

Page: 1 of 26

EMC Test Report

Project Number: 5226552 Offer Number: SUW-202409007058

Report Number: 5226552EMC02 Revision Level: 1

Client: OXOS Medical, Inc

Equipment Under Test: W1 Wireless Charger

(part of K1 Cart, an accessory to MC2 System)

Model Number: W1

Applicable Standards: 47 CFR FCC Part 18

RSS-216, Issue 3 (September 2024)

RSS-GEN, Issue 5

FCC MP-5 (1986); ANSI C63.10:2020

Report issued on: 05 December 2024

Test Result: Compliant

FOR THE SCOPE OF ACCREDITATION UNDER CERTIFICATE NUMBER: 3212.01

Report must not be used by the client to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the Federal Government.

Prepared by:

Martin Taylor, EMO/RF Project Engineer

Reviewed by:

Daniel Alvarez, RF/EMC Sr. Staff Engineer

Remarks: This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. And for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/terms-e-document.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful, and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for a maximum of 30 days only.

Page: 2 of 26

TABLE OF CONTENTS

1	S	UMMARY OF TEST RESULTS	3
	1.1	MODIFICATIONS REQUIRED TO COMPLIANCE	3
2	c	GENERAL INFORMATION	
_			
	2.1	CLIENT INFORMATION	
	2.2	TEST LABORATORY	
	2.3	GENERAL INFORMATION OF EUT	
	2.4	OPERATING MODES AND CONDITIONS	
	2.5	EUT CONNECTION BLOCK DIAGRAM	
	2.6	SYSTEM COMPONENTS AND ACCESSORIES	
	2.7	SUPPORT EQUIPMENT	
	2.8	CABLES AND ELECTRONICS	5
3	R	RADIATED EMISSIONS	(
	3.1	TEST RESULT	(
	3.2	TEST METHOD	
	3.3	TEST SITE	8
	3.4	TEST EQUIPMENT	8
	3.5	TEST DATA – FCC LIMITS	9
	3.6	TEST DATA – ISED LIMITS	
4	C	CONDUCTED EMISSIONS	. 22
	4.1	TEST RESULT	. 22
	4.2	TEST METHOD	
	4.3	TEST SITE	
	4.4	TEST EQUIPMENT	
	4.5	TEST DATA	. 23
5	N	//EASUREMENT UNCERTAINTY	. 25
6	R	REVISION HISTORY	. 26
•		· · · · · · · ·	

Page: 3 of 26

1 Summary of Test Results

Test	Classification	FCC Results	ISED Results
Radiated Emissions 9 kHz – 30 MHz	Consumer	Compliant	Compliant
Radiated Emissions 30 MHz – 1000 MHz	Consumer	Compliant	Compliant
Conducted AC Powerline Emissions (150 kHz – 30 MHz)	Consumer	Compliant	Compliant

1.1 Modifications Required to Compliance

None.

SGS North America Inc.

Connectivity & Products

620 Old Peachtree Road NW, Suite 100, Suwanee, GA 30024

Page: 4 of 26

2 General Information

2.1 Client Information

Company Name: OXOS Medical, Inc.

Address: 1100 Peachtree Street NE, Suite 700

City, State, Zip, Country: Atlanta, GA 30309

2.2 Test Laboratory

Company Name: SGS North America, Inc.

Address: 620 Old Peachtree Road NW, Suite 100

City, State, Zip, Country: Suwanee, GA 30024, USA

Accrediting Body: A2LA

Type of lab: Testing Laboratory

Certificate Number: 3212.01

2.3 General Information of EUT

Equipment Under Test: Wireless Charger

EUT Model Number: W1

System Name: W1 is part of K1 Cart, an accessory to MC2 X-ray System

Serial Numbers: Emitter (E1) – SN 1283

Wired Charger (H1) – Lot 10146 Wireless Charger (W1) – Lot 10258

Hardware Versions: Emitter (E1) - Rev I

Wired Charger (H1) – Rev C Wireless Charger (W1) – Rev D

Software Version: v4.0.0-alpha

Rated Voltage: 100-240Vac 50/60Hz

Test Voltage: 120Vac 60Hz

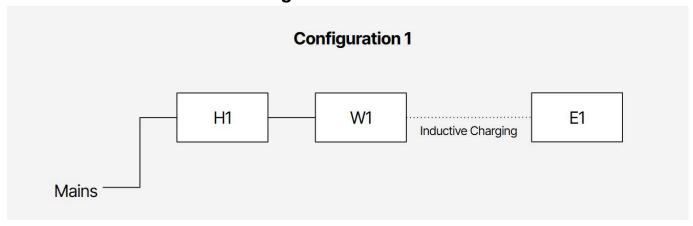
Sample Received Date: 05 September 2024

Dates of testing: 05-06 September 2024

SGS North America Inc.

Connectivity & Products

620 Old Peachtree Road NW, Suite 100, Suwanee, GA 30024


Page: 5 of 26

2.4 Operating Modes and Conditions

The W1 Wireless Charger was tested as follows:

The Wireless Charger (W1) was powered by the Wired Charger (H1). The Emitter (E1) was connected to the Wireless Charger (W1). The Emitter (E1) was on and charging, but not emitting x-rays.

2.5 EUT Connection Block Diagram

2.6 System Components and Accessories

No. Item		Description
1	Wireless Charger (REF: W1)	The Wireless Charger (optional accessory) provides wireless charging for the E1 Emitter. It may be assembled with the K1 Cart, or with the H1 Wired Charger.

2.7 Support Equipment

	No. Item		Description
	1 Emitter (REF: E1)		The Emitter includes the operator control panel, x-ray tube, and computer vision cameras.
2		Wired Charger (REF: H1) (Qty 2)	The Wired Charger connects to power outlets to charge the Emitter or Cassette.

2.8 Cables and Electronics

No.	Туре	Length	Designation
1	100 Watt USB-C PD Medical Desktop Power Supply Mfg: Phasium PN: MANGO100S-USB-PDB	3m	Wired Inverter Brick + Cable

SGS North America Inc.

Page: 6 of 26

3 Radiated Emissions

3.1 Test Result

Test Description	Classification	FCC Rule Part / ISED Standard	Test Result
Radiated Emissions	Consumer (miscellaneous,	FCC §18.305(b)	Compliant
Radiated Emissions	non-ISM frequency, <500W)	RSS-216 (5.3.3)	Compliant

3.2 Test Method

Exploratory scans were performed using the max hold function and incorporating a Peak detector using TILE! software. The final test data was measured using a Quasi-Peak detector. The receiver's resolution bandwidth was set to 200 Hz for measurements taken in the 9kHz to 150 kHz frequency range, 9 kHz for measurements taken in the 150 kHz to 30 MHz frequency range and 120 kHz for measurements taken in the 30 MHz to 1 GHz frequency range. For measurements below 30 MHz, a loop antenna was used, and measurements were made with the antenna positioned in coaxial, coplanar vertical and coplanar horizontal orientations. For measurements between 30 MHz and 1 GHz, a biconi-log antenna was used, and measurements were made with the antenna positioned in both the horizontal and vertical planes of polarization. The antenna height was varied from 1 m to 4 m (only for testing above 30 MHz) and the EUT was rotated 360° to find the maximum emitting point for each frequency. The radiated measurements were recorded and compared to the limits indicated below.

FCC Limits [from §18.305(b)]

Equipment	Operating frequency	RF Power generated by equipment (watts)	Field strength limit (uV/m)	Distance (meters)
Any type unless otherwise specified (miscellaneous)	Any ISM frequency	Below 500 500 or more	25 25 × SQRT(power/500)	300 ¹ 300
	Any non-ISM frequency	Below 500 500 or more	15 15 × SQRT(power/500)	300 1300

The FCC Part 18 rules allow for testing to be performed at closer distances with the field strength limit adjusted using a 20 dB/decade correction factor.

The 15uV/m limit is first converted to log units using the equation 20*log(x), which gives 23.5 dBuV/m. Then going from 300m to 3m would be two decades, so the 3m limit becomes 23.5 + 40 = 63.5 dBuV/m. Also, the limit at 10m becomes 53.1 dBuV/m.

Alternatively, for frequencies below 30MHz, where the distance attenuation factor is actually greater than 20dB/dec, measurements may be made at multiple distances and extrapolation may be used to determine the field strength that would be expected at the 300m distance for which the limit is defined.

In this case, all emissions measured at the 3m distance met the 3m converted limit except for the Wireless Power Transfer (WPT) fundamental signal and its third harmonic. Therefore, those two signals were also measured at a 10m distance, and the field strength was extrapolated from these two measurements to derive the expected field strength at 300m for comparison to the 300m limit.

SGS North America Inc.

Page: 7 of 26

ISED Limits for 9 kHz to 30 MHz [from RSS-216 Table 3]

Frequency Range	Limits (dBµA/m) Quasi-Peak at 3m	Limits (dBµV/m) Quasi-Peak at 3m
9 to 70 kHz	69	120.5
70 to 150 kHz	69 to 39 *	120.5 to 90.5 *
150 kHz to 30 MHz	39 to 7 *	90.5 to 58.5 *

* Decreases linearly with the logarithm of the frequency.

Note: The dBuV/m limits were derived from the dBuA/m limits by adding a 51.5 dB conversion factor.

ISED Limits for 30 to 1000 MHz [from RSS-216 Table 5]

Frequency Range	Limits (dBμV) Quasi-Peak at 10m		
30 to 230 MHz	30		
230 to 1000 MHz	37		

Page: 8 of 26

3.3 Test Site

3m and 10m Absorber Lined Shielded Enclosure (ALSE), Suwanee, GA

Environmental Conditions 9kHz-30MHz 30-1000MHz

Temperature: 23.36 °C 23.38 °C Relative Humidity: 54.4 % 55.9 % Atmospheric Pressure: 97.48 kPa 97.46 kPa

3.4 Test Equipment

9kHz - 30MHz @ 3m

Test End Date: 6-Sep-2024 Tester: ZH

Equipment	Model	Manufacturer	Asset	Cal Date	Cal Due Date
ANTENNA, LOOP, ACTIVE	6502	ETS LINDGREN	B085752	24-Mar-2024	24-Mar-2026
N to N RF Cable	EM-B810NM-276	ECHELON	23007	31-Mar-2024	31-Mar-2025
N-FEMALE TO N-MALE RF CABLE	EM-B810NMNF-118	ECHELON	23010	17-Apr-2024	17-Apr-2025
RF CABLE NM TO NM, 0.01-18GHZ	90-195-118	TELEDYNE STORM MICROWAVE	20126	6-Feb-2024	6-Feb-2025
EMI TEST RECEIVER	ESW44	ROHDE & SCHWARZ	22032	15-Nov-2023	15-Nov-2024

9kHz - 30MHz @ 10m

Test End Date: 6-Sep-2024 Tester: ZH

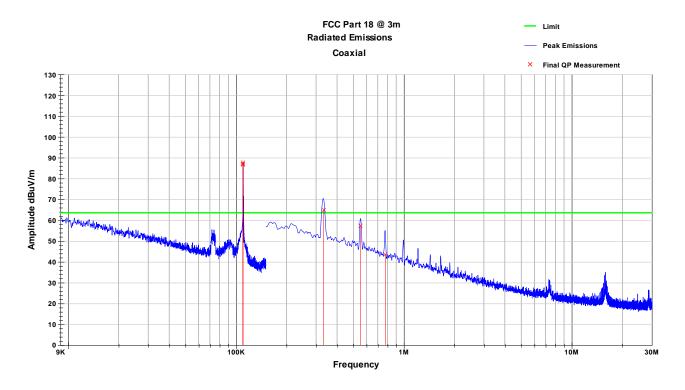
Equipment	Model	Manufacturer	Asset	Cal Date	Cal Due Date
ANTENNA, LOOP, ACTIVE	6502	ETS LINDGREN	B085752	24-Mar-2024	24-Mar-2026
N to N RF Cable	EM-B810NM-276	ECHELON	24000	15-Jan-2024	15-Jan-2025
RF CABLE NM TO NM, 0.01-18GHZ	90-195-354	TELEDYNE STORM MICROWAVE	20119	6-Feb-2024	6-Feb-2025
RF CABLE NM TO NM, 0.01-18GHZ	90-195-118	TELEDYNE STORM MICROWAVE	20125	7-Aug-2024	7-Aug-2025
EMI TEST RECEIVER	ESW44	ROHDE & SCHWARZ	22027	3-Oct-2023	3-Oct-2024

Software: TILE! software profile "RSE 9k - 30M Active Red Loop 240909.til" dated 09 September 2024

30-1000MHz

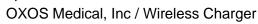
Test End Date: 6-Sep-2024 Tester: ZH

Equipment	Model	Manufacturer	Asset	Cal Date	Cal Due Date
ANTENNA, BILOG	JB6	SUNOL	B079690	19-Apr-2024	19-Apr-2026
N to N RF Cable	EM-B810NM-276	ECHELON	24000	15-Jan-2024	15-Jan-2025
RF CABLE NM TO NM, 0.01-18GHZ	90-195-354	TELEDYNE STORM MICROWAVE	20119	6-Feb-2024	6-Feb-2025
RF CABLE NM TO NM, 0.01-18GHZ	90-195-118	TELEDYNE STORM MICROWAVE	20125	7-Aug-2024	7-Aug-2025
RF CABLE RIGHT ANGLE NM TO NM, 0.01- 18GHZ	90-076-020	TELEDYNE STORM MICROWAVE	20133	20-Mar-2024	20-Mar-2025
LOW NOISE AMPLIFIER	ZKL-2+	MINI-CIRCUITS	B079817	7-Aug-2024	7-Aug-2025
EMI TEST RECEIVER	ESW44	ROHDE & SCHWARZ	22027	3-Oct-2023	3-Oct-2024

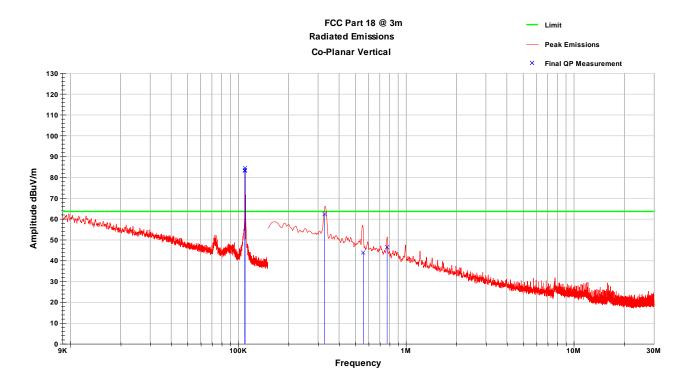

Software: TILE! software profile "RE 30-1000 MHz 10m TILE7 230713.til" dated 13 July 2023

SGS North America Inc.

3.5 Test Data - FCC Limits


Radiated Emissions Coaxial 9 kHz - 30 MHz - Peak Plot - at 3m distance

Radiated Emissions Co-Axial 9 kHz - 30 MHz - Tabular Data - at 3m distance


Frequency MHz	Raw QP dBuV	Azimuth degrees	Height cm	AF dB	CL dB	QP Value dBuV/m	Limit dBuV/m	Margin dB
0.11	74.7	185.0	100.0	11.9	0.0	86.6	63.5	23.1
0.11	75.0	43.0	100.0	11.9	0.0	86.9	63.5	23.4
0.11	75.8	185.0	100.0	11.9	0.0	87.7	63.5	24.2
0.33	53.2	50.0	100.0	11.7	0.0	64.9	63.5	1.4
0.55	45.6	67.0	100.0	11.7	0.0	57.3	63.5	-6.2
0.78	31.6	54.0	100.0	11.7	0.1	43.3	63.5	-20.2
QP Value =	Raw QP	+ AF + CL	_					
Margin = Q	P Value - I	Limit						

Note: WPT fundamental and its third harmonic will be dealt with below using the extrapolation method.

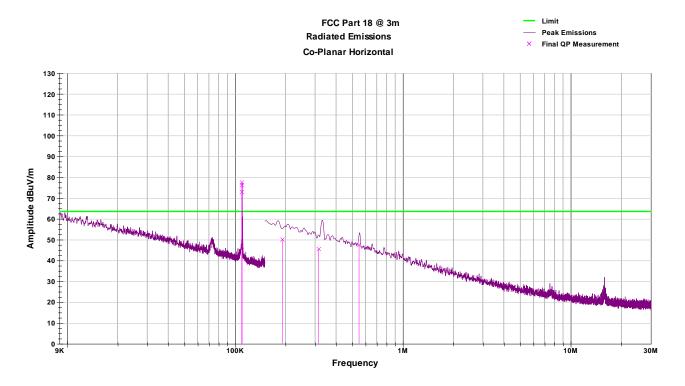
Page: 10 of 26

Radiated Emissions Co-Planar Vertical 9 kHz - 30 MHz - Peak Plot - at 3m distance

Radiated Emissions Co-Planar Vertical 9 kHz - 30 MHz - Tabular Data - at 3m distance

Frequency	Raw QP	Azimuth	Height	AF	CL	QP Value	Limit	Margin
MHz	dBuV	degrees	cm	dB	dB	dBuV/m	dBuV/m	dB
0.11	71.1	97.0	100.0	11.9	0.0	82.9	63.5	19.4
0.11	71.5	101.0	100.0	11.9	0.0	83.4	63.5	19.9
0.11	72.6	107.0	100.0	11.9	0.0	84.5	63.5	21.0
0.33	50.5	142.0	100.0	11.7	0.0	62.2	63.5	-1.3
0.56	32.2	138.0	100.0	11.7	0.0	43.9	63.5	-19.6
0.77	34.6	-1.0	100.0	11.7	0.1	46.3	63.5	-17.2
QP Value =	Raw QP	+ AF + CL						
Margin = Q	P Value - I	Limit						

Note: WPT fundamental will be dealt with below using the extrapolation method.

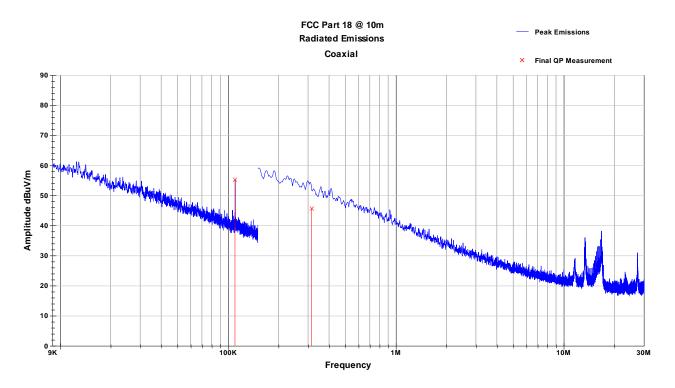


OXOS Medical, Inc / Wireless Charger

Page: 11 of 26

Radiated Emissions Co-Planar Horizontal 9 kHz - 30 MHz - Peak Plot - at 3m distance

Radiated Emissions Co-Planar Horizontal 9 kHz - 30 MHz - Tabular Data - at 3m distance


Frequency	Raw QP	Azimuth	Height	AF	CL	QP Value	Limit	Margin
MHz	dBuV	degrees	cm	dB	dB	dBuV/m	dBuv/m	dB
0.11	64.3	192.3	100.0	11.9	0.0	76.2	63.5	12.7
0.11	60.8	361.3	100.0	11.9	0.0	72.7	63.5	9.2
0.11	65.4	189.7	100.0	11.9	0.0	77.3	63.5	13.8
0.19	38.3	343.0	100.0	11.7	0.0	50.1	63.5	-13.4
0.32	33.8	150.0	100.0	11.7	0.0	45.5	63.5	-18.0
0.55	35.6	191.0	100.0	11.7	0.0	47.3	63.5	-16.2
QP Value =	Raw QP	+ AF + CL						
Margin = Q	P Value - I	Limit						

Note: WPT fundamental will be dealt with below using the extrapolation method.

The Wireless Power Transfer (WPT) fundamental signal and its third harmonic produced the highest field strength at 3m when measured with a coaxial antenna, as shown in the preceding plots. Therefore, that was the measurement configuration used to take measurements at a 10m distance in order to extrapolate the field strength that would be seen at a 300m distance, which is where the limit is specified.

Radiated Emissions Coaxial 9 kHz - 30 MHz - Peak Plot - at 10m distance

Radiated Emissions Co-Axial 9 kHz - 30 MHz - Quasi-Peak Data at 3m and 10m distances

Frequency MHz	Raw QP dBuV	Azimuth degrees	Height cm	AF dB	CL dB	QP Value dBuV/m	Antenna Orientation	Measurement Distance
0.11	75.8	185.0	100.0	11.9	0.0	87.7	Co-Axial	3m
0.33	53.2	50.0	100.0	11.7	0.0	64.9	Co-Axial	3m
0.11	43.3	163.0	100.0	11.9	0.0	55.2	Co-Axial	10m
0.32	33.8	127.0	100.0	11.7	0.0	45.5	Co-Axial	10m
QP Value = Ra	P Value = Raw QP + AF + CL							

The quasi-peak values shown above taken at 3m and 10m distances were used to extrapolate the expected measurements at a 300m distance for comparison to the limit, as shown on the next pages.

Page: 13 of 26

Extrapolation calculations to 300m based on measurements taken at 3m and 10m distances

WPT Fundamental Extrapolation

		3m m	easurement	extrapolation	based on 2	0 dB/dec (1/	(d)
Measureme	ent Distance	ta	Comments				
Name	(m)	(dBuV/m)	(uV/m)	(uV/m)	Formula	Comments	
d1	3	87.7	24266.1	24266.1	х	87.7	Reference data point (measured)
d2	10	55.2	575.4	7279.8	x*(d1/d2)	77.2	Not steep enough (extrap > meas)
d3	300			242.7	x*(d1/d3)	47.7	

3m measurement extrapolation based on 40 dB/dec (1/d2)

Measureme	ent Distance	Measured Data		Extrapolated Data			Comments
Name	(m)	(dBuV/m)	(uV/m)	(uV/m) Formula (dBuV/m)		(dBuV/m)	Comments
d1	3	87.7	24266.1	24266.1	x	87.7	Reference data point (measured)
d2	10	55.2	575.4	2183.9	x*(d1/d2) ²	66.8	Not steep enough (extrap > meas)
d3	300			2.4	x*(d1/d3) ²	7.7	

3m measurement extrapolation based on 60 dB/dec (1/d3)

							- /
Measureme	ent Distance	Measur	ed Data	E	xtrapolated Da	ta	Comments
Name	(m)	(dBuV/m)	(uV/m)	(uV/m)	Formula	(dBuV/m)	Confinents
d1	3	87.7	24266.1	24266.1	x	87.7	Reference data point (measured)
d2	10	55.2	575.4	655.2	x*(d1/d2) ³	56.3	Not steep enough (extrap > meas)
d3	300			0.024	x*(d1/d3) ³	-32.3	

Experiment to find match to 10m measured value (62.2 dB/dec)

Measureme	ent Distance	Measur	ed Data	Е	xtrapolated Dat	a	Comments	
Name	(m)	(dBuV/m)	(uV/m)	(uV/m) Formula (dBuV/m)			Confinents	
d1	3	87.7	24266.1	24266.1	х	87.7	Reference data point (measured)	
d2	10	55.2	575.4	575.4	x*(d1/d2) ^{3.11}	55.2	It's a match (1/d ^{3.11})	
d3	300			0.015	x*(d1/d3) ^{3.11}	-36.6	Pass	
			Limit (300m):	15		23.5		

SGS North America Inc.

Page: 14 of 26

WPT Third Harmonic Extrapolation

		3m m	easurement	extrapolation	n based on 2	0 dB/dec (1/	d)
Measureme	ent Distance	ta	Comments				
Name	(m)	(dBuV/m)	(uV/m)	(uV/m)	Formula	Confinents	
d1	3	64.9	1757.9	1757.9	x	64.9	Reference data point (measured)
d2	10	45.5	188.4	527.4	x*(d1/d2)	54.4	Not steep enough (extrap > meas)
d3	300	300 17.6 x*(d1/d3					

3m measurement extrapolation based on 40 dB/dec (1/d²)

							,
Measureme	ent Distance	Measur	ed Data	Е	xtrapolated Da	ta	Comments
Name	(m)	(dBuV/m)	(uV/m)	(uV/m)	Formula	(dBuV/m)	Confinents
d1	3	64.9	1757.9	1757.9	х	64.9	Reference data point (measured)
d2	10	45.5	188.4	158.2	x*(d1/d2) ²	44.0	Too steep (extrap < meas)
d3	300			0.2	x*(d1/d3) ²	-15.1	

Experiment to find match to 10m measured value (37.1 dB/dec)

Measureme	ent Distance	Measur	ed Data	Е	xtrapolated Dat	a	Comments	
Name	(m)	(dBuV/m)	(uV/m)	(uV/m) Formula (dBuV/m)			Confinents	
d1	3	64.9	1757.9	1757.9	х	64.9	Reference data point (measured)	
d2	10	45.5	188.4	188.4	x*(d1/d2) ^{1.86}	45.5	lt's a match (1/d ^{1.86})	
d3	300			0.34	x*(d1/d3) ^{1.86}	-9.3	Pass	
			Limit (300m):	15		23.5		

The same extrapolation results can be obtained by using Equation (5) in clause 6.4.4.4 and Equation (8) in clause 6.4.4.7 in ANSI C63.10:2020, as given below.

Extrapolation factor:

 $N=20\frac{\log(E_1/E_2)}{\log(d_1/d_2)}$

Equation (5)

is the field strength at the measurement distance closest to the radiating source, expressed in $\mu V/m$

E₂ is the field strength at the measurement distance farthest from the radiating source, expressed in VV/m

d₁ is the measurement distance closest to the radiating source d₂ is the measurement distance farthest from the radiating source

N is the distance extrapolation factor in dB/decade of distance. The field strength at the limit distance shall then be calculated using the methods and formula described in 6.4.4.7.

Measurement Extrapolation: where

 $FS_{\text{limit}} = FS_{\text{max}} - N\log\!\left(\frac{d_{\text{limit}}}{d_{\text{measure}}}\right)$

Equation (8)

N is the value in dB/decade of distance determined using 6.4.4.4 or 6.4.4.5 is the estimate of field strength at the limit distance, expressed in dB μ V/m

 FS_{max} is the maximum value of field strength, expressed in dB μ V/m, measured during the

measurement of the points used for extrapolation

 d_{measure} is the distance of the measurement point of FS_{max} from the radiating source

 d_{limit} is the limit reference distance

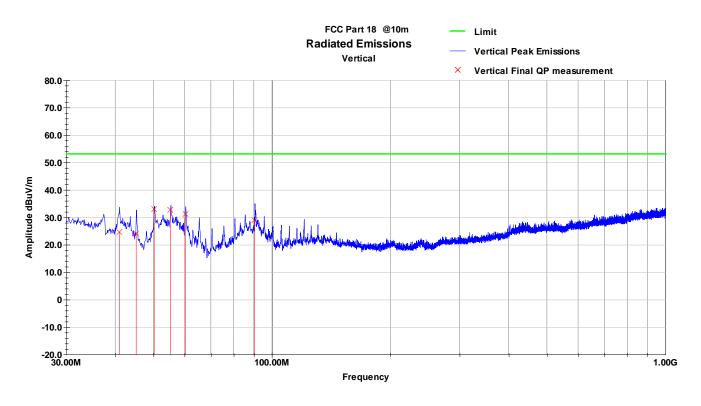
SGS North America Inc.

Connectivity & Products

620 Old Peachtree Road NW, Suite 100, Suwanee, GA 30024

t (770) 570-1800

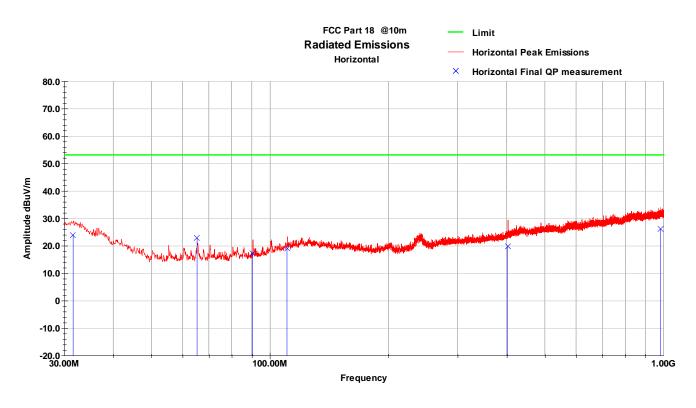
www.sgs.com


Member of the SGS Group (SGS SA)

OXOS Medical, Inc / Wireless Charger

Page: 15 of 26

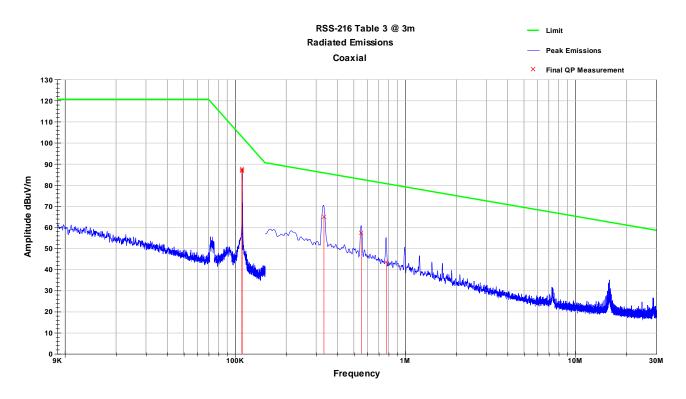
Vertical Radiated Emissions 30-1000 MHz - Peak Plot


Vertical Radiated Emissions 30-1000 MHz - Tabular Data

Frequency	Raw QP	Polarity	Azimuth	Height	AF	Loss	Amp	QP Value	Limit	Margin
MHz	(dBuV)	(V/H)	(degrees)	(cm)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
40.98	37.6	V	30.0	100.0	17.2	0.6	30.7	24.7	53.1	-28.4
45.22	39.9	٧	51.0	274.0	14.3	0.6	30.7	24.1	53.1	-29.0
50.24	51.1	V	234.0	175.0	12.0	0.7	30.7	33.0	53.1	-20.1
55.27	51.6	V	359.0	172.0	11.1	0.7	30.7	32.7	53.1	-20.4
60.31	49.8	٧	99.0	274.0	11.2	0.8	30.8	31.1	53.1	-22.0
90.42	46.3	V	278.0	100.0	12.1	1.0	30.6	28.9	53.1	-24.2
QP Value =	Raw QP+	AF + Los	s-Amp							
Margin = QF	Value - Li	mit								

Page: 16 of 26

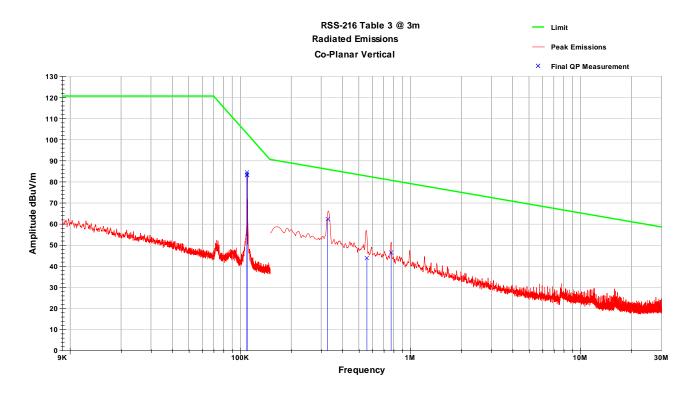
Horizontal Radiated Emissions 30-1000 MHz - Peak Plot


Horizontal Radiated Emissions 30-1000 MHz - Tabular Data

Frequency MHz	Raw QP (dBuV)	Polarity (V/H)	Azimuth (degrees)	Height (cm)	AF (dB/m)	Loss (dB)	Amp (dB)	QP Value (dBuV/m)	Limit (dBuV/m)	Margin (dB)
31.64	30.1	Η	315.0	391.0	23.9	0.5	30.6	23.8	53.1	-29.3
65.35	40.9	Ι	0.0	391.0	11.7	0.8	30.8	22.7	53.1	-30.4
90.47	34.7	Ι	359.0	274.0	12.1	1.0	30.6	17.2	53.1	-35.8
110.56	32.0	Ι	120.0	359.0	16.5	1.1	30.6	19.0	53.1	-34.1
402.29	27.7	Н	276.0	134.0	19.6	2.3	30.0	19.7	53.1	-33.4
982.94	24.6	Η	270.0	357.0	26.9	3.3	28.7	26.1	53.1	-27.0
QP Value = Raw QP + AF + Loss - Amp										
Margin = QF	Value - L	imit								

3.6 Test Data - ISED Limits

Radiated Emissions Coaxial 9 kHz - 30 MHz - Peak Plot - at 3m distance


Radiated Emissions Co-Axial 9 kHz - 30 MHz - Tabular Data - at 3m distance

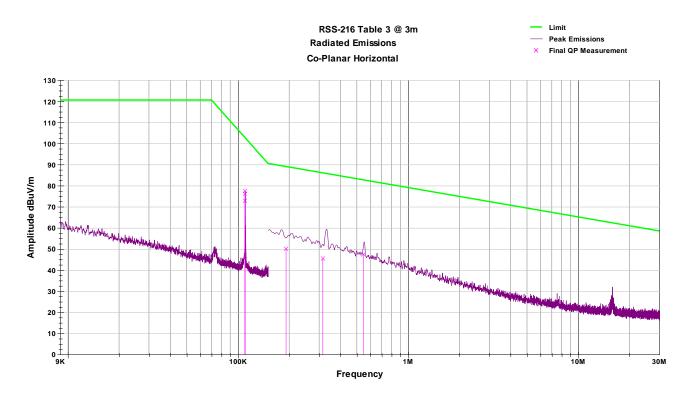
Frequency kHz	Raw QP dBuV	Azimuth degrees	Height cm	AF dB	CL dB	QP Value dBuV/m	Limit dBuV/m	Margin dB
		J						
110	74.7	185.0	100.0	11.9	0.0	86.6	102.7	-16.1
110	75.0	43.0	100.0	11.9	0.0	86.9	102.7	-15.8
110	75.8	185.0	100.0	11.9	0.0	87.7	102.7	-15.0
334	53.2	50.0	100.0	11.7	0.0	64.9	85.7	-20.7
553	45.6	67.0	100.0	11.7	0.0	57.3	82.6	-25.3
777	31.6	54.0	100.0	11.7	0.1	43.3	80.6	-37.3
QP Value =	Raw QP+	AF+CL						
Margin = QF	Value - Li	mit						

OXOS Medical, Inc / Wireless Charger Page: 18 of 26

Radiated Emissions Co-Planar Vertical 9 kHz - 30 MHz - Peak Plot - at 3m distance

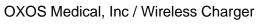
Radiated Emissions Co-Planar Vertical 9 kHz - 30 MHz - Tabular Data - at 3m distance

Frequency kHz	Raw QP dBuV	Azimuth degrees	Height cm	AF dB	CL dB	QP Value dBuV/m	Limit dBuV/m	Margin dB
110	71.1	97.0	100.0	11.9	0.0	82.9	102.7	-19.8
110	71.5	101.0	100.0	11.9	0.0	83.4	102.7	-19.4
110	72.6	107.0	100.0	11.9	0.0	84.5	102.7	-18.2
328	50.5	142.0	100.0	11.7	0.0	62.2	85.8	-23.5
557	32.2	138.0	100.0	11.7	0.0	43.9	82.6	-38.7
774	34.6	-1.0	100.0	11.7	0.1	46.3	80.6	-34.3
QP Value =	Raw QP+	AF+CL						
Margin = QF	Value - Li	mit						

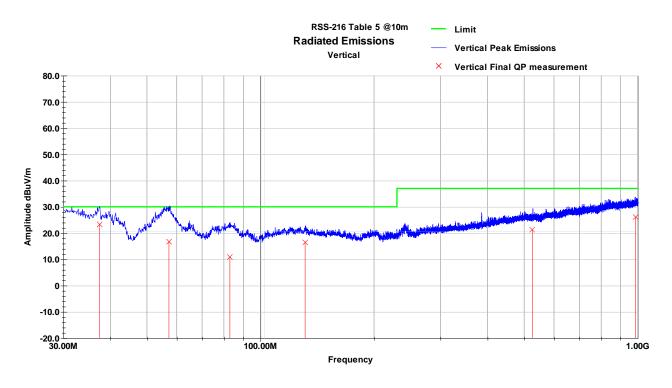


Test Report Number: 5226552EMC02 Rev: 1

OXOS Medical, Inc / Wireless Charger


Page: 19 of 26

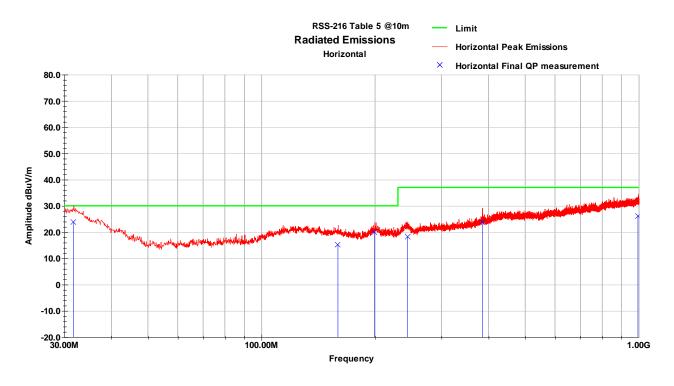
Radiated Emissions Co-Planar Horizontal 9 kHz - 30 MHz - Peak Plot - at 3m distance


Radiated Emissions Co-Planar Horizontal 9 kHz - 30 MHz - Tabular Data - at 3m distance

Frequency kHz	Raw QP dBuV	Azimuth degrees	Height cm	AF dB	CL dB	QP Value dBuV/m	Limit dBuv/m	Margin dB
110	64.3	192.3	100.0	11.9	0.0	76.2	102.7	-26.5
110	60.8	361.3	100.0	11.9	0.0	72.7	102.7	-30.0
110	65.4	189.7	100.0	11.9	0.0	77.3	102.7	-25.4
192	38.3	343.0	100.0	11.7	0.0	50.1	89.0	-39.0
316	33.8	150.0	100.0	11.7	0.0	45.5	86.0	-40.5
548	35.6	191.0	100.0	11.7	0.0	47.3	82.7	-35.4
QP Value =	Raw QP+	AF+CL						
Margin = QF	Value - Li	mit						

Page: 20 of 26

Vertical Radiated Emissions 30-1000 MHz - Peak Plot


Vertical Radiated Emissions 30-1000 MHz - Tabular Data

Frequency	Raw QP	Polarity	Azimuth	Height	AF	Loss	Amp	QP Value	Limit	Margin
MHz	(dBuV)	(V/H)	(degrees)	(cm)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
37.41	33.6	V	0.0	183.0	19.8	0.5	30.6	23.3	30.0	-6.7
57.18	35.5	V	90.0	177.0	11.1	0.7	30.8	16.6	30.0	-13.4
82.97	29.1	V	0.0	100.0	11.5	0.9	30.6	10.9	30.0	-19.1
131.31	28.3	V	180.0	324.0	17.6	1.2	30.6	16.5	30.0	-13.5
526.30	26.1	V	320.0	343.0	22.2	2.7	29.9	21.2	37.0	-15.8
985.81	24.6	V	234.0	227.0	26.9	3.3	28.7	26.1	37.0	-10.9
QP Value =										
Margin = Q	P Value -	Limit								

OXOS Medical, Inc / Wireless Charger

Horizontal Radiated Emissions 30-1000 MHz - Peak Plot

Horizontal Radiated Emissions 30-1000 MHz - Tabular Data

Frequency	Raw QP	Polarity	Azimuth	Height	AF	Loss	Amp	QP Value	Limit	Margin
MHz	(dBuV)	(V/H)	(degrees)	(cm)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
31.76	30.0	Н	21.0	251.0	23.8	0.5	30.6	23.7	30.0	-6.3
159.46	27.9	Н	45.0	262.0	16.5	1.3	30.5	15.1	30.0	-14.9
199.36	32.7	Н	0.0	381.0	16.0	1.6	30.3	20.0	30.0	-10.0
243.75	31.2	Ι	140.0	270.0	15.6	1.7	30.3	18.2	37.0	-18.8
384.87	32.4	Ι	341.0	204.0	19.2	2.3	30.1	23.9	37.0	-13.1
995.50	24.6	Ι	165.0	195.0	27.0	3.4	28.7	26.2	37.0	-10.8
QP Value = Raw QP + AF + Loss - Amp										
Margin = Q	P Value -	Limit								

Page: 22 of 26

4 Conducted Emissions

4.1 Test Result

Test Description	Classification	FCC Rule Part / ISED Standard	Test Result
Conducted Emissions	Consumer	§18.307(b) RSS-216 (5.3.2)	Compliant

4.2 Test Method

With the receiver's Resolution Bandwidth (RBW) set to 9 kHz, exploratory scans were performed over the measuring frequency range (0.15MHz to 30MHz) using a max hold mode incorporating a Peak detector and using the TILE! software. The final test data was measured using a 9kHz RBW in conjunction with a Quasi-Peak detector and Average detector and compared against the limits indicated in the table below.

FCC Limits [from §18.307(b)]

Frequency Range	Limits (dBµV)
0.15 to 0.5 MHz	Quasi-Peak 66 to 56 / Average 56 to 46 *
0.5 to 5 MHz	Quasi-Peak 56 / Average 46
5 to 30 MHz	Quasi-Peak 60 / Average 50

^{*} Decreases linearly with the logarithm of the frequency.

Note: The ISED limits in RSS-216 Table 2 are the same as the FCC limits above.

4.3 Test Site

SGS EMC Laboratory, Suwanee, GA

Environmental Conditions

Temperature: 23.6 °C
Relative Humidity: 55.9 %
Atmospheric Pressure: 98.2 kPa

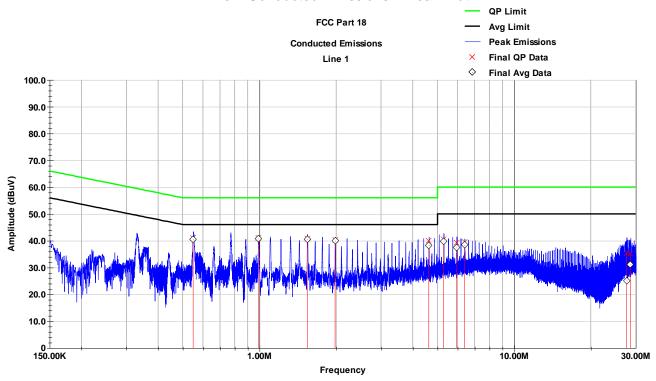
4.4 Test Equipment

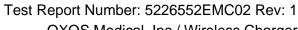
Test End Date: 6-Sep-2024

Equipment	Model	Manufacturer	Asset	Cal Date	Cal Due Date
LINE IMPEDANCE STABILIZATION NETWORK	NNB 51	TESEQ	B085882	22-Apr-2024	22-Apr-2025
RF CABLE	UC-N-MM-78	MAURY MICROWAVE	17016	7-Aug-2024	7-Aug-2025
EMI TEST RECEIVER	ESW44	ROHDE & SCHWARZ	22027	3-Oct-2023	3-Oct-2024

Tester: EW

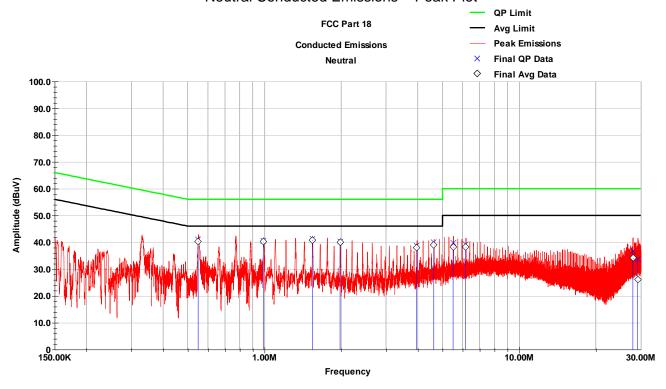
Software: TILE! software profile "Conducted Emissions 240521.til" dated 21 May 2024


SGS North America Inc.


4.5 Test Data

Line 1 Conducted Emissions - Peak Plot

Line 1 Conducted Emissions - Tabular Data


Frequency	LISN	CF	TL	Raw Avg	Final Avg	Avg Limit	Avg Margin	Raw QP	Final QP	QP Limit	QP Margin
MHz	dB	dB	dB	dBuV	dBuV	dBuV	dB	dBuV	dBuV	dBuV	dB
0.549	9.8	0.00	0.0	30.7	40.4	46.0	-5.6	31.2	41.0	56.0	-15.0
0.991	9.8	0.00	0.0	31.0	40.8	46	-5.2	31.1	40.9	56.0	-15.1
1.54	9.8	0.00	0.0	30.7	40.5	46	-5.5	31.0	40.9	56.0	-15.1
1.981	9.8	0.00	0.0	30.2	40	46	-6	30.5	40.3	56.0	-15.7
4.622	9.8	0.00	0.0	28.4	38.3	46.0	-7.7	30.1	39.9	56.0	-16.1
5.284	9.8	0.10	0.0	29.8	39.7	50.0	-10.3	30.6	40.5	60.0	-19.5
5.941	9.8	0.10	0.0	27.5	37.4	50.0	-12.6	29.4	39.3	60.0	-20.7
6.384	9.8	0.10	0.0	28.5	38.4	50.0	-11.6	29.6	39.5	60.0	-20.5
27.633	10.0	0.10	0.0	15.0	25.1	50.0	-24.9	25.4	35.5	60.0	-24.5
28.616	10.0	0.10	0.0	21.1	31.2	50.0	-18.8	25.1	35.3	60.0	-24.7
Final QP = F	Raw QP -	+ LISN +	CF + TL								
QP Margin =	Final QF	P - QP Lir	nit								
Final Avg = I	Raw Avg	+ LISN +	CF + TL								
Avg Margin =	= Final Av	/g - Avg L	imit								

OXOS Medical, Inc / Wireless Charger

Page: 24 of 26

Neutral Conducted Emissions - Peak Plot

Neutral Conducted Emissions - Tabular Data

Frequency	LISN	CF	TL	Raw Avg	Final Avg	Avg Limit	Avg Margin	Raw QP	Final QP	QP Limit	QP Margin
MHz	dB	dB	dB	dBuV	dBuV	dBuV	dB	dBuV	dBuV	dBuV	dB
0.549	9.8	0.00	0.0	30.6	40.4	46.0	-5.6	31.3	41.1	56.0	-14.9
0.989	9.8	0.00	0.0	30.4	40.2	46	-5.8	30.7	40.5	56.0	-15.5
1.541	9.8	0.00	0.0	31.0	40.8	46	-5.2	31.4	41.2	56.0	-14.8
1.98	9.8	0.00	0.0	30.1	40	46	-6	30.4	40.2	56.0	-15.8
3.962	9.8	0.00	0.0	28.2	38.1	46.0	-7.9	28.9	38.7	56.0	-17.3
4.622	9.8	0.00	0.0	29.2	39.0	46.0	-7.0	30.0	39.9	56.0	-16.1
5.502	9.8	0.10	0.0	28.2	38.1	50.0	-11.9	29.9	39.8	60.0	-20.2
6.162	9.8	0.10	0.0	28.3	38.3	50.0	-11.7	29.4	39.3	60.0	-20.7
27.956	10.1	0.10	0.0	24.0	34.1	50.0	-15.9	26.7	36.8	60.0	-23.2
29.175	10.1	0.10	0.0	15.8	25.9	50.0	-24.1	23.5	33.6	60.0	-26.4
Final QP = F	Raw QP -	+ LISN +	CF + TL								
QP Margin =	Final QF	P - QP Lir	nit								
Final Avg = F	Raw Avg	+ LISN +	CF + TL								
Avg Margin =	Final Av	⁄g - Avg L	imit								

Page: 25 of 26

5 Measurement Uncertainty

Measurement uncertainty is not used to adjust the measurements to determine compliance.

Measurement uncertainty values in the table below comply with CISPR 16-4-2.

Measurement	Frequency Range	U _{cispr} dB	Lab dB
Conducted disturbance at mains port using AMN	(150 kHz to 30 MHz)	3.4	2.5
Radiated disturbance (electric field strength in a SAC)	(30 MHz to 1000 MHz)	6.3	5.0
Radiated disturbance (electric field strength in a FAR)	(1 GHz to 6 GHz)	5.2	4.2
Radiated disturbance (electric field strength in a FAR)	(6 GHz to 18 GHz)	5.5	4.5

SGS North America Inc.

Connectivity & Products

620 Old Peachtree Road NW, Suite 100, Suwanee, GA 30024

Page: 26 of 26

6 Revision History

Revision Level	Description of changes	Revision Date
0	Initial release	27 November 2024
1	 Corrected description of EUT in relation to MC2 system on title page and in section 2.3 Corrected cable length and removed incorrect note in section 2.8 	05 December 2024

Member of the SGS Group (SGS SA)