

Report No.: EED32Q82089902 Page 1 of 35

TEST REPORT

Product : XIAO MG24

Trade mark : Seeed Studio

Model/Type reference : XIAO MG24, XIAO MG24 Sense

Serial Number : N/A

Report Number : EED32Q82089902 FCC ID : Z4T-XIAOMG24

Date of Issue : Jan. 09, 2025

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Keven Tan

Aaron Ma

avon Ma

Prepared for:

Seeed Technology Co., Ltd
9F, G3 Building, TCL International E City, Zhongshanyuan Road, Nanshan
District, Shenzhen

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Approved by:

Report Seal

Reviewed by:

Frazer Li

Jan. 09, 2025

Firazer. Lo

Date:

Check No.: 7826161224

Page 2 of 35 Report No.: EED32Q82089902

Content

1 CONTENT	
2 VERSION	
3 TEST SUMMARY	4
4 GENERAL INFORMATION	5
4.1 CLIENT INFORMATION	5 5 6
4.4 TEST ENVIRONMENT	7 7
5 EQUIPMENT LIST5	
6 TEST RESULTS AND MEASUREMENT DATA	12
6.1 ANTENNA REQUIREMENT	
7 APPENDIX ZIGBEE	31
8 PHOTOGRAPHS OF TEST SETUP	32
9 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	34

Report No.: EED32Q82089902

2 Version

Version No.	Date	6,	Description	
00	Jan. 09, 2025		Original	
	° S		-0	/5
((2)	(S)	(62)	(0,1)

Report No. : EED32Q82089902 Page 4 of 35

3 Test Summary

Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS	
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS	
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS	
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS	
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS	

Remark:

Model No.: XIAO MG24, XIAO MG24 Sense

Name: XIAO MG24 Model: XIAO MG24

Name: XIAO MG24 Sense Model: XIAO MG24 Sense

Only the model XIAO MG24 was tested.

The difference between XIAO MG24 Sense and XIAO MG24 is that there is a microphone.

Difference description

XIAO MG24	Normal	
XIAO MG24 Sense	Welded microphone	

Report No. : EED32Q82089902 Page 5 of 35

4 General Information

4.1 Client Information

Applicant:	Seeed Technology Co., Ltd
Address of Applicant:	9F, G3 Building, TCL International E City, Zhongshanyuan Road, Nanshan District, Shenzhen
Manufacturer:	Seeed Technology Co., Ltd
Address of Manufacturer:	9F, G3 Building, TCL International E City, Zhongshanyuan Road, Nanshan District, Shenzhen
Factory:	Shenzhen Xinxian Technology Co.,Limited
Address of Factory:	F5, Building B17, Hengfeng Industrial City,No. 739 Zhoushi Rd, Baoan District, Shenzhen,Guangdong, P.R.C.

4.2 General Description of EUT

XIAO MG24	<u> </u>				
XIAO MG24	I, XIAO MG24 S	Sense			
XIAO MG24	(0,)		(0,)		(6)
Seeed Stud	io				
☐ Mobile	□ Portable	☐ Fixed L	ocation		
2405MHz~2	2480MHz	(3)		\tag{\tag{\tag{\tag{\tag{\tag{\tag{	
16 Channel	s	(67)		(6,7)	
O-QPSK					
5MHz					
Ceramic An	tenna				
4.97dBi			(47)		(41)
Battery:	DC 5V				
DC 5V					
Dec. 25, 20	24	-0			
Dec. 25, 20	24 to Dec. 30, 2	2024		(41)	
	XIAO MG24 XIAO MG24 Seeed Stud Mobile 2405MHz~2 16 Channel O-QPSK 5MHz Ceramic An 4.97dBi Battery: DC 5V Dec. 25, 20	XIAO MG24 Seeed Studio ☐ Mobile ☐ Portable 2405MHz~2480MHz 16 Channels O-QPSK 5MHz Ceramic Antenna 4.97dBi Battery: DC 5V DC 5V Dec. 25, 2024	XIAO MG24, XIAO MG24 Sense XIAO MG24 Seeed Studio ☐ Mobile ☐ Portable ☐ Fixed L 2405MHz~2480MHz 16 Channels O-QPSK 5MHz Ceramic Antenna 4.97dBi Battery: DC 5V DC 5V Dec. 25, 2024	XIAO MG24, XIAO MG24 Sense XIAO MG24 Seeed Studio ☐ Mobile ☐ Portable ☐ Fixed Location 2405MHz~2480MHz 16 Channels O-QPSK 5MHz Ceramic Antenna 4.97dBi Battery: DC 5V DC 5V Dec. 25, 2024	XIAO MG24, XIAO MG24 Sense XIAO MG24 Seeed Studio ☐ Mobile ☐ Portable ☐ Fixed Location 2405MHz~2480MHz 16 Channels O-QPSK 5MHz Ceramic Antenna 4.97dBi Battery: DC 5V DC 5V Dec. 25, 2024

Report No.: EED32Q82089902 Page 6 of 35

EUT channels and frequencies list:

Channel	Center Frequency (MHz)	Data Rate
1	2405	250kb/s
2	2410	250kb/s
3	2415	250kb/s
4	2420	250kb/s
5	2425	250kb/s
6	2430	250kb/s
7	2435	250kb/s
8	2440	250kb/s
9	2445	250kb/s
10	2450	250kb/s
11	2455	250kb/s
12	2460	250kb/s
13	2465	250kb/s
14	2470	250kb/s
15	2475	250kb/s
16	2480	250kb/s

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH1)	2405MHz
The middle channel (CH8)	2440MHz
The highest channel (CH16)	2480MHz

4.3 Test Configuration

EUT Test Software Settings:	
Test Software:	NcpCommander.exe
EUT Power Grade:	Default (Power level is built-in set parameters and cannot be changed and selected)

4.4 Test Environment

	Operating Environment	:					
	Radiated Spurious Emi	ssions:					
	Temperature:	22~25.0 °C	(4)		(41)		(41)
1	Humidity:	50~55 % RH	0		(0)		6
	Atmospheric Pressure:	1010mbar					
	Conducted Emissions:						
	Temperature:	22~25.0 °C		(3)		(30)	
	Humidity:	50~55 % RH		(0,)		(0,)	
	Atmospheric Pressure:	1010mbar					
	RF Conducted:						
	Temperature:	22~25.0 °C	(3)		(3)		
r)	Humidity:	50~55 % RH	(6,2)		(6,2,2)		(6,7)
	Atmospheric Pressure:	1010mbar					

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
1	/	1		1

4.6 Test Location

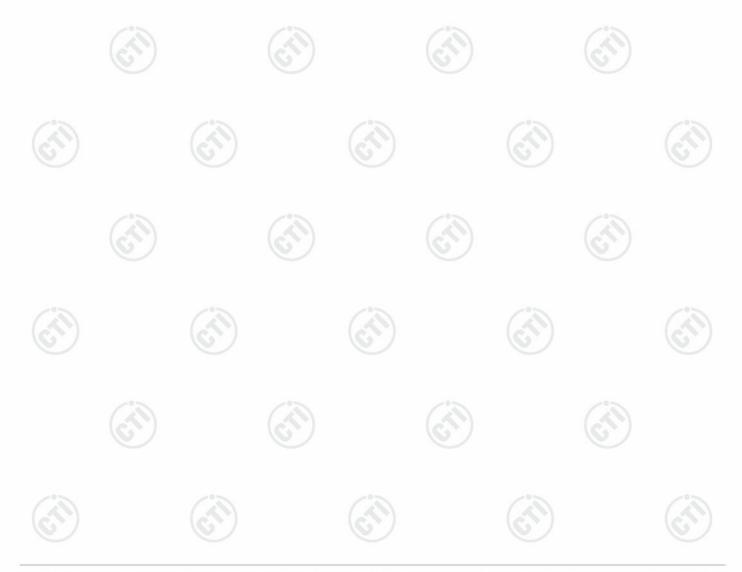
All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164



4.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
		3.3dB (9kHz-30MHz)
3	Dadiated Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
(P)		3.4dB (18GHz-40GHz)
	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No. : EED32Q82089902 Page 9 of 35

5 Equipment List

		RF test	system			
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date	
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-14-2023	12-13-2024	
Signal Generator	Keysight	N5182B	MY53051549	11-30-2024	11-29-2025	
DC Power	Keysight	E3642A	MY56376072	11-30-2024	11-29-2025	
Communication test	R&S	CMW500	169004	03-08-2024	03-07-2025	
RF control unit(power unit)	JS Tonscend	JS0806-2	22G8060592	07-22-2024	07-21-2025	
Wi-Fi 7GHz Band Extendder	JS Tonscend	TS-WF7U2	2206200002	05-31-2024	05-30-2025	
High-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	11-30-2024	11-29-2025	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	05-29-2024	05-28-2025	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	V3.3.20		<u></u>	
Spectrum Analyzer	R&S	FSV3044	101509	01-17-2024	01-16-2025	

705		10%		_°	_05			
	Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date	Cal. Due date (mm-dd-yyyy)			
Receiver	R&S	ESCI	100435	04-18-2024	04-17-2025			
Temperature/ Humidity Indicator	Defu	TH128		04-25-2024	04-24-2025			
LISN	R&S	ENV216	100098	09-19-2024	09-18-2025			
Barometer	changchun	DYM3	1188		(3)			
Test software	Fara	EZ-EMC	EMC-CON 3A1.1					

Report No.: EED32Q82089902 Page 10 of 35

Capacitive voltage probe	Schwarzbeck	CVP 9222C	00124	06-18-2024	06-17-2025
ISN	TESEQ	ISN T800	30297	12/05/2024	12/04/2025

Equipment	Manufacturer Model No.		Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
BM Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025	
Receiver	R&S	ESCI7	100938- 003	09/07/2024	09/06/2025	
Spectrum Analyzer	R&S	FSV40	101200	07/18/2024	07/17/2025	
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/16/2024	04/15/2025	
Microwave Preamplifier	Tonscend	EMC051845SE	980380	12/05/2024	12/04/2025	
Horn Antenna	A.H.SYSTEMS	SAS-574	374	07/02/2023	07/01/2026	
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D- 1869	04/16/2024	04/15/2025	
Preamplifier	Agilent	11909A	12-1	03/22/2024	03/21/2025	
Preamplifier	CD	PAP-1840-60	6041.6042	06/19/2024	06/18/2025	
Test software	Fara	EZ-EMC	EMEC- 3A1-Pre	- (<u> </u>	
Cable line	Fulai(7M)	SF106	5219/6A	05/22/2022	05/21/2025	
Cable line	Fulai(6M)	SF106	5220/6A	05/22/2022	05/21/2025	
Cable line	Fulai(3M)	SF106	5216/6A	05/22/2022	05/21/2025	
Cable line	Fulai(3M)	SF106	5217/6A	05/22/2022	05/21/2025	

Report No.: EED32Q82089902 Page 11 of 35

/ 2/11		3M full-anechoid	Chamber	/ /	97:
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Fully Anechoic Chamber	TDK	FAC-3	/	01-09-2024	01-08-2027
Receiver	Keysight	N9038A	MY57290136	01-09-2024	01-08-2025
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-29-2024	01-28-2025
Spectrum Analyzer	Keysight	N9030B	MY57140871	01-23-2024	01-22-2025
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2024	04-27-2025
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-16-2024	04-15-2025
Horn Antenna	ETS-LINDGREN	3117	57407	07-03-2024	07-02-2025
Preamplifier	EMCI	EMC001330	980563	03-08-2024	03-07-2025
Preamplifier	Tonscend	TAP-011858	AP21B806112	07-18-2024	07-17-2025
Preamplifier	Tonscend	EMC051845SE	980380	12-05-2024	12-04-2025
Temperature/	biaozhi	GM1360	EE1186631	04-07-2024	04-06-2025
RSE Automatic test software	JS Tonscend	JS36-RSE	V4.0.0.0	<u>:</u>	-(3
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	01-09-2024	01-08-2027
Cable line	Times	EMC104-NMNM-1000	SN160710	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	01-09-2024	01-08-2027
Cable line	Times	HF160-KMKM-3.00M	393493-0001	01-09-2024	01-08-2027

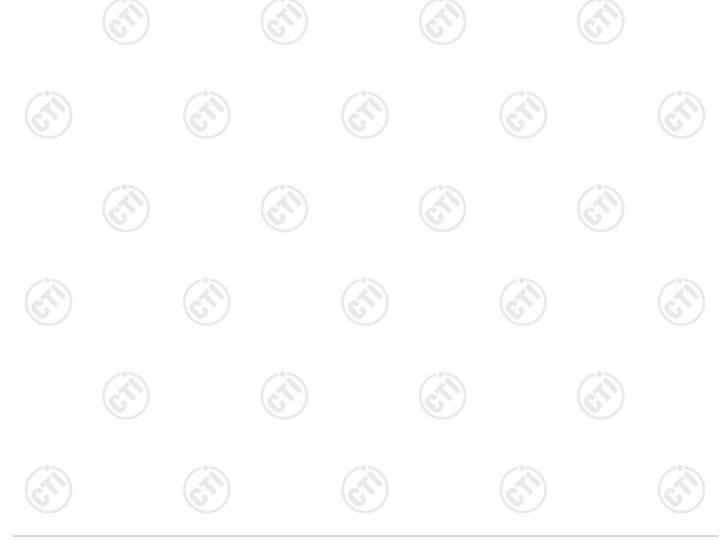
Report No.: EED32Q82089902 Page 12 of 35

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna: Please see Internal photos

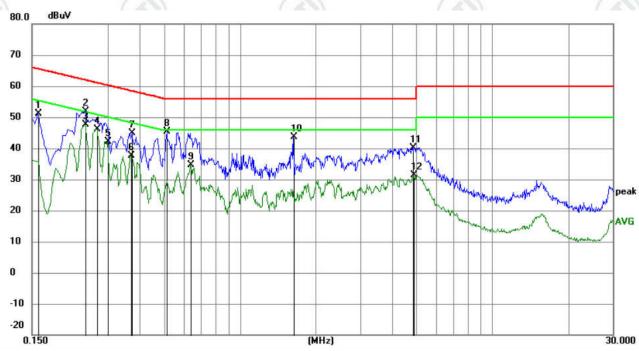
The antenna is Ceramic antenna. The best case gain of the antenna is 4.97dBi.

Report No.: EED32Q82089902 Page 13 of 35

6.2 Conducted Emissions

6.2	Conducted Emis	ssions							
	Test Requirement:	47 CFR Part 15C Section 15	.207	(0.)					
	Test Method:	ANSI C63.10: 2013							
	Test Frequency Range:	150kHz to 30MHz							
3	Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto							
	Limit:	(35)	Limit (dBuV)					
		Frequency range (MHz)	Quasi-peak	Average					
		0.15-0.5	66 to 56*	56 to 46*					
		0.5-5	56	46					
		5-30	60	50					
		* Decreases with the logarith	10.0						
	Test Setup:		•						
		AC Mains	AE LISN2 → AC M	Test Receiver					
	Test Procedure:	1) The mains terminal disturbance voltage test was conducted in a shielded							
		room. 2) The EUT was connected Impedance Stabilization In impedance. The power connected to a second LI plane in the same way multiple socket outlet strip single LISN provided the 3) The tabletop EUT was placed on the horizontal ground reference plane. A	d to AC power source Network) which provide cables of all other SN 2, which was bonde as the LISN 1 for the was used to connect rating of the LISN was aced upon a non-meta And for floor-standing a	through a LISN 1 (Lins a 50Ω/50μH + 5Ω line a units of the EUT wered to the ground reference unit being measured. In the exceeded. Allic table 0.8m above the trangement, the EUT was					
		4) The test was performed we the EUT shall be 0.4 me vertical ground reference reference plane. The LIS unit under test and be mounted on top of the ground associated equipments. In order to find the maximum and all of the interface care.	rith a vertical ground refrom the vertical groupe plane was bonded N 1 was placed 0.8 m anded to a ground reference plane. The LISN 1 and the EUT. It was at least 0.8 m from the mission, the relations.	ference plane. The rear of und reference plane. The to the horizontal groun from the boundary of the ference plane for LISN this distance was betwee All other units of the EU m the LISN 2.					
		ANSI C63.10: 2013 on co							
	Test Mode:	All modes were tested, only t	he worst case mode a	was recorded in the					

report.



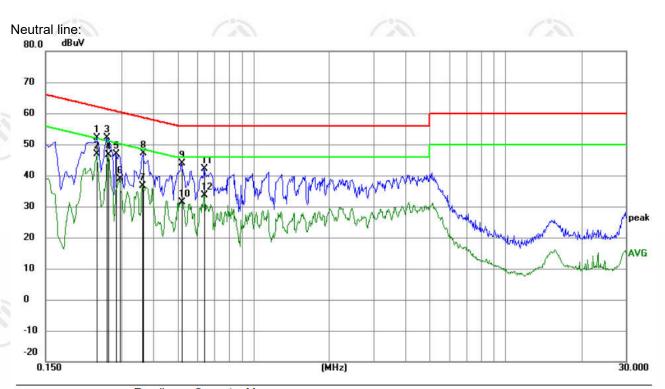
Report No.: EED32Q82089902 Page 14 of 35

Test Results:	Pass
---------------	------

Measurement Data

Live line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1590	40.89	10.27	51.16	65.52	-14.36	QP	
2		0.2445	41.73	10.17	51.90	61.94	-10.04	QP	
3	*	0.2445	37.49	10.17	47.66	51.94	-4.28	AVG	
4		0.2714	36.06	10.15	46.21	51.07	-4.86	AVG	
5		0.2987	31.89	10.13	42.02	50.28	-8.26	AVG	
6		0.3704	27.51	10.10	37.61	48.49	-10.88	AVG	
7		0.3750	34.68	10.10	44.78	58.39	-13.61	QP	
8		0.5144	35.22	10.08	45.30	56.00	-10.70	QP	
9		0.6405	24.40	10.11	34.51	46.00	-11.49	AVG	
10		1.6350	33.40	10.17	43.57	56.00	-12.43	QP	
11		4.8480	30.02	10.07	40.09	56.00	-15.91	QP	
12		4.8885	21.40	10.06	31.46	46.00	-14.54	AVG	


Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2400	41.84	10.18	52.02	62.10	-10.08	QP	
2		0.2400	36.60	10.18	46.78	52.10	-5.32	AVG	
3		0.2625	41.94	10.16	52.10	61.35	-9.25	QP	
4	*	0.2670	36.54	10.16	46.70	51.21	-4.51	AVG	
5		0.2850	36.85	10.14	46.99	60.67	-13.68	QP	
6		0.2940	28.78	10.13	38.91	50.41	-11.50	AVG	
7		0.3615	26.58	10.11	36.69	48.69	-12.00	AVG	
8		0.3660	37.04	10.10	47.14	58.59	-11.45	QP	
9		0.5190	33.72	10.08	43.80	56.00	-12.20	QP	
10		0.5190	21.39	10.08	31.47	46.00	-14.53	AVG	
11		0.6405	32.12	10.11	42.23	56.00	-13.77	QP	
12		0.6405	23.43	10.11	33.54	46.00	-12.46	AVG	
410000			and the second second	100-00-00	A2 4 5 10 12 12 12 12 12 12 12 12 12 12 12 12 12		Version (192-2)	The state of the s	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

6.3 Maximum Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10 2013	
Test Setup:		(3)
	Control Computer Power Supply Power Pot Attenuator Table RF test System Instrument	
	Remark: Offset=Cable loss+ attenuation factor.	
Test Procedure:	 a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 	(C)
Limit:	30dBm	_°>
Test Mode:	Refer to clause 5.3	(2)
Test Results:	Refer to Appendix Zigbee	



6.4 DTS Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)					
Test Method:	ANSI C63.10 2013					
Test Setup:						
	Control Control Control Power Supply Power Supply Table RF test System System Instrument					
	Remark: Offset=Cable loss+ attenuation factor.					
Test Procedure:	a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.					
Limit:	≥ 500 kHz					
Test Mode:	Refer to clause 5.3					
Test Results:	Refer to Appendix Zigbee					

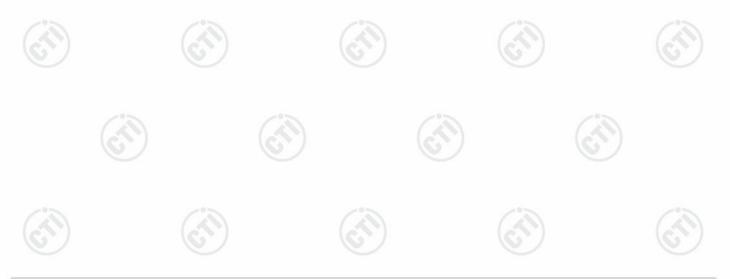
6.5 Maximum Power Spectral Density

Test Requirement:	47 CFR Part 15C Section 15.247 (e)						
Test Method:	ANSI C63.10 2013						
Test Setup:							
	Control Compositor Power Supply Power Poor TEMPERATURE CABRIET Table	RF test System Instrument					
	Remark: Offset=Cable loss+ attenua	ation factor.					
Test Procedure:	a) Set analyzer center frequency to DTS channel center frequency. b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz ≤ RBW ≤ 100 kHz. d) Set the VBW ≥ [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude level within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.						
Limit:	≤8.00dBm/3kHz						
Test Mode:	Refer to clause 5.3	405					
Test Results:	Refer to Appendix Zigbee						



6.6 Band Edge measurements and Conducted Spurious Emission

47 OFD D. 1450 O. F. 45 047 (1)
47 CFR Part 15C Section 15.247 (d)
ANSI C63.10 2013
RF test System Fower Supply RF test System Instrument Remark: Offset=Cable loss+ attenuation factor.
a) Set RBW =100KHz. b) Set VBW = 300KHz. c) Sweep time = auto couple. d) Detector = peak. e) Trace mode = max hold. f) Allow trace to fully stabilize. g) Use peak marker function to determine the peak amplitude level.
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Refer to clause 5.3
Refer to Appendix Zigbee



6.7 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Sec	tion 1	5.209 and 1	5.205		160	
Test Method:	ANSI C63.10 2013						
Test Site:	Measurement Distance	e: 3n	n (Semi-Ane	choic Cha	mbe	r)	-07
Receiver Setup:	Frequency	Detector	RB	W	VBW	Remark	
	0.009MHz-0.090M	Hz	Peak	10k	Hz	30kHz	Peak
	0.009MHz-0.090M	Hz	Average	10k	Hz	30kHz	Average
	0.090MHz-0.110M	Hz	Quasi-pea	ak 10k	Hz	30kHz	Quasi-peak
	0.110MHz-0.490M	Hz	Peak	10k	Hz	30kHz	Peak
	0.110MHz-0.490M	Hz	Average	10k	Hz	30kHz	Average
	0.490MHz -30MH	lz	Quasi-pea	ak 10k	Hz	30kHz	Quasi-peak
	30MHz-1GHz		Quasi-pea	ak 100	kHz	300kHz	Quasi-peak
	Above 1GHz		Peak	1M	Hz	3MHz	Peak
	Above IGHZ		Peak	1M	Hz	10kHz	Average
Limit:	Frequency		d strength ovolt/meter)	Limit (dBuV/m)	R	emark	Measurement distance (m)
	0.009MHz-0.490MHz	240	00/F(kHz)	-	- /0		300
	0.490MHz-1.705MHz	240	00/F(kHz)	-	- (3		30
	1.705MHz-30MHz		30	-	- 6		30
	30MHz-88MHz		100	40.0	Qua	asi-peak	3
	88MHz-216MHz		150	43.5	Qua	asi-peak	3
	216MHz-960MHz		200	46.0	Qua	asi-peak	3
	960MHz-1GHz	\cup	500	54.0	Qua	asi-peak	3
	Above 1GHz		500	54.0	A۱	verage	3
	Note: 15.35(b), frequency emissions limit applicable to the peak emission level ra	is 20d equip	IB above the oment under	e maximu test. This	m pe	rmitted av	erage emission

Report No.: EED32Q82089902 Page 21 of 35

Antenna Tower

Antenna Tower

Ground Referece Plane

Test Receiver

Test Receiver

Angeler

Controller

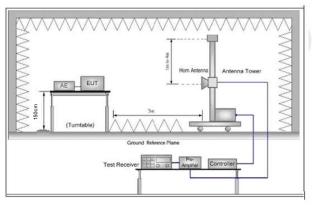


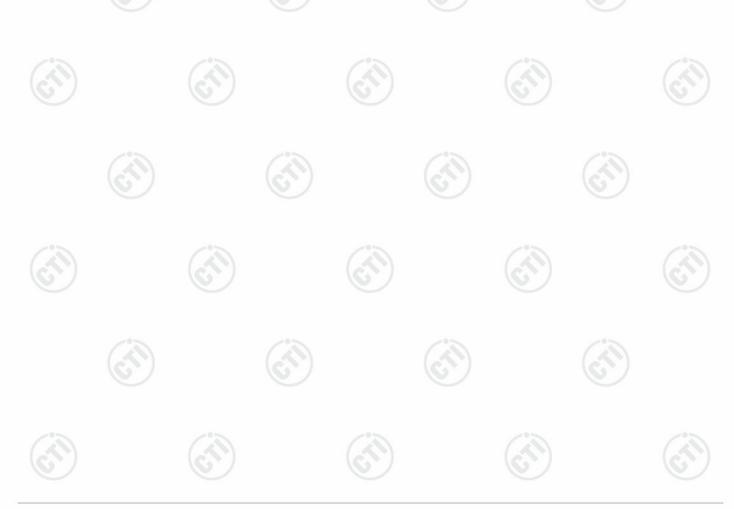
Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

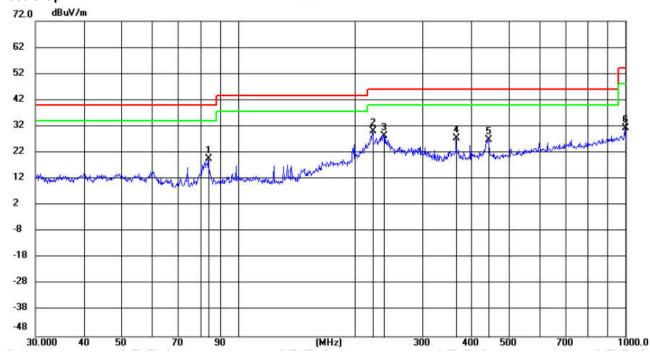
- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:


Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both

Test Results:	Pass
Test Mode:	Refer to clause 5.3
	i. Repeat above procedures until all frequencies measured was complete.
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	horizontal and vertical polarizations of the antenna are set to make the measurement.



Report No.: EED32Q82089902 Page 23 of 35

Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case highest channel of Zigbee was recorded in the report.

Horizontal:

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	83.8890	9.38	10.14	19.52	40.00	-20.48	QP	200	343	
*	222.7939	16.87	13.24	30.11	46.00	-15.89	QP	100	73	
	237.6009	14.69	13.80	28.49	46.00	-17.51	QP	200	280	
	365.9879	10.10	17.40	27.50	46.00	-18.50	QP	200	165	
)	442.9058	7.93	18.81	26.74	46.00	-19.26	QP	200	238	
	997.8982	4.85	26.49	31.34	54.00	-22.66	QP	200	80	
	*	MHz 83.8890	Mk. Freq. Level MHz dBuV 83.8890 9.38 * 222.7939 16.87 237.6009 14.69 365.9879 10.10 442.9058 7.93	Mk. Freq. Level Factor MHz dBuV dB/m 83.8890 9.38 10.14 * 222.7939 16.87 13.24 237.6009 14.69 13.80 365.9879 10.10 17.40 442.9058 7.93 18.81	Mk. Freq. Level Factor ment MHz dBuV dB/m dBuV/m 83.8890 9.38 10.14 19.52 * 222.7939 16.87 13.24 30.11 237.6009 14.69 13.80 28.49 365.9879 10.10 17.40 27.50 442.9058 7.93 18.81 26.74	Mk. Freq. Level Factor ment Limit MHz dBuV dBuV dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m 40.00 40.00 19.52 40.00 40.00 13.24 30.11 46.00 46.00 237.6009 14.69 13.80 28.49 46.00 46.00 442.9058 7.93 18.81 26.74 46.00	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dBuV dBuV/m dBuV/m dBuV/m dBuV/m dB 83.8890 9.38 10.14 19.52 40.00 -20.48 * 222.7939 16.87 13.24 30.11 46.00 -15.89 237.6009 14.69 13.80 28.49 46.00 -17.51 365.9879 10.10 17.40 27.50 46.00 -18.50 442.9058 7.93 18.81 26.74 46.00 -19.26	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dBuV dBuV/m dBuV/m dBuV/m dB Detector 83.8890 9.38 10.14 19.52 40.00 -20.48 QP * 222.7939 16.87 13.24 30.11 46.00 -15.89 QP 237.6009 14.69 13.80 28.49 46.00 -17.51 QP 365.9879 10.10 17.40 27.50 46.00 -18.50 QP 442.9058 7.93 18.81 26.74 46.00 -19.26 QP	Mk. Freq. Level Factor ment Limit Margin Height MHz dBuV dBlw dBlw dBlw/m dBlw/	Mk. Freq. Level Factor ment Limit Margin Height Degree MHz dBuV dBuV dBuV/m dBuV/m dB Detector cm degree 83.8890 9.38 10.14 19.52 40.00 -20.48 QP 200 343 * 222.7939 16.87 13.24 30.11 46.00 -15.89 QP 100 73 237.6009 14.69 13.80 28.49 46.00 -17.51 QP 200 280 365.9879 10.10 17.40 27.50 46.00 -18.50 QP 200 165 442.9058 7.93 18.81 26.74 46.00 -19.26 QP 200 238



Report No.: EED32Q82089902 Page 24 of 35

Vertical:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		49.5241	6.48	13.54	20.02	40.00	-19.98	QP	200	331	
2		123.7418	9.80	11.00	20.80	43.50	-22.70	QP	100	345	
3		199.8454	14.52	12.37	26.89	43.50	-16.61	QP	200	166	
4		222.7549	14.37	13.24	27.61	46.00	-18.39	QP	100	112	
5	*	441.6651	11.62	18.79	30.41	46.00	-15.59	QP	100	186	
6		997.7233	6.95	26.49	33.44	54.00	-20.56	QP	200	124	

Radiated Spurious Emission above 1GHz:

Mode) :		Zigbee GFSK Transmitting			Channel:		2405 MHz	
NO	Freq. [MHz]	Factor	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1154.8103	10.25	38.08	48.33	74.00	25.67	Pass	Н	PK
2	1935.6624	16.62	35.21	51.83	74.00	22.17	Pass	Н	PK
3	4501.1001	-8.44	48.85	40.41	74.00	33.59	Pass	Н	PK
4	8293.3529	-3.02	46.67	43.65	74.00	30.35	Pass	Н	PK
5	13003.6669	8.40	43.75	52.15	74.00	21.85	Pass	Н	PK
6	15893.8596	13.48	38.98	52.46	74.00	21.54	Pass	Н	PK
7	1388.0259	10.51	39.13	49.64	74.00	24.36	Pass	V	PK
8	1846.4564	15.23	37.10	52.33	74.00	21.67	Pass	V	PK
9	4515.101	-8.99	50.53	41.54	74.00	32.46	Pass	V	PK
10	7830.322	-3.04	46.88	43.84	74.00	30.16	Pass	V	PK
11	11270.5514	4.64	45.96	50.60	74.00	23.40	Pass	V	PK
12	15911.8608	12.80	39.54	52.34	74.00	21.66	Pass	V	PK

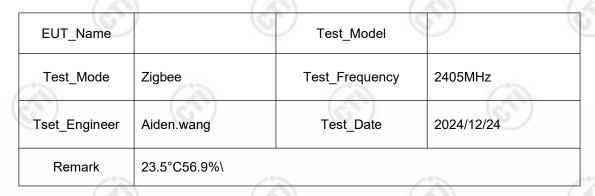
Mod	le:		Zigbee GFSK	Transmitting		Channel:		2440 MHz	2
NO	Freq. [MHz]	Factor	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1397.0931	10.60	38.50	49.10	74.00	24.90	Pass	Н	PK
2	1948.7299	17.04	35.61	52.65	74.00	21.35	Pass	Н	PK
3	4501.1001	-8.44	49.73	41.29	74.00	32.71	Pass	Н	PK
4	7758.3172	-3.18	45.99	42.81	74.00	31.19	Pass	Н	PK
5	12965.6644	7.57	43.81	51.38	74.00	22.62	Pass	Н	PK
6	16416.8945	12.81	39.61	52.42	74.00	21.58	Pass	Н	PK
7	1137.4758	10.00	38.29	48.29	74.00	25.71	Pass	V	PK
8	1939.396	16.74	35.55	52.29	74.00	21.71	Pass	V	PK
9	4302.0868	-9.82	50.60	40.78	74.00	33.22	Pass	V	PK
10	6807.2538	-4.93	47.36	42.43	74.00	31.57	Pass	V	PK
11	11944.5963	5.63	44.60	50.23	74.00	23.77	Pass	V	PK
12	15885.8591	13.18	39.23	52.41	74.00	21.59	Pass	V	PK

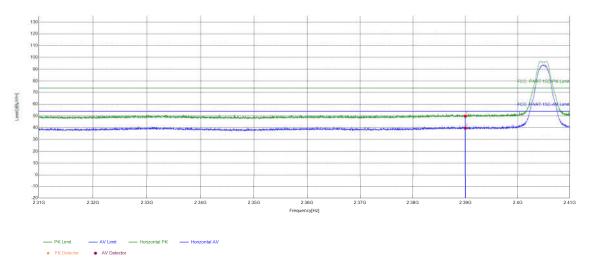
Report No.: EED32Q82089902 Page 26 of 35

	100		-00		20%			0	
Mode	:		Zigbee GFSK	Transmitting		Channel:		2480 MHz	2
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1134.409	9.89	38.58	48.47	74.00	25.53	Pass	Н	PK
2	1945.3964	16.93	35.62	52.55	74.00	21.45	Pass	Н	PK
3	4505.1003	-8.60	50.36	41.76	74.00	32.24	Pass	Н	PK
4	7342.2895	-4.30	47.29	42.99	74.00	31.01	Pass	Н	PK
5	11946.5964	5.72	44.91	50.63	74.00	23.37	Pass	Н	PK
6	15901.8601	13.56	38.99	52.55	74.00	21.45	Pass	Н	PK
7	1126.2751	9.63	38.55	48.18	74.00	25.82	Pass	V	PK
8	2049.67	15.48	36.39	51.87	74.00	22.13	Pass	V	PK
9	4868.1245	-10.04	49.93	39.89	74.00	34.11	Pass	V	PK
10	9790.4527	3.11	44.86	47.97	74.00	26.03	Pass	V	PK
11	12979.6653	8.02	43.60	51.62	74.00	22.38	Pass	V	PK
12	15894.8597	13.52	38.47	51.99	74.00	22.01	Pass	V	PK

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

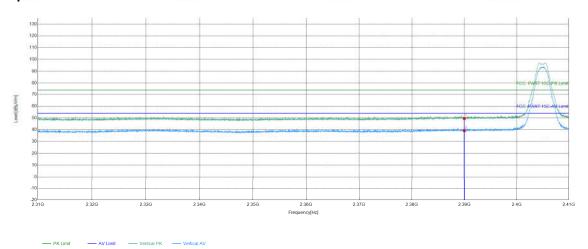


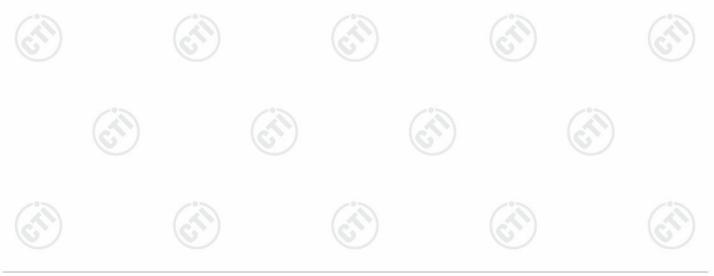


Restricted bands:

Test plot as follows:

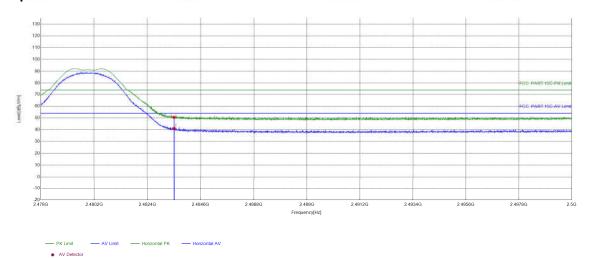
	Suspecte	d List								
10	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
6	1	2390	15.31	34.45	49.76	74.00	24.24	PASS	Horizontal	PK
	2	2390	15.31	24.38	39.69	54.00	14.31	PASS	Horizontal	AV





Page 28 of 35 Report No.: EED32Q82089902

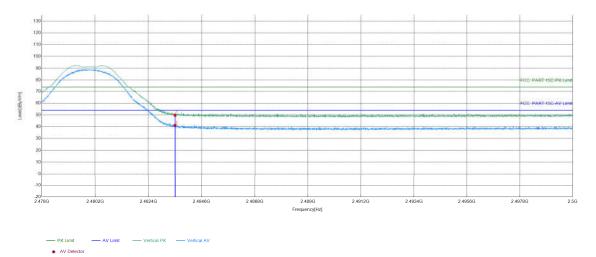
~ /	102	100	102
EUT_Name		Test_Model	
Test_Mode	Zigbee	Test_Frequency	2405MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/24
Remark	23.5°C56.9%\	Ci)	


Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2390	15.31	34.30	49.61	74.00	24.39	PASS	Vertical	PK	
2	2390	15.31	23.92	39.23	54.00	14.77	PASS	Vertical	AV	

Page 29 of 35 Report No.: EED32Q82089902

	(6.7)	(6.7)	162
EUT_Name		Test_Model	
Test_Mode	Zigbee	Test_Frequency	2480MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/24
Remark	23.5°C56.9%\		60

Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	15.16	35.39	50.55	74.00	23.45	PASS	Horizontal	PK
2	2483.5	15.16	25.82	40.98	54.00	13.02	PASS	Horizontal	AV



Page 30 of 35 Report No.: EED32Q82089902

EUT_Name		Test_Model	
Test_Mode	Zigbee	Test_Frequency	2480MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/24
Remark	23.5°C56.9%\	Ci)	

Test Graph

3	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	15.16	34.60	49.76	74.00	24.24	PASS	Vertical	PK
	2	2483.5	15.16	25.93	41.09	54.00	12.91	PASS	Vertical	AV

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Page 31 of 35

Appendix Zigbee

Refer to Appendix: Zigbee of EED32Q82089902

9 PHOTOGRAPHS OF EUT Constructional Details

声明

Statement

1. 检测报告无批准人签字、"专用章"及报告骑缝章无效;

This report is considered invalid without approved signature, special seal and the seal on the perforation;

- 2. 报告中公司名称及地址、样品及样品信息由申请者提供,申请者应对其真实性负责,CTI 不负责验证其真实性; The Company Name shown on Report and Address, the sample(s) and sample information was/were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified;
- 3. 本报告检测结果仅对受测样品负责;

The result(s) shown in this report refer(s) only to the sample(s) tested;

- 4. 除非另有说明,报告参照 ILAC-G8:09/2019/CNAS-GL015: 2022 使用简单接受判定规则进行符合性判定; Unless otherwise stated,the decision rule for conformity reporting is based on Binary Statement for Simple Acceptance Rule stated in ILAC-G8:09/2019/CNAS-GL015:2022;
- 5. 未经 CTI 书面同意,不得部分复制本报告;

Without written approval of CTI, this report can't be reproduced except in full;

6. 如检测报告中的英文内容与中文内容有差异,以中文为准。

In case of any discrepancy between the English version and Chinese version of the testing reports (if generated), the Chinese version shall prevail.

*** 报告结束 ***

End of Report ***