proved to be in compliance with
	CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)
	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
Nome of Firm	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.
	Sueet, bao an District, Sherizhen 310120 F.N. Child.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment	Subwoofer	
Trade Mark	ECOXGEAR	
FCC ID	2AAUI- GDIEXYMHSUB01	
Model No.	GDI-EXYMHSUB01	
Family Model	N/A	
Model Difference	N/A	
Operating Frequency	2402MHz~2480MHz	
Modulation	GFSK	
Number of Channels	40 Channels	
Antenna Type	Module 1:PCB Antenna Module 2:PCB Antenna	
Antenna Gain	Module 1:0dBi Module 2:0dBi	
Power supply	DC supply: DC 12V from battery.	
	Adapter supply:	
HW Version	BT-331-main-V2.5,BT-331-LCD-V2.3,BT-331-SW-V1.2	
SW Version	BTM3021_xinglian(SUB-ECOXGEAR)_BT331_V200B015 BTM8670_source_xinlian_V200B0024	

AC

Certificate #4298.01

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History				
Report No.	Version	Description	Issued Date	
S20120901501002	Rev.01	Initial issue of report	07 Jan. 2021	
Version.1.3			Page 7 of 63	

ACCREDITED

Certificate #4298.01

5 DESCRIPTION OF TEST MODES

NTEK 北测

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

Note: fc=2402MHz+kx2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Test Cases		
Test Item	Data Rate/ Modulation	
Test item	GFSK	
AC Conducted Emission	Mode 1: normal link mode	
	Mode 1: normal link mode	
Radiated Test	Mode 2: Tx Ch00_2402MHz_1Mbps	
Cases	Mode 3: Tx Ch19_2440MHz_1Mbps	
	Mode 4: Tx Ch39_2480MHz_1Mbps	
	Mode 2: Tx Ch00_2402MHz_1Mbps	
Conducted Test Cases	Mode 3: Tx Ch19_2440MHz_1Mbps	
Cases	Mode 4: Tx Ch39_2480MHz_1Mbps	

Note:

1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

2. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

SETUP OF EQUIPMENT UNDER TEST 6 6.1 **BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM** For Radiated Test Cases C-2 AE-1 Εl DC source For Conducted Test Cases C-1 C-2 Measurement AE-1 EUT Instrument DC source Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
AE-1	DC source	N/A	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	RF Cable	YES	NO	0.1m
C-2	Power cable	NO	NO	1.0m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

vaulatic	ona Conducted I	lest equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2020.05.11	2021.05.10	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2020.07.13	2021.07.12	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2020.07.13	2021.07.12	1 year
4	Test Receiver	R&S	ESPI7	101318	2020.05.11	2021.05.10	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2020.04.11	2021.04.10	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2020.04.11	2021.04.10	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2020.05.11	2021.05.10	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2020.07.13	2021.07.12	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2020.05.11	2021.05.10	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2020.07.13	2021.07.12	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2019.08.06	2022.08.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2019.08.06	2022.08.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2019.06.28	2022.06.27	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2020.04.11	2021.04.10	1 year
16	Filter	TRILTHIC	2400MHz	29	2020.07.13	2021.07.12	1 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	· R&S	ESCI	101160	2020.05.11	2021.05.10	1 year
2	LISN	R&S	ENV216	101313	2020.04.11	2021.04.10	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2020.05.11	2021.05.10	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2021.05.10	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

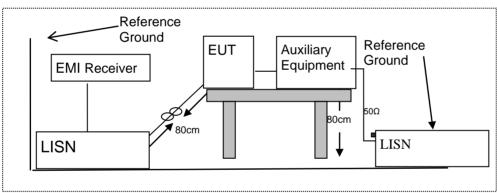
7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	


Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.6 Test Results

EUT:	Subwoofer	Model Name :	GDI-EXYMHSUB01
Temperature:	25 ℃	Relative Humidity:	49%
Pressure:	1010hPa	Phase :	N/A
Test Voltage :	N/A	Test Mode:	N/A

Note: Not Applicable, The EUT is powered by DC Power.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to FOC Fart 13.200, Restricted bands					
MHz	MHz	GHz			
16.42-16.423	399.9-410	4.5-5.15			
16.69475-16.69525	608-614	5.35-5.46			
16.80425-16.80475	960-1240	7.25-7.75			
25.5-25.67	1300-1427	8.025-8.5			
37.5-38.25	1435-1626.5	9.0-9.2			
73-74.6	1645.5-1646.5	9.3-9.5			
74.8-75.2	1660-1710	10.6-12.7			
123-138	2200-2300	14.47-14.5			
149.9-150.05	2310-2390	15.35-16.2			
156.52475-156.52525	2483.5-2500	17.7-21.4			
156.7-156.9	2690-2900	22.01-23.12			
162.0125-167.17	3260-3267	23.6-24.0			
167.72-173.2	3332-3339	31.2-31.8			
240-285	3345.8-3358	36.43-36.5			
322-335.4	3600-4400	(2)			
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

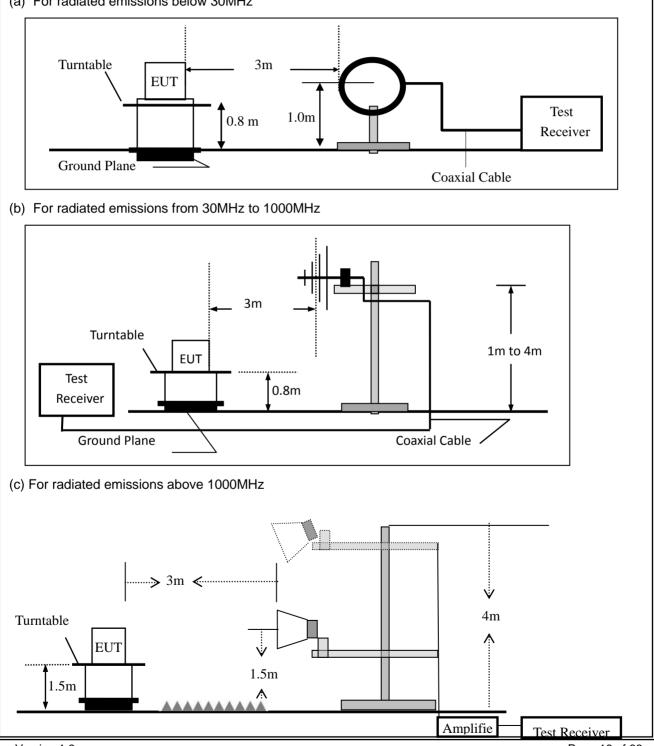
Frequency(MHz)	Class B (dBuV	/m) (at 3M)
	PEAK	AVERAGE
Above 1000	74	54

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.


7.2.3 Measuring Instruments

N

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

Version.1.3

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting		
Attenuation	Auto		
Start Frequency	1000 MHz		
Stop Frequency	10th carrier harmonic		
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average		

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

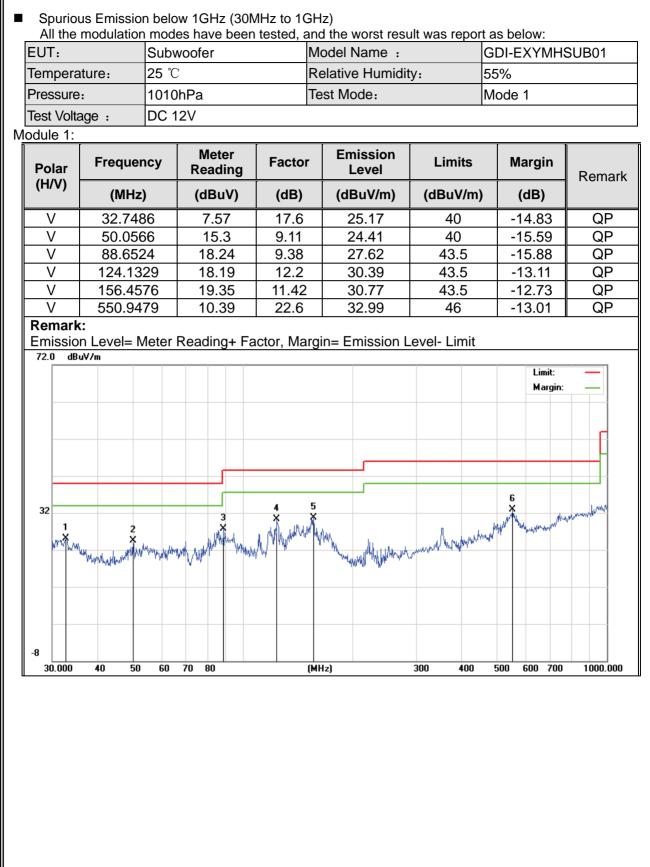
- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

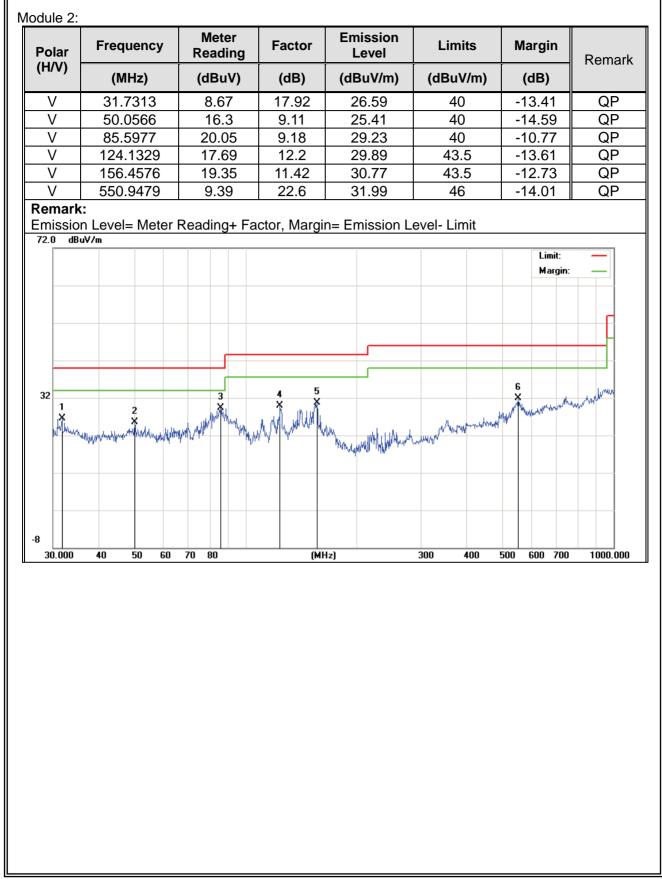
During the radiated emission test, the Spectrum Analyzer was set with the following configurations:						
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth			
30 to 1000	QP	120 kHz	300 kHz			
Above 1000	Peak	1 MHz	1 MHz			
Above 1000	Average	1 MHz	1 MHz			

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

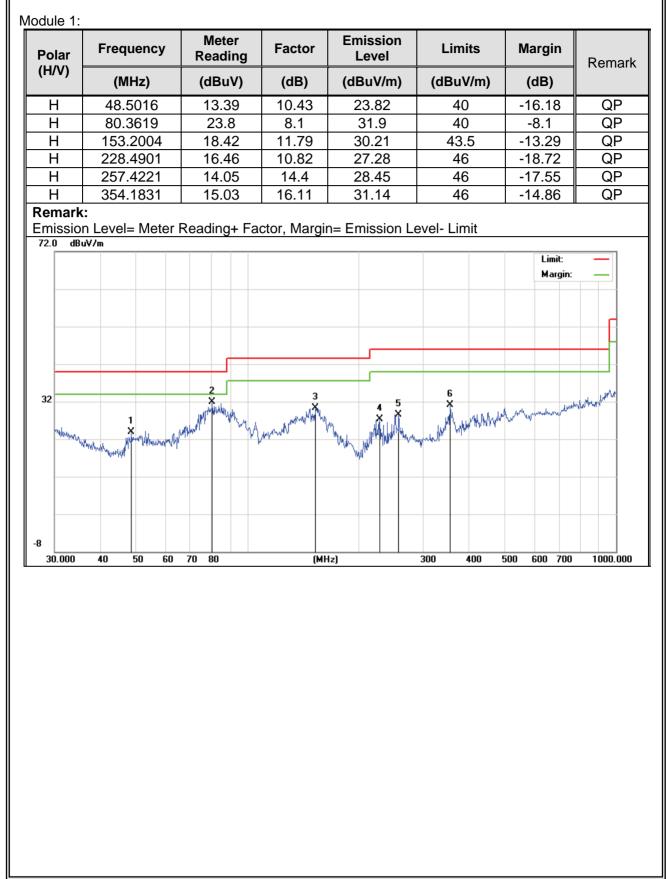
7.2.6 Test Results

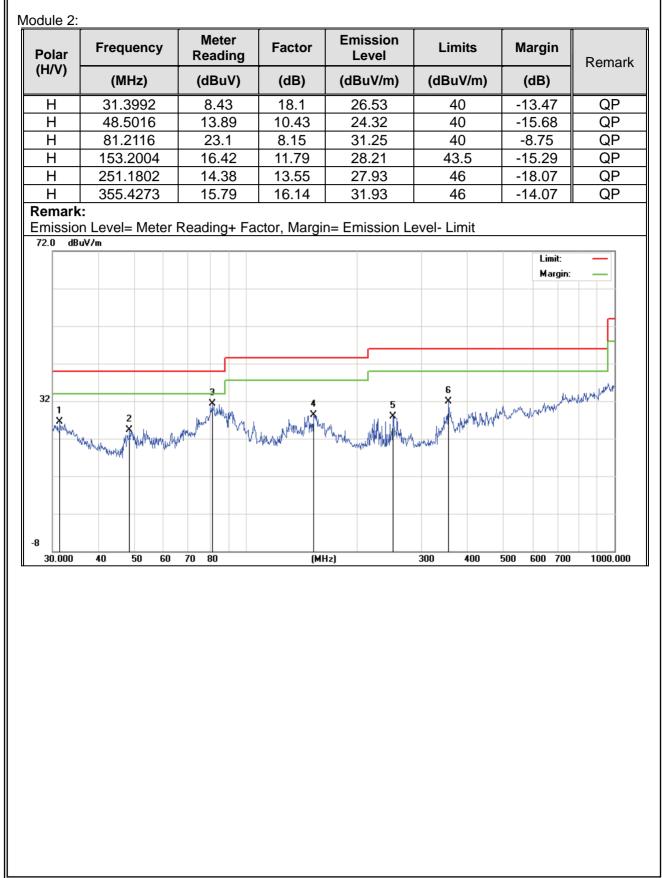

	Spurious	Emission	below	30MHz	(9KHz to 30MHz)
--	----------	----------	-------	-------	-----------------

EUT:	Subwoofer	Model No.:	GDI-EXYMHSUB01
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu


Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.





Version.1.3

UT:		Subwoofer			Мо	del No.:		GD	GDI-EXYMHSUB01		
emperature	e:	20 ℃			Relative Humidity: 4			48%	48%		
Test Mode: Mode2/Mode3/Mode4 Test By: Allen Liu											
lodule 1:			_								
Frequency	Read Leve		Antenna Factor	Prear Facto		Emission Level	Limit	s	Margin	Remark	Comment
(MHz)	(dBµ∖	/) (dB)	dB/m	(dB)	(dBµV/m)	(dBµV/	/m)	(dB)		
			Low Ch	annel (240	2 MHz)(GFS	K)Abo	ve 1	G		
4804.338	62.51	5.21	35.59	44.3	0	59.01	74.0	0	-14.99	Pk	Vertical
4804.338	42.89	5.21	35.59	44.3	0	39.39	54.0	0	-14.61	AV	Vertical
7206.107	61.13	6.48	36.27	44.6	0	59.28	74.0	0	-14.72	Pk	Vertical
7206.107	42.41	6.48	36.27	44.6	0	40.56	54.0	0	-13.44	AV	Vertical
4804.169	64.61	5.21	35.55	44.3	0	61.07	74.0	0	-12.93	Pk	Horizontal
4804.169	42.90	5.21	35.55	44.3	0	39.36	54.0	0	-14.64	AV	Horizontal
7206.214	62.31	6.48	36.27	44.5	2	60.54	74.0	0	-13.46	Pk	Horizontal
7206.214	41.21	6.48	36.27	44.5	2	39.44	54.0	0	-14.56	AV	Horizontal
Mid Channel (2440 MHz)(GFSK)Above 1G											
4880.473	64.05	5 5.21	35.66	44.2	0	60.72	74.0	0	-13.28	Pk	Vertical
4880.473	42.78	3 5.21	35.66	44.2	0	39.45	54.0	0	-14.55	AV	Vertical
7320.265	64.81	7.10	36.50	44.4	3	63.98	74.0	0	-10.02	Pk	Vertical
7320.265	42.31	7.10	36.50	44.4	3	41.48	54.0	0	-12.52	AV	Vertical
4880.366	63.42	2 5.21	35.66	44.2	0	60.09	74.0	0	-13.91	Pk	Horizontal
4880.366	42.04	5.21	35.66	44.2	0	38.71	54.0	0	-15.29	AV	Horizontal
7320.234	60.02	2 7.10	36.50	44.4	3	59.19	74.0	0	-14.81	Pk	Horizontal
7320.234	43.59	7.10	36.50	44.4	3	42.76	54.0	0	-11.24	AV	Horizontal
			High Ch	annel (248	0 MHz)(GFS	K) Abo	ove 1	G		
4960.482	63.62	2 5.21	35.52	44.2	1	60.14	74.0	0	-13.86	Pk	Vertical
4960.482	42.54	5.21	35.52	44.2	1	39.06	54.0	0	-14.94	AV	Vertical
7440.131	64.76	5 7.10	36.53	44.6	0	63.79	74.0	0	-10.21	Pk	Vertical
7440.131	48.30	7.10	36.53	44.6	0	47.33	54.0	0	-6.67	AV	Vertical
4960.326	64.40	5.21	35.52	44.2	1	60.92	74.0	0	-13.08	Pk	Horizontal
4960.326	45.17	7 5.21	35.52	44.2	1	41.69	54.0	0	-12.31	AV	Horizontal
7440.199	64.62	2 7.10	36.53	44.6	0	63.65	74.0	0	-10.35	Pk	Horizontal
7440.199	45.36	5 7.10	36.53	44.6	0	44.39	54.0	0	-9.61	AV	Horizontal

Module 2:									
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
			Low Ch	annel (240	2 MHz)(GFS	K)Above 1	G		
4804.338	62.85	5.21	35.59	44.30	59.35	74.00	-14.65	Pk	Vertical
4804.338	42.46	5.21	35.59	44.30	38.96	54.00	-15.04	AV	Vertical
7206.107	60.92	6.48	36.27	44.60	59.07	74.00	-14.93	Pk	Vertical
7206.107	41.89	6.48	36.27	44.60	40.04	54.00	-13.96	AV	Vertical
4804.169	63.26	5.21	35.55	44.30	59.72	74.00	-14.28	Pk	Horizontal
4804.169	42.66	5.21	35.55	44.30	39.12	54.00	-14.88	AV	Horizontal
7206.214	61.08	6.48	36.27	44.52	59.31	74.00	-14.69	Pk	Horizontal
7206.214	41.20	6.48	36.27	44.52	39.43	54.00	-14.57	AV	Horizontal
	Mid Channel (2440 MHz)(GFSK)Above 1G								
4880.473	62.90	5.21	35.66	44.20	59.57	74.00	-14.43	Pk	Vertical
4880.473	42.81	5.21	35.66	44.20	39.48	54.00	-14.52	AV	Vertical
7320.265	64.87	7.10	36.50	44.43	64.04	74.00	-9.96	Pk	Vertical
7320.265	41.28	7.10	36.50	44.43	40.45	54.00	-13.55	AV	Vertical
4880.366	63.65	5.21	35.66	44.20	60.32	74.00	-13.68	Pk	Horizontal
4880.366	40.80	5.21	35.66	44.20	37.47	54.00	-16.53	AV	Horizontal
7320.234	61.22	7.10	36.50	44.43	60.39	74.00	-13.61	Pk	Horizontal
7320.234	43.59	7.10	36.50	44.43	42.76	54.00	-11.24	AV	Horizontal
			High Ch	annel (248	0 MHz)(GFS	K) Above 1	G		
4960.482	62.75	5.21	35.52	44.21	59.27	74.00	-14.73	Pk	Vertical
4960.482	42.97	5.21	35.52	44.21	39.49	54.00	-14.51	AV	Vertical
7440.131	64.07	7.10	36.53	44.60	63.10	74.00	-10.90	Pk	Vertical
7440.131	48.70	7.10	36.53	44.60	47.73	54.00	-6.27	AV	Vertical
4960.326	62.78	5.21	35.52	44.21	59.30	74.00	-14.70	Pk	Horizontal
4960.326	45.06	5.21	35.52	44.21	41.58	54.00	-12.42	AV	Horizontal
7440.199	64.87	7.10	36.53	44.60	63.90	74.00	-10.10	Pk	Horizontal
7440.199	45.12	7.10	36.53	44.60	44.15	54.00	-9.85	AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

(2)All other emissions more than 20dB below the limit.

(3)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

EUT:	Subwoo	fer		Mod	el No.:	G	DI-EXYMHS	SUB01	
Temperature:	20 ℃			Rela	tive Humidit	:y: 48	48%		
Test Mode:	Mode2/ Mode4			Test	Test By: Alle		len Liu		
Module 1:									
Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/r	n) (dB)	Туре	
				1Mb	ps(GFSK)				
2310.00	63.03	2.97	27.80	43.80	50.00	74	-24.00	Pk	Horizontal
2310.00	44.12	2.97	27.80	43.80	31.09	54	-22.91	AV	Horizontal
2310.00	61.90	2.97	27.80	43.80	48.87	74	-25.13	Pk	Vertical
2310.00	41.78	2.97	27.80	43.80	28.75	54	-25.25	AV	Vertical
2390.00	64.61	3.14	27.21	43.80	51.16	74	-22.84	Pk	Vertical
2390.00	43.25	3.14	27.21	43.80	29.80	54	-24.20	AV	Vertical
2390.00	64.51	3.14	27.21	43.80	51.06	74	-22.94	Pk	Horizontal
2390.00	41.60	3.14	27.21	43.80	28.15	54	-25.85	AV	Horizontal
2483.50	62.24	3.58	27.70	44.00	49.52	74	-24.48	Pk	Vertical
2483.50	42.92	3.58	27.70	44.00	30.20	54	-23.80	AV	Vertical
2483.50	65.93	3.58	27.70	44.00	53.21	74	-20.79	Pk	Horizontal
2483.50	44.77	3.58	27.70	44.00	32.05	54	-21.95	AV	Horizontal
Module 2: Frequency	Meter	Cable	Antenna	Preamp	Emission	Limits	Margin	Detector	
	Reading	Loss	Factor	Factor	Level				Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/r	m) (dB)	Туре	
	1	r	r		ps(GFSK)	1		1	1
2310.00	63.92	2.97	27.80	43.80	50.89	74	-23.11	Pk	Horizontal
2310.00	43.39	2.97	27.80	43.80	30.36	54	-23.64	AV	Horizontal
2310.00	61.33	2.97	27.80	43.80	48.30	74	-25.70	Pk	Vertical
2310.00	43.14	2.97	27.80	43.80	30.11	54	-23.89	AV	Vertical
2390.00	63.79	3.14	27.21	43.80	50.34	74	-23.66	Pk	Vertical
2390.00	42.28	3.14	27.21	43.80	28.83	54	-25.17	AV	Vertical
2390.00	64.10	3.14	27.21	43.80	50.65	74	-23.35	Pk	Horizontal
2390.00	41.57	3.14	27.21	43.80	28.12	54	-25.88	AV	Horizontal
2483.50	62.29	3.58	27.70	44.00	49.57	74	-24.43	Pk	Vertical
2483.50	43.53	3.58	27.70	44.00	30.81	54	-23.19	AV	Vertical
2483.50	65.48	3.58	27.70	44.00	52.76	74	-21.24	Pk	Horizontal
2483.50	44.68	3.58	27.70	44.00	31.96	54	-22.04	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

Εl	 JT:	Subwo				lz-18000MH; lel No.:		DI-E	XYMHS	UB01	
Гε	emperature:	20 ℃			Rela	ative Humidit	y: 4	8%			
Те	est Mode:	Mode2	/ Mode4	1	Tes	Test By: Allen L			Liu		
Ν	lodule 1:										
	Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limit	S	Margin	Detector	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV	/m)	(dB)	Туре	
	3260	63.58	4.04	29.57	44.70	52.49	74		-21.51	Pk	Vertical
	3260	57.65	4.04	29.57	44.70	46.56	54		-7.44	AV	Vertical
	3260	66.35	4.04	29.57	44.70	55.26	74		-18.74	Pk	Horizontal
	3260	57.87	4.04	29.57	44.70	46.78	54		-7.22	AV	Horizontal
	3332	64.84	4.26	29.87	44.40	54.57	74		-19.43	Pk	Vertical
	3332	58.16	4.26	29.87	44.40	47.89	54		-6.11	AV	Vertical
	3332	65.18	4.26	29.87	44.40	54.91	74		-19.09	Pk	Horizontal
	3332	52.69	4.26	29.87	44.40	42.42	54		-11.58	AV	Horizontal
	17797	44.49	10.99	43.95	43.50	55.93	74		-18.07	Pk	Vertical
	17797	35.34	10.99	43.95	43.50	46.78	54		-7.22	AV	Vertical
	17788	44.77	11.81	43.69	44.60	55.67	74		-18.33	Pk	Horizontal
	17788	36.26	11.81	43.69	44.60	47.16	54		-6.84	AV	Horizontal
						•					
Mo	odule 2: Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limit	s	Margin	Detector	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV	/m)	(dB)	Туре	
	3260	63.89	4.04	29.57	44.70	52.80	74		-21.20	Pk	Vertical
	3260	57.06	4.04	29.57	44.70	45.97	54		-8.03	AV	Vertical
	3260	65.20	4.04	29.57	44.70	54.11	74		-19.89	Pk	Horizontal
	3260	58.86	4.04	29.57	44.70	47.77	54		-6.23	AV	Horizontal
	3332	64.78	4.26	29.87	44.40	54.51	74		-19.49	Pk	Vertical
	3332	57.37	4.26	29.87	44.40	47.10	54		-6.90	AV	Vertical
	3332	66.95	4.26	29.87	44.40	56.68	74		-17.32	Pk	Horizontal
	3332	51.80	4.26	29.87	44.40	41.53	54		-12.47	AV	Horizontal
	17797	46.37	10.99	43.95	43.50	57.81	74		-16.19	Pk	Vertical
	17797	35.53	10.99	43.95	43.50	46.97	54		-7.03	AV	Vertical
			44.04	40.00	44.00	55 A7	74		10 50		Harizantal
	17788	44.57	11.81	43.69	44.60	55.47	74		-18.53	Pk	Horizontal

Note: (1) All other emissions more than 20dB below the limit. (2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \ge 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	Subwoofer	Model No.:	GDI-EXYMHSUB01
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total}

7.4.6 Test Results

EUT:	Subwoofer	Model No.:	GDI-EXYMHSUB01
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	N/A	Test By:	N/A

Note: Not Applicable

7.5 **PEAK OUTPUT POWER**

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	Subwoofer	Model No.:	GDI-EXYMHSUB01
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.6 **POWER SPECTRAL DENSITY**

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5*DTS bandwidth.

- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- \hat{g}) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	Subwoofer	Model No.:	GDI-EXYMHSUB01
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Subwoofer	Model No.:	GDI-EXYMHSUB01
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Allen Liu

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 26.5GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

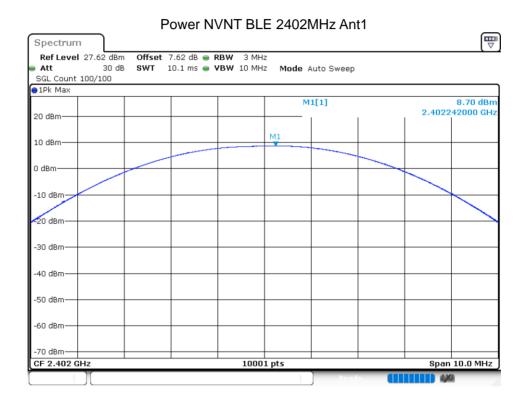
7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

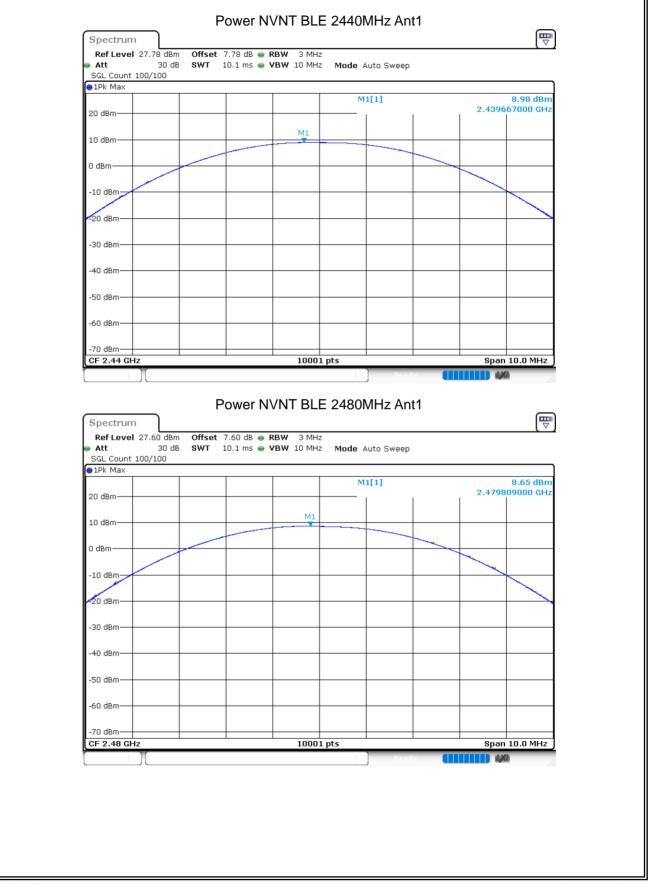
15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 Result

The EUT antenna is permanent attached PCB antenna (Gain: 0dBi). It comply with the standard requirement.



8 TEST RESULTS

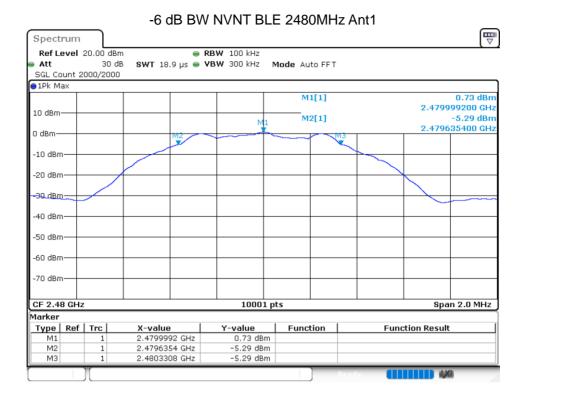

MODULE 1:

8.1 MAXIMUM CONDUCTED OUTPUT POWER

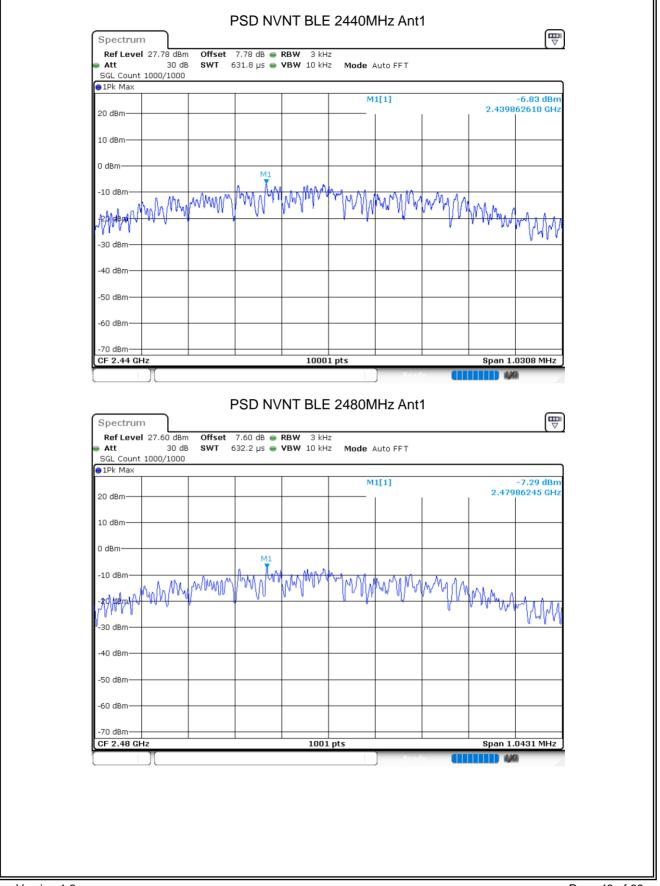
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant 1	8.703	30	Pass
NVNT	BLE	2440	Ant 1	8.98	30	Pass
NVNT	BLE	2480	Ant 1	8.654	30	Pass

Version.1.3

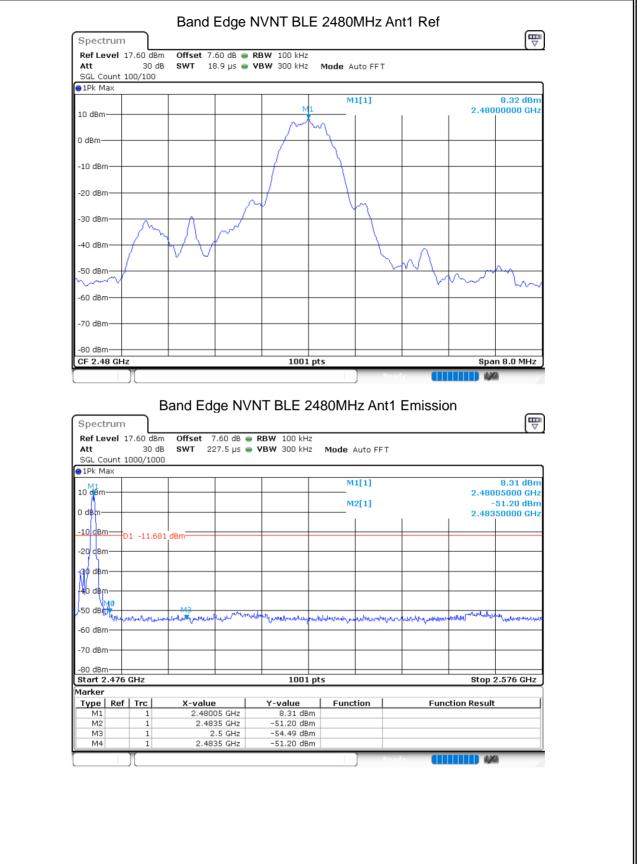
8.2 **OCCUPIED CHANNEL BANDWIDTH** Condition Frequency 99% -6 dB Limit -6 dB Verdict Mode Antenna OBW Bandwidth Bandwidth (MHz) (MHz) (MHz) (MHz) BLE 2402 NVNT Ant 1 1.0177 0.6824 0.5 Pass NVNT BLE 2440 Ant 1 1.0215 0.6872 0.5 Pass NVNT 0.5 Pass BLE 2480 Ant 1 1.0227 0.6954 OBW NVNT BLE 2402MHz Ant1 Spectrum Ref Level 20.00 dBm RBW 50 kHz 30 dB SWT 37.8 µs 🖷 VBW 200 kHz Mode Auto FFT Att SGL Count 200/200 ●1Pk Max M1[1] 0.47 dBm 2.402002200 GHz 10 dBm 1.017698230 MHz Occ Bw 0 dBm -10 dBm· T2 ▼ -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm Span 2.0 MHz 10001 pts CF 2.402 GHz LXI



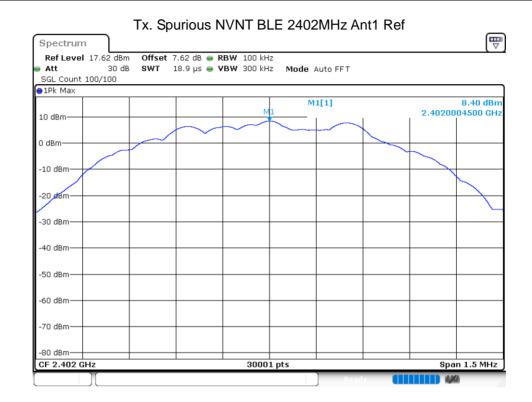
Version.1.3

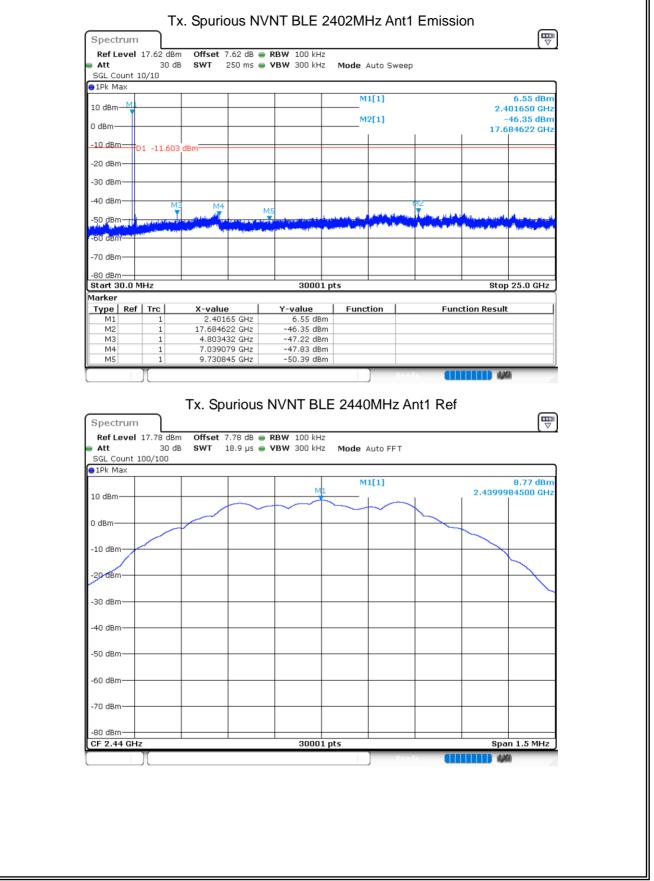


3.3 MAX Condition	Mode	OWER SPECTRAL Frequency	Antenna	Max PSE		Limit	Verdic
		(MHz)		(dBm/3kH	z)	(dBm/3kHz)	
NVNT	BLE	2402	Ant 1	-7.278		8	Pass
NVNT	BLE	2440	Ant 1	-6.835		8	Pass
NVNT	BLE	2480	Ant 1	-7.295		8	Pass
	🕳 Att	IM el 27.62 dBm Offset 7.6 30 dB SWT 632. ht 3000/3000	2 dB 🖷 RBW 3 ki	E 2402MHz Ant	1 	-7.28 dBm 2.401863360 GHz	
	0 dBm	MMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	M M M MM	ant Marina	WMM/W	HAM MAN	
	-50 dBm—						
	-70 dBm—						
	CF 2.402	GHz	100)1 pts		Span 1.0236 MHz	



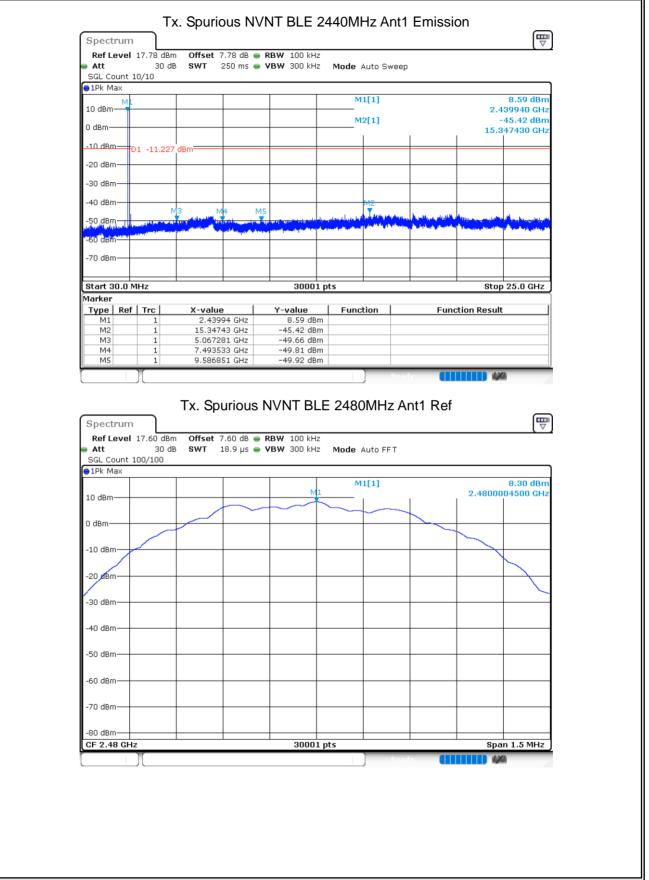
8.4 **BAND EDGE** Condition Mode Frequency (MHz) Antenna Max Value (dBc) Limit (dBc) Verdict 2402 -59.91 -20 Pass **NVNT** BLE Ant 1 -59.52 **NVNT** 2480 -20 BLE Ant 1 Pass Band Edge NVNT BLE 2402MHz Ant1 Ref ₽ Spectrum Ref Level 17.62 dBm Offset 7.62 dB 👄 RBW 100 kHz Att 30 dB SWT 18.9 μs 👄 VBW 300 kHz Mode Auto FFT SGL Count 100/100 ⊖1Pk Max M1[1] 8.37 dBm 2.40200000 GHz 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm-Span 8.0 MHz CF 2.402 GHz 1001 pts 1.16 Band Edge NVNT BLE 2402MHz Ant1 Emission Ē Spectrum Offset 7.62 dB 🖷 RBW 100 kHz Ref Level 17.62 dBm Att 30 dB SWT 227.5 µs 💿 VBW 300 kHz Mode Auto FFT SGL Count 100/100 ⊖1Pk Max M1[1] 8.32 dBn 10 dBm 2.40205000 GHz M2[1] -37.86 dBm 0 dBm-2.4000000 GHz -10 dBm-D1 -11.627 dBn -20 dBm· -30 dBm M2 -40 dBm M M4 -50 dBm munulicherterterterterter marght of a particular millional sofie a way our for any the start and the start way mond <mark>ქიაგიაცბაკას</mark> -60 dBm -70 dBm -80 dBm Start 2.306 GHz 1001 pts Stop 2.406 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.40205 GHz 8.32 dBm M2 1 2.4 GHz -37.86 dBm 2.39 GHz -55.32 dBm MЗ 1 1 2.344 GHz -51.55 dBm M4



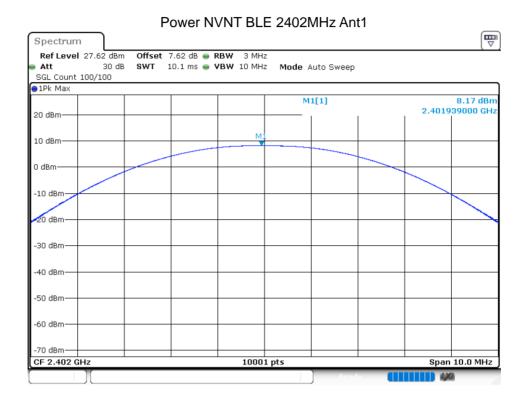


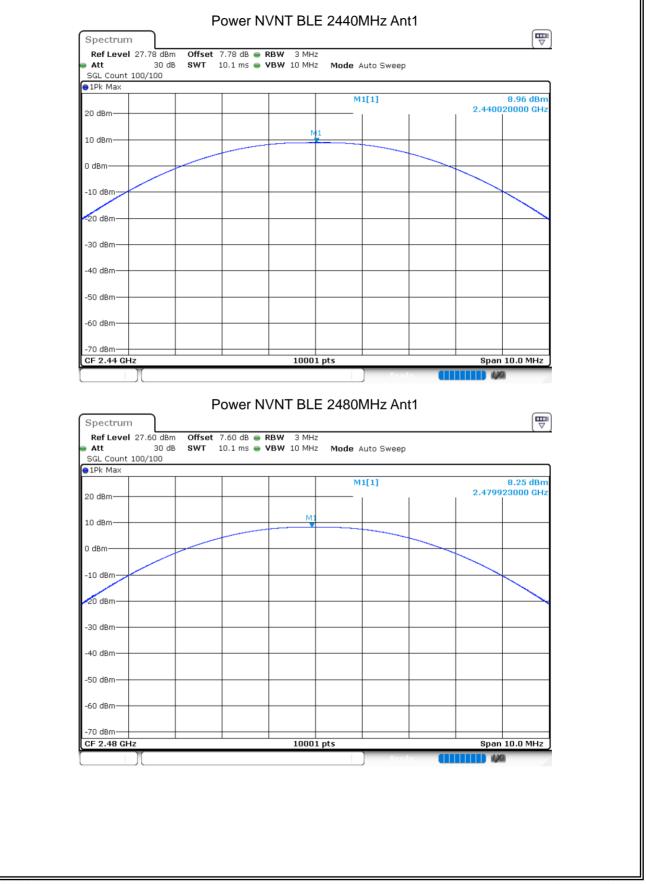
8.5 CONDUCTED RF SPURIOUS EMISSION

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant 1	-54.74	-20	Pass
NVNT	BLE	2440	Ant 1	-54.18	-20	Pass
NVNT	BLE	2480	Ant 1	-53.3	-20	Pass

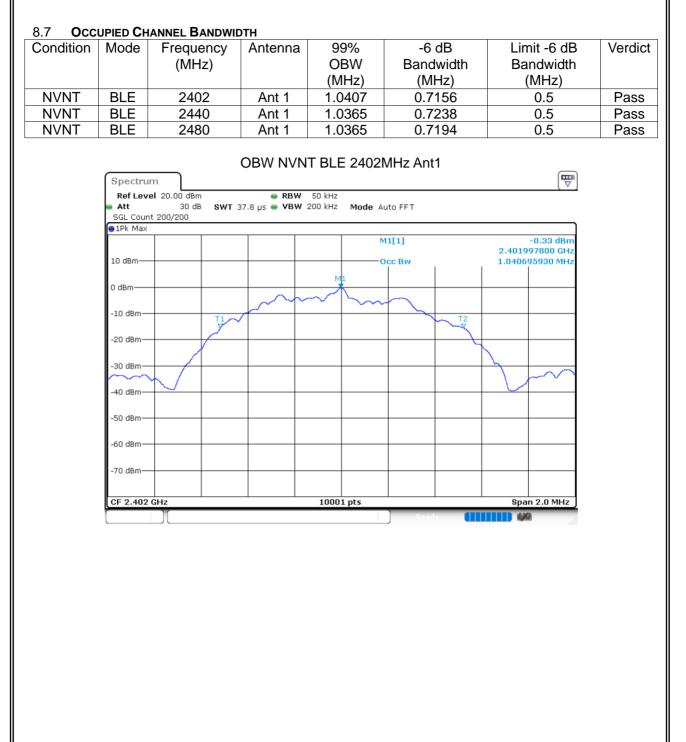


Version.1.3

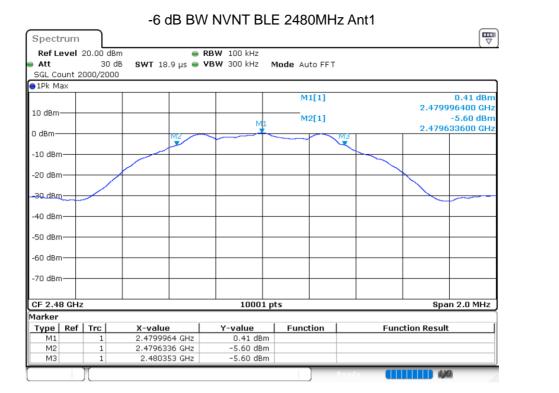

Spectrum						[₩
Ref Level	17.60 di	Bm Offset 7.60 dB	🖷 RBW 100 kHz				
Att	30	dB SWT 250 ms	🔵 VBW 300 kHz	Mode Auto SV	veep		
GGL Count	10/10						
1Pk Max							
0 dBm 🕌				M1[1]		7.67 d 2.479890 (
				M2[1]		-45.00 d	
dBm						14.973713 (
LO dBm							
.о uвin—-	D1 -11.6	98 dBm					
20 dBm							
30 dBm —							
۱O dBm				Mo			
O dBm—		МВ МА	M5	M2		4	
	a da anta da	MB M4	M5	Me	attenta a subara da atte		اليبيان
50 dBm	a da ang sa ka sa ka Ka sa ka s	MB M4				A second a filler of the second se	ella e de
50 dBm	ta di sa sa ka di sa di sa						ille e de
50 dBm	ta a ta a sa ta da						
50 dBm 50 dBm 70 dBm	a ta ang ang ang ang ang ang ang ang ang an						
50 dBm 50 dBm 70 dBm 30 dBm	MH2					Stop 25.0.0	H 2
50 dBm 50 dBm 70 dBm 30 dBm tart 30.0 f	MHz		M5 30001 pi	ts		Stop 25.0 G	Hz
50 dBm 50 dBm 70 dBm 30 dBm tart 30.0 n arker			30001 p			•	Hz
50 dBm 50 dBm 70 dBm 30 dBm tart 30.0 n arker		MB M4 MB		ts	Fun	Stop 25.0 G	Hz
50 dBm 50 dBm 70 dBm 30 dBm tart 30.0 f arker Fype Ref	Trc	X-value	30001 p		Fun	•	Hz
50 dBm 50 dBm 70 dBm 30 dBm tart 30.0 f arker Fype Ref M1	Trc	X-value 2.47989 GHz 14.973713 GHz 4.95991 GHz	30001 pi 7.67 dBm -45.00 dBm -49.24 dBm		Fun	•	Hz
M1 M2	Trc 1	X-value 2.47989 GHz 14.973713 GHz	30001 pt 7.67 dBm -45.00 dBm		Fun	•	Hz

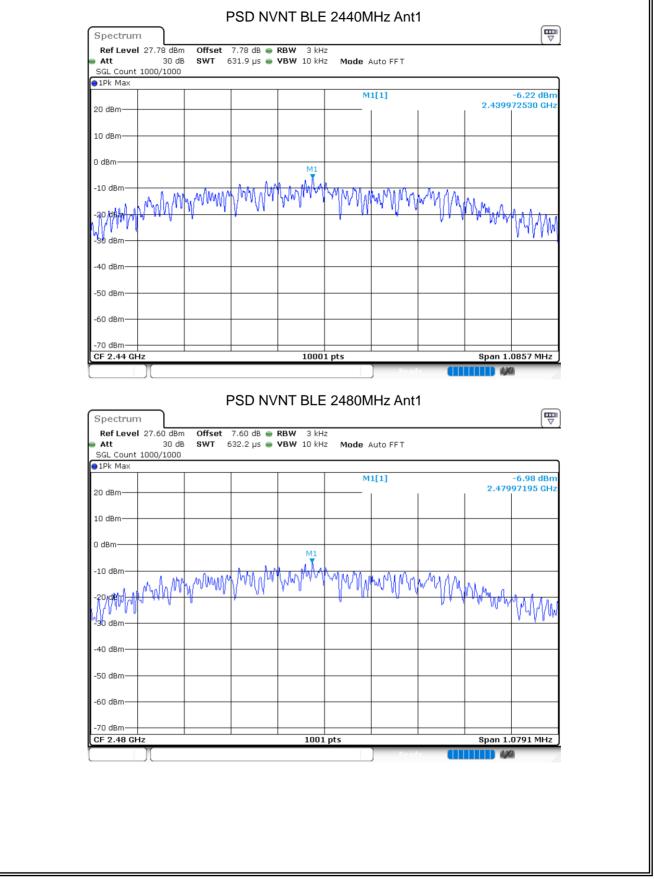

MODULE 2:

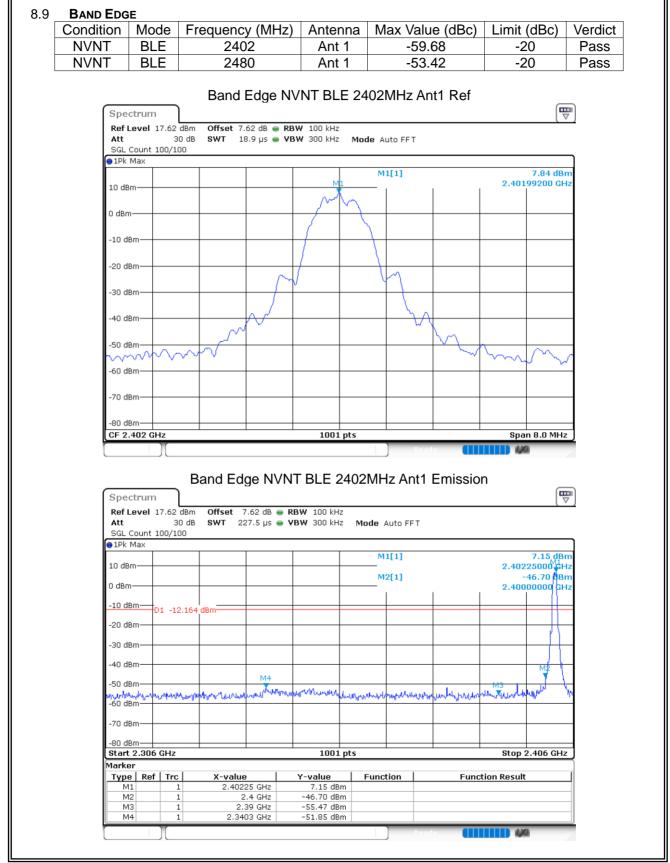
8.6 MAXIMUM CONDUCTED OUTPUT POWER


Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant 1	8.171	30	Pass
NVNT	BLE	2440	Ant 1	8.962	30	Pass
NVNT	BLE	2480	Ant 1	8.249	30	Pass

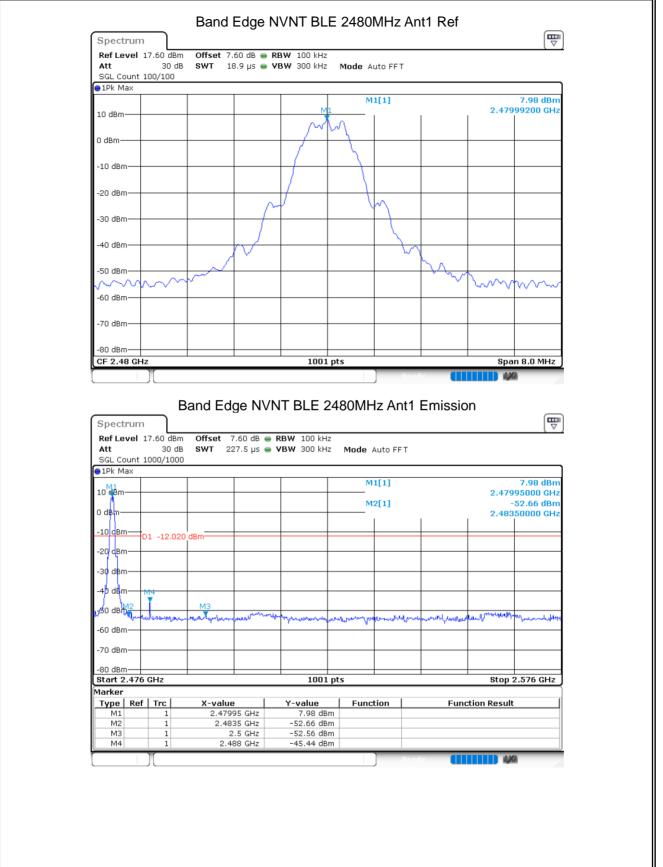


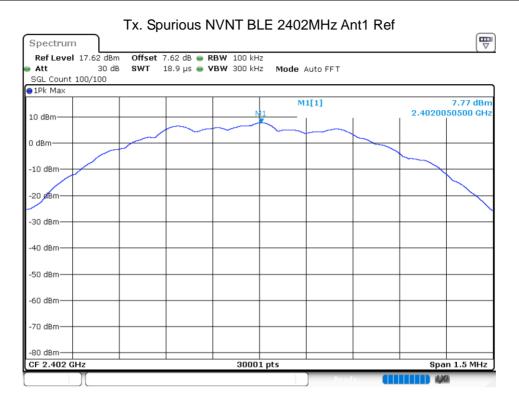


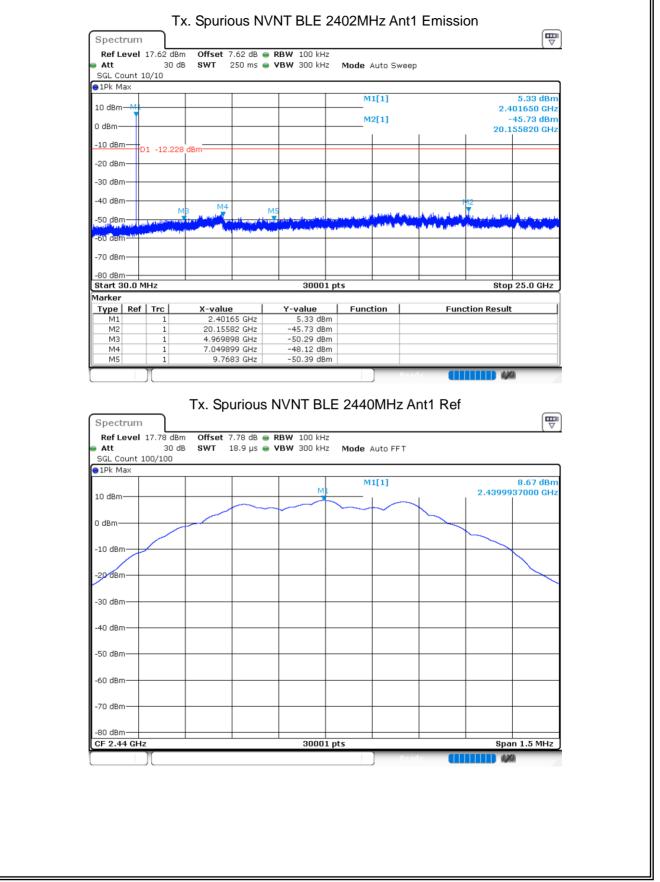




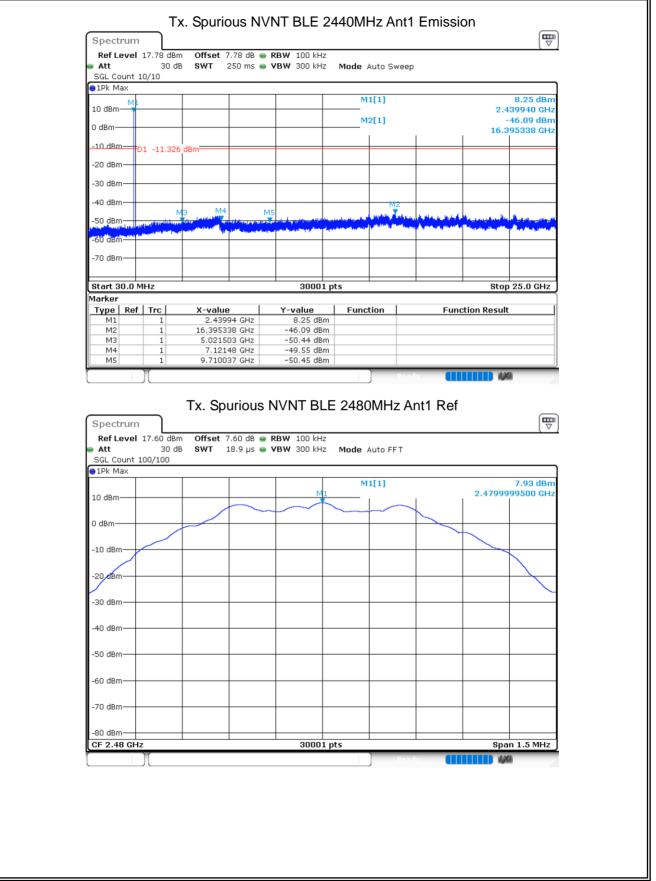
Condition	Mode	Frequency	Antenna		< PSD	Limit		Verdic
		(MHz)			n/3kHz)			
NVNT	BLE	2402	Ant 1			8		Pass
NVNT	BLE	2440	Ant 1		.216		8	Pass
NVNT	BLE	2480	Ant 1	-6	.976		8	Pass
	🕳 Att	m el 27.62 dBm Offset 7.62		Hz Mode Aut) FFT	2.4019	-7.01 dBm 72850 GHz	
	-50 dBm—							
	-70 dBm—							
	CF 2.402	GHz	100	01 pts		Span 1.	0734 MHz	







8.10 CONDUCTED RF SPURIOUS EMISSION


Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant 1	-53.49	-20	Pass
NVNT	BLE	2440	Ant 1	-54.75	-20	Pass
NVNT	BLE	2480	Ant 1	-53.95	-20	Pass

Att	ever.	17.60 dB		8 👄 RBW 100 kH	17				
SGL C		30 d		5 = VBW 300 kH		Auto Sv	ween		
	unt 1								
1Pk M	ax								
	м				N	41[1]			7.68 dBm
10 dBm					<u>+</u>			2.4	F79890 GHz
					N	42[1]			-46.03 dBm
) dBm–								17.6	680461 GHz
-10 dBr	ŋ				<u> </u>	<u> </u>			
		1 -12.07	5 dBm						
-20 dBr	–				+	+			-
30 dBr									
SU UDI									
40 dBr	η						1912		
		1	MB M4	M5			N Y and a second		
50 dBr	1.1.1	National Street	and particular the local state of the local particular state of th	A DESCRIPTION OF THE OWNER OF THE	فالبابات ويراحانا				المالطيانيا
60 dBr	a second state	and problems	to party and the party of the p	and the prover state of the sta		· ·			
UU UDI	'								
70 dBr	<u>ו</u> רי				+				
80 dBr					±				
Start 3	0.0 M	HZ		3000)1 pts			stop	25.0 GHz
larker				1	1 -				
Туре	Ref		2.47989 GH	<u>Y-value</u> 2 7.68 dB		ction	Fu	nction Result	
M1 M2		1	2.47989 GH: 17.680461 GH:						
		1	4.921623 GH						
		-							
M3 M4		1	7.6317 GH:	z – 50.00 dE	3m				

END OF REPORT