

RADIO TEST REPORT FCC ID: 055653522

Product: 6.5 inch 4G Smart Phone Trade Mark: LOGIC, iSWAG, UNONU Model No.: L65B Family Model: ULTRA, FOX Report No.: STR220815001001E Issue Date: Sep 21. 2022

Prepared for

SWAGTEK

10205 NW 19th Street STE101Miami, FL 33172

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

I

TABLE OF CONTENTS

1 TF	1 TEST RESULT CERTIFICATION				
2 SU	JMMARY OF TEST RESULTS	4			
3 FA	CILITIES AND ACCREDITATIONS	5			
3.1	FACILITIES				
3.2 3.3	LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY				
	ENERAL DESCRIPTION OF EUT				
	ESCRIPTION OF TEST MODES				
6 SE	TUP OF EQUIPMENT UNDER TEST	9			
6.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM				
6.2	SUPPORT EQUIPMENT				
6.3	EQUIPMENTS LIST FOR ALL TEST ITEMS				
7 TE	EST REQUIREMENTS				
7.1	CONDUCTED EMISSIONS TEST				
7.2	RADIATED SPURIOUS EMISSION				
7.3 7.4	NUMBER OF HOPPING CHANNEL HOPPING CHANNEL SEPARATION MEASUREMENT				
7.5	AVERAGE TIME OF OCCUPANCY (DWELL TIME)				
7.6	20DB BANDWIDTH TEST				
7.7	PEAK OUTPUT POWER				
7.8	CONDUCTED BAND EDGE MEASUREMENT				
7.9	SPURIOUS RF CONDUCTED EMISSION				
7.10	ANTENNA APPLICATION				
7.11	FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS				
8 TE	EST RESULTS	35			
8.1	DWELL TIME				
8.2	MAXIMUM CONDUCTED OUTPUT POWER	40			
8.3	OCCUPIED CHANNEL BANDWIDTH				
8.4	CARRIER FREQUENCIES SEPARATION				
8.5	NUMBER OF HOPPING CHANNEL				
8.6	BAND EDGE				
8.7	CONDUCTED RF SPURIOUS EMISSION	74			

1 TEST RESULT CERTIFICATION

Applicant's name:	SWAGTEK
Address:	10205 NW 19th Street STE101Miami, FL 33172
Manufacturer's Name:	SWAGTEK
Address:	10205 NW 19th Street STE101Miami, FL 33172
Product description	
Product name:	6.5 inch 4G Smart Phone
Model and/or type reference:	L65B
Family Model:	ULTRA, FOX
Sample number	T220815001R002

Measurement Procedure Used:

APPLICABLE STANDARDS

STANDARD/ TEST PROCEDURE	
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013	Complied

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	Aug 16, 2022 ~ Sep 20, 2022
Testing Engineer	:	De Men Lin
		(Allen Liu)
Authorized Signatory	:	Alese
0,		(Alex Li)

	FCC Part15 (15.247), Subpart	С	
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(a)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment	6.5 inch 4G Smart Phone	
Trade Mark	LOGIC, iSWAG, UNONU	
FCC ID	O55653522	
Model No.	L65B	
Family Model	ULTRA, FOX	
Model Difference	All models are the same circuit and RF module, except the Model name.	
Operating Frequency	2402MHz~2480MHz	
Modulation	GFSK, π/4-DQPSK, 8-DPSK	
Number of Channels	79 Channels	
Antenna Type	PIFA Antenna	
Antenna Gain	-0.13 dBi	
Adapter	Model: XS12-050200U Input: AC100-240V, 50/60Hz 0.5A Output: DC 5.0V2000mAh	
Battery	DC 3.85V, 4000mAh	
Power supply	DC 3.85V from battery or DC 5V from Adapter.	
HW Version	FS301-MB-V5.1	
SW Version	LOGIC_L65B_GENERIC	

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Certificate #4298.01			
Revision History			
Report No.	Version	Description	Issued Date
STR220815001001E	Rev.01	Initial issue of report	Sep 21, 2022
			1
			1

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

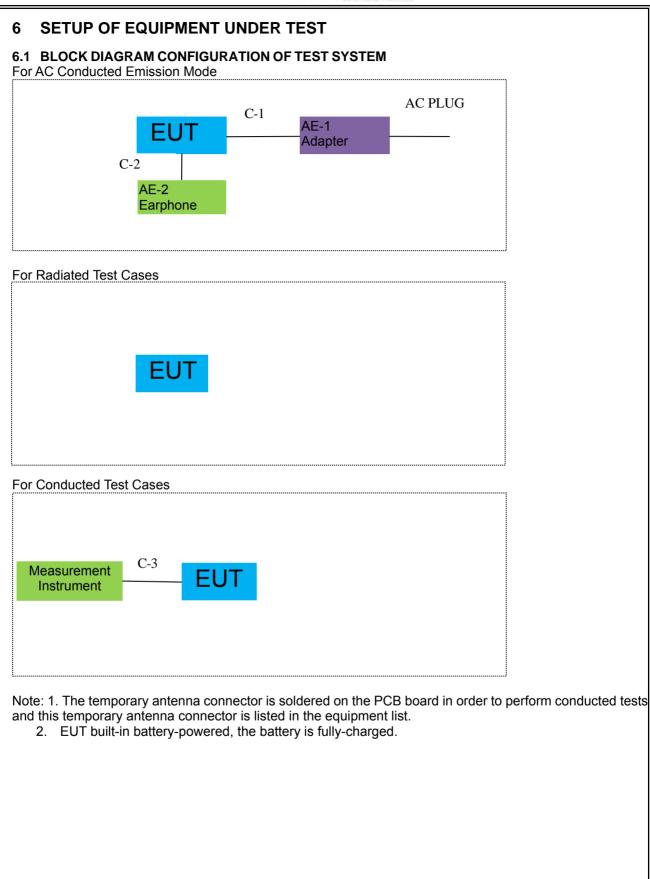
Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission			
Final Test Mode Description			
Mode 1 normal link mode			
Note AO according Operational Englishing on a testa day day and income starts and a second			

Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	normal link mode	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	


Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases		
Final Test Mode Description		
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	
Mode 5	Hopping mode	

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	XS12-050200U	N/A	Peripherals
AE-2 Earphone		N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	NO	NO	1.0m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

		estequipment	-			-	
Item	Item Kind of Equipment Manufact		Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2022.04.06	2023.04.05	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2022.04.06	2023.04.05	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2022.04.06	2023.04.05	1 year
4	Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2023.03.30	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2021.11.07	2022.11.06	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2022.06.17	2023.06.16	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2021.11.07	2022.11.06	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN O84	2021.11.07	2022.11.06	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2020.05.11	2023.05.10	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2020.05.11	2023.05.10	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2021.11.07	2022.11.06	1 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2022.04.06	2023.04.05	1 year
2	LISN	R&S	ENV216	101313	2022.04.06	2023.04.05	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2022.04.06	2023.04.05	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

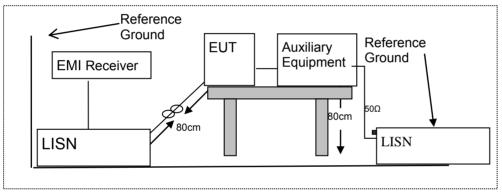
Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)


7.1.2 Conformance Limit

	Conducted	Emission Limit
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56*	56-46*
0.5-5.0	56	46
5.0-30.0	60	50

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

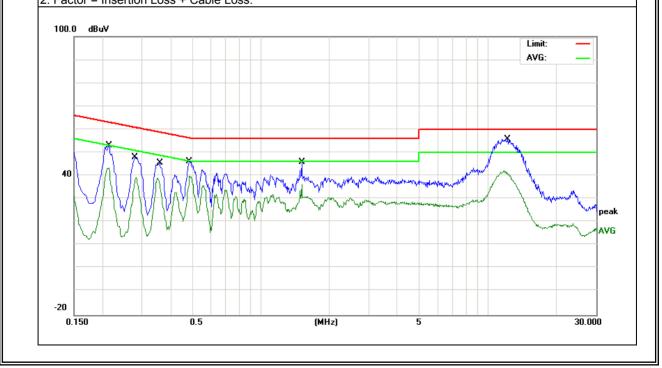
7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable
 may be terminated, if required, using the correct terminating impedance. The overall length shall not
 exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.5 Test Results

Pass


7.1.6 Test Results

EUT:	6.5 inch 4G Smart Phone	Model Name :	L65B
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	- Remark
0.2139	43.51	9.62	53.13	63.05	-9.92	QP
0.2139	33.40	9.62	43.02	53.05	-10.03	AVG
0.2779	38.45	9.64	48.09	60.88	-12.79	QP
0.2779	28.72	9.64	38.36	50.88	-12.52	AVG
0.3578	35.81	9.64	45.45	58.78	-13.33	QP
0.3578	25.69	9.64	35.33	48.78	-13.45	AVG
0.4858	36.48	9.66	46.14	56.24	-10.10	QP
0.4858	26.68	9.66	36.34	46.24	-9.90	AVG
1.5140	36.15	9.67	45.82	56.00	-10.18	QP
1.5140	25.98	9.67	35.65	46.00	-10.35	AVG
12.2179	45.67	10.00	55.67	60.00	-4.33	QP
12.2179	35.15	10.00	45.15	50.00	-4.85	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.


EUT:	6.5 inch 4G Smart Phone	Model Name :	L65B
Temperature:	25 ℃	Relative Humidity:	62%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demort
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.2058	40.73	9.63	50.36	63.37	-13.01	QP
0.2058	30.49	9.63	40.12	53.37	-13.25	AVG
0.2818	34.38	9.63	44.01	60.76	-16.75	QP
0.2818	24.39	9.63	34.02	50.76	-16.74	AVG
0.4259	34.69	9.67	44.36	57.33	-12.97	QP
0.4259	24.69	9.67	34.36	47.33	-12.97	AVG
1.5140	29.41	9.67	39.08	56.00	-16.92	QP
1.5140	19.58	9.67	29.25	46.00	-16.75	AVG
2.2058	33.58	9.67	43.25	56.00	-12.75	QP
2.2058	23.35	9.67	33.02	46.00	-12.98	AVG
11.6979	46.84	9.94	56.78	60.00	-3.22	QP
11.6979	35.39	9.94	45.33	50.00	-4.67	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 00 1 dit10.20	According to FOOT alt 15.200, Restricted bands							
MHz	MHz	MHz	GHz					
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15					
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46					
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75					
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5					
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2					
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5					
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7					
6.26775-6.26825	123-138	2200-2300	14.47-14.5					
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2					
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4					
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12					
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0					
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8					
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5					
12.57675-12.57725	322-335.4	3600-4400	(2)					
13.36-13.41								

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Froguopov(MHz)	Class B (dBuV/m) (at 3M)					
Frequency(MHz)	PEAK	AVERAGE				
Above 1000	74	54				

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

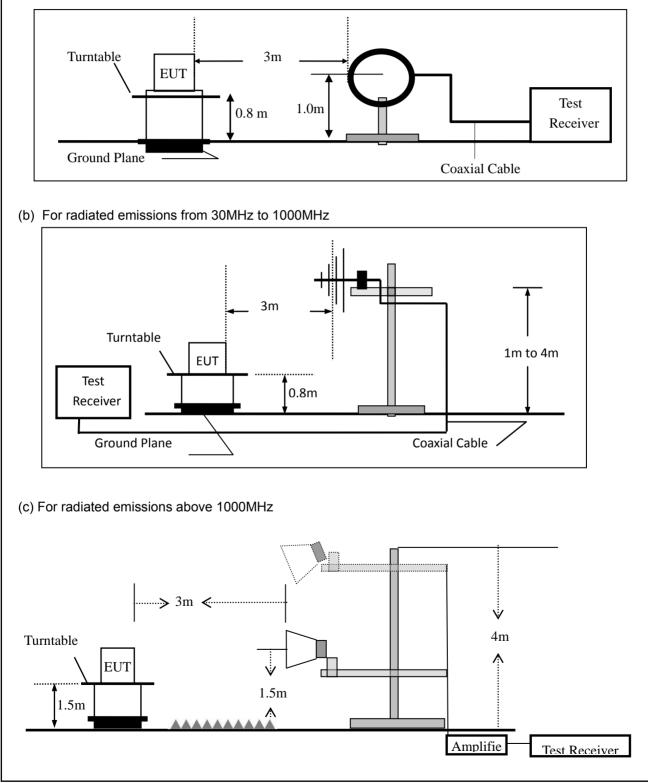
Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:								
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth					
30 to 1000	QP	120 kHz	300 kHz					
Abaua 1000	Peak	1 MHz	1 MHz					
Above 1000	Average	1 MHz	1 MHz					

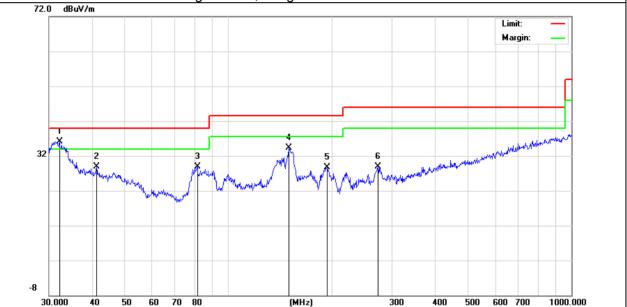
Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

EUT:	6.5 inch 4G Smart Phone	Model No.:	L65B
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3	m(dBuV/m)	Over(dB) PK AV		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.


Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:

EUT:	6.5 inch 4G Smart Phone	Model Name :	L65B
Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Test Mode:	Mode 3 GFSK
Test Voltage :	DC 3.85V		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark	
(H/V)	(MHz)	(dBuV)	(dBuV) (dB) ((dBuV/m)	(dB)		
V	32.1795	11.48	24.63	36.11	40.00	-3.89	QP	
V	41.2764	9.02	19.81	28.83	40.00	-11.17	QP	
V	81.2117	13.11	15.72	28.83	40.00	-11.17	QP	
V	150.0108	15.42	18.80	34.22	43.50	-9.28	QP	
V	194.4534	12.26	16.47	28.73	43.50	-14.77	QP	
V	273.2341	9.46	19.42	28.88	46.00	-17.12	QP	

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

NTEK 北测[®]

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	31.1798	6.28	25.65	31.93	40.00	-8.07	QP
Н	77.8653	12.92	15.25	28.17	40.00	-11.83	QP
Н	152.1297	9.91	18.36	28.27	43.50	-15.23	QP
Н	272.2776	9.15	19.41	28.56	46.00	-17.44	QP
Н	397.6333	7.33	23.30	30.63	46.00	-15.37	QP
Н	906.4823	8.79	30.37	39.16	46.00	-6.84	QP
						Limit: Margin:	_
							_
_							
							<u> </u>
							6
1						Marchant	white
32	ξ	2	3	4	5 X to south Math	Monthelleward	_
	and a second and a second	Muh un unh	menonshill	money mouth marker has	5 Windowskiller Jonander John		
	The second second	WANNAM WITH		COMPANY OF COMPANY			
-							
-8							

	Spurious E	Emission A	bove 1GH	Hz (1GHz 1	o 25GHz)					
EU	EUT: 6.5 inch 4G Smart Phone		Model I	Aodel No.: L		L65B					
Ter	mperature:	20 ℃			Relativ	e Humidity	/:	48%			
Tes	st Mode:	Mode	Test By	/:		Allen	Liu				
All	the modulat	tion modes	have bee	en tested,	and the w	orst result	t was	repoi	rt as belov	W:	
	Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Lin	nits	Margin	Remark	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	V/m)	(dB)		
	Low Channel (2402 MHz)(GFSK)Above 1G										
	4804.214	62.86	5.21	35.59	44.30	59.36	74	.00	-14.64	Pk	Vertical
	4804.214	41.08	5.21	35.59	44.30	37.58	54	.00	-16.42	AV	Vertical
	7206.265	59.86	6.48	36.27	44.60	58.01	74	.00	-15.99	Pk	Vertical
	7206.265	43.91	6.48	36.27	44.60	42.06	54	.00	-11.94	AV	Vertical
	4804.109	62.25	5.21	35.55	44.30	58.71	74	.00	-15.29	Pk	Horizontal
	4804.109	42.52	5.21	35.55	44.30	38.98	54	.00	-15.02	AV	Horizontal
	7206.224	63.19	6.48	36.27	44.52	61.42	74	.00	-12.58	Pk	Horizontal
	7206.224	47.01	6.48	36.27	44.52	45.24	54	.00	-8.76	AV	Horizontal
			I	Mid Chann	el (2441 Mł	lz)(GFSK)A	Above	1G		I	
	4882.396	64.04	5.21	35.66	44.20	60.71	74	.00	-13.29	Pk	Vertical
	4882.396	42.53	5.21	35.66	44.20	39.20	54	.00	-14.80	AV	Vertical
	7323.241	61.30	7.10	36.50	44.43	60.47	74	.00	-13.53	Pk	Vertical
	7323.241	47.10	7.10	36.50	44.43	46.27	54	.00	-7.73	AV	Vertical
	4882.108	62.10	5.21	35.66	44.20	58.77	74	.00	-15.23	Pk	Horizontal
	4882.108	48.66	5.21	35.66	44.20	45.33	54	.00	-8.67	AV	Horizontal
	7323.132	60.44	7.10	36.50	44.43	59.61	74	.00	-14.39	Pk	Horizontal
	7323.132	41.93	7.10	36.50	44.43	41.10		.00	-12.90	AV	Horizontal
			1	High Chanr	nel (2480 Mł	Hz)(GFSK)	Above	1G			1
	4960.397	65.85	5.21	35.52	44.21	62.37	74	.00	-11.63	Pk	Vertical
	4960.397	42.43	5.21	35.52	44.21	38.95	54	.00	-15.05	AV	Vertical
	7440.201	61.34	7.10	36.53	44.60	60.37	74	.00	-13.63	Pk	Vertical
	7440.201	45.25	7.10	36.53	44.60	44.28	54	.00	-9.72	AV	Vertical
	4960.225	67.40	5.21	35.52	44.21	63.92	74	.00	-10.08	Pk	Horizontal
	4960.225	48.09	5.21	35.52	44.21	44.61	54	.00	-9.39	AV	Horizontal
	7440.298	60.76	7.10	36.53	44.60	59.79	74	.00	-14.21	Pk	Horizontal
	7440.298	45.97	7.10	36.53	44.60	45.00	54	.00	-9.00	AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

EUT:	Emission in 6.5 inch 40			Model			L65B			
emperature							48%			
est Mode:	Mode2/ Mo	nde4		Test By			Allen Liu			
All the modu			en tested	-					ow:	
Frequency	Meter	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lim		Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ\	V/m)	(dB)	Туре	
1Mbps(GFSK)-Non-hopping										
2310.00 57.96 2.97 27.80 43.80 44.93 74 -29.07 Pk H								Horizontal		
2310.00	44.20	2.97	27.80	43.80	31.17	54	4	-22.83	AV	Horizontal
2310.00	59.18	2.97	27.80	43.80	46.15	74	4	-27.85	Pk	Vertical
2310.00	42.09	2.97	27.80	43.80	29.06	54	4	-24.94	AV	Vertical
2390.00	58.28	3.14	27.21	43.80	44.83	74	4	-29.17	Pk	Vertical
2390.00	42.87	3.14	27.21	43.80	29.42	54	4	-24.58	AV	Vertical
2390.00	56.57	3.14	27.21	43.80	43.12	74	4	-30.88	Pk	Horizontal
2390.00	42.04	3.14	27.21	43.80	28.59	54	4	-25.41	AV	Horizontal
2483.50	58.66	3.58	27.70	44.00	45.94	74	4	-28.06	Pk	Vertical
2483.50	42.35	3.58	27.70	44.00	29.63	54	4	-24.37	AV	Vertical
2483.50	58.72	3.58	27.70	44.00	46.00	74	4	-28.00	Pk	Horizontal
2483.50	43.48	3.58	27.70	44.00	30.76	54	4	-23.24	AV	Horizontal
				1Mbps(GFS	SK)-hopping					
2310.00	52.75	2.97	27.80	43.80	39.72	74.	00	-34.28	Pk	Vertical
2310.00	44.67	2.97	27.80	43.80	31.64	54.	00	-22.36	AV	Vertical
2310.00	52.49	2.97	27.80	43.80	39.46	74.	00	-34.54	Pk	Horizontal
2310.00	42.60	2.97	27.80	43.80	29.57	54.	00	-24.43	AV	Horizontal
2390.00	54.67	3.14	27.21	43.80	41.22	74.	00	-32.78	Pk	Vertical
2390.00	44.96	3.14	27.21	43.80	31.51	54.	00	-22.49	AV	Vertical
2390.00	52.24	3.14	27.21	43.80	38.79	74.	00	-35.21	Pk	Horizontal
2390.00	42.81	3.14	27.21	43.80	29.36	54.	00	-24.64	AV	Horizontal
2483.50	53.05	3.58	27.70	44.00	40.33	74.	00	-33.67	Pk	Vertical
2483.50	43.55	3.58	27.70	44.00	30.83	54.	00	-23.17	AV	Vertical
2483.50	51.28	3.58	27.70	44.00	38.56	74.	00	-35.44	Pk	Horizontal
2483.50	43.34	3.58	27.70	44.00	30.62	54.	00	-23.38	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

EUT:				art Phone		18000MHz No [.]		L65B			
Temperat		20 ℃				e Humidity	<i>,</i> .	48%			
•							•		1		
Test Mod	-		2/ Mode4		Test By		14	Allen			
All the m						worst resu	iit wa	is repo	on as bei	ow:	
Freque	ency F	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Liı	mits	Margin	Detector	Comment
(MH	lz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBj	uV/m)	(dB)	Туре	
326	60	61.20	4.04	29.57	44.70	50.11	-	74	-23.89	Pk	Vertical
326	60	56.35	4.04	29.57	44.70	45.26	į	54	-8.74	AV	Vertical
326	60	62.06	4.04	29.57	44.70	50.97	-	74	-23.03	Pk	Horizontal
326	60	58.13	4.04	29.57	44.70	47.04	į	54	-6.96	AV	Horizontal
333	32	64.98	4.26	29.87	44.40	54.71	-	74	-19.29	Pk	Vertical
333	32	53.49	4.26	29.87	44.40	43.22	Į	54	-10.78	AV	Vertical
333	32	62.12	4.26	29.87	44.40	51.85	-	74	-22.15	Pk	Horizontal
333	32	52.38	4.26	29.87	44.40	42.11	Į	54	-11.89	AV	Horizontal
1779	97	43.34	10.99	43.95	43.50	54.78	-	74	-19.22	Pk	Vertical
1779	97	32.98	10.99	43.95	43.50	44.42	į	54	-9.58	AV	Vertical
1778	88	45.23	11.81	43.69	44.60	56.13	-	74	-17.87	Pk	Horizontal
1778	88	31.40	11.81	43.69	44.60	42.30	į	54	-11.70	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.3.6 Test Results

	6.5 inch 4G Smart Phone	Model No.:	L65B
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Allen Liu

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW Sweep = auto

Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	6.5 inch 4G Smart Phone	Model No.:	L65B
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 **Test Results**

EUT:	6.5 inch 4G Smart Phone	Model No.:	L65B
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4

DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	6.5 inch 4G Smart Phone	Model No.:	L65B
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW \geq the 20 dB bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	6.5 inch 4G Smart Phone	Model No.:	L65B
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	6.5 inch 4G Smart Phone	Model No.:	L65B
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Allen Liu

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached PIFA antenna (Gain: -0.13 dBi). It comply with the standard requirement.

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

7.11.2 Frequency Hopping System

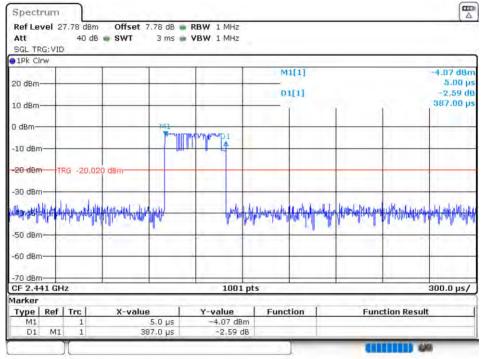
This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each: centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

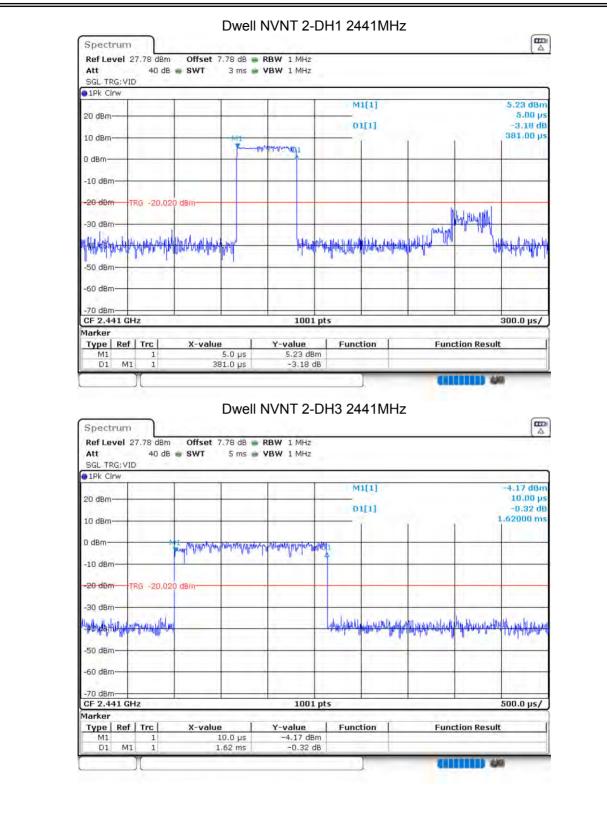


8 TEST RESULTS

8.1 DWELL TIME

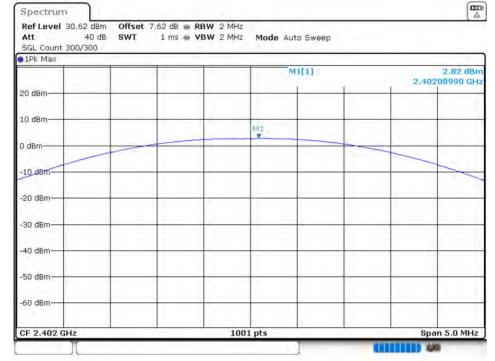
••••		-					
Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Period Time (ms)	Limit (ms)	Verdict
NVNT	1-DH1	2441	0.387	123.84	31600	400	Pass
NVNT	1-DH3	2441	1.64	262.4	31600	400	Pass
NVNT	1-DH5	2441	2.888	308.053	31600	400	Pass
NVNT	2-DH1	2441	0.381	121.92	31600	400	Pass
NVNT	2-DH3	2441	1.62	259.2	31600	400	Pass
NVNT	2-DH5	2441	2.88	307.2	31600	400	Pass
NVNT	3-DH1	2441	0.378	120.96	31600	400	Pass
NVNT	3-DH3	2441	1.625	260	31600	400	Pass
NVNT	3-DH5	2441	2.864	305.493	31600	400	Pass

Dwell NVNT 1-DH1 2441MHz



Att 40 df SGL TRG: VID			RBW 1 MHz VBW 1 MHz					
1Pk Cirw		_					_	
20 dBm			_	M	1[1]			-3.23 dBr 5.00 µ
10 dBm-		1		01	[1]			-4.04 d 1.64000 m
	261							
D dBm	- Marvinna	-	- LOANT MEN CONTENT	·Q1	1			
-10 dBm		10						
-20 dBm TRG -20.0	20 dBm					-		
-30 dBm	-			-	0.00			
where the stand the second sec	4	· · · · · ·		- Wy thurdy	her with the second states of	MARTIN PARAMETER	HALLAND ANTILL	hypospid papels
-50 dBm-				100				
-60 dBm-								
			1					
-70 dBm			1001	pts				500.0 µs/
Marker Type Ref Trc	X-value	1	Y-value	Funct	ion I	Fund	tion Result	
M1 1		5.0 µs	-3.23 dBn			Func	liun kesun	
D1 M1 1		64 ms	-4,04 di	В				
Spectrum Ref Level 27.78 dBn	n Offset 7.	Dwell N	NVNT 1-[RBW 1 MHz		41MHz	CHR		
Spectrum Ref Level 27.78 dBn Att 40 df SGL TRG: VID	1,1	Dwell N	NVNT 1-[41MHz	CIII		
Spectrum Ref Level 27.78 dBn Att 40 df SGL TRG: VID 1Pk Cirw	n Offset 7.	Dwell N	NVNT 1-[RBW 1 MHz	DH5 24	41MHz	au		-5,50 dBr
D1 M1 1 Spectrum Ref Level 27.78 dBn Att 40 dt SGL TRG: VID IPk Clrw 20 dBm	n Offset 7.	Dwell N	NVNT 1-[RBW 1 MHz	DH5 24				-5.50 dBr 8.00 µ -3.71 d
Spectrum Ref Level 27.78 dBn Att 40 df SGL TRG: VID 1Pk Cirw	n Offset 7.	Dwell N	NVNT 1-[RBW 1 MHz	DH5 24	u[1]			-5.50 dBr 8.00 µ -3.71 d
D1 M1 1 Spectrum Ref Level 27.78 dBn Att 40 ds SGL TRG: VID 10 dBm 10 dBm M1	n Offset 7.	Dwell N	NVNT 1-[RBW 1 MHz	DH5 24	u[1]			-5.50 dBr 8.00 µ -3.71 d 2.88800 m
D1 M1 1 Spectrum Ref Level 27.78 dBn Att 40 dt SGL TRG: VID IPk Clrw 20 dBm 10 dBm	n Offset 7.	Dwell N	NVNT 1-[RBW 1 MHz	DH5 24	u[1]			-5.50 dBr 8.00 µ -3.71 d
D1 M1 1 Spectrum Ref Level 27.78 dBn Att 40 df SGL TRG:VID 1Pk Clrw 10 dBm 10 dBm 0 dBm M1	n Offset 7. B SWT	Dwell N	NVNT 1-[RBW 1 MHz	DH5 24	u[1]		3	-5.50 dBr 8.00 µ -3.71 d
D1 M1 1 Ref Level 27.78 dBn Att 40 df SGL TRG: VID IPK Clrw 20 dBm 10 dBm M1 -10 dBm M1 -20 dBm TRG	n Offset 7. B SWT	Dwell N	NVNT 1-[RBW 1 MHz	DH5 24	u[1]			-5.50 dBr 8.00 µ -3.71 d
D1 M1 1 Ref Level 27.78 dBn Att 40 df SGL TRG: VID 10 dBm 10 dBm 10 dBm -10 dBm M1 -20 dBm TRG - 20.0 -30 dBm -30 dBm	n Offset 7. B SWT	Dwell N		DH5 24	(1] [1]	And Law Mund		-5,50 dBr 8.00 µ -3.71 d 2.88800 m
D1 M1 1 Ref Level 27.78 dBn Att 40 de SGL TRG: VID IPk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	n Offset 7. B SWT	Dwell N		DH5 24	(1] [1]	den la construction de la constr		-5,50 dBr 8.00 µ -3.71 d 2.88800 m
D1 M1 1 Ref Level 27.78 dBn Att 40 df SGL TRG: VID 10 dBm 10 dBm 10 dBm -10 dBm M1 -20 dBm TRG - 20.0 -30 dBm -30 dBm	n Offset 7. B SWT	Dwell N		DH5 24	(1] [1]	den l		-5,50 dBr 8.00 µ -3.71 d 2.88800 m
D1 M1 1 Ref Level 27.78 dBn Att 40 de SGL TRG: VID IPk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	n Offset 7. B SWT	Dwell N		DH5 24	(1] [1]	den i		-5,50 dBr 8.00 µ -3.71 d 2.88800 m
D1 M1 1 Ref Level 27.78 dBn Att 40 df SGL TRG: VID IPk Clrw 20 dBm 10 dBm D1 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	n Offset 7. B SWT	Dwell N		DH5 24	(1] [1]	den la construction de la constr	nulindrinana	-5.50 dBr 8.00 µ -3.71 d 2.88800 m
D1 M1 1 Ref Level 27.78 dBn Att 40 df SGL TRG: VID 1Pk Clrw 20 dBm 20 dBm 10 dBm 10 dBm 10 dBm -10 dBm M1 -20 dBm TRG - 20.0 -30 dBm -30 dBm -50 dBm -60 dBm	n Offset 7. B SWT	Dwell N		DH5 24	(1] [1]		nulindrinana	-5.50 dB; 8.00 µ -3.71 d 8.88800 m
D1 M1 1 Ref Level 27.78 dBn Att 40 d8 SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 10 dBm 10 dBm -10 dBm 10 www. -30 dBm 10 www. -50 dBm -50 dBm -60 dBm -60 dBm -70 dBm CF 2.441 GHz Marker Type Type Ref	1. m Offset 7. B SWT 20 dBm 20 dBm X-value	Dwell N 8 ms • V	IVNT 1-[RBW 1 MHz VBW 1 MHz 1 MHZ	DH5 24	1[1] [1]		nulindrinana	-5.50 dBr 8.00 µ -3.71 d 2.88800 m
D1 M1 1 Ref Level 27.78 dBn Att 40 df SGL TRG: VID IPk Clrw 20 dBm 10 dBm 10 dBm M1 -10 dBm M1 -20 dBm TRG - 20,0 -30 dBm -30 dBm -50 dBm -50 dBm -60 dBm -70 dBm CF 2.441 GHz Marker	1. n Offset 7. B SWT 20 dBm 20 dBm 20 dBm	Dwell N 8 ms • V	JVNT 1-E	DH5 24	1[1] [1]		unyinyisissinatal	-5.50 dB; 8.00 µ -3.71 d 2.88800 m

Ref Level 27.78 dBm			BW 1 MHz	1				
Att 40 de SGL TRG: VID	s 🖷 SWT	8 ms 🗰 ¥	BW 1 MHz					
1Pk Clrw	1 7							-
20 dBm				M	1[1]			-5.42 dBm 8.00 µs
W.T				D	1[1]			-0.26 dB
10 dBm-	1			1	0	Í.	í í	.88000 ms
D dBm MI where	Anthen Manufacture and	and address of the	dischar and differ 1			-		
-10 dBm	I to a laborate a la	kolezia in LeCille	an closed a serve					
-20 dBm TRG -20.0								
-20 dBm TRG -20,0							1	1 2 2
-30 dBm		-		The second	1. 20.00	1210	house	1.00
AND A PARTY AND		-	ų	and the second second second	pppliti	all the state of the second state of the secon	multerallera	held and the phase
-50 dBm-								
-60 dBm		1	1					
-70 dBm-			-			-		
CF 2.441 GHz Marker		-	1001	pts	-	_		800.0 µs/
M1 1 D1 M1 1 Spectrum Ref Level 27.78 dBm	[-0.26 (IVNT 3-] 41MHz	CHI	(111) -	
D1 M1 1 Spectrum Ref Level 27.78 dBm	2.8		IVNT 3-		41MHz	(1)	())) (*	
D1 M1 1 Spectrum Ref Level 27.78 dBr Att 40 dE	2.8 [] Offset 7.		IVNT 3-	DH1 24		-		[Δ
D1 M1 1 Spectrum Ref Level 27.78 dBr Att 40 de SGL TRG: VID	2.8 [] Offset 7.		IVNT 3-	DH1 24	1[1]			(∆ 5.10 dBm 5.00 µs
D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dE SGL TRG: VID IPk Clrw 20 dBm	2.8 [] Offset 7.	Dwell N 78 dB • R 3 ms • V	IVNT 3- RBW 1 MHz RBW 1 MHz	DH1 24				5.10 d8m
D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dE SGL TRG: VID 1Pk Cirw 20 dBm 10 dBm	2.8 [] Offset 7.	Dwell N 78 dB • R 3 ms • V	IVNT 3-	DH1 24	1[1]			(∆ 5.10 dBm 5.00 µs -0,69 dB
D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dE SGL TRG: VID 1Pk Cirw 20 dBm 10 dBm	2.8 [] Offset 7.	Dwell N 78 dB • R 3 ms • V	IVNT 3- RBW 1 MHz RBW 1 MHz	DH1 24	1[1]			(∆ 5.10 dBm 5.00 µs -0,69 dB
D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dE SGL TRG: VID 1Pk Cirw 20 dBm 10 dBm	2.8 [] Offset 7.	Dwell N 78 dB • R 3 ms • V	IVNT 3- RBW 1 MHz RBW 1 MHz	DH1 24	1[1]			(∆ 5.10 dBm 5.00 µs -0,69 dB
D1 M1 1 Spectrum	2.8 Offset 7.	Dwell N 78 dB • R 3 ms • V	IVNT 3- RBW 1 MHz RBW 1 MHz	DH1 24	1[1]			(∆ 5.10 dBm 5.00 µs -0,69 dB
D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dE SGL TRG: VID IPK Clrw 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm TRG -20.02	2.8 Offset 7.	Dwell N 78 dB • R 3 ms • V	IVNT 3- RBW 1 MHz RBW 1 MHz	DH1 24	1[1]			(∆ 5.10 dBm 5.00 µs -0,69 dB
D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dE 5GL TRG: VID 1Pk Clrw 20 dBm 10 dBm 10 dBm 0 dBm -10 dBm -20 dBm TRG - 20.02 -30 dBm -30 dBm	2.8 Offset 7. S SWT	Dwell N 78 dB • R 3 ms • V	IVNT 3-	DH1 24	1[1]			(∆ 5.10 dBm 5.00 µs -0,69 dB
D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dE SGL TRG: VID 10 dBm 10 dBm 0 0 dBm -10 dBm -20 dBm TRG - 20.02 -30 dBm -30 dBm	2.8 Offset 7. S SWT	Dwell N 78 dB • R 3 ms • V	IVNT 3- RBW 1 MHz RBW 1 MHz	DH1 24	1[1]		-11.010 44	(∆ 5.10 dBm 5.00 µs -0,69 dB
D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dE 5GL TRG: VID 1Pk Clrw 20 dBm 10 dBm 10 dBm 0 dBm -10 dBm -20 dBm TRG - 20.02 -30 dBm -30 dBm	2.8 Offset 7. S SWT	Dwell N 78 dB • R 3 ms • V	IVNT 3-	DH1 24	1[1]		all and a second	(∆ 5.10 dBm 5.00 µs -0,69 dB
D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dE SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 10 dBm 0 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	2.8 Offset 7. S SWT	Dwell N 78 dB • R 3 ms • V	IVNT 3-	DH1 24	1[1]			(∆ 5.10 dBm 5.00 µs -0,69 dB
D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dE SGL TRG: VID 10 dBm 10 dBm 20 dBm -10 dBm - -20 dBm TRG - 20.02 -30 dBm - -50 dBm - -70 dBm -	2.8 Offset 7. S SWT	Dwell N 78 dB • R 3 ms • V	IVNT 3-	DH1 24	1[1]		.Wasa, bit taile	(∆ 5.10 dBm 5.00 µs -0,69 dB
D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dE SGL TRG: VID 1PK CIrw 20 dBm 10 dBm 10 dBm 0 -10 dBm -0 -20 dBm TRG -20 dBm -0 -70 dBm -70 -70 dBm -70 -70 dBm -70	2.6 Offset 7. S SWT	Dwell N 78 dB • R 3 ms • V		DH1 24	1[1] 1[1]	dan dalah selah	Provinski politika Provinski p	5.10 dBm 5.00 µs -0,69 dB 378.00 µs
D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dE SGL TRG: VID 1Pk CIrw 20 dBm 10 dBm 10 dBm 0 -20 dBm TRG -20 dBm -20,02 -30 dBm -40,02 -50 dBm -50 dBm -60 dBm -60 dBm -70 dBm -70 dBm	2.6 Offset 7. SwT 20 dBm 20 dB	Dwell N 78 dB • R 3 ms • V		DH1 24	1[1] 1[1]	dan dalah selah	.Wasa, bit taile	5.10 dBm 5.00 µs -0,69 dB 378.00 µs

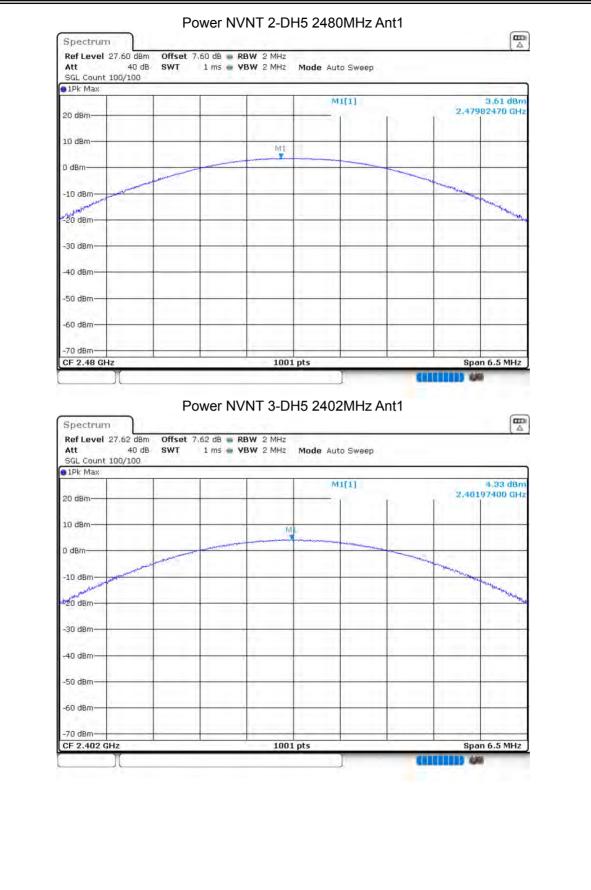

Att 40 dB 🖷	Offset 7.78 dB 🐞 F SWT 5 ms 👜 V	RBW 1 MHz /BW 1 MHz				
SGL TRG: VID Pk Clrw	1	C				
	- 1	1	M1[1]			5.08 dB
20 dBm		-	01[1]			5.00 µ -0.68 d
10 dBm		-		4	. 1	.62500 m
D dBm	entrementant and matter and an	the second second second	,Q1 4			
-10 dBm				-		
-20 dBm TRG -20,020 dB	3m					
-30 dBm				_		
Laboard Best of Alfold Alfold Alfold Alfold and the			Hunany and hours	with any the second	Mary UNIN Happi	han millips and mark
-50 dBm-			1.00			11
-60 dBm						
-70 dBm-		1001		-		500 C
CF 2.441 GHz Marker		1001	hrs		A	500.0 µs/
Type Ref Trc M1 1	5.0 µs	5.08 dBn	n			
Spectrum		-0.68 df		-lz		
Spectrum	1.625 ms Dwell N Offset 7.78 dB • F	-0.68 df		łz		(E 2
M1 1 D1 M1 1 Spectrum Image: Compare the second s	1.625 ms Dwell N Offset 7.78 dB • F	-0.68 de JVNT 3-E RBW 1 MHz		Ηz		-5.36 dBr
M1 1 D1 M1 1 Spectrum Image: Comparison of the system of the sy	1.625 ms Dwell N Offset 7.78 dB • F	-0.68 de JVNT 3-E RBW 1 MHz) DH5 2441MF	Ηz		-5.36 dBr 8.00 µ 1.93 d
M1 1 D1 M1 1 Spectrum Image: Comparison of the second se	1.625 ms Dwell N Offset 7.78 dB F SWT 8 ms V	-0.68 de	DH5 2441MF	Ηz	2	-5.36 dBr 8.00 µ 1.93 d
M1 1 D1 M1 1 Spectrum Image: Comparison of the second se	1.625 ms Dwell N Offset 7.78 dB • F	-0.68 de	DH5 2441MF	Iz	2	-5.36 dBr 8.00 µ 1.93 d 2.86400 m
M1 1 D1 M1 1 Spectrum Image: Comparison of the second se	1.625 ms Dwell N Offset 7.78 dB F SWT 8 ms V	-0.68 de	DH5 2441MF	Iz	2	-5.36 dBr 8.00 µ 1.93 d
M1 1 D1 M1 1 Ref Level 27.78 dBm Att 40 dB SGL TRG: VID IPk Cirw 20 dBm 10 dBm D dBm	1.625 ms	-0.68 de	DH5 2441MF		2	-5.36 dBr 8.00 µ 1.93 d
M1 1 D1 M1 1 Ref Level 27.78 dBm Att 40 dB SGL TRG: VID IPk Clrw 20 dBm 10 dBm 10 dBm M1 1 -10 dBm M1 1	1.625 ms	-0.68 de	DH5 2441MF	+z	2	-5.36 dBr 8.00 µ 1.93 d
M1 1 D1 M1 1 Spectrum Image: Comparison of the second se	1.625 ms	-0.68 de	DH5 2441MF		2 	-5.36 dBr 8.00 µ 1.93 d 8.86400 m
M1 1 D1 M1 1 D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID IVE CITW 20 dBm 10 dBm 10 dBm M1 10 dBm -10 dBm M1 10 dBm -30 dBm TRG -20,020 dE	1.625 ms	-0.68 de	DH5 2441MH			-5.36 dBr 8.00 µ 1.93 d 8.86400 m
M1 1 D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID IVE CITW 20 dBm 10 dBm 10 dBm M1 1 -10 dBm M1 1 -30 dBm M1 1	1.625 ms	-0.68 de	DH5 2441MH			-5.36 dBr 8.00 µ 1.93 d 2.86400 m
M1 I D1 M1 1 D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dB • SGL TRG: VID • • IPk Cirw 20 dBm 10 dBm • • 10 dBm • • 20 dBm TRG - 20,020 dE • 30 dBm • • 50 dBm •	1.625 ms	-0.68 de	DH5 2441MH			-5.36 dBr 8.00 µ 1.93 d 2.86400 m
M1 1 D1 M1 1 D1 M1 1 Spectrum Ref Level 27.78 dBm Att Att 40 dB SGL TRG: VID IPk Cirw 20 dBm 10 dBm 10 dBm M1 1 -20 dBm TRG -20,020 dE -30 dBm M1 40 -50 dBm M1 40 -60 dBm -70 dBm CF 2.441 GHz	1.625 ms	-0.68 de	DH5 2441MH		an dia manjiri papat da	-5.36 dBr 8.00 µ 1.93 d 2.86400 m
M1 1 D1 M1 1 D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID ● 1Pk Clrw 20 dBm 10 dBm 10 dBm M1 10 www.www.www.www.www.www.www.www.www.ww	1.625 ms	-0.68 de	DH5 2441MF	etile geopreting of states	an dia manjiri papat da	-5.36 dBi 8.00 µ 1.93 d 2.86400 m
M1 1 D1 M1 1 D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID ● 1Pk Clrw 20 dBm 10 dBm 10 dBm M1 10 vmm/mm/mm/mm/mm/mm/mm/mm/mm/mm/mm/mm/mm/	1.625 ms	-0.68 de	DH5 2441MH	etile geopreting of states		-5.36 dBi 8.00 µ 1.93 d 2.86400 m

8.2 MAXIMUM CONDUCTED OUTPUT POWER

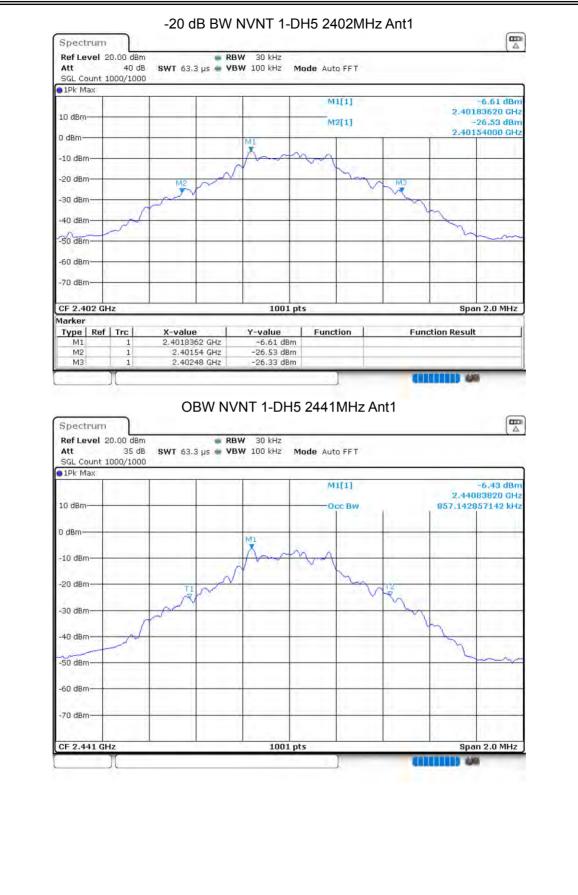
		Decile con on	OHER			
Condition	Mode	Frequency (MHz)	Antenna	Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant 1	2.824	30	Pass
NVNT	1-DH5	2441	Ant 1	3.254	30	Pass
NVNT	1-DH5	2480	Ant 1	2.428	30	Pass
NVNT	2-DH5	2402	Ant 1	4.05	21	Pass
NVNT	2-DH5	2441	Ant 1	4.64	21	Pass
NVNT	2-DH5	2480	Ant 1	3.605	21	Pass
NVNT	3-DH5	2402	Ant 1	4.327	21	Pass
NVNT	3-DH5	2441	Ant 1	5.135	21	Pass
NVNT	3-DH5	2480	Ant 1	3.812	21	Pass

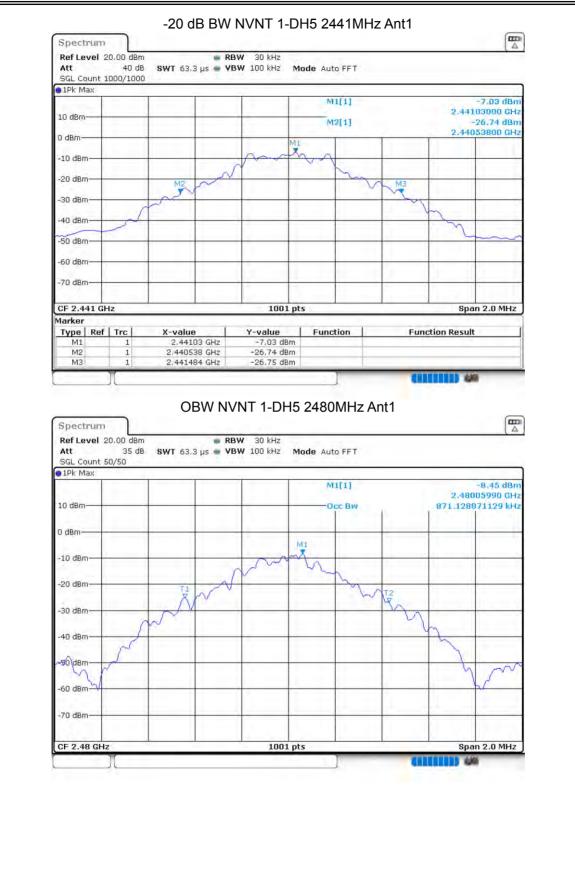
Power NVNT 1-DH5 2402MHz Ant1

Ref Level 27.78 dBr Att 40 d SGL Count 100/100		.78 dB 🗰 R 1 ms 🖷 Y		Mode Auto) Sweep	_		
1Pk Max				_	_			
				MI	[1]			3.25 dBm
20 dBm	1						2,440	96000 GHz
10 dBm		1	·					
		1	M	-	_			i = i
0 dBm	-		-			/	<hr/>	
-10.48m							/	~
20 doint		-						
-20 dBm	-		-					
-30 dBm							· · · · · · · · · · · · · · · · · · ·	1
-30 000								1 1
-40 dBm	-	-	-			-		
50 40-		1			1			i sides i
-50 dBm			-			· · · · · · · · ·		
-60 dBm	-							
-70 dBm CF 2.441 GHz	1	1	1001	pts			Spa	n 5.0 MHz
					_			1
Ref Level 27.60 dBr Att 40 d SGL Count 150/150	n Offset 7	.60 dB 🔳 R	BW 2 MHz	H5 2480 Mode Auto		11		
Ref Level 27.60 dBr Att 40 d SGL Count 150/150	n Offset 7	.60 dB 🔳 R	BW 2 MHz	Mode Auto		111		(△ 2,43 dBm
Ref Level 27.60 dBr Att 40 d SGL Count 150/150 IPk Max 1	n Offset 7	.60 dB 🔳 R	BW 2 MHz	Mode Auto) Sweep	111	2.479	(Δ
Ref Level 27.60 dBr Att 40 d SGL Count 150/150 1Pk Max 20 dBm-	n Offset 7	.60 dB 🔳 R	BW 2 MHz	Mode Auto) Sweep	111	2.479	(△ 2,43 dBm
Ref Level 27.60 dBr Att 40 d SGL Count 150/150 1Pk Max 20 dBm-	n Offset 7	.60 dB 🔳 R	BW 2 MHz	Mode Auto) Sweep	111	2.479	(△ 2,43 dBm
Ref Level 27.60 dBr Att 40 d SGL Count 150/150 IPk Max 20 dBm 10 dBm 10 dBm	n Offset 7	.60 dB 🔳 R	BW 2 MHz BW 2 MHz	Mode Auto) Sweep		2.479	(△ 2,43 dBm
Ref Level 27.60 dBr Att 40 d SGL Count 150/150 IPk Max 20 dBm 10 dBm 0 dBm	n Offset 7	.60 dB 🔳 R	BW 2 MHz BW 2 MHz	Mode Auto) Sweep		2.479	(△ 2,43 dBm
Ref Level 27.60 dBr Att 40 d SGL Count 150/150 IPk Max 20 dBm 10 dBm 0 dBm	n Offset 7	.60 dB 🔳 R	BW 2 MHz BW 2 MHz	Mode Auto) Sweep		2,479	(△ 2,43 dBm
Ref Level 27.60 dBr Att 40 d SGL Count 150/150 IPk Max 20 dBm 10 dBm 10 dBm -10 dBm 10 dBm	n Offset 7	.60 dB 🔳 R	BW 2 MHz BW 2 MHz	Mode Auto) Sweep		2.479	(△ 2,43 dBm
Ref Level 27.60 der Att 40 d SGL Count 150/150 1Pk Max 20 dBm 10 dBm	n Offset 7	.60 dB 🔳 R	BW 2 MHz BW 2 MHz	Mode Auto) Sweep		2.479	(△ 2,43 dBm
Ref Level 27.60 der Att 40 d SGL Count 150/150 1Pk Max 20 dBm 10 dBm	n Offset 7	.60 dB 🔳 R	BW 2 MHz BW 2 MHz	Mode Auto) Sweep		2,479	(△ 2,43 dBm
Ref Level 27.60 der Att 40 d SGL Count 150/150 1Pk Max 20 dBm 10 dBm	n Offset 7	.60 dB 🔳 R	BW 2 MHz BW 2 MHz	Mode Auto) Sweep		2,479	(△ 2,43 dBm
Ref Level 27.60 dBr Att 40 d SGL Count 150/150 IPk Max 20 dBm 10 dBm	n Offset 7	.60 dB 🔳 R	BW 2 MHz BW 2 MHz	Mode Auto) Sweep		2.479	(△ 2,43 dBm
Ref Level 27.60 dBr Att 40 d SGL Count 150/150 IPk Max 20 dBm 10 dBm	n Offset 7	.60 dB 🔳 R	BW 2 MHz BW 2 MHz	Mode Auto) Sweep		2.479	(△ 2,43 dBm
Ref Level 27.60 dBr Att 40 d SGL Count 150/150 IPk Max 20 dBm 10 dBm	n Offset 7	.60 dB 🔳 R	BW 2 MHz BW 2 MHz	Mode Auto) Sweep		2,479	(△ 2,43 dBm
Ref Level 27.60 der Att 40 d SGL Count 150/150 IPk Max 20 dBm 10 dBm	n Offset 7	.60 dB 🔳 R	BW 2 MHz BW 2 MHz	Mode Auto) Sweep		2,479	(△ 2,43 dBm
Ref Level 27.60 der Att 40 d SGL Count 150/150 1Pk Max 20 dBm 10 dBm	n Offset 7	.60 dB 🔳 R	BW 2 MHz BW 2 MHz	Mode Auto) Sweep			(△ 2,43 dBm
Att 40 d	n Offset 7	.60 dB 🔳 R	BW 2 MHz BW 2 MHz	Mode Auto) Sweep			(A

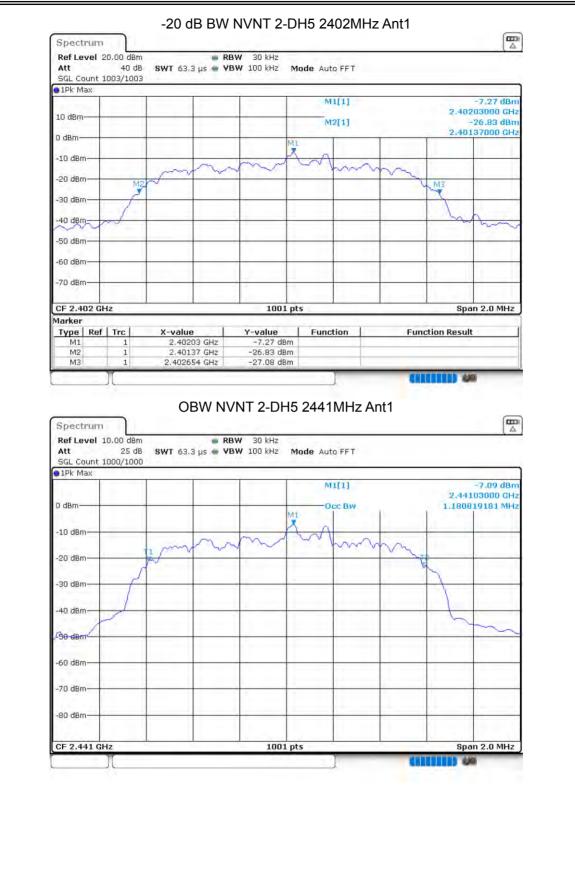


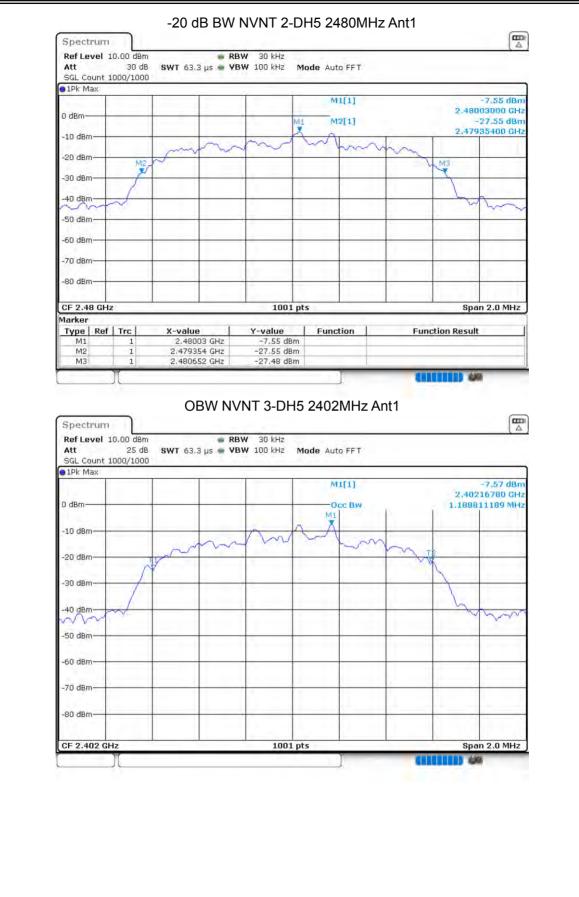
8.3 OCCUPIED CHANNEL BANDWIDTH

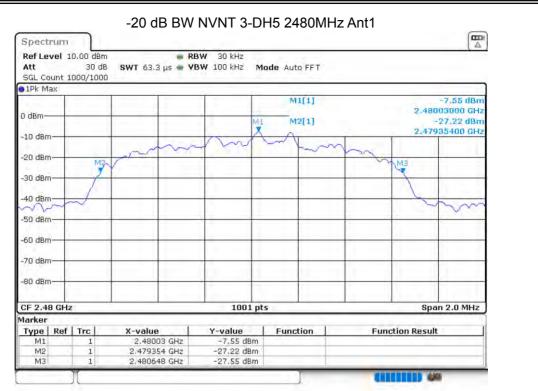

0.3 00001			1			
Condition	Mode	Frequency	Antenna	99% OBW	-20 dB Bandwidth	Verdict
		(MHz)		(MHz)	(MHz)	
NVNT	1-DH5	2402	Ant 1	0.8611	0.94	Pass
NVNT	1-DH5	2441	Ant 1	0.8571	0.946	Pass
NVNT	1-DH5	2480	Ant 1	0.8711	0.9	Pass
NVNT	2-DH5	2402	Ant 1	1.1888	1.284	Pass
NVNT	2-DH5	2441	Ant 1	1.1808	1.284	Pass
NVNT	2-DH5	2480	Ant 1	1.1888	1.298	Pass
NVNT	3-DH5	2402	Ant 1	1.1888	1.29	Pass
NVNT	3-DH5	2441	Ant 1	1.1808	1.29	Pass
NVNT	3-DH5	2480	Ant 1	1.1988	1.294	Pass

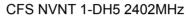


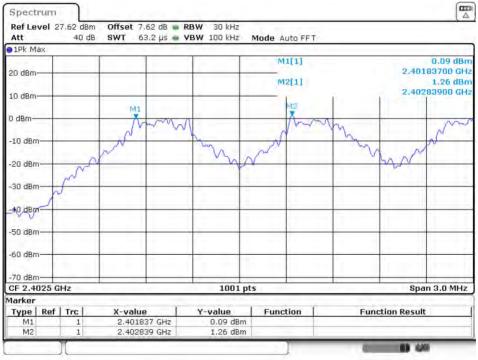






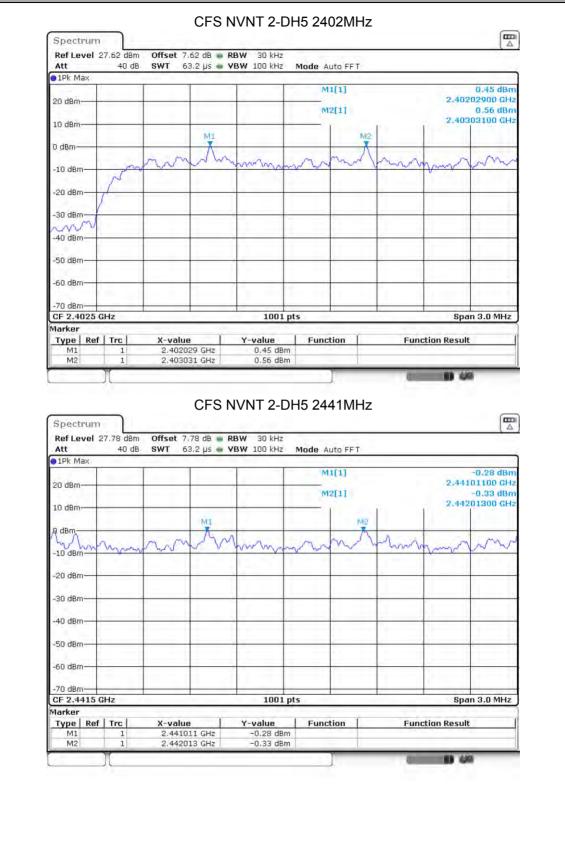


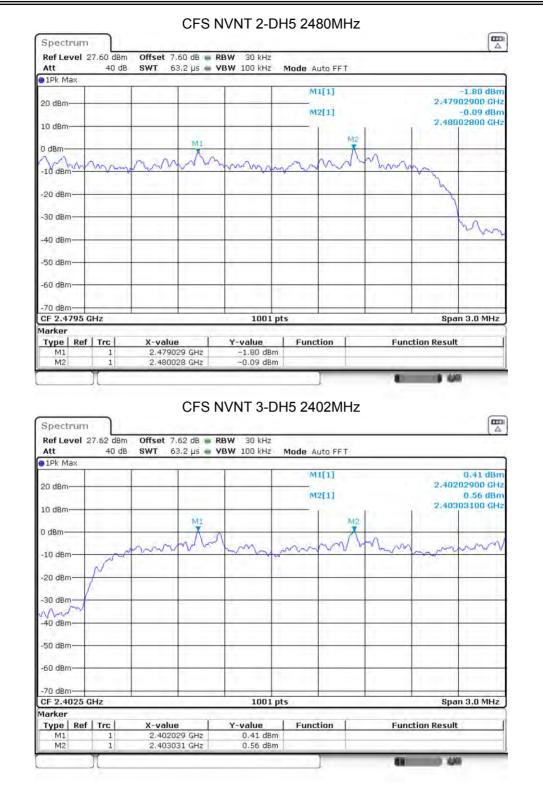


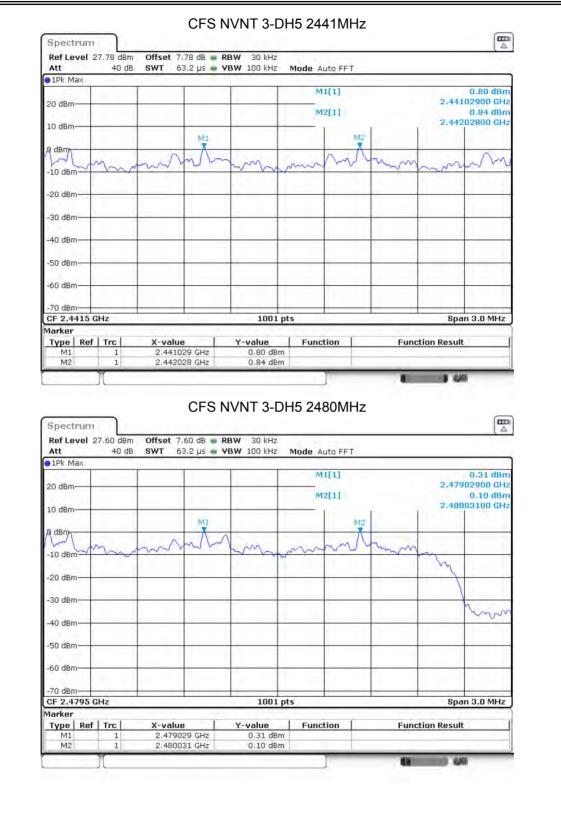


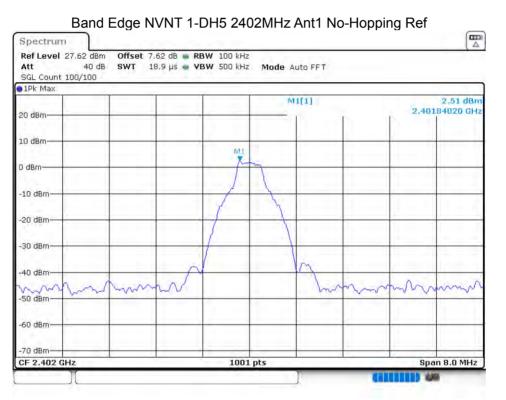
8.4 CARRIER FREQUENCIES SEPARATION

J OANNE			1			
Condition	Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict
		(MHz)	(MHz)	(MHz)	(MHz)	
NVNT	1-DH5	2401.837	2402.839	1.002	0.94	Pass
NVNT	1-DH5	2440.837	2442.028	1.191	0.946	Pass
NVNT	1-DH5	2478.837	2479.839	1.002	0.9	Pass
NVNT	2-DH5	2402.029	2403.031	1.002	0.856	Pass
NVNT	2-DH5	2441.011	2442.013	1.002	0.856	Pass
NVNT	2-DH5	2479.029	2480.028	0.999	0.865	Pass
NVNT	3-DH5	2402.029	2403.031	1.002	0.86	Pass
NVNT	3-DH5	2441.029	2442.028	0.999	0.86	Pass
NVNT	3-DH5	2479.029	2480.031	1.002	0.863	Pass








			CHANNE		1					
ondition	Mode		g Numbe							
NVNT	1-DH5		79	15	Pase	5				
			Hop	ning No	. NVNT	1_DH/	5 24021	147		
	Spectr	1877	Пор	ping No	. INVINI		5 24021	/11 12		
		el 27.62 dBm	Offset 7.6	2 dB 💼 RBV	V 100 kHz					(Δ)
	Att SGL Col	40 dE nt 7000/7000		. ms 🖷 VB1	V 300 kHz	Mode A	uto Sweep			
	• 1Pk Ma			1						
	20 dBm-						1[1]		2.40	2.29 dBm 18370 GHz
	10 dBm-	1				M	2[1]		2,48	2.09 dBm 02435 GHz
	M1			5.50 A. D. A. D. D.	лопольно	VARATER	ANNAAAN	AUNDADADA	влальных	M2
	oka≇mi ≬ ¶	MAANARA	WALLAND A	(A)AAA	(ARABID)	MMMA	MAANW	NUMBER OF	WWWWW	MMMA -
	-14 46-14	<u>ANAAAAAAA</u>	AAAAAAAAAA	KANNAAA	<u>TARAARAA</u>	<u>ininna</u>	ML OL J & D &	hanna kana ka	NANANANA	₩₩₩₩₩
	-20 dBm-									
	-30 dBm-	_			-					
	-40 dBm-									1-1-1-1
	-1				_					live
	-50 dBm-						1			
	-60 dBm-				_	-		-	-	
	-70 dBm-					_				
	Start 2.4 Marker	4 GHz		-	1001 p	ts		-	Stop 2.	4835 GHz
			X-value		Y-value 2.29 dBm	Func	tion	Fund	tion Result	
		Ref Trc	0 401000		2.29 dBm					
	Type M1 M2	Ref Trc 1	2.401837 2.4802435		2.09 dBm	d				
	M1	1					1	(1)		
	M1	1]	a		
	M1	1]	-		
	M1	1				2]	-		
	M1	1]			
	M1	1				2]	CH		
	M1	1					l			
	M1	1]			
	M1	1]			
	M1	1]			
	M1	1				2]			
	M1	1]			
	M1	1]			
	M1	1]			
	M1	1				2]	-		
	M1	1]			
	M1	1]			

NTEK 北测[®]

8.6 BAND EDGE

8.6 BANDE	DGE						
Condition	Mode	Frequency	Antenna	Hopping	Max Value	Limit	Verdict
		(MHz)		Mode	(dBc)	(dBc)	
NVNT	1-DH5	2402	Ant 1	No-Hopping	-44.06	-20	Pass
NVNT	1-DH5	2402	Ant 1	Hopping	-42.99	-20	Pass
NVNT	1-DH5	2480	Ant 1	No-Hopping	-44.21	-20	Pass
NVNT	1-DH5	2480	Ant 1	Hopping	-44.16	-20	Pass
NVNT	2-DH5	2402	Ant 1	No-Hopping	-42.16	-20	Pass
NVNT	2-DH5	2402	Ant 1	Hopping	-41.95	-20	Pass
NVNT	2-DH5	2480	Ant 1	No-Hopping	-44.45	-20	Pass
NVNT	2-DH5	2480	Ant 1	Hopping	-44.62	-20	Pass
NVNT	3-DH5	2402	Ant 1	No-Hopping	-43.61	-20	Pass
NVNT	3-DH5	2402	Ant 1	Hopping	-43.4	-20	Pass
NVNT	3-DH5	2480	Ant 1	No-Hopping	-44.6	-20	Pass
NVNT	3-DH5	2480	Ant 1	Hopping	-44.61	-20	Pass

Att SGL Count				RBW 100 kH2 VBW 500 kH2		Auto FFT			
●1Pk Max		-			M	1[1]			2.35 dBm
20 dBm					M	2[1]			15000 GHz
10 dBm							()	2.400	100000,GHz
0 dBm		1						1	
-10 dBm	01 -17.495	dBm	1 1					ù il	
-20 dBm	Ca annos	dom							
-30 dBm				M4		11.000	1	1.5	
-40 dBm	multination	multi-Uhlmrn	deptrumenticulus	an manufacture	where the standard and the star	untrelian descentions	nelietheliphon	M3 phinination	and have
-60 dBm				-	-				
-70 dBm	6 GH2			1001	nts	_		Stor	2.406 GHz
Marker						1-6-		1	
Type Re M1 M2 M3 M4	1 1 1 1 1	2.	2.4 GHz 39 GHz 05 GHz	Y-value 2.35 dBr -46.00 dBr -46.80 dBr -41.56 dBr	n n		Fund	ction Result	
Spectrur	n		- X	VNT 1-D	H5 240	2MHz A	nt1 Ho	pping R	ef
Spectrun Ref Level Att		Offset 7	.62 dB 🐞 R	VNT 1-D BW 100 kHz BW 300 kHz	Mode Au	uto FFT	ant1 Hop	pping R	
Spectrun Ref Level Att SGL Count	n 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 R	BW 100 kHz	Mode Au		ant1 Hoj		
Spectrun Ref Level Att SGL Count 1Pk Max	n 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 R	BW 100 kHz	Mode Au	uto FFT	ant1 Hoj		.04 dBm
Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm-	n 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 R	BW 100 kHz	Mode Au	uto FFT	ant1 Hop	2,404	.04 dBm
Spectrun Ref Level Att SGL Count • 1Pk Max 20 dBm	n 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 R	BW 100 kHz	Mode Au	uto FFT		2,404	.04 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm-	n 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 R	BW 100 kHz	Mode Au	uto FFT		2,404	.04 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm-	n 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 R	BW 100 kHz	Mode Au	uto FFT		2,404	.04 dBm
Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm	n 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 R	BW 100 kHz	Mode Au	uto FFT		2,404	.04 dBm
Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm	n 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 R	BW 100 kHz	Mode Au	uto FFT		2,404	.04 dBm
Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm	n 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 R	BW 100 kHz	Mode Au	uto FFT		2,404	.04 dBm
Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm	n 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 R	BW 100 kHz	Mode Au	uto FFT		2,404	.04 dBm
Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm	n 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 R	BW 100 kHz	Mode Au	uto FFT		2,404	.04 dBm
Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm	n 27.62 dBm 40 dB 8000/8000	Offset 7	.62 dB 🐞 R	BW 100 kHz		uto FFT		2.404	.04 dBm

Att SGL Count 700		SWT 22	?7.5 μs 🍝	VBW 300 kHz	Mode	Auto FFT			
 1Pk Max 20 dBm 				1	N	11[1]		0.40	2.71 dB
10 dBm					N	12[1]			285000 GF -44.62 dB
						1	1	2.40	1. Anonono Al
-10 dBm									
	-16.957 d	Bm							P
-30 dBm					-				
-40 dBm	-		M4		100	1.000		M3	MS
-50 dBm	announder	nethyperandit	andread from provide	hope and a second and a second	Murrhur and have	surprised and a second second	when he and the	a grand manual spec	um Nith
-60 dBm									-
-70 dBm						1		1	
Start 2.306 GH Marker	lz			1001	pts			Stop	2.406 GH
Type Ref 1 M1 M2 M3 M3	Frc 1 1 1 1 1			Y-value 2.71 dBr -44.62 dBr -44.43 dBr	n n	tion	Fun	iction Resul	t
M4	1		96 GHz	-39.95 dBr					
ΙΠ	_				1	1			10
Spectrum Ref Level 27. Att SGL Count 100	60 dBm 40 dB	Offset 7.t	60 dB 🐞 F	-DH5 248 RBW 100 kHz YBW 300 kHz	10.7		о-Норрі	ing Ref	
Spectrum Ref Level 27. Att SGL Count 100 1Pk Max	60 dBm 40 dB	Offset 7.t	60 dB 🐞 F	RBW 100 kHz	Mode /		o-Hoppi		2,10 dB 016780 GH
Spectrum Ref Level 27. Att SGL Count 100 1Pk Max 20 dBm-	60 dBm 40 dB	Offset 7.t	60 dB 🐞 F	RBW 100 kHz	Mode /	Auto FFT	о-Норрі		2,10 dB
Spectrum Ref Level 27. Att SGL Count 100 1Pk Max	60 dBm 40 dB	Offset 7.t	60 dB 🐞 F	RBW 100 kHz / BW 300 kHz	Mode /	Auto FFT			2,10 dB
Spectrum Ref Level 27. Att SGL Count 100 1Pk Max 20 dBm-	60 dBm 40 dB	Offset 7.t	60 dB 🐞 F	RBW 100 kHz / BW 300 kHz	Mode /	Auto FFT			2,10 dB
Spectrum Ref Level 27. Att SGL Count 100 1Pk Max 20 dBm- 10 dBm-	60 dBm 40 dB	Offset 7.t	60 dB 🐞 F	RBW 100 kHz / BW 300 kHz	Mode /	Auto FFT			2,10 dB
Spectrum Ref Level 27. Att SGL Count 100 1Pk Max 20 dBm- 10 dBm- -10 dBm-	60 dBm 40 dB	Offset 7.t	60 dB 🐞 F	RBW 100 kHz / BW 300 kHz	Mode /	Auto FFT			2,10 dB
Spectrum Ref Level 27. Att SGL Count 100 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	60 dBm 40 dB	Offset 7.t	60 dB 🐞 F	RBW 100 kHz / BW 300 kHz	Mode /	Auto FFT			2,10 dB
Spectrum Ref Level 27. Att SGL Count 100 1Pk Max 20 dBm- 10 dBm- -10 dBm-	60 dBm 40 dB	Offset 7.t	60 dB 🐞 F	RBW 100 kHz / BW 300 kHz	Mode /	Auto FFT			2,10 dB
Spectrum Ref Level 27. Att SGL Count 100 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	60 dBm 40 dB	Offset 7.t	60 dB 🐞 F	RBW 100 kHz / BW 300 kHz	Mode /	Auto FFT			2,10 dB
Spectrum Ref Level 27. Att SGL Count 100 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	60 dBm 40 dB	Offset 7.t	60 dB 🐞 F	RBW 100 kHz / BW 300 kHz	Mode /	Auto FFT			2,10 dB
Spectrum Ref Level 27. Att SGL Count 100 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	60 dBm 40 dB	Offset 7.t	60 dB 🐞 F	RBW 100 kHz / BW 300 kHz	Mode /	Auto FFT			2,10 dB
Spectrum Ref Level 27. Att SGL Count 1000 • IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm	60 dBm 40 dB	Offset 7.t	60 dB 🐞 F	RBW 100 kHz / BW 300 kHz	Mode /	Auto FFT			2,10 dB
Spectrum Ref Level 27. Att SGL Count 1000 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	60 dBm 40 dB	Offset 7.t	60 dB 🐞 F	RBW 100 kHz / BW 300 kHz	Mode /	Auto FFT		2.481	2,10 dB 016780 Gł
Spectrum Ref Level 27. Att SGL Count 1000 • IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	60 dBm 40 dB	Offset 7.t	60 dB 🐞 F	RBW 100 kHz	Mode /	Auto FFT		2.481	2,10 dB
Spectrum Ref Level 27. Att SGL Count 1000 • IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	60 dBm 40 dB	Offset 7.t	60 dB 🐞 F	RBW 100 kHz	Mode /	Auto FFT		2.481	2,10 dB 016780 GH

●1Pk Max				1	M	1[1]			1.98 dBm
20 dBm									15000 GHz
10 dBm			-	-	M	2[1]			-45.69 dBm 150000 GHz
0 d8m									
-10 dBm								1 1	1
	1 -17,905	dBm			_				
-30 dBm					· · · · · ·		<u> </u>		1 5
			4	12	1000	1	1	1.21	1 CO S
140 dBnon4	with idea you	with Martin	man mouse	intrappinent parter	enumeround	appropriation	Milieland	munthmiternal	Mauntunhalis-1
-50 dBm									1
-60 dBm									
-70 dBm	GHz			1001	pts	1	-	Stop	2.576 GHz
Marker	C					1 - 1 -		10.0	
Type Ref M1	Trc 1	X-value 2.480	15 GHz	Y-value 1.98 dB	Func	tion	Fund	tion Result	
M2 M3	1		35 GHz 2.5 GHz	-45.69 dB -44.94 dB					
M4	1		39 GHz	-42.12 dB					
	Л				1	1	- CII		
Ba Spectrum Ref Level 2 Att SGL Count 8 PIPk Max	7.60 dBm 40 dB	Offset 7	.60 dB 🐞 F	VNT 1-D			Ant1 Hop	oping R	ef
Spectrum Ref Level 2 Att SGL Count 8	7.60 dBm 40 dB	Offset 7	.60 dB 🐞 F	RBW 100 kHz	: Mode A		Ant1 Hop		
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm	7.60 dBm 40 dB	Offset 7	.60 dB 🐞 F	RBW 100 kHz	: Mode A	uto FFT	Ant1 Hop		2.60 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm- 10 dBm-	7.60 dBm 40 dB	Offset 7	.60 dB 🐞 F	RBW 100 kHz	: Mode A	uto FFT			2.60 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm	7.60 dBm 40 dB 009/8009	Offset 7	.60 dB 🐞 F	RBW 100 kHz	: Mode A	uto FFT			2.60 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm	7.60 dBm 40 dB 009/8009	Offset 7	.60 dB 🐞 F	RBW 100 kHz	: Mode A	uto FFT			2.60 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm	7.60 dBm 40 dB 009/8009	Offset 7	.60 dB 🐞 F	RBW 100 kHz	: Mode A	uto FFT			2.60 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm 7 dBm	7.60 dBm 40 dB 009/8009	Offset 7	.60 dB 🐞 F	RBW 100 kHz	: Mode A	uto FFT			2.60 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm- 10 dBm- -10 dBm-	7.60 dBm 40 dB 009/8009	Offset 7	.60 dB 🐞 F	RBW 100 kHz	: Mode A	uto FFT			2.60 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	7.60 dBm 40 dB 009/8009	Offset 7	.60 dB 🐞 F	RBW 100 kHz	: Mode A	uto FFT			2.60 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm	7.60 dBm 40 dB 009/8009	Offset 7	.60 dB 🐞 F	RBW 100 kHz	: Mode A	uto FFT			2.60 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	7.60 dBm 40 dB 009/8009	Offset 7	.60 dB 🐞 F	RBW 100 kHz	: Mode A	uto FFT			2.60 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	7.60 dBm 40 dB 009/8009	Offset 7	.60 dB 🐞 F	RBW 100 kHz	: Mode A	uto FFT			2.60 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm	7.60 dBm 40 dB 009/8009	Offset 7	.60 dB 🐞 F	RBW 100 kHz	: Mode A	uto FFT			2.60 dBm
Spectrum Ref Level 2 Att SGL Count 8 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm	7.60 dBm 40 dB 009/8009	Offset 7	.60 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT		2,477	2.60 dBm
Spectrum Ref Level 2 Att SGL Count 8 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	7.60 dBm 40 dB 009/8009	Offset 7	.60 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT		2,477	2.60 dBm /16280 GHz
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	7.60 dBm 40 dB 009/8009	Offset 7	.60 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT		2,477	2.60 dBm /16280 GHz

SGL Count 1Pk Max				7 7					
20 dBm					M	1[1]		2.470	2.01 dBn 595000 GH
10 dBm	1				M	2[1]			-44.51 dBn 350000 GH
								1	
						1.000		1	
H10 dBm	01 -17,400	dBm							
-20 dBm									
-30 dBm		M4							
-40 dBmie	an market where	and a	milliones	unterminance	manutant	manultanus	ulpremie presidue	manuthanakulu	man from marking
-50 dBm			-						
-60 dBm									-
-70 dBm- Start 2.476	CUE			1001	**		_	Ctop	9 575 0113
Marker				1001 p	n's			stup	2.576 GHz
Type Ref M1	Trc 1	X-value 2,476	95 GHz	Y-value 2.01 dBm	Func	tion	Fun	ction Result	t
M2 M3	1	2.48	35 GHz 2.5 GHz	-44.51 dBm -45.39 dBm	£				
M4	1		82 GHz	-41.56 dBm					
Spectrum Ref Level Att SGL Count IPK Max	1 27.62 dBm 40 dB	Offset 7.	.62 dB 🐞 🖡	DH5 240	Mode A	uto FFT	o-Hoppin	ng Ref	
Ref Level Att SGL Count 1Pk Max	1 27.62 dBm 40 dB	Offset 7.	.62 dB 🐞 🖡	88W 100 kHz	Mode A		p-Hoppin		0,80 dBn 202400 GH:
Ref Level Att SGL Count	1 27.62 dBm 40 dB	Offset 7.	.62 dB 🐞 🖡	88W 100 kHz	Mode A	uto FFT	p-Hoppin		0,80 dBn
Ref Level Att SGL Count 1Pk Max	1 27.62 dBm 40 dB	Offset 7.	.62 dB 🐞 🖡	BW 100 kHz BW 300 kHz	Mode A	uto FFT	p-Hoppin		0,80 dBn
Ref Level Att SGL Count 1Pk Max 20 dBm	1 27.62 dBm 40 dB	Offset 7.	.62 dB 🐞 🖡	88W 100 kHz	Mode A	uto FFT	p-Hoppin		0,80 dBn
Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm	1 27.62 dBm 40 dB	Offset 7.	.62 dB 🐞 🖡	BW 100 kHz BW 300 kHz	Mode A	uto FFT	p-Hoppin		0,80 dBn
Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	1 27.62 dBm 40 dB	Offset 7.	.62 dB 🐞 🖡	BW 100 kHz BW 300 kHz	Mode A	uto FFT	p-Hoppin		0,80 dBn
Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm	1 27.62 dBm 40 dB	Offset 7.	.62 dB 🐞 🖡	BW 100 kHz BW 300 kHz	Mode A	uto FFT	p-Hoppin		0,80 dBn
Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm	1 27.62 dBm 40 dB	Offset 7.	.62 dB 🐞 🖡	BW 100 kHz BW 300 kHz	Mode A	uto FFT	p-Hoppin		0,80 dBn
Ref Level Att SGL Count IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	1 27.62 dBm 40 dB	Offset 7.	.62 dB 🐞 🖡	BW 100 kHz BW 300 kHz	Mode A	I[1]	p-Hoppin		0,80 dBn
Ref Level Att SGL Count IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	1 27.62 dBm 40 dB	Offset 7.	.62 dB 🐞 🖡	BW 100 kHz BW 300 kHz	Mode A	I[1]	p-Hoppin		0,80 dBn
Ref Level Att SGL Count IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	1 27.62 dBm 40 dB	Offset 7.	.62 dB 🐞 🖡	BW 100 kHz BW 300 kHz	Mode A	I[1]			0,80 dBn
Ref Level Att SGL Count 9 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	1 27.62 dBm 40 dB	Offset 7.	.62 dB 🐞 🖡	BW 100 kHz BW 300 kHz	Mode A	I[1]			0,80 dBn
Ref Level Att SGL Count ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 27.62 dBm 40 dB	Offset 7.	.62 dB 🐞 🖡	BW 100 kHz BW 300 kHz	Mode A	I[1]			0,80 dBn
Ref Level Att SGL Count 9 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -60 dBm -70 dBm	27.62 dBm 40 dB 100/100	Offset 7.	.62 dB 🐞 🖡	RBW 100 kHz /BW 300 kHz	Mode A	I[1]		2,402	0.80 dBn 202400 GH:
Ref Level Att SGL Count 9 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	27.62 dBm 40 dB 100/100	Offset 7.	.62 dB 🐞 🖡	BW 100 kHz BW 300 kHz	Mode A	I[1]		2,402	0.80 dBn 202400 GH:
Ref Level Att SGL Count 9 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -60 dBm -70 dBm	27.62 dBm 40 dB 100/100	Offset 7.	.62 dB 🐞 🖡	RBW 100 kHz /BW 300 kHz	Mode A	I[1]		2,402	0.80 dBn 202400 GH:
Ref Level Att SGL Count 9 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -60 dBm -70 dBm	27.62 dBm 40 dB 100/100	Offset 7.	.62 dB 🐞 🖡	RBW 100 kHz /BW 300 kHz	Mode A	I[1]		2,402	0.80 dBn 202400 GH:

1Pk Max	6	r r		i i	543	E4.1			1.00.40
20 dBm			_	-	M1				1.98 dBm 205000 GHz
10 dBm			_		M2	[1]			-42.76 dBm 000000,GHz
0 dBm						-		-	1
-10 dBm					_	1			
-20 dBm	D1 -19.202	dBm		-				_	
-30 dBm								<u></u> ,	- pla
-40 dBm	-			M4				MB	MP
-50 dBm-	wallanterland	househopenadour	4n Manual	administration	adjust have a provident	evently when	closendertuiling	and hit muret	inproved the
-60 dBm			_		1				<u></u>
-70 dBm						1	1	1	
Start 2.30 Marker	6 GHz			1001	pts			Stop	2.406 GHz
Type Re		X-value	011-	Y-value	Functi	on	Fund	tion Resul	t
M1 M2	1		GHz	1.98 dBr -42.76 dBr	n				
M3 M4	1	2.39 2.3511	GHz GHz	-46.12 dBr -41.37 dBr					
Spectrur Ref Level Att	n 27.62 dBm 40 dB	SWT 18.9	2 dB 🐞 F	VNI 2-D RBW 100 kHz VBW 300 kHz	10.21				
Spectrur Ref Level Att	n 27.62 dBm	Offset 7.62 SWT 18.9	2 dB 🐞 F	RBW 100 kHz	Mode Au				
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm-	n 27.62 dBm 40 dB	Offset 7.62 SWT 18.9	2 dB 🐞 F	RBW 100 kHz	Mode Au	to FFT			2.25 dBm
Spectrur Ref Level SGL Count • 1Pk Max 20 dBm	n 27.62 dBm 40 dB	Offset 7.62 SWT 18.9	2 dB 🐞 F	RBW 100 kHz	Mode Au	to FFT			2.25 dBm
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm-	n 27.62 dBm 40 dB	Offset 7.62 SWT 18.9	2 dB 🐞 F	RBW 100 kHz	Mode Au	to FFT	- Andrew	2,403	2.25 dBm
Spectrur Ref Level SGL Count • 1Pk Max 20 dBm	n 27.62 dBm 40 dB	Offset 7.62 SWT 18.9	2 dB 🐞 F	RBW 100 kHz	Mode Au	to FFT	- Andrew	2,403	2.25 dBm
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm	n 27.62 dBm 40 dB	Offset 7.62 SWT 18.9	2 dB 🐞 F	RBW 100 kHz	Mode Au	to FFT	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2,403	2.25 dBm
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm-	n 27.62 dBm 40 dB	Offset 7.62 SWT 18.9	2 dB 🐞 F	RBW 100 kHz	Mode Au	to FFT	- Martino	2,403	2.25 dBm
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	n 27.62 dBm 40 dB	Offset 7.62 SWT 18.9	2 dB 🐞 F	RBW 100 kHz	Mode Au	to FFT	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2,403	2.25 dBm
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	n 27.62 dBm 40 dB	Offset 7.62 SWT 18.9	2 dB 🐞 F	RBW 100 kHz	Mode Au	to FFT		2,403	2.25 dBm
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	n 27.62 dBm 40 dB	Offset 7.62 SWT 18.9	2 dB 🐞 F	RBW 100 kHz	Mode Au	to FFT		2,403	2.25 dBm
Spectrur Ref Level Att SGL Count ID dBm D dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	n 27.62 dBm 40 dB	Offset 7.62 SWT 18.9	2 dB 🐞 F	RBW 100 kHz	Mode Au	to FFT		2,403	2.25 dBm
Spectrur Ref Level Att SGL Count 10 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -50 dBm-	n 27.62 dBm 40 dB	Offset 7.62 SWT 18.9	2 dB 🐞 F	RBW 100 kHz	Mode Au	to FFT		2,403	2.25 dBm
Spectrur Ref Level Att SGL Count ISGL Count IPK Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm-	n 27.62 dBm 40 dB	Offset 7.62 SWT 18.9	2 dB 🐞 F	RBW 100 kHz	Mode Au	to FFT		2,403	2.25 dBm

SGL Count 1 9 1Pk Max	000/1000	100		VBW 300 kH					_
	1			1	M	1[1]		- 0.0	2.11 dBn
20 dBm					M	2[1]			305000 GH: -43,70 dBn
10 dBm							()	2.40	000000 GH:
0 dBm									phy
-10 dBm-	. uai	-		-		-			
-20 dBm	1 -17.754	dBm							
-30 dBm				M4		-		-	p p
-40 dBm	www.hary.ac.ory	phone phone	agentinan		manusan	athonyman	municipation	M3	MP NO
-50 dBm				i		1			
-60 dBm		_		-	-				
-70 dBm						-			-
Start 2.306 Marker	GHZ	_		1001	pts	1		Stop	2.406 GHz
Type Ref M1	Trc 1	X-value 2.403	9 05 GHz	Y-value 2.11 dB	Func	tion	Fund	tion Resul	t
M2 M3	1	2	2.4 GHz 39 GHz	-43.70 dB -43.54 dB	Im				
M4	1		83 GHz	-39.71 dB					
	07								
Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max	7.60 dBm 40 dB	Offset 7	.60 dB 🐞 R	DH5 244	Mode A	uto FFT	o-Hoppir	ng Ref	
Spectrum Ref Level 2 Att SGL Count 1 9 1Pk Max	7.60 dBm 40 dB	Offset 7	.60 dB 🐞 R	BW 100 kHz	Mode A		p-Hoppin		1.63 dBn
Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 20 dBm	7.60 dBm 40 dB	Offset 7	.60 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	p-Hoppin		[∆ 1,63 dBn
Spectrum Ref Level 2 Att SGL Count 1 9 1Pk Max	7.60 dBm 40 dB	Offset 7	.60 dB 🐞 R	BW 100 kHz	Mode A	uto FFT			[∆ 1,63 dBn
Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 20 dBm	7.60 dBm 40 dB	Offset 7	.60 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	p-Hoppin		[∆ 1,63 dBn
Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 20 dBm	7.60 dBm 40 dB	Offset 7	.60 dB 🐞 R	BW 100 kHz	Mode A	uto FFT			1.63 dBn
Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 20 dBm- 10 dBm- -10 dBm-	7.60 dBm 40 dB	Offset 7	.60 dB 🐞 R	BW 100 kHz	Mode A	uto FFT			1.63 dBn
Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 20 dBm	7.60 dBm 40 dB	Offset 7	.60 dB 🐞 R	BW 100 kHz	Mode A	uto FFT			1.63 dBn
Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 20 dBm- 10 dBm- -10 dBm-	7.60 dBm 40 dB	Offset 7	60 dB ■ R 8.9 µs ● V		Mode A	uto FFT			1.63 dBn
Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	7.60 dBm 40 dB	Offset 7	.60 dB 🐞 R		Mode A	uto FFT	p-Hoppin		1.63 dBn
Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	7.60 dBm 40 dB	Offset 7	60 dB ■ R 8.9 µs ● V		Mode A	uto FFT			1.63 dBn
Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	7.60 dBm 40 dB	Offset 7	60 dB ■ R 8.9 µs ● V		Mode A	uto FFT			1.63 dBn
Spectrum Ref Level 2 Att SGL Count 1 1PK Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	7.60 dBm 40 dB	Offset 7	60 dB ■ R 8.9 µs ● V		Mode A	uto FFT			1.63 dBn
Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	7.60 dBm 40 dB	Offset 7	60 dB ■ R 8.9 µs ● V		Mode A	uto FFT			1.63 dBn
Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	7.60 dBm 40 dB 00/100	Offset 7	60 dB ■ R 8.9 µs ● V			uto FFT		2.48	1.63 dBn
Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	7.60 dBm 40 dB 00/100	Offset 7	60 dB ■ R 8.9 µs ● V			uto FFT		2.48	1.63 dBn 00-1000 GH:
Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	7.60 dBm 40 dB 00/100	Offset 7	60 dB ■ R 8.9 µs ● V			uto FFT		2.48	1.63 dBn 00-1000 GH:
Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	7.60 dBm 40 dB 00/100	Offset 7	60 dB ■ R 8.9 µs ● V			uto FFT		2.48	1.63 dBn 00-1000 GH:

SGL Count	100/100								
					M	1[1]		6.45	0.19 dBm
20 dBm			1		M	2[1]			985000 GHz -44.24 dBm
10 dBm	1						(2.48	350000 GHz
0 d6m									11
-10.cBm							-		
-20 aBm—	D1 -18.373	dBm							
-38 d8m									
THO DEPT	M.	Haberto Come	marie put my	unimenumental in	an sakards a	- madulking a	Madadi tala tan	man Mondaway	why have been
-50 dBm-	and shares for the	and an one of		- Show we in the	Cherry R. 1990 a Mare	en anna (India			
-60 dBm—			-						1
-70 dBm-	6.00		-	1001 -			_	Otar	0.576.011-
Start 2.47 Marker	o GHZ			1001 p	JUS	1.0		stop	2.576 GHz
Type Re M1	f Trc	X-valu 2.479	e	Y-value 0.19 dBm	Func	tion	Func	tion Resul	t
M2 M3	1		335 GHz 2.5 GHz	-44.24 dBm -45.21 dBm					
M4	1		958 GHz	-42.83 dBm		1			
Spectrur Ref Level Att		Offset 7	.60 dB 🐞 F	VNT 2-DH RBW 100 kHz YBW 300 kHz	13.7		ant1 Hop	oping R	ef
Spectrur Ref Level Att SGL Count	n 27.60 dBm 40 dB	Offset 7	.60 dB 🐞 F	RBW 100 kHz	Mode A		Ant1 Hop		
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm-	n 27.60 dBm 40 dB	Offset 7	.60 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT	Ant1 Hop		2,33 dBm
Spectrur Ref Level Att SGL Count 1Pk Max	n 27.60 dBm 40 dB	Offset 7	.60 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT	Ant1 Hop		2,33 dBm
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	n 27.60 dBm 40 dB	Offset 7	.60 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT	Ant1 Hop		2,33 dBm
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- M1	n 27.60 dBm 40 dB	Offset 7	.60 dB 🐞 F	RBW 100 kHz VBW 300 kHz	Mode A	uto FFT	Ant1 Hop		2,33 dBm
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 10 dBm	n 27.60 dBm 40 dB	Offset 7	.60 dB 🐞 F	RBW 100 kHz VBW 300 kHz	Mode A	uto FFT	Ant1 Hop		2,33 dBm
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm	n 27.60 dBm 40 dB	Offset 7	.60 dB 🐞 F	RBW 100 kHz VBW 300 kHz	Mode A	uto FF T	Ant1 Hop		2,33 dBm
Spectrur Ref Level Att SGL Count IPk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	n 27.60 dBm 40 dB	Offset 7	.60 dB 🐞 F	RBW 100 kHz VBW 300 kHz	Mode A	uto FFT	Ant1 Hop		2,33 dBm
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm	n 27.60 dBm 40 dB	Offset 7	.60 dB 🐞 F	RBW 100 kHz VBW 300 kHz	Mode A	uto FF T	Ant1 Hop		2,33 dBm
Spectrur Ref Level Att SGL Count IPk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	n 27.60 dBm 40 dB	Offset 7	.60 dB 🐞 F	RBW 100 kHz VBW 300 kHz	Mode A	uto FF T			2,33 dBm
Spectrur Ref Level Att SGL Count IPK Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm	n 27.60 dBm 40 dB	Offset 7	.60 dB 🐞 F	RBW 100 kHz VBW 300 kHz	Mode A	uto FF T			2,33 dBm
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	n 27.60 dBm 40 dB	Offset 7	.60 dB 🐞 F	RBW 100 kHz VBW 300 kHz	Mode A	uto FF T			2,33 dBm
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	n 27.60 dBm 40 dB 8000/8000	Offset 7	.60 dB 🐞 F	RBW 100 kHz VBW 300 kHz	Mode A	uto FF T		2,47	2,33 dBm 516380 GHz
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	n 27.60 dBm 40 dB 8000/8000	Offset 7	.60 dB 🐞 F	RBW 100 kHz VBW 300 kHz	Mode A	uto FF T		2,47	2,33 dBm
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	n 27.60 dBm 40 dB 8000/8000	Offset 7	.60 dB 🐞 F	RBW 100 kHz VBW 300 kHz	Mode A	uto FF T		2,47	2,33 dBm 516380 GHz
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	n 27.60 dBm 40 dB 8000/8000	Offset 7	.60 dB 🐞 F	RBW 100 kHz VBW 300 kHz	Mode A	uto FF T		2,47	2,33 dBm 516380 GHz

• 1Pk Max	1000/1000								
20 dBm				_	M1	[1]		2.479	1.22 dBn 905000 GH
10 dBm			100	1	M2	[1]			-43.04 dBn 350000 GH
D.dBm					1			1	
alla II an									
-10 cBm	D1 -17.668	dBro							· · · · · ·
-20 dBm—	01 -17,000	upm							
-30 dgm		200							
-40 dBm2	wataran	Mt.	Muturelyna	under which many	multimber	Monorgania	A Murriel white	for the market	Mar Calman
-50 dBm									
-60 dBm			_	-	_		-		
-70 dBm									
Start 2.47 Marker	6 GHz			1001	pts			Stop	2.576 GHz
Type Re	f Trc	X-value		Y-value	Functi	on	Fun	ction Result	t
M1 M2	1	2.4790	5 GHz	1.22 dB -43.04 dB					
M3 M4	1		5 GHz 2 GHz	-43.96 dB -42.29 dB					
	Y	2,199		12.20 00					6
Spectrur Ref Level Att SGL Count	27.62 dBm 40 dB			BW 100 kHz BW 300 kHz		to FFT			
Ref Level Att SGL Count 1Pk Max 20 dBm	27.62 dBm 40 dB				Mode Aut	(1)		2.405	2,54 dBn 216780 GH
Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	27.62 dBm 40 dB				Mode Aut			2,403	2,54 dBn
Ref Level Att SGL Count 1Pk Max 20 dBm	27.62 dBm 40 dB				Mode Aut			2.403	2,54 dBn
Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm- -10 dBm-	27.62 dBm 40 dB				Mode Aut			2.402	2,54 dBn
Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	27.62 dBm 40 dB				Mode Aut	[1]		2,402	2,54 dBn
Ref Level Att SGL Count IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	27.62 dBm 40 dB				Mode Aut	[1]		2,403	2.54 dBn 216780 GH
Ref Level Att SGL Count IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	27.62 dBm 40 dB				Mode Aut	[1]	Lov	2,403	2,54 dBn
Ref Level Att SGL Count IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	27.62 dBm 40 dB				Mode Aut	[1]		2.403	2.54 dBn 216780 GH
Ref Level Att SGL Count IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	27.62 dBm 40 dB				Mode Aut	[1]	Lov	2.403	2.54 dBn 216780 GH
Ref Level Att SGL Count IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	27.62 dBm 40 dB 300/300					[1]			2.54 dBn 216780 GH
Ref Level Att SGL Count IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	27.62 dBm 40 dB 300/300					[1]			2.54 dBn 216780 GH

SGL Count : 1Pk Max	100/100								
20 dBm					MI	[1]	- 1	2.40	0.41 dBm 205000 GHz
10 dBm					M2	2[1]			-41.50 dBm 000000 GHz
0 dBm							1		MI
-10 dBm						1		1 1	
-20 dBm-	01 -17,460	dBm		-			-		
-30 dBm							1	1	p-4
-40 dBm			ALC: A	M4				M2	MP
-50 dBm	ap. Ministrius A	and the manual	lava ma	and the second of the second o	Amerikanikani	needlacenyush	ele-tour hollows	minificulture	alassal ^a ha
-60 dBm									
-70 dBm						1	1		
Start 2.306 Marker	GHz			1001	pts			Stop	2.406 GHz
Type Ref	Trc 1	X-value	05 GHz	Y-value 0.41 dBn	Funct	ion	Fun	ction Resul	t
M2	1	2	2.4 GHz	-41.50 dBn	n				
M3	1		39 GHz 94 GHz	-47.79 dBn -41.07 dBn					
M4									
	27.62 dBm 40 dB	Offset 7	.62 dB 👜	IVNT 3-DI RBW 100 kHz VBW 300 kHz	Mode Au	ito FFT	Ant1 Ho	pping R	
Ba Spectrum Ref Level : Att SGL Count 1 • 1Pk Max	27.62 dBm 40 dB	Offset 7	.62 dB 👜	RBW 100 kHz	Mode Au		Ant1 Ho		(m)
Ba Spectrum Ref Level : Att SGL Count 1 • 1Pk Max 20 dBm-	27.62 dBm 40 dB	Offset 7	.62 dB 👜	RBW 100 kHz	Mode Au	ito FFT	Ant1 Ho		2,83 dBm
Ba Spectrum Ref Level : Att SGL Count 1 • 1Pk Max	27.62 dBm 40 dB	Offset 7	.62 dB 👜	RBW 100 kHz	Mode Au	ito FFT	Ant1 Ho		2,83 dBm
Ba Spectrum Ref Level : Att SGL Count 1 • 1Pk Max 20 dBm-	27.62 dBm 40 dB	Offset 7	.62 dB 👜	RBW 100 kHz	Mode Au	ito FFT			2,83 dBm
Ba Spectrum Ref Level 3 Att SGL Count 1 SGL Count 1 1Pk Max 20 dBm 10 dBm	27.62 dBm 40 dB	Offset 7	.62 dB 👜	RBW 100 kHz	Mode Au	ito FFT			2,83 dBm
Ba Spectrum Ref Level 3 Att SGL Count 1 • 1Pk Max 20 dBm 10 dBm -10 dBm	27.62 dBm 40 dB	Offset 7	.62 dB 👜	RBW 100 kHz	Mode Au	ito FFT			2,83 dBm
Ba Spectrum Ref Level 3 Att SGL Count 1 9 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	27.62 dBm 40 dB	Offset 7	.62 dB 👜	RBW 100 kHz	Mode Au	ito FFT			2,83 dBm
Ba Spectrum Ref Level 3 Att SGL Count 1 • 1Pk Max 20 dBm 10 dBm -10 dBm	27.62 dBm 40 dB	Offset 7	.62 dB 👜	RBW 100 kHz	Mode Au	ito FFT			2,83 dBm
Ba Spectrum Ref Level 3 Att SGL Count 1 9 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	27.62 dBm 40 dB	Offset 7	.62 dB • •	RBW 100 kHz	Mode Au	ito FFT			2,83 dBm
Ba Spectrum Ref Level 3 Att SGL Count f • 1Pk Max 20 dBm 10 dBm - 10 dBm - 10 dBm - 20 dBm - 30 dBm	27.62 dBm 40 dB	Offset 7	.62 dB • •	RBW 100 kHz	Mode Au	ito FFT			2,83 dBm
Ba Spectrum Ref Level : Att SGL Count I • 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	27.62 dBm 40 dB	Offset 7	.62 dB • •	RBW 100 kHz	Mode Au	ito FFT			2,83 dBm
Ba Spectrum Ref Level : Att SGL Count f • 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	27.62 dBm 40 dB	Offset 7	.62 dB • •	RBW 100 kHz	Mode Au	ito FFT			2,83 dBm
Ba Spectrum Ref Level : Att SGL Count I ID dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm	27.62 dBm 40 dB 3000/8000	Offset 7	.62 dB • •	RBW 100 kHz	Mode Au	ito FFT		2.40	2,83 dBm 383820 GHz
Ba Spectrum Ref Level : Att SGL Count I I GBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm	27.62 dBm 40 dB 3000/8000	Offset 7	.62 dB • •	RBW 100 kHz	Mode Au	ito FFT		2.40	2,83 dBm
Ba Spectrum Ref Level : Att SGL Count I ID dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm	27.62 dBm 40 dB 3000/8000	Offset 7	.62 dB • •	RBW 100 kHz	Mode Au	ito FFT		2.40	2,83 dBm 383820 GHz
Ba Spectrum Ref Level : Att SGL Count f SGL Count f IDk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	27.62 dBm 40 dB 3000/8000	Offset 7	.62 dB • •	RBW 100 kHz	Mode Au	ito FFT		2.40	2,83 dBm 383820 GHz

SGL Count 1000/1 91Pk Max			VBW 300 kH:	z Mode A				
20 dBm	-			M1	[1]	- 1	2.403	1.31 dBr 305000 GH
10 dBm		-		M2	[1]		-	-45.57 dBr
0 dBm					-	(i)	1.100	MI
-10 dBm				1. 191	1		1	AM.
01.17	,173 dBm					3	1	
-20 dBm-						_		
-30 dBm			M4				1	1
-40 dBm	mananan	un such and	mannerway	mannorth	ornhaltungatur	-	man Talman	annual
-50 dBm		-	·					
-60 dBm						· · · · ·	1	
-70 dBm- Start 2.306 GHz			1001	pts	_		Stop	2.406 GHz
Marker				1. I.I.	1-4		10.0	
Type Ref Trc M1 1		D5 GHz	Y-value 1.31 dB		ion	Fund	tion Result	1
M2 1 M3 1		.4 GHz 39 GHz	-45.57 dB	and and				
M4 1	2.349	91 GHz	-40.57 dB	m	1			-
						-		
Spectrum Ref Level 27.60 Att 40 SGL Count 100/10	dB SWT 18	60 dB 🐞 R	DH5 248	100.20	10.00	о-норри		
Spectrum Ref Level 27.60 Att 40	dBm Offset 7. DdB SWT 18	60 dB 🐞 R	RBW 100 kHz	Mode Au	10.00			2,08 dBr 016780 GH
Spectrum Ref Level 27.60 Att 40 SGL Count 100/10 PK Max 20 dBm-	dBm Offset 7. DdB SWT 18	60 dB 🐞 R	RBW 100 kHz	Mode Au	to FFT			2,08 dBr
Spectrum Ref Level 27.60 Att 40 SGL Count 100/10 IPk Max 20 dBm 10 dBm	dBm Offset 7. DdB SWT 18	60 dB 🐞 R	RBW 100 kHz	Mode Au	to FFT			2,08 dBr
Spectrum Ref Level 27.60 Att 40 SGL Count 100/10 IPk Max 20 dBm 10 dBm -10 dBm	dBm Offset 7. DdB SWT 18	60 dB 🐞 R	RBW 100 kHz	Mode Au	to FFT			2,08 dBr
Spectrum Ref Level 27.60 Att 40 SGL Count 100/10 IPk Max 20 dBm 10 dBm 0 dBm	dBm Offset 7. DdB SWT 18	60 dB 🐞 R	RBW 100 kHz	Mode Au	to FFT			2,08 dBr
Spectrum Ref Level 27.60 Att 40 SGL Count 100/10 IPk Max 20 dBm 10 dBm -10 dBm	dBm Offset 7. DdB SWT 18	60 dB 🐞 R	RBW 100 kHz	Mode Au	to FFT			2,08 dBr
Spectrum Ref Level 27.60 Att 40 SGL Count 100/10 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm	dBm Offset 7. DdB SWT 18	60 dB 🐞 R	RBW 100 kHz	Mode Au	to FFT			2,08 dBr
Spectrum Ref Level 27.60 Att 40 SGL Count 100/10 • IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	JBm Offset 7. o dB SWT 16 0 	60 dB 🐞 R	RBW 100 kHz	Mode Au	to FFT			2,08 dBr
Spectrum Ref Level 27.60 Att 40 SGL Count 100/10 ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	JBm Offset 7. o dB SWT 16 0 	60 dB 🐞 R	RBW 100 kHz	Mode Au	to FFT			2,08 dBr
Spectrum Ref Level 27.60 Att 40 SGL Count 100/10 • IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	JBm Offset 7. o dB SWT 16 0 	60 dB 🐞 R	RBW 100 kHz	Mode Au	to FFT			2,08 dBr
Spectrum Ref Level 27.60 Att 40 SGL Count 100/10 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	JBm Offset 7. o dB SWT 16 0 	60 dB 🐞 R	RBW 100 kHz	Mode Au	to FFT			2,08 dBr
Spectrum Ref Level 27.60 Att 40 SGL Count 100/10 • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	JBm Offset 7. o dB SWT 16 0 	60 dB 🐞 R	RBW 100 kHz	Mode Au	to FFT		2.480	2.08 dBr 016780 GH
Spectrum Ref Level 27.60 Att 40 SGL Count 100/10 ● 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	JBm Offset 7. o dB SWT 16 0 	60 dB 🐞 R	RBW 100 kHz	Mode Au	to FFT		2.480	2.08 dBr 016780 GH
Spectrum Ref Level 27.60 Att 40 SGL Count 100/10 ● 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	JBm Offset 7. o dB SWT 16 0 	60 dB 🐞 R	RBW 100 kHz	Mode Au	to FFT		2.480	2.08 dBr 016780 GH
Spectrum Ref Level 27.60 Att 40 SGL Count 100/10 ● 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	JBm Offset 7. o dB SWT 16 0 	60 dB 🐞 R	RBW 100 kHz	Mode Au	to FFT		2.480	2.08 dBr 016780 GH

SGL Count		2713 - 15		VBW 300 kHz	, nous	Auto FFT			
20 dBm		1			M	1[1]		2 400	0.66 dBm 005000 GHz
10 dBm	1.10				M	2[1]			-44.46 dBm 350000 GHz
M1 0 dBm							1	2,400	
-10 cBm	-						1	1 1	
-20 dBm-	D1 -17,917	dBm					-	_	
-30 d8m	<u> </u>		_					<u> </u>	1
-40 dBm		MB				1		La June	
-50 dBm	Min-Millio-Judie	any thousand	althousand	hallowers	ungermantific	allow share marked	nghall-archived	-Address and and the	an tearner on and will
-60 dBm	c		_	-	-				
-70 dBm	0.0			1001		1		01	0.576.011-
Start 2.47 Marker	1000			1001				1	2.576 GHz
Type Re M1	1	X-value 2.4800	5 GHz	Y-value 0.66 dBr		tion	Func	tion Resul	t
M2 M3	1	2.	5 GHz 5 GHz	-44.46 dBi -42.53 dBi	m				
M4	1	2,	5 GHz	-42.53 dBi	m	7			6
Ba Spectrum Ref Level Att		Offset 7.6 SWT 18	50 dB 🐞 F	VNT 3-D	Mode A	uto FFT	unt1 Hop	oping R	
Ba Spectrum Ref Level Att SGL Count	27.60 dBm 40 dB	Offset 7.6 SWT 18	50 dB 🐞 F	RBW 100 kHz	Mode A		.nt1 Hop		2.29 dBm
Ba Spectrum Ref Level Att SGL Count	27.60 dBm 40 dB	Offset 7.6 SWT 18	50 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT	.nt1 Hop		
Bi Spectrum Ref Level Att SGL Count • 1Pk Max	27.60 dBm 40 dB 8000/8000	Offset 7.6 SWT 18	50 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT	unt1 Hop		2.29 dBm
B: Spectrum Ref Level Att SGL Count 9 1Pk Max 20 dBm-	27.60 dBm 40 dB	Offset 7.6 SWT 18	50 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT	unt1 Hop		2.29 dBm
Bi Spectrun Ref Level Att SGL Count SGL Count 10 dBm- 10 dBm- 10 dBm-	27.60 dBm 40 dB 8000/8000	Offset 7.6 SWT 18	50 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT	unt1 Hop		2.29 dBm
Bi Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm- 10 dBm- -10 dBm-	27.60 dBm 40 dB 8000/8000	Offset 7.6 SWT 18	50 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT	ant1 Hop		2.29 dBm
Bi Spectrun Ref Level Att SGL Count SGL Count 10 dBm- 10 dBm- 10 dBm-	27.60 dBm 40 dB 8000/8000	Offset 7.6 SWT 18	50 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT	unt1 Hop		2.29 dBm
Bi Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm- 10 dBm- -10 dBm-	27.60 dBm 40 dB 8000/8000	Offset 7.6 SWT 18	50 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT	unt1 Hop		2.29 dBm
Bi Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm- -10 dBm- -10 dBm- -20 dBm-	27.60 dBm 40 dB 8000/8000	Offset 7.6 SWT 18	50 dB 🐞 F	RBW 100 kHz	Mode A	uto FF T	unt1 Hop		2.29 dBm
Bi Spectrum Ref Level Att SGL Count SGL Count 10 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	27.60 dBm 40 dB 8000/8000	Offset 7.6 SWT 18	50 dB 🐞 F	RBW 100 kHz	Mode A	uto FF T	unt1 Hop		2.29 dBm
Bi Spectrum Ref Level Att SGL Count SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm	27.60 dBm 40 dB 8000/8000	Offset 7.6 SWT 18	50 dB 🐞 F	RBW 100 kHz	Mode A	uto FF T	unt1 Hop		2.29 dBm
Bi Spectrum Ref Level Att SGL Count SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	27.60 dBm 40 dB 8000/8000	Offset 7.6 SWT 18	50 dB 🐞 F	RBW 100 kHz	Mode A	uto FF T	unt1 Hop		2.29 dBm
Bi Spectrum Ref Level Att SGL Count SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm	27.60 dBm 40 dB 8000/8000	Offset 7.6 SWT 18	50 dB 🐞 F	RBW 100 kHz	Mode A	uto FF T	unt1 Hop	2.47	2.29 dBm
Bi Spectrun Ref Level Att SGL Count 10 dBm- 10 dBm- -20 dBm- -20 dBm- -30 dBm- -50 dBm- -50 dBm- -70 dBm-	27.60 dBm 40 dB 8000/8000	Offset 7.6 SWT 18	50 dB 🐞 F		Mode A	uto FF T	ant1 Hop	2.47	2.29 dBm 204300 GHz
Bi Spectrun Ref Level Att SGL Count 10 dBm- 10 dBm- -20 dBm- -20 dBm- -30 dBm- -50 dBm- -50 dBm- -70 dBm-	27.60 dBm 40 dB 8000/8000	Offset 7.6 SWT 18	50 dB 🐞 F		Mode A	uto FF T	ant1 Hop	2.47	2.29 dBm 204300 GHz

Δ.						n	Spectrun
	τ.	Mode Auto FF1	BW 100 kHz BW 300 kHz	and the second second		27.60 dBm 40 dB 1000/1000	Att
							1Pk Max
0,10 dBm		M1[1]					
2.47785000 GHz			-				20 dBm
-44.19 dBm		M2[1]		1			10 dBm
2.48350000 GHz	1						10 aBm M1
			-	-			DidBm
				1			
	-	-	-	+			-10 cBm
					dBm	D1 -17.711	-20 dBm
			-				-20 UBIII-
	_					· · · · ·	-30 dBm
						M4	M N
ningeness markers all reconnend	. hur	to total Maria and	March martine and	Lun Showhard	AND HE WE		-40 dem
and the second s	the second second second	have after allowed and	barra man - barra	and the second se	an a seathatter	on the second filling	-50 dBm
							-00 ubiii
							-60 dBm
			· · · · · · · · ·				
				-			-70 dBm—
Stop 2.576 GHz			1001 pts			6 GHz	Start 2.47
							larker
Function Result		Function	Y-value		X-value	f Trc	
			0.10 dBm -44.19 dBm	85 GHz 35 GHz		1	M1 M2
			-44.72 dBm	2.5 GHz		1	M3
			-42.33 dBm	83 GHz		1	M4

8.7 CONDUCTED RF SPURIOUS EMISSION

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant 1	-58.01	-20	Pass
NVNT	1-DH5	2441	Ant 1	-57.64	-20	Pass
NVNT	1-DH5	2480	Ant 1	-49	-20	Pass
NVNT	2-DH5	2402	Ant 1	-55.57	-20	Pass
NVNT	2-DH5	2441	Ant 1	-47.65	-20	Pass
NVNT	2-DH5	2480	Ant 1	-55.39	-20	Pass
NVNT	3-DH5	2402	Ant 1	-51.95	-20	Pass
NVNT	3-DH5	2441	Ant 1	-58.64	-20	Pass
NVNT	3-DH5	2480	Ant 1	-51.02	-20	Pass

Spectrum Ref Level 17.62 dBm Offset 7.62 dB 🖷 RBW 100 kHz 20 dB SWT 18.9 µs 🛥 VBW 300 kHz Att Mode Auto FFT SGL Count 100/100 1Pk Max 1.95 dBm 2.4020379990 GHz MI[1] 10 dBm MI 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm-Span 1.5 MHz 30001 pts CF 2.402 GHz 10.00

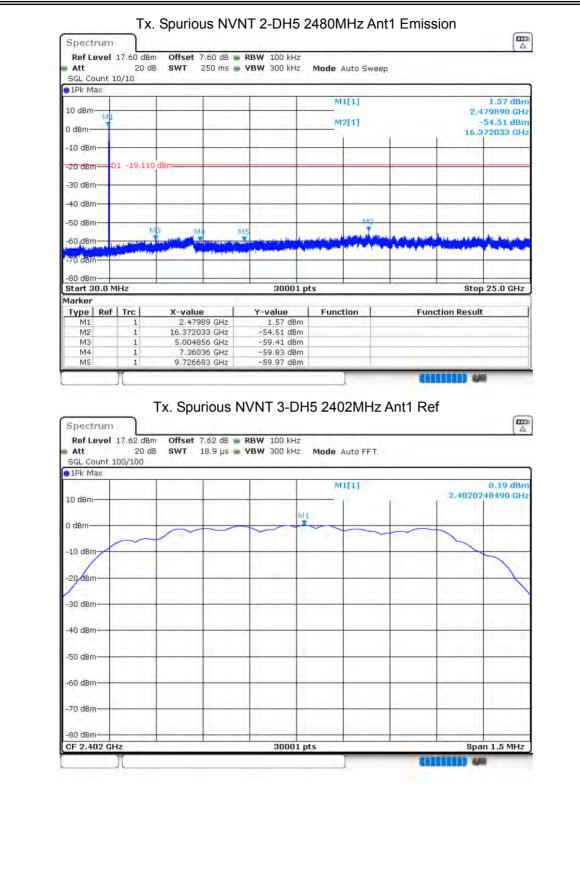
Tx. Spurious NVNT 1-DH5 2402MHz Ant1 Ref

10.000				M1[1]			2.35 dBn
10 dBm				M2[1]		2	401650 GH -56.07 dBn
0 dBm				1			15	342436 GH
A. 61.4	18.047 dBm							
-30 dBm						-		
-40 dBm								
-50 dBm				V	2			
-60 dBm	MB	M4 M5	al a spinite a state liter	the state of the s		de aufantere ande	A standard banda	Antonia
-70 dBm	A second s	and supplier exclusion as						
-80 dBm Start 30.0 MHz		_	30001 p	its		-	Sto	p 25.0 GHz
Marker		2 1			1	21		
Type Ref Tr M1	1 2.	alue 40165 GHz	Y-value 2.35 dBm	Functio	on	Fun	ction Resu	t
M2 M3	1 4.9	842436 GHz 960743 GHz	-56.07 dBm -60.13 dBm					
M4 M5		48235 GHz	-59.24 dBm -59.86 dBm					_
11				1	-	(1)		<u>8</u>
Spectrum Ref Level 17.7 Att SGL Count 100/:	78 dBm Offs 20 dB SWT	purious N et 7.78 dB = F 18.9 µs = V	RBW 100 kHz			nt1 Re	f	(m A
Ref Level 17.7 Att SGL Count 100/: 1Pk Max	78 dBm Offs 20 dB SWT	et 7.78 dB 🖷 F	RBW 100 kHz		ito FFT.	ant1 Re		2,12 dBr
Ref Level 17.7 Att SGL Count 100/2	78 dBm Offs 20 dB SWT	et 7.78 dB 🖷 F	RBW 100 kHz VBW 300 kHz	Mode Au M1[ito FFT.	ant1 Re		(Δ
Ref Level 17.7 Att SGL Count 100/: 1Pk Max	78 dBm Offs 20 dB SWT	et 7.78 dB 🖷 F	RBW 100 kHz /BW 300 kHz	Mode Au M1[ito FFT.	ant1 Re		2,12 dBr
Ref Level 17.7 Att SGL Count 100/: 1Pk Max	78 dBm Offs 20 dB SWT	et 7.78 dB 🖷 F	RBW 100 kHz VBW 300 kHz	Mode Au M1[ito FFT.	ant1 Re		2,12 dBr
Ref Level 17.7 Att SGL Count 100/3 9 1Pk Max 10 dBm 0 dBm	78 dBm Offs 20 dB SWT	et 7.78 dB 🖷 F	RBW 100 kHz VBW 300 kHz	Mode Au M1[ito FFT.	ant1 Re		2,12 dBr
Ref Level 17.7 Att SGL Count 100/1 TPk Max 10 dBm 0 dBm -10 dBm	78 dBm Offs 20 dB SWT	et 7.78 dB 🖷 F	RBW 100 kHz VBW 300 kHz	Mode Au M1[ito FFT.	ant1 Re		2,12 dBr
Ref Level 17.7 Att SGL Count 100/3 O IPk Max 10 dBm -10 dBm	78 dBm Offs 20 dB SWT	et 7.78 dB 🖷 F	RBW 100 kHz VBW 300 kHz	Mode Au M1[ito FFT.	ant1 Re		2,12 dBr
Ref Level 17.7 Att SGL Count 100/1 TPk Max 10 dBm 0 dBm -10 dBm	78 dBm Offs 20 dB SWT	et 7.78 dB 🖷 F	RBW 100 kHz VBW 300 kHz	Mode Au M1[ito FFT.	ant1 Re		2,12 dBr
Ref Level 17.7 Att SGL Count 100/: 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	78 dBm Offs 20 dB SWT	et 7.78 dB 🖷 F	RBW 100 kHz VBW 300 kHz	Mode Au M1[ito FFT.	ant1 Re		2,12 dBr
Ref Level 17.7 Att SGL Count 100/1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	78 dBm Offs 20 dB SWT	et 7.78 dB 🖷 F	RBW 100 kHz VBW 300 kHz	Mode Au M1[ito FFT.	Ant1 Re		2,12 dBr
Ref Level 17.7 Att SGL Count 100/1 O dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -60 dBm	78 dBm Offs 20 dB SWT	et 7.78 dB 🖷 F	RBW 100 kHz VBW 300 kHz	Mode Au M1[ito FFT.	Ant1 Re		2,12 dBr
Ref Level 17.7 Att SGL Count 100/1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	78 dBm Offs 20 dB SWT	et 7.78 dB 🖷 F	RBW 100 kHz VBW 300 kHz	Mode Au M1[ito FFT.	Ant1 Re		2,12 dBr
Ref Level 17.7 Att SGL Count 100/1 9 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	78 dBm Offs 20 dB SWT	et 7.78 dB 🖷 F	RBW 100 kHz /BW 300 kHz	Mode Au	ito FFT.	Ant1 Re	2.4410	2,12 dBr 289990 GH
Ref Level 17.7 Att SGL Count 100/1 9 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	78 dBm Offs 20 dB SWT	et 7.78 dB 🖷 F	RBW 100 kHz VBW 300 kHz	Mode Au	ito FFT.	Ant1 Re	2.4410	2,12 dBr

				M1[:	1]			2.07 dB
10 dBm ML				M2[40770 GH
0 dBm				1	-	Ê		30738 GI
-10 dBm	17.977 dBm		1					
20 00.00	-17.877 dBm							
-30 dBm	1							-
-40 dBm						i		1
-50 dBm	M3	M+ N			and the party from Here I	M2	dia s. a ab canina	And the second
-60 dBm	and and the set of the	Contraction of the second	and the station of the flat	www.ub.ub. Pharfield	alle de plé eléctron	the state of the s	denote the spectrum	American
-70 060								
Start 30.0 MH	2		30001 p	ots		I	Stop	25.0 GH
Marker Type Ref T			Y-value	Functio	on	Function	on Result	
M1 M2	1 19.53	14077 GHz 30738 GHz	2.07 dBm -55.53 dBm					
M3 M4		25665 GHz 35703 GHz	-60.14 dBm -59.95 dBm					
M5	1 9.9	90397 GHz	~60.11 dBm	1				
Spectrum Ref Level 17 Att SGL Count 100	.60 dBm Offse 20 dB SWT	et 7.60 dB 🝙 I	VNT 1-DH	Mode Aut	to FFT.	nt1 Ref		[-
Ref Level 17 Att SGL Count 100 1Pk Max	.60 dBm Offse 20 dB SWT	et 7.60 dB 🝙 I	RBW 100 kHz		to FFT.	nt1 Ref	2.47995	1.54 dB
Ref Level 17 Att SGL Count 100	.60 dBm Offse 20 dB SWT	et 7.60 dB 🝙 I	RBW 100 kHz	Mode Aut	to FFT.	nt1 Ref	2.47995	Į.
Ref Level 17 Att SGL Count 100 1Pk Max	.60 dBm Offse 20 dB SWT	et 7.60 dB 🝙 I	RBW 100 kHz	Mode Aut	to FFT.	nt1 Ref	2.47995	1.54 dB
Ref Level 17 Att SGL Count 100 1Pk Max 10 dBm	.60 dBm Offse 20 dB SWT	et 7.60 dB 🝙 I	RBW 100 kHz	Mode Aut	to FFT.	.nt1 Ref	2.47995	1.54 dB
Ref Level 17 Att SGL Count 100, 1Pk Max 10 dBm- 0 dBm- -10 dBm-	.60 dBm Offse 20 dB SWT	et 7.60 dB 🝙 I	RBW 100 kHz	Mode Aut	to FFT.	Int1 Ref	2.47995	1.54 dB
Ref Level 17 Att SGL Count 100, 1Pk Max 10 dBm- 0 dBm-	.60 dBm Offse 20 dB SWT	et 7.60 dB 🝙 I	RBW 100 kHz	Mode Aut	to FFT.	Int1 Ref	2.47995	1.54 dB
Ref Level 17 Att SGL Count 100, 1Pk Max 10 dBm- 0 dBm- -10 dBm-	.60 dBm Offse 20 dB SWT	et 7.60 dB 🝙 I	RBW 100 kHz	Mode Aut	to FFT.	.nt1 Ref	2.47995	1.54 dB
Ref Level 17 Att SGL Count 100, 1Pk Max 10 dBm 0 dBm -10 dBm	.60 dBm Offse 20 dB SWT	et 7.60 dB 🝙 I	RBW 100 kHz	Mode Aut	to FFT.	.nt1 Ref	2.47995	1.54 dB
Ref Level 17 Att SGL Count 100 • IPk Max 10 dBm • 0 dBm • 10 dBm • 20 dBm • 30 dBm	.60 dBm Offse 20 dB SWT	et 7.60 dB 🝙 I	RBW 100 kHz	Mode Aut	to FFT.	.nt1 Ref	2.47995	1.54 dB
Ref Level 17 Att SGL Count 100 ID dBm 0 dBm -10 dBm -20 dBm -30 dBm	.60 dBm Offse 20 dB SWT	et 7.60 dB 🝙 I	RBW 100 kHz	Mode Aut	to FFT.	.nt1 Ref	2.47995	1.54 dB
Ref Level 17 Att SGL Count 100 • IPk Max 10 dBm • 0 dBm • 10 dBm • 20 dBm • 30 dBm	.60 dBm Offse 20 dB SWT	et 7.60 dB 🝙 I	RBW 100 kHz	Mode Aut	to FFT.	.nt1 Ref	2.47995	1.54 dB
Ref Level 17 Att SGL Count 100 • IPk Max 10 dBm • 0 dBm • 10 dBm • 20 dBm • 30 dBm • -40 dBm	.60 dBm Offse 20 dB SWT	et 7.60 dB 🝙 I	RBW 100 kHz	Mode Aut	to FFT.	.nt1 Ref	2.47995	1.54 dB
Ref Level 17 Att SGL Count 100 • IPk Max 10 dBm • 0 dBm • 10 dBm • 20 dBm • 20 dBm • -20 dBm • -30 dBm • -60 dBm -70 dBm	.60 dBm Offse 20 dB SWT	et 7.60 dB 🝙 I	RBW 100 kHz	Mode Aut	to FFT.	Int1 Ref	2.47995	1.54 dB
Ref Level 17 Att SGL Count 100 • IPk Max 10 dBm • 0 dBm • 10 dBm • 20 dBm • 20 dBm • -30 dBm • -50 dBm	.60 dBm Offse 20 dB SWT	et 7.60 dB 🝙 I	RBW 100 kHz	Mode Aut	to FFT.	.nt1 Ref		1.54 dB
Ref Level 17 Att SGL Count 100 • IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	.60 dBm Offse 20 dB SWT	et 7.60 dB 🝙 I	RBW 100 kHz YBW 300 kHz	Mode Aut	to FFT.	.nt1 Ref		1.54 dB 986000 GF
Ref Level 17 Att SGL Count 100 SGL Count 100 100 ID dBm 10 0 dBm 10 -10 dBm 10 -20 dBm 10 -30 dBm 10 -60 dBm 10 -70 dBm 10	.60 dBm Offse 20 dB SWT	et 7.60 dB 🝙 I	RBW 100 kHz YBW 300 kHz	Mode Aut	to FFT.	.nt1 Ref	Spa	1.54 dB 96000 G

				1	M	1[1]			1.59 dBn
10 dBm	1					2[1]			479890 GH -47.46 dBn
0 dBm		-					7		23798 GH
-10 dBm—				1.					
-20 dBm	D1 -18,463	3 dBm:		1			-	÷	1
-30 dBm				1		-	-		
-40 dBm							-		-
-50 dBm		M3 M4		M15	1	a la como			
-60,dBm	In such as the second second			And the second second second	and a second sec		With some the links	And the second second	
-70 dBm-			1						
-80 dBm	MHz	-		3000	1 nts		<u></u>	Stor	25.0 GHz
Marker	1. 1. 1. 1						-		
Type Re M1	f Trc 1	X-value 2.479	9 89 GHz	Y-value 1.59 dE	Funct 3m	tion	Fun	tion Result	t
		1.7237		-47.46 dE					
M2 M3	1	5.1113	95 GHz						
M3 M4	1	5.1113 7.3054 10.0987	26 GHz	-59.29 dE					
M3 M4 M5 Spectrun	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.3054 10.0987 Tx. Spu	26 GHZ 36 GHZ rious N 7.62 dB		3m DH5 240 12		Ant1 Re	f	
M3 M4 M5 Spectrun Ref Leve Att SGL Count	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.3054 10.0987 Tx. Spu	26 GHZ 36 GHZ rious N 7.62 dB	-59.29 de -60.39 de IVNT 2-E RBW 100 kH	DH5 240		Ant1 Re		(△ 1,50 dBr
M3 M4 M5 Spectrun Ref Leve Att SGL Count	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.3054 10.0987 Tx. Spu	26 GHZ 36 GHZ rious N 7.62 dB	-59.29 de -60.39 de IVNT 2-E RBW 100 kH	DH5 240	Auto FFT	Ant1 Re		[4
M3 M4 M5 Spectrun Ref Leve Att SGL Count	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.3054 10.0987 Tx. Spu	26 GHZ 36 GHZ rious N 7.62 dB	-59.29 de -60.39 de IVNT 2-E RBW 100 kH	DH5 240	Auto FFT	Ant1 Re		(△ 1,50 dBr
M3 M4 M5 Spectrum Ref Leve Att SGL Count IPk Max	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.3054 10.0987 Tx. Spu	26 GHZ 36 GHZ rious N 7.62 dB	-59.29 de -60.39 de IVNT 2-E RBW 100 kH	DH5 240	Auto FFT	Ant1 Re		(△ 1,50 dBr
M3 M4 M5 Spectrum Ref Leve Att SGL Count O dBm -10 dBm	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.3054 10.0987 Tx. Spu	26 GHZ 36 GHZ rious N 7.62 dB	-59.29 de -60.39 de IVNT 2-E RBW 100 kH	DH5 240	Auto FFT	Ant1 Re		(△ 1,50 dBr
M3 M4 M5 Spectrum Ref Leve Att SGL Count IPk Max 10 dBm- 0 dBm-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.3054 10.0987 Tx. Spu	26 GHZ 36 GHZ rious N 7.62 dB	-59.29 de -60.39 de IVNT 2-E RBW 100 kH	DH5 240	Auto FFT	Ant1 Re		(△ 1,50 dBr
M3 M4 M5 Spectrum Ref Leve Att SGL Count O dBm -10 dBm	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.3054 10.0987 Tx. Spu	26 GHZ 36 GHZ rious N	-59.29 de -60.39 de IVNT 2-E RBW 100 kH	DH5 240	Auto FFT	Ant1 Re		(△ 1,50 dBr
M3 M4 M5 Spectrum Ref Leve Att SGL Count O dBm -10 dBm -10 dBm -28 dBm	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.3054 10.0987 Tx. Spu	26 GHZ 36 GHZ rious N	-59.29 de -60.39 de IVNT 2-E RBW 100 kH	DH5 240	Auto FFT	Ant1 Re		(△ 1,50 dBr
M3 M4 M5 Spectrum Ref Leve Att SGL Count 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.3054 10.0987 Tx. Spu	26 GHZ 36 GHZ rious N	-59.29 de -60.39 de IVNT 2-E RBW 100 kH	DH5 240	Auto FFT	Ant1 Re		(△ 1,50 dBr
M3 M4 M5 Spectrum Ref Leve Att SGL Count O dBm -10 dBm -10 dBm -28 dBm -30 dBm	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.3054 10.0987 Tx. Spu	26 GHZ 36 GHZ rious N	-59.29 de -60.39 de IVNT 2-E RBW 100 kH	DH5 240	Auto FFT	Ant1 Re		(△ 1,50 dBr
M3 M4 M5 Spectrum Ref Leve Att SGL Count 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.3054 10.0987 Tx. Spu	26 GHZ 36 GHZ rious N	-59.29 de -60.39 de IVNT 2-E RBW 100 kH	DH5 240	Auto FFT	Ant1 Re		(△ 1,50 dBr
M3 M4 M5 Spectrum Ref Leve Att SGL Count ID dBm 0 dBm -10 dBm -30 dBm -30 dBm -50 dBm -60 dBm	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.3054 10.0987 Tx. Spu	26 GHZ 36 GHZ rious N	-59.29 de -60.39 de IVNT 2-E RBW 100 kH	DH5 240	Auto FFT	Ant1 Re		(△ 1,50 dBr
M3 M4 M5 Spectrum Ref Leve Att SGL Count 10 dBm 0 dBm -10 dBm -28 dBm -30 dBm -50 dBm	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.3054 10.0987 Tx. Spu	26 GHZ 36 GHZ rious N	-59.29 de -60.39 de IVNT 2-E RBW 100 kH	DH5 240	Auto FFT	Ant1 Re		(△ 1,50 dBr
M3 M4 M4 M5 Spectrum Ref Leve Att SGL Count 10 dBm 0 dBm -10 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm -80 dBm	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.3054 10.0987 Tx. Spu	26 GHZ 36 GHZ rious N	-59.29 de -60.39 de IVNT 2-E RBW 100 kH YBW 300 kH	DH5 240	Auto FFT	Ant1 Re	2.40203	[4
M3 M4 M4 M5 Spectrum Ref Leve Att SGL Count I0 dBm 0 -10 dBm - -30 dBm - -40 dBm - -50 dBm - -70 dBm -	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.3054 10.0987 Tx. Spu	26 GHZ 36 GHZ rious N	-59.29 de -60.39 de IVNT 2-E RBW 100 kH	DH5 240	Auto FFT	Ant1 Re	2.40203	1,50 dBn 893490 GH

• 1Pk Max					M	1[1]			-2.28 dB
10 dBm									402490 GH
0 dBm				1	NI NI	2[1]	(-54.08 dB 021774 GH
-10 dBm			-	1					
-20 dBm	01 -18.497	dBm 		1			-	·	-
-30 dBm							-		-
-40 dBm									-
-50 dBm	M3	M4	M5	-		a second a second	AL or L or He	in and	
-60 dBm				Charles and the state	And a back protection				The second
-70 dBm	-		· · · · · ·	-				11 1	
-80 dBm Start 30.0 M	1Hz			3000	1 pts		-	Sto	p 25.0 GHz
Marker Type Ref	Trc	X-value	a 1	Y-value	Func	tion 1	Fun	ction Resul	t
M1 M2	1		49 GHz	-2.28 de -54.08 de	m				
M3 M4	1	4.7501	62 GHz	-60.52 dE -59.53 dE	m				
MS	1		88 GHz	-59.07 dE					
1	1				and the second s				
Spectrum Ref Level Att SGL Count : 1Pk Max	17.78 dBm 20 dB	Tx. Spu	7.78 dB 🔳	VNT 2-E RBW 100 kF YBW 300 kF	Z		Ant1 Re	ef	E
Spectrum Ref Level Att SGL Count :	17.78 dBm 20 dB	Tx. Spu	7.78 dB 🔳	RBW 100 kH	z z Mode /	Auto FFT.	Ant1 Re		2.74 dBi 640950 GH
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm-	17.78 dBm 20 dB	Tx. Spu	7.78 dB 🔳	RBW 100 kH	z z Mode /	Auto FFT	Ant1 Re		2,74 dBi
Spectrum Ref Level Att SGL Count : 1Pk Max 10 dBm- 0 dBm-	17.78 dBm 20 dB	Tx. Spu	7.78 dB 🔳	RBW 100 kH	z z Mode /	Auto FFT.	Ant1 Re		2,74 dBi
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm-	17.78 dBm 20 dB	Tx. Spu	7.78 dB 🔳	RBW 100 kH	z z Mode /	Auto FFT.	Ant1 Re		2,74 dBi
Spectrum Ref Level Att SGL Count : 1Pk Max 10 dBm- 0 dBm-	17.78 dBm 20 dB	Tx. Spu	7.78 dB 🔳	RBW 100 kH	z z Mode /	Auto FFT.	Ant1 Re		2,74 dBi
Spectrum Ref Level Att SGL Count I O dBm D dBm -10 dBm	17.78 dBm 20 dB	Tx. Spu	7.78 dB 🔳	RBW 100 kH	z z Mode /	Auto FFT.	Ant1 Re		2,74 dBi
Spectrum Ref Level Att SGL Count : I O dBm 0 dBm -10 dBm -20 dBm -30 dBm	17.78 dBm 20 dB	Tx. Spu	7.78 dB 🔳	RBW 100 kH	z z Mode /	Auto FFT.	Ant1 Re		2,74 dBi
Spectrum Ref Level Att SGL Count IPk Max IO dBm O dBm -10 dBm -20 dBm	17.78 dBm 20 dB	Tx. Spu	7.78 dB 🔳	RBW 100 kH	z z Mode /	Auto FFT.	Ant1 Re		2,74 dBi
Spectrum Ref Level Att SGL Count : 9 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	17.78 dBm 20 dB	Tx. Spu	7.78 dB 🔳	RBW 100 kH	z z Mode /	Auto FFT.	Ant1 Re		2,74 dBi
Spectrum Ref Level Att SGL Count : SGL Count : SGL Count : O dBm 0 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	17.78 dBm 20 dB	Tx. Spu	7.78 dB 🔳	RBW 100 kH	z z Mode /	Auto FFT.	Ant1 Re		2,74 dBi
Spectrum Ref Level Att SGL Count : PIPk Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	17.78 dBm 20 dB	Tx. Spu	7.78 dB 🔳	RBW 100 kH	z z Mode /	Auto FFT.	Ant1 Re		2,74 dBi
Spectrum Ref Level Att SGL Count : I DHK Max I O dBm O dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	17.78 dBm 20 dB	Tx. Spu	7.78 dB 🔳	RBW 100 kH	z z Mode /	Auto FFT.	Ant1 Re		2,74 dBi
Spectrum Ref Level Att SGL Count IPk Max ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm	17.78 dBm 20 dB 100/100	Tx. Spu	7.78 dB 🔳	RBW 100 k- YBW 300 k-	Z Mode /	Auto FFT.	Ant1 Re	2.44110	2.74 dB/ 540950 GH
Spectrum Ref Level Att SGL Count : I Plk Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	17.78 dBm 20 dB 100/100	Tx. Spu	7.78 dB 🔳	RBW 100 kH	Z Mode /	Auto FFT.	Ant1 Re	2.44110	2,74 dBi
Spectrum Ref Level Att SGL Count ID dBm D dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm	17.78 dBm 20 dB 100/100	Tx. Spu	7.78 dB 🔳	RBW 100 k- YBW 300 k-	Z Mode /	Auto FFT.	Ant1 Re	2.44110	2.74 dBi



• 1Pk Max	1	1	-				
10 dBm				M1[1]			-0.94 dB 40770 GF
0 dBm			_	M2[1]			44.92 dB 01085 GF
-10 dBm	_		-				
-20 dBm-01 -1	7.261 dBm						-
-30 dBm				-	-		
-40 dBm		-	-			1	
-50 dBm	M3 M4	M5					-
-60 ldBm		Y		with the second		Transfel (mailed of	Artest
-70 dBm							
Start 30.0 MHz		31	0001 pts	1		Stor	25.0 GH
Marker	1	(i (i (i (i))))			ie la		
	1 2.44077		4 dBm	ction	Fund	tion Result	
	1 1.901085 1 5.064784						
			B dBm				
M4							
	1 7.403641 1 9.584354			7	000		8
Spectrum Ref Level 17.60	1 9,584354 Tx. Spuric 0 dBm Offset 7.60 20 dB swt 18.4		2-DH5 24		Ant1 Ref		
M5 : Spectrum Ref Level 17.60 Att SGL Count 100/1 IPk Max	1 9,584354 Tx. Spuric 0 dBm Offset 7.60 20 dB swt 18.4	GHZ -59.10 DUS NVNT 2	2-DH5 24 2.bH5 24 0 kH2 Mode		Ant1 Ref		0.89 dB
Spectrum Ref Level 17.60 Att SGL Count 100/1	1 9,584354 Tx. Spuric 0 dBm Offset 7.60 20 dB swt 18.4	GHZ -59.10 DUS NVNT 2	2-DH5 24 2.bH5 24 0 kH2 Mode	Auto FFT	Ant1 Ref		
M5 : Spectrum Ref Level 17.60 Att SGL Count 100/1 IPk Max	1 9,584354 Tx. Spuric 0 dBm Offset 7.60 20 dB swt 18.4	GHZ -59.10 DUS NVNT 2	2-DH5 24 2 kHz Mode	Auto FFT	Ant1 Ref		0.89 dB
M5 Spectrum Ref Level 17.60 Att SGL Count 100/1 1Pk Max 10 dBm	1 9,584354 Tx. Spuric 0 dBm Offset 7.60 20 dB swt 18.4	GHZ -59.10 DUS NVNT 2	2-DH5 24 2 kHz Mode	Auto FFT	Ant1 Ref		0.89 dB
M5 Spectrum Ref Level 17.60 Att SGL Count 100/1 IPk Max 10 dBm 0 dBm -10 dBm	1 9,584354 Tx. Spuric 0 dBm Offset 7.60 20 dB swt 18.4	GHZ -59.10 DUS NVNT 2	2-DH5 24 2 kHz Mode	Auto FFT	Ant1 Ref		0.89 dB
M5 Spectrum Ref Level 17.60 Att SGL Count 100/1 IPk Max 10 dBm 0 dBm	1 9,584354 Tx. Spuric 0 dBm Offset 7.60 20 dB swt 18.4	GHZ -59.10 DUS NVNT 2	2-DH5 24 2 kHz Mode	Auto FFT	Ant1 Ref		0.89 dB
M5 Spectrum Ref Level 17.60 Att SGL Count 100/1 IPk Max 10 dBm 0 dBm	1 9,584354 Tx. Spuric 0 dBm Offset 7.60 20 dB swt 18.4	GHZ -59.10 DUS NVNT 2	2-DH5 24 2 kHz Mode	Auto FFT	Ant1 Ref		0.89 dB
M5 Image: Spectrum Ref Level 17.60 Att SGL Count 100/1 17k Max 10 dBm 0 dBm -10 dBm -20 dBm	1 9,584354 Tx. Spuric 0 dBm Offset 7.60 20 dB swt 18.4	GHZ -59.10 DUS NVNT 2	2-DH5 24 2 kHz Mode	Auto FFT	Ant1 Ref		0.89 dB
M5 Image: Spectrum Ref Level 17.60 Att SGL Count 10D/1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 9,584354 Tx. Spuric 0 dBm Offset 7.60 20 dB swt 18.4	GHZ -59.10 DUS NVNT 2	2-DH5 24 2 kHz Mode	Auto FFT	Ant1 Ref		0.89 dB
M5 Spectrum Ref Level 17.60 Att SGL Count 100/1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	1 9,584354 Tx. Spuric 0 dBm Offset 7.60 20 dB swt 18.4	GHZ -59.10 DUS NVNT 2	2-DH5 24 2 kHz Mode	Auto FFT	Ant1 Ref		0.89 dB
M5 Spectrum Ref Level 17.60 Att SGL Count 10D/1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	1 9,584354 Tx. Spuric 0 dBm Offset 7.60 20 dB swt 18.4	GHZ -59.10 DUS NVNT 2	2-DH5 24 2 kHz Mode	Auto FFT	Ant1 Ref		0.89 dB
M5 Image: Spectrum Ref Level 17.60 Att SGL Count 10D/1 IPk Max 10 dBm 0 -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm	1 9,584354 Tx. Spuric 0 dBm Offset 7.60 20 dB swt 18.4	GHZ -59.10 DUS NVNT 2	2-DH5 24 2 kHz Mode	Auto FFT	Ant1 Ref		0.89 dB
M5 Image: Spectrum Ref Level 17.60 Att SGL Count 100/1 Image: SGL Count 100/1 ID dBm 0 0 dBm 0 -10 dBm 0 -20 dBm -30 dBm -30 dBm -60 dBm -70 dBm -70 dBm	1 9,584354 Tx. Spuric 0 dBm Offset 7.60 20 dB swt 18.4	GHZ -59.10 DUS NVNT 2	2-DH5 24 2 kHz Mode	Auto FFT	Ant1 Ref		0.89 dB
M5 I Ref Level 17.60 Att SGL Count 100/1 IPk Max 10 dBm 0 -10 dBm - -30 dBm - -40 dBm - -50 dBm -	1 9,584354 Tx. Spuric 0 dBm Offset 7.60 20 dB swt 18.4	GHz -59.10 D dB RBW 100 9 μs VBW 300	2-DH5 24	Auto FFT	Ant1 Ref	2.48001	0.89 dB
M5 Image: Spectrum Ref Level 17.60 Att SGL Count 100/1 17.60 10 dBm 0 0 dBm 0 -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm -80 dBm	1 9,584354 Tx. Spuric 0 dBm Offset 7.60 20 dB swt 18.4	GHz -59.10 D dB RBW 100 9 μs VBW 300	2-DH5 24	Auto FFT	Ant1 Ref	2.48001	0.89 dB 39000 G
M5 I Ref Level 17.60 Att SGL Count 100/1 17.60 10 dBm 0 0 dBm 0 -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -80 dBm	1 9,584354 Tx. Spuric 0 dBm Offset 7.60 20 dB swt 18.4	GHz -59.10 D dB RBW 100 9 μs VBW 300	2-DH5 24	Auto FFT	Ant1 Ref	2.4800 J	0.89 dB 39000 G

10 d8m MI[1] -0.70 0 d8m M2[1] -51.76 0 d8m M2[1] -2.022606 -10 d8m 20.022606 -20.022606 -20 d8m 01 -19.807 d8m -0.70 -30 d8m M4 M5 -0.70 -60 d8m M4 M5 -0.70 -60 d8m M4 M4 M4 -60 d8m M4 M4 M4 -60 d8m M4 M4 M5 -60 d8m M4 M4 M4 -60 d8m M4 M4 M4 -60 d8m M4 M4 M5 -60 d8m M4 M4 M5 M4 -60 d8m M4 M4 M4 M4 -70 d8m -0.70 d8m -0.70 d8m -0.70 d8m M2 1 2.022606 GH2 -51.76 d8m -0.52 d8m M3 1 4.86 GH2 -60.32 d8m -0.70 d8m M4 1 7.053229 GH2 -59.58 d8m -59.28 d8m M5 1 9.730013 GH2 <td< th=""></td<>
0 dBm 2.022606 -10 dBm 01 -19.807 dBm -20 dBm 01 -19.807 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm M4 -60 dBm M4 -60 dBm M4 -76 dBm M3 -60 dBm M4 -60 dBm M4 -76 dBm M4 -76 dBm M4 -76 dBm M4 -76 dBm -60.32 dBm -80 dBm -770 dBm -80 dBm -770 dBm -90 dBm -90.22606 GHz -91 1 2.022606 GHz -91 1 -90.2260B GHz -91 0 -90.2260B GHz
28.dBm 01 13.807 dBm -30 dBm -30 dBm -40 dBm -50 dBm M4 M5 -60 dBm M4 M5 -60 dBm -60 dBm -70 dBm -80 dBm -90 dBm -90 dBm -90 dBm -90 dBm -90 dBm M1 1 0.202060 GHz -90.55 dBm
-30 dBm -40 dBm -50 dBm -60 dBm -60 dBm -80 dBm -90
40 dBm
-50 dBm M2 M4 M5 -60 dBm
-50 dBm -60 dBm -70 dBm -80 dBm -90
-60 dBm -70 dBm -80 dBm 30001 pts Start 30.0 MHz Stop 25.0 G Marker Type Ref Trc X-value Y-value M1 1 2.40249 GHz -0.70 dBm M2 1 2.022606 GHz -51.76 dBm Marker M3 1 4.885 GHz -60.32 dBm Marker M4 1 7.053229 GHz -59.55 dBm Marker Tx. Spurious NVNT 3-DH5 2441MHz Ant1 Ref Spectrum SwT 18.9 µs YBW 300 kHz Mode Auto FFT SGL Count 100/100 SWT 18.9 µs YBW 300 kHz Mode Auto FFT SGL Count 100/100 IPk Max M1[1] 2.98 (2.4411658440 10 dBm M1[1] 2.4411658440
BD dBm Stort 30.0 MHz 30001 pts Stop 25.0 G Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.40249 GHz -0.70 dBm Function Function Result M2 1 2.022606 GHz -51.76 dBm Function Function Result M3 1 4.885 GHz -60.32 dBm Function Function Result M4 1 7.053229 GHz -59.55 dBm Function Function M5 1 9.730013 GHz -59.28 dBm Function Function Tx. Spurious NVNT 3-DH5 2441MHz Ant1 Ref Spectrum Ref Level 17.78 dBm Offset 7.78 dB @ RBW 100 kHz Att 20 dB SWT 18.9 µs YBW 300 kHz Mode Auto FFT SGL Count 100/100 2.98 d 2.4411658440 2.4411658440 2.4411658440 2.4411658440 2.4411658440 2.4411658440 2.4411658440 2.4411658440 2.4411658440 2.4411658440 2.4411658440 2.4411658
Start 30.0 MHz Stop 25.0 G Marker Y-value Function Function Result M1 1 2.40249 GHz -0.70 dBm Function Function Result M2 1 2.022606 GHz -51.76 dBm Function Function Result M3 1 4.885 GHz -60.32 dBm Function Function Result M4 1 7.053229 GHz -59.55 dBm Function Function Result M4 1 9.730013 GHz -59.28 dBm Function Function Result M5 1 9.730013 GHz -59.28 dBm Function Function Result M4 1 7.053229 GHz -59.28 dBm Function Function M5 1 9.730013 GHz -59.28 dBm Function Function M1 9.730013 GHz -59.28 dBm Function Function Function Ref Level 17.78 dBm Offset 7.78 dB RBW 100 kHz Mode Auto FFT SGL Count 100/100 Function Function 2.4
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.40249 GHz -0.70 dBm -0.70 dBm -0.70 dBm M2 1 2.022606 GHz -51.76 dBm -0.70 dBm -0.70 dBm M3 1 4.885 GHz -60.32 dBm -0.70 dBm -0.70 dBm M4 1 7.053229 GHz -59.55 dBm -59.28 dBm -0.70 dBm M5 1 9.730013 GHz -59.28 dBm -0.70 dBm -0.70 dBm M5 1 9.730013 GHz -59.28 dBm -0.70 dBm -0.70 dBm M5 1 9.730013 GHz -59.28 dBm -0.70 dBm -0.70 dBm M5 1 9.730013 GHz -59.28 dBm -0.70 dBm -0.70 dBm M6 Level 17.78 dBm Offset 7.78 dB RBW 100 kHz Att 20 dB SWT 18.9 µs YBW 300 kHz Mode Auto FFT SGL Count 100/100 10 dBm 10 dBm 2.4411658440
M1 1 2.40249 GHz -0.70 dBm M2 1 2.022606 GHz -51.76 dBm M3 1 4.885 GHz -60.32 dBm M4 1 7.053229 GHz -59.55 dBm M5 1 9.730013 GHz -59.28 dBm Tx. Spurious NVNT 3-DH5 2441MHz Ant1 Ref Spectrum Ref Level 17.78 dBm Offset 7.78 dB RBW 100 kHz Att 20 dB SWT 18.9 µs YBW 300 kHz Mode Auto FFT. SGL Count 100/100 10 dBm M1[1] 2.98 d 10 dBm M1[1] 2.98 d
M2 1 2.022606 GHz -51.76 dBm M3 1 4.885 GHz -60.32 dBm M4 1 7.053229 GHz -59.55 dBm M5 1 9.730013 GHz -59.28 dBm Tx. Spurious NVNT 3-DH5 2441MHz Ant1 Ref Spectrum Ref Level 17.78 dBm Offset 7.78 dB RBW 100 kHz Att 20 dB SWT 18.9 µs YBW 300 kHz Mode Auto FFT SGL Count 100/100 1Pk Max M1[1] 2.98 d2.4411658440 10 dBm MB M1[1] 2.98 d2.4411658440
M4 1 7.053229 GHz -59.55 dBm M5 1 9.730013 GHz -59.28 dBm Tx. Spurious NVNT 3-DH5 2441MHz Ant1 Ref Spectrum Ref Level 17.78 dBm Offset 7.78 dB RBW 100 kHz Att 20 dB MI[1] 2.98 (2.4411658440) ID dBm ID dBm MI[1] 2.98 (2.4411658440)
Tx. Spurious NVNT 3-DH5 2441MHz Ant1 Ref Spectrum Ref Level 17.78 dB RBW 100 kHz Att 20 dB SWT 18.9 µs YBW 300 kHz Mode Auto FFT SGL Count 100/100 ID dBm M1[1] 2.98 c 10 dBm M1[1] 2.98 c
Spectrum Ref Level 17.78 dB Offset 7.78 dB RBW 100 kHz Att 20 dB SWT 18.9 µs YBW 300 kHz Mode Auto FFT. SGL Count 100/100 IN Max MI[1] 2.98 c 10 dBm- In dBm- In dBm- In dBm- In dBm-
Spectrum Ref Level 17.78 dBm Offset 7.78 dB RBW 100 kHz Att 20 dB SWT 18.9 µs YBW 300 kHz Mode Auto FFT. SGL Count 100/100 Item 1
10 dBm 2.4411658440
0 dBm
-10 dBm
-20 #8m
/-30 dBm
-40 dBm-
-40 dBm
-50 dBm-
-50 dBm
-50 dBm
-50 dBm
-50 dBm -60 dBm -70 dBm -80 dBm

1Pk Max		-		1 1	M	1[1]			-0.99 dB
10 dBm				-	_	2[1]			441610 GH
0 dBm	-				141	2[1]	· · · · ·		-55.67 0B
-10 dBm		1							
-20 dBm0	1 -17,018	dBm	1						
-30 dBm		-			-	-	-		
-40 dBm					-				
-50 dBm	M	3 м	4 M	15		M2		1	
-60 dBm	and the state of the state				adaadalaangamilad waxaanaanaadaad	and a share the state of the st		All half and a second shall all all all all all all all all all	-
-70 dBm									
Start 30.0 M	Hz			30001	pts			Sto	p 25.0 GH
Marker		A1 5 - 17							
Type Ref M1	1		61 GHz	Y-value -0.99 dBr		tion	Fun	ction Resu	lt
M2 M3	1	16.7673 5.0298	91 GHz	-55.67 dBr -59.08 dBr					
M4	1	7.3969	82 GHz	-59.78 dBr	n				
	1	0 7995							
Spectrum Ref Level :	17.60 dBm 20 dB	Offset	rious N	-59.98 dBr	H5 248) BOMHZ /	Ant1 Re	f) (- (
Spectrum Ref Level : Att SGL Count 10 1Pk Max	17.60 dBm 20 dB	Tx. Spu	rious N	IVNT 3-D	H5 248 Mode		Ant1 Re		1,57 dB
Spectrum Ref Level : Att SGL Count 11	17.60 dBm 20 dB	Tx. Spu	rious N	IVNT 3-D	H5 248 Mode	Auto FFT	Ant1 Re		
Spectrum Ref Level : Att SGL Count 10 1Pk Max	17.60 dBm 20 dB	Tx. Spu	rious N	IVNT 3-D	H5 248	Auto FFT	Ant1 Re		1,57 dB
Spectrum Ref Level : Att SGL Count 10 1Pk Max 10 dBm-	17.60 dBm 20 dB	Tx. Spu	rious N	IVNT 3-D	H5 248	Auto FFT	Ant1 Re		1,57 dB
Spectrum Ref Level : SGL Count 11 1Pk Max 10 dBm 0 dBm -10 dBm	17.60 dBm 20 dB	Tx. Spu	rious N	IVNT 3-D	H5 248	Auto FFT	Ant1 Re		1,57 dB
Spectrum Ref Level : SGL Count 11 1Pk Max 10 dBm 0 dBm	17.60 dBm 20 dB	Tx. Spu	rious N	IVNT 3-D	H5 248	Auto FFT	Ant1 Re		1,57 dB
Spectrum Ref Level : SGL Count 11 1Pk Max 10 dBm 0 dBm -10 dBm	17.60 dBm 20 dB	Tx. Spu	rious N	IVNT 3-D	H5 248	Auto FFT	Ant1 Re		1,57 dB
Spectrum Ref Level 3 Att SGL Count 11 1Pk Max 10 dBm -10 dBm -10 dBm -20 dBm	17.60 dBm 20 dB	Tx. Spu	rious N	IVNT 3-D	H5 248	Auto FFT	Ant1 Re		1,57 dB
Spectrum Ref Level : Att SGL Count 11 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	17.60 dBm 20 dB	Tx. Spu	rious N	IVNT 3-D	H5 248	Auto FFT	Ant1 Re		1,57 dB
Spectrum Ref Level : Att SGL Count 11 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	17.60 dBm 20 dB	Tx. Spu	rious N	IVNT 3-D	H5 248	Auto FFT	Ant1 Re		1,57 dB
Spectrum Ref Level : Att SGL Count 11 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	17.60 dBm 20 dB	Tx. Spu	rious N	IVNT 3-D	H5 248	Auto FFT	Ant1 Re		1,57 dB
Spectrum Ref Level : Att SGL Count 11 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	17.60 dBm 20 dB	Tx. Spu	rious N	IVNT 3-D	H5 248	Auto FFT	Ant1 Re		1,57 dB
Spectrum Ref Level : Att SGL Count 11 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	17.60 dBm 20 dB	Tx. Spu	rious N	IVNT 3-D	H5 248	Auto FFT	Ant1 Re		1,57 dB
Spectrum Ref Level : SGL Count 11 ID dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm	17.60 dBm 20 dB 20/100	Tx. Spu	rious N	IVNT 3-D	Mode /	Auto FFT	Ant1 Re	2.4800	1.57 dB 421990 G)
Spectrum Ref Level : Att SGL Count 11 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	17.60 dBm 20 dB 20/100	Tx. Spu	rious N	IVNT 3-D	Mode /	Auto FFT		2.4800	1.57 dB 421990 G
Spectrum Ref Level : SGL Count 11 SGL Count 11 ID dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm	17.60 dBm 20 dB 20/100	Tx. Spu	rious N	IVNT 3-D	Mode /	Auto FFT	Ant1 Re	2.4800	1.57 dB 421990 G

	rum						
Ref L	evel	17.60 d	Bm Offset 7.60 dB	RBW 100 kHz			
Att				• VBW 300 kHz	Mode Auto Sw	een	
SGL Co	unt 1	0/10				00.	
D1Pk M							
					M1[1]		-0.09 dBm
10 dBm	-						2.479890 GHz
	ML				M2[1]		-49.46 dBm
0 dBm-							1.723798 GHz
-10 dBm							
-10 080	'						
-20 dBm		1 -18.4	30 dBm			-	
-30 dBm	1-					-	
1							
40 dBm	2	_					
-50 dBn							
SD abit			M3 M4	MI5			
-60 dBm	-	and the lot of	The state of the s	Markey With Survey of the strength	state strates and and the state	Torder Strand Reading Strand	Adamstration Produce Mills of
all all all the	N-South Law	in the second second	man party and a second s	Courses a particular designed and the	offerences and a second	and the second second is	and all and a second
-70 dBm	1-1-						
-80 dBm							
Start 3		Hz	1 1	30001 p	ts	- FF	Stop 25.0 GHz
larker	010 11						otop zoto otte
Type	Ref	Trc	X-value	Y-value	Function	Funct	ion Result
M1	1101	1	2,47989 GHz	-0.09 dBm	- unocium	T unor	ion nosan
M2		1	1.723798 GHz	-49.46 dBm			
MЗ	1	1	5.123048 GHz	-60.38 dBm			
M4	-	1	7.302929 GHz	-59.92 dBm	-		
		1	10.116215 GHz	~59.82 dBm			

END OF REPORT