

SAR TEST REPORT

Applicant: Sosmart Spa (SoyMomo SA)

Address: Ricardo Lyon 1688, Providencia, Santiago, Chile, 92101

FCC ID: 2A4WI-SPACE3

Product Name: Smart Watch

Standard(s): 47 CFR Part 2(2.1093)

The above device has been tested and found compliant with the requirement of the relative standards by China Certification ICT Co., Ltd (Dongguan)

Report Number: 2403X37662E-20

Date Of Issue: 2024/10/19

Reviewed By: Ken Zong

Title: SAR Engineer **Approved By: Karl Gong**

Ken Zong Karl Gong

Title: SAR Engineer

Test Laboratory: China Certification ICT Co., Ltd (Dongguan) No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China Tel: +86-769-82016888

SAR TEST RESULTS SUMMARY

Operation	Highest Repo SAR(W/		Highest Repo SAR(W	
Frequency Bands	Face Up (Gap 10mm)	Limits (W/kg)	Limb Worn (Gap 0mm)	Limits (W/kg)
GSM 850	0.14		0.42	
PCS 1900	0.45		1.28	
WCDMA Band 2	0.60		1.87	
WCDMA Band 5	0.07		0.17	
LTE Band 2	0.79	1.6	2.67	4.0
LTE Band 4	1.19		2.68	
LTE Band 5	0.08		0.26	
LTE Band 7	0.42		1.32	
LTE Band 12	0.15		0.59	
Ν	Iaximum Simultane	ous Transmis	sion SAR	
Items	Face Up (Gap 10mm)	Limits (W/kg)	Limb Worn (Gap 0mm)	Limits (W/kg)
Sum SAR(W/kg)	1.42	1.6	2.86	4.0
SPLSR	N/A	N/A	N/A	0.04
EUT Received Date:	2024/09/09			
Test Date:	2024/09/21-2024/09	9/22		
Test Result:	Pass			

Test Facility

The Test site used by China Certification ICT Co., Ltd (Dongguan) to collect test data is located on the No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 442868, the FCC Designation No. : CN1314.

Declarations

China Certification ICT Co., Ltd (Dongguan) is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol "▲". Customer model name, addresses, names, trademarks etc. are not considered data.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

This report cannot be reproduced except in full, without prior written approval of the Company.

This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk " \star ".

Each test item follows the test standard(s) without deviation.

CONTENTS

Page 4 of 65
10. DUT HOLDER PERTURBATIONS 59
9. Measurement Variability
8.1 SAR TEST DATA
8. SAR MEASUREMENT RESULTS
7.2 STANDALONE SAR ESTIMATION:
7.1 STANDALONE SAR TEST EXCLUSION CONSIDERATIONS49
7. Standalone SAR test exclusion considerations
6.4 TEST RESULTS:
6.3 MAXIMUM TARGET OUTPUT POWER
6.2 DESCRIPTION OF TEST CONFIGURATION29
6.1 TEST PROCEDURE
6. CONDUCTED OUTPUT POWER MEASUREMENT
5.3 SAR EVALUATION PROCEDURE27
5.2 TEST DISTANCE FOR SAR EVALUATION
5.1 FRONT-OF-FACE AND LIMBS
5. EUT TEST STRATEGY AND METHODOLOGY
4.3 SAR SYSTEM VALIDATION DATA21
4.2 System Accuracy Verification20
4.1 LIQUID VERIFICATION
4. SAR MEASUREMENT SYSTEM VERIFICATION
3.1 Equipments List & Calibration Information17
3. EQUIPMENT LIST AND CALIBRATION17
2. SAR MEASUREMENT SYSTEM 10
1.3 SAR LIMITS9
1.2 TEST SPECIFICATION, METHODS AND PROCEDURES8
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)7
1. GENERAL INFORMATION
DOCUMENT REVISION HISTORY6
DECLARATIONS
TEST FACILITY
SAR TEST RESULTS SUMMARY2

China Certification ICT Co., Ltd (Dongguan)

11. SAR SIMULTANEOUS TRANSMISSION DESCRIPTION	
12. SAR Plots	61
APPENDIX A MEASUREMENT UNCERTAINTY	
APPENDIX B EUT TEST POSITION PHOTOS	64
APPENDIX C CALIBRATION CERTIFICATES	65

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
1.0	2403X37662E-20	Original Report	2024/10/19

1. GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

EUT Name:	Smart Watch
EUT Model:	Space 3.0
Device Type:	Portable
Exposure Category:	Population / Uncontrolled
Antenna Type(s):	Internal Antenna
Proximity Sensor:	None
Carrier Aggregation:	None
Operation modes:	GSM Voice, GPRS/EGPRS Data, WCDMA(R99 (Voice+Data), HSUPA/HSDPA/HSPA+), FDD-LTE, WLAN
Frequency Band:	GSM 850: 824-849 MHz(TX); 869-894 MHz(RX) PCS 1900: 1850-1910 MHz(TX); 1930-1990 MHz(RX) WCDMA Band 2: 1850-1910 MHz(TX); 1930-1990 MHz(RX) WCDMA Band 5: 824-849 MHz(TX); 869-894 MHz(RX) LTE Band 2: 1850-1910 MHz(TX); 1930-1990 MHz(RX) LTE Band 4: 1710-1755MHz(TX); 2110-2155 MHz(RX) LTE Band 5: 824-849 MHz(TX); 869-894 MHz(RX) LTE Band 5: 824-849 MHz(TX); 869-894 MHz(RX) LTE Band 7: 2500-2570 MHz(TX); 2620-2690 MHz(RX) LTE Band 12: 699-716 MHz(TX); 729-746 MHz(RX) WLAN 2.4G: 2412-2462 MHz(TX/RX)
Rated Input Voltage:	DC 3.8 V from Rechargeable Battery
Serial Number:	2RB6-1
Normal Operation:	Face Up and Limb Worn

China Certification ICT Co., Ltd (Dongguan)

1.2 Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE 1528-2013, the following FCC Published RF exposure KDB procedures:

KDB 447498 D01 General RF Exposure Guidance v06 KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 KDB 865664 D02 RF Exposure Reporting v01r02 KDB 941225 D01 3G SAR Procedures v03r01 KDB 941225 D05 SAR for LTE Devices v02r05 KDB 248227 D01 802.11 Wi-Fi SAR v02r02

TCB Workshop April 2019: RF Exposure Procedures

1.3 SAR Limits

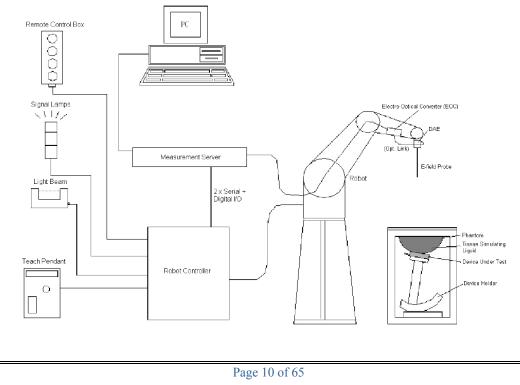
FCC Limit

	SAR (W/kg)
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)
Spatial Average (averaged over the whole body)	0.08	0.4
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

General Population/Uncontrolled environments Spatial Peak limit 1.6W/kg for 1g Head(Face Up) SAR and limit 4.0W/kg for 10g Extremity SAR applied to the EUT.


2. SAR MEASUREMENT SYSTEM

These measurements were performed with the automated near-field scanning system DASY5 from Schmid & Partner Engineering AG (SPEAG) which is the Fifth generation of the system shown in the figure hereinafter:

DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal application, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win7 professional operating system and the DASY52 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

DASY5 Measurement Server

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz Intel ULV Celeron, 128MB chip-disk and 128MB RAM. The necessary circuits for communication with the DAE4 (or DAE3) electronics box, as well as the 16 bit AD-converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical

processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized point out, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Data Acquisition Electronics

The data acquisition electronics (DAE4) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of both the DAE4 as well as of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

EX3DV4 E-Field Probes

Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	\pm 0.3 dB in TSL (rotation around probe axis) \pm 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μ W/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μ W/g)
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

Calibration Frequency Points for EX3DV4 E-Field Probes SN: 7329 Calibrated: 2024/3/27

Calibration Frequency	Frequency	Range(MHz)	С	onversion Fact	or
Point(MHz)	From	То	X	Y	Z
750 Head	650	810	8.79	10.07	9.05
900 Head	810	1000	8.42	9.50	8.93
1750 Head	1650	1810	7.56	8.56	7.71
1900 Head	1810	2000	7.37	8.32	7.54
2300 Head	2200	2399	7.21	8.13	7.41
2450 Head	2399	2500	7.05	7.92	7.22
2600 Head	2500	2700	6.91	7.77	7.08
5250 Head	5140	5360	4.96	5.61	5.16
5600 Head	5490	5675	4.38	4.98	4.56
5750 Head	5675	5860	4.54	5.16	4.70

SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6 mm). The phantom has three measurement areas:

- _ Left Head
- Right Head
- Flat phantom

The phantom table for the DASY systems based on the robots have the size of $100 \times 50 \times 85$ cm (L x W x H). For easy dislocation these tables have fork lift cut outs at the bottom.

The bottom plate contains three pairs of bolts for locking the device holder. The device holder positions are adjusted to the

standard measurement positions in the three sections. Only one device holder is necessary if two phantoms are used (e.g., for different liquids)

A white cover is provided to cover the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on top of this phantom cover are possible. Three reference marks are provided on the phantom counter. These reference marks are used to teach the absolute phantom position relative to the robot.

Robots

The DASY5 system uses the high precision industrial robot. The robot offers the same features important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchrony motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

The above mentioned robots are controlled by the Staubli CS8c robot controllers. All information regarding the use and maintenance of the robot arm and the robot controller is contained on the CDs delivered along with the robot. Paper manuals are available upon request direct from Staubli.

SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 1.4 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 15mm 2 step integral, with 1.5mm interpolation used to locate the peak SAR area used for zoom scan assessments.

Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

	\leq 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^{\circ} \pm 1^{\circ}$
	≤ 2 GHz: ≤ 15 mm 2 - 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension measurement plane orientat above, the measurement res corresponding x or y dimen at least one measurement po	ion, is smaller than the olution must be ≤ the sion of the test device with

Step 3: Zoom Scan (Cube Scan Averaging)

The averaging zoom scan volume utilized in the DASY5 software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m^3 is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1g cube is 10mm, with the side length of the 10g cube is 21.5mm.

			\leq 3 GHz	> 3 GHz
Maximum zoom scan	spatial res	olution: Δx _{Zoom} , Δy _{Zoom}	$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*
	uniform	grid: ∆z _{Zoom} (n)	≤ 5 mm	3 - 4 GHz: ≤ 4 mm 4 - 5 GHz: ≤ 3 mm 5 - 6 GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	$\begin{array}{c} \mbox{graded} \\ \mbox{grid} \end{array} \begin{array}{c} \Delta z_{Zoom}(1): \mbox{ between } \\ 1^{st} \mbox{ two points closest} \\ \mbox{to phantom surface} \\ \hline \Delta z_{Zoom}(n \geq 1): \\ \mbox{ between subsequent} \\ \mbox{points} \end{array}$		\leq 4 mm	$3-4$ GHz: ≤ 3 mm $4-5$ GHz: ≤ 2.5 mm $5-6$ GHz: ≤ 2 mm
			$\leq 1.5 \cdot \Delta z_{Zoom}(n-1) mm$	
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power Drift Measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 7 x7 x 7 (5mmx5mmx5mm) providing a volume of 30 mm in the X & Y & Z axis.

Tissue Dielectric Parameters for Head and Body Phantoms

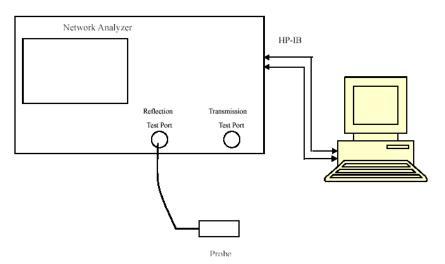
The head tissue dielectric parameters recommended by the IEC 62209-1:2016

Recommended Tissue Dielectric Parameters for Head liquid

Table A.3 – Dielectric properties of the head tissue-equivalent liquid

Frequency	Relative permittivity	Conductivity (a)
MHz	ε _r	S/m
300	45,3	0,87
450	43,5	0,87
750	41,9	0,89
835	41,5	0,90
900	41,5	0,97
1 450	40,5	1,20
1 500	40,4	1,23
1 6 4 0	40,2	1,31
1 750	40,1	1,37
1 800	40,0	1,40
1 900	40,0	1,40
2 000	40,0	1,40
2 100	39,8	1,49
2 300	39,5	1,67
2 450	39,2	1,80
2 600	39,0	1,96
3 000	38,5	2,40
3 500	37,9	2,91
4 000	37,4	3,43
4 500	36,8	3,94
5 000	36,2	4,45
5 200	36,0	4,66
5 400	35,8	4,86
5 600	35,5	5,07
5 800	35,3	5,27
6 000	35,1	5,48

NOTE For convenience, permittivity and conductivity values at those frequencies which are not part of the original data provided by Drossos et al. [33] or the extension to 5 800 MHz are provided (i.e. the values shown *in italics*). These values were linearly interpolated between the values in this table that are immediately above and below these values, except the values at 6 000 MHz that were linearly extrapolated from the values at 3 000 MHz and 5 800 MHz.


3. EQUIPMENT LIST AND CALIBRATION

3.1 Equipments List & Calibration Information

Equipment	Model	S/N	Calibration Date	Calibration Due Date
DASY5 Test Software	DASY52.10	N/A	NCR	NCR
DASY5 Measurement Server	DASY5 4.5.12	1567	NCR	NCR
Data Acquisition Electronics	DAE4	1354	2023/11/17	2024/11/16
E-Field Probe	EX3DV4	7329	2024/3/27	2025/3/26
Mounting Device	MD4HHTV5	BJPCTC0152	NCR	NCR
Twin SAM	Twin SAM V5.0	1412	NCR	NCR
Dipole, 750 MHz	D750V3	1230	2023/3/24	2026/3/23
Dipole, 900 MHz	D900V2	1d217	2023/3/24	2026/3/23
Dipole, 1750 MHz	D1750V2	1200	2023/3/27	2026/3/26
Dipole, 1900 MHz	D1900V2	5d251	2023/3/27	2026/3/26
Dipole,2600 MHz	D2600V2	1206	2023/3/27	2026/3/26
Simulated Tissue Liquid Head(500-9500 MHz)	HBBL600-10000V6	220420-2	Each Time	/
Network Analyzer	8753B	2828A00170	2023/10/17	2024/10/16
Dielectric assessment kit	1319	SM DAK 040 CA	NCR	NCR
MXG Vector Signal Generator	N5182B	MY51350144	2024/4/1	2025/3/31
Power Meter	E4419B	MY45103907	2023/10/18	2024/10/17
USB Power Sensor	U2001H	MY50000432	2024/4/1	2025/3/31
Power Amplifier	ZHL-5W-202-S+	416402204	NCR	NCR
Power Amplifier	ZVE-6W-83+	637202210	NCR	NCR
Directional Coupler	441493	520Z	NCR	NCR
Attenuator	20dB, 100W	LN749	NCR	NCR
Attenuator	6dB, 150W	2754	NCR	NCR
Thermometer	DTM3000	3892	2024/4/1	2025/3/31
Thermohygrometer	HTC-1	N/A	2024/4/1	2025/3/31
Radio Communication Analyzer	MT8820C	6201181458	2024/4/1	2025/3/31
Spectrum Analyzer	FSU26	100147	2024/4/1	2025/3/31

4. SAR MEASUREMENT SYSTEM VERIFICATION

4.1 Liquid Verification

Liquid Verification Setup Block Diagram

Liquid Verification Results

Frequency	Liquid Type	Liquid Parameter		Target Value			elta %)	Tolerance
(MHz)	Enquiu i ype	ε _r	0 (S/m)	E r	0 (S/m)	$\Delta \epsilon_{\rm r}$	ΔO (S/m)	(%)
704	Simulated Tissue Liquid Head	43.456	0.859	42.15	0.89	3.1	-3.48	± 5
707.5	Simulated Tissue Liquid Head	43.358	0.865	42.13	0.89	2.91	-2.81	±5
711	Simulated Tissue Liquid Head	43.243	0.871	42.11	0.89	2.69	-2.13	±5
750	Simulated Tissue Liquid Head	42.955	0.892	41.9	0.89	2.52	0.22	±5

*Liquid Verification above was performed on 2024/09/21.

Frequency	Liquid Type	Liq Paran		Target Value		Delta (%)		Tolerance
(MHz)	Liquiu Type	E r	0 (S/m)	E r	0' (S/m)	$\Delta \epsilon_{\rm r}$	ΔO (S/m)	(%)
824.2	Simulated Tissue Liquid Head	42.841	0.89	41.55	0.9	3.11	-1.11	± 5
826.4	Simulated Tissue Liquid Head	42.765	0.894	41.54	0.9	2.95	-0.67	±5
829	Simulated Tissue Liquid Head	42.616	0.902	41.53	0.9	2.61	0.22	± 5
836.5	Simulated Tissue Liquid Head	42.591	0.907	41.5	0.9	2.63	0.78	± 5
836.6	Simulated Tissue Liquid Head	42.585	0.908	41.5	0.9	2.61	0.89	± 5
844	Simulated Tissue Liquid Head	42.362	0.914	41.5	0.91	2.08	0.44	±5
846.6	Simulated Tissue Liquid Head	42.337	0.919	41.5	0.91	2.02	0.99	±5
848.8	Simulated Tissue Liquid Head	42.291	0.923	41.5	0.91	1.91	1.43	±5
900	Simulated Tissue Liquid Head	42.084	0.951	41.5	0.97	1.41	-1.96	±5

*Liquid Verification above was performed on 2024/09/21.

Frequency (MHz)	I iouid True	Liq Paran		Target	t Value		elta %)	Tolerance
	Liquid Type	E r	0 (S/m)	E r	0' (S/m)	$\Delta \epsilon_{\rm r}$	ΔO (S/m)	(%)
1720	Simulated Tissue Liquid Head	41.512	1.327	40.13	1.35	3.44	-1.7	± 5
1732.5	Simulated Tissue Liquid Head	41.471	1.334	40.12	1.36	3.37	-1.91	±5
1745	Simulated Tissue Liquid Head	41.224	1.342	40.1	1.37	2.8	-2.04	±5
1750	Simulated Tissue Liquid Head	41.203	1.356	40.1	1.37	2.75	-1.02	±5

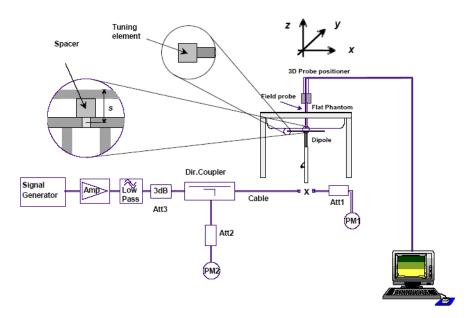
*Liquid Verification above was performed on 2024/09/21.

Frequency	Liquid Type	Liq Parar		Target Value		Delta (%)		Tolerance
(MHz)	Liquid Type	ε _r	0 (S/m)	E r	0' (S/m)	$\Delta \epsilon_{\rm r}$	ΔO (S/m)	(%)
1852.4	Simulated Tissue Liquid Head	41.365	1.369	40	1.4	3.41	-2.21	± 5
1860	Simulated Tissue Liquid Head	41.132	1.378	40	1.4	2.83	-1.57	±5
1880	Simulated Tissue Liquid Head	40.786	1.391	40	1.4	1.97	-0.64	±5
1882.5	Simulated Tissue Liquid Head	40.524	1.402	40	1.4	1.31	0.14	±5
1900	Simulated Tissue Liquid Head	40.164	1.415	40	1.4	0.41	1.07	±5
1905	Simulated Tissue Liquid Head	39.734	1.423	40	1.4	-0.66	1.64	±5
1907.6	Simulated Tissue Liquid Head	39.699	1.441	40	1.4	-0.75	2.93	±5

*Liquid Verification above was performed on 2024/09/22.

Frequency (MHz)	Liquid Type	Liquid Parameter		Target Value			elta %)	Tolerance
	Liquid Type	E r	0' (S/m)	E r	0 (S/m)	$\Delta \epsilon_{\rm r}$	ΔƠ (S/m)	(%)
2510	Simulated Tissue Liquid Head	39.948	1.875	39.12	1.86	2.12	0.81	±5
2535	Simulated Tissue Liquid Head	39.709	1.925	39.09	1.89	1.58	1.85	±5
2560	Simulated Tissue Liquid Head	39.652	1.972	39.05	1.92	1.54	2.71	±5
2600	Simulated Tissue Liquid Head	38.127	2.038	39	1.96	-2.24	3.98	±5

*Liquid Verification above was performed on 2024/09/22.


4.2 System Accuracy Verification

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

The spacing distances in the System Verification Setup Block Diagram is given by the following:

- a) $s = 15 \text{ mm} \pm 0.2 \text{ mm}$ for 300 MHz $\leq f \leq 1 000 \text{ MHz}$;
- b) $s = 10 \text{ mm} \pm 0.2 \text{ mm}$ for 1 000 MHz < f \leq 3 000 MHz;
- c) s = 10 mm \pm 0,2 mm for 3 000 MHz \leq f \leq 6 000 MHz.

System Verification Setup Block Diagram

System Accuracy Check Results

Date	Frequency Band	Liquid Type	Input Power (mW)	S	isured AR //kg)	Normalized to 1W (W/kg)	Target Value (W/kg)	Delta (%)	Tolerance (%)
2024/09/21	750 MHz	Simulated Tissue Liquid Head	100	1g	0.833	8.33	8.49	-1.88	±10
2024/09/21	/ 30 WITTZ	Simulated Tissue Elquid Head	100	10g	0.546	5.46	5.54	-1.44	±10
2024/09/21 900 MHz	Simulated Tissue Liquid Head	100	1g	1.12	11.2	10.9	2.75	±10	
	900 MHZ	Simulated Tissue Liquid Head	100	10g	0.711	7.11	6.96	2.16	±10
2024/09/21	1750 MHz	Simulated Tissue Liquid Head	100	1g	3.65	36.5	35.8	1.96	±10
2024/09/21	1/30 MHZ	Simulated Tissue Liquid Head	100	10g	1.94	19.4	18.8	3.19	±10
2024/00/22	1900 MHz	Cimulated Tierre Linuid Hand	100	1g	4.02	40.2	38.9	3.34	±10
2024/09/22	1900 MHZ	Simulated Tissue Liquid Head	100	10g	2.14	21.4	20.3	5.42	±10
2024/09/22		100	1g	5.71	57.1	56	1.96	±10	
2024/09/22	2600 MHz	Simulated Tissue Liquid Head	100	10g	2.56	25.6	25.3	1.19	±10

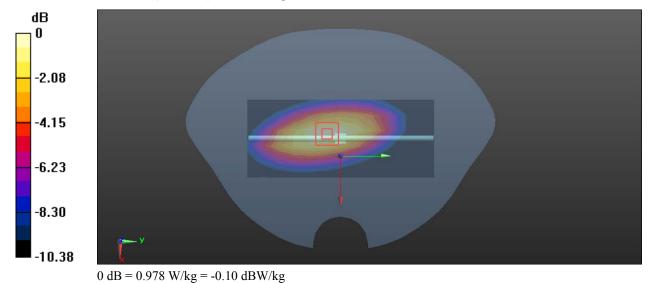
*The SAR values above are normalized to 1 Watt forward power.

China Certification ICT Co., Ltd (Dongguan)

4.3 SAR SYSTEM VALIDATION DATA

System Performance 750 MHz Head was performed on 2024/09/21

DUT: D750V3; Type: 750 MHz; Serial: 1230


Communication System: CW (0); Frequency: 750 MHz;Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; σ = 0.892 S/m; ϵ_r =42.955; ρ = 1000 kg/m³; Phantom section: Flat Section

DASY5 Configuration:

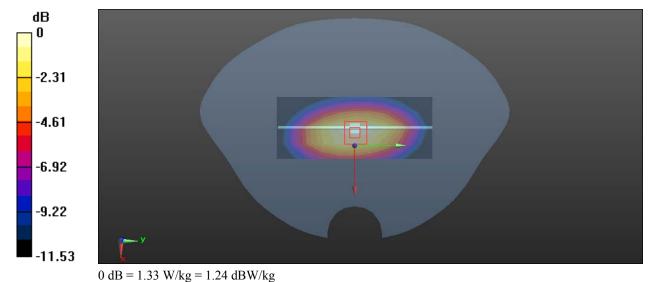
- Probe: EX3DV4 SN7329; ConvF(8.79, 10.07, 9.05)@ 750 MHz; Calibrated: 2024/3/27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1354; Calibrated: 2023/11/17
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: TP:1412
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan(7x13x1):Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.940 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 30.86 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 1.26 W/kg SAR(1 g) = 0.833 W/kg; SAR(10 g) = 0.546 W/kg Maximum value of SAR (measured) = 0.978 W/kg

System Performance 900 MHz Head was performed on 2024/09/21

DUT: D900V2; Type: 900 MHz; Serial: 1d217


Communication System: CW; Frequency: 900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 900 MHz; σ = 0.951 S/m; ϵ_r = 42.084; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

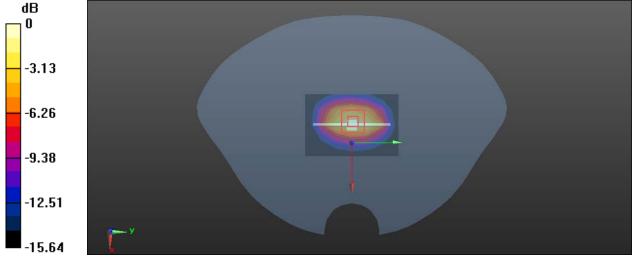
- Probe: EX3DV4 SN7329; ConvF(8.42, 9.5, 8.93)@ 900 MHz; Calibrated: 2024/3/27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1354; Calibrated: 2023/11/17
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: TP:1412
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.30 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 40.06 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 1.78 W/kg SAR(1 g) = 1.12 W/kg; SAR(10 g) = 0.711 W/kg Maximum value of SAR (measured) = 1.33 W/kg

System Performance 1750MHz Head was performed on 2024/09/21

DUT: D1900V2; Type: 1750 MHz; Serial: 1200


Communication System: CW; Frequency: 1750 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; σ = 1.356 S/m; ϵ_r = 41.203; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.56, 8.56, 7.71)@ 1750 MHz; Calibrated: 2024/3/27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1354; Calibrated: 2023/11/17
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: TP:1412
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

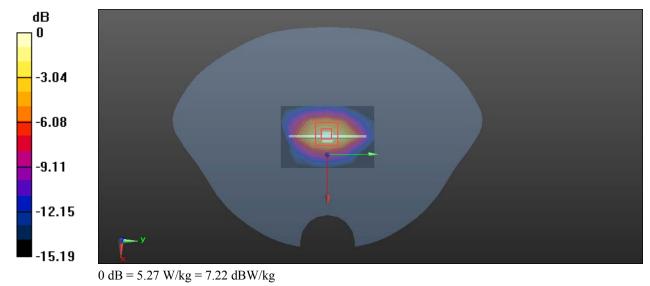
Area Scan(5x7x1):Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 4.19 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.34 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 6.59 W/kg SAR(1 g) = 3.65 W/kg; SAR(10 g) = 1.94 W/kg Maximum value of SAR (measured) = 4.62 W/kg

0 dB = 4.62 W/kg = 6.65 dBW/kg

System Performance 1900MHz Head was performed on 2024/09/22

DUT: D1900V2; Type: 1900 MHz; Serial: 5d251


Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.415 S/m; ϵ_r = 40.164; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

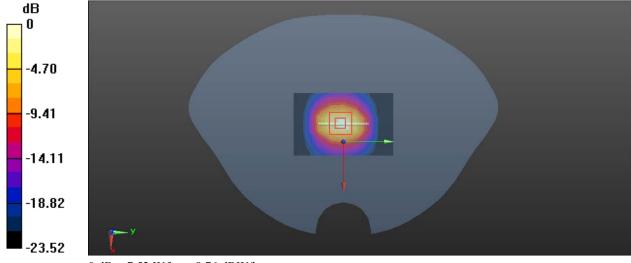
- Probe: EX3DV4 SN7329; ConvF(7.37, 8.32, 7.54)@ 1900 MHz; Calibrated: 2024/3/27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1354; Calibrated: 2023/11/17
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: TP:1412
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan(7x8x1):Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.30 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 62.16 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 6.05 W/kg SAR(1 g) = 4.02 W/kg; SAR(10 g) = 2.14 W/kg Maximum value of SAR (measured) = 5.27 W/kg

System Performance 2600MHzHead was performed on 2024/09/22

DUT: D2600V2; Type: 2600 MHz; Serial: 1206

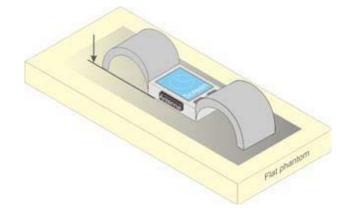

Communication System: CW; Frequency: 2600 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; σ = 2.038 S/m; ϵ_r = 38.127; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(6.91, 7.77, 7.08) @ 2600 MHz; Calibrated: 2024/3/27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1354; Calibrated: 2023/11/17
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: TP:1412
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (6x9x1):Measurement grid: dx=12 mm, dy=12mm Maximum value of SAR (measured) = 7.21 W/kg

```
Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 57.68 V/m; Power Drift = 0.01 dB
Peak SAR (extrapolated) = 12.3 W/kg
SAR(1 g) = 5.71 W/kg; SAR(10 g) = 2.56 W/kg
Maximum value of SAR (measured) = 7.52 W/kg
```



0 dB = 7.52 W/kg = 8.76 dBW/kg

5. EUT TEST STRATEGY AND METHODOLOGY

5.1 Front-of-face and Limbs

Transmitters that are built-in within a wrist watch or similar wrist-worn devices typically operatein speaker mode for voice communication, with the device worn on the wrist and positioned next to the mouth. Next to the mouth exposure requires 1-g SAR and the wrist-worn condition requires 10-g extremity SAR. The 10-g extremity and 1-g SAR test exclusions may be applied to the wrist and face exposure conditions. When SAR evaluation is required, next to the mouth use is evaluated with the front of the device positioned at 10 mm from a flat phantom filled with head tissue-equivalent medium. The wrist bands should be strapped to gether to represent normal use conditions. SAR for wrist exposure is evaluated with the back of the device positioned in direct contact against a flat phantom filled with body tissue-equivalent medium. The wrist bands should be unstrapped and touching the phantom. The space introduced by the watch or wrist bands and the phantom must be representative of actual use conditions.

5.2 Test Distance for SAR Evaluation

For Face Up mode(1g Head SAR) the EUT is set 10mm away from the phantom, the test distance is 10mm; For Limb Worn mode(10g Extremity SAR) the EUT(Equipment Under Test) is set directly against the phantom, the test distance is 0mm.

5.3 SAR Evaluation Procedure

The evaluation was performed with the following procedure:

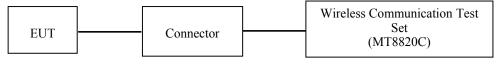
Step 1: Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing.

Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head or radiating structures of the EUT, the horizontal grid spacing was 15 mm x 15 mm, and the SAR distribution was determined by integrated grid of 1.5mm x 1.5mm. Based on these data, the area of the maximum absorption was determined by spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.

Step 3: Around this point, a volume of 30 mm x 30 mm x 30 mm was assessed by measuring 7x 7 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:

1) The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.

2) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points ($10 \times 10 \times 10$) were interpolated to calculate the averages.


All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated.

6. CONDUCTED OUTPUT POWER MEASUREMENT

6.1 Test Procedure

The RF output of the transmitter was connected to the input of the Wireless Communication Test Set through Connector.

GSM/WCDMA/LTE

The RF output of the transmitter was connected to the input port of the USB Power Sensor through Connector.

WLAN

6.2 Description of Test Configuration

EUT Operation Condition:

EUT Operation Condition:	The system was configured for testing in each operation
•	mode.
Equipment Modifications:	No
EUT Exercise Software:	No
The maximum power was configured per 3GPP	Standard for each operation modes as below setting:
GSM/GPRS/EGPRS	
slots and power setting > Slot configuration > Uplink/Gamm > 33 dBm for GPRS 850 > 30 dBm for GPRS 1900 > 27 dBm for EGPRS 850 > 26 dBm for EGPRS 1900	e menus te signal and change settings GSM onfig. off the right twice to select and change the number of time
BCCH Level > -85 dBm (May need to a BCCH Channel > choose desire test channed channel) and BCCH channel]	djust if link is not stable) el [Enter the same channel number for TCH channel (test
Channel Type >OffP0 >4 dBSlot Config>Unchanged (if already setTCH >choose desired test charHopping >OffMain Timeslot >3NetworkCoding Scheme >	
Bit Stream > 2E9-1 PSR Bit Stream AF/RF Enter appropriate offse Connection Press Sign	ets for Ext. Att. Output and Ext. Att. Input
	Page 29 of 65

WCDMA-Release 99

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification. The EUT has a nominal maximum output power of 24dBm (+1.7/-3.7).

	Loopback Mode	Test Mode 1
WCDMA Comorol	Rel99 RMC	12.2kbps RMC
WCDMA General Settings	Power Control Algorithm	Algorithm2
	β / βd	8/15

WCDMA HSDPA

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification.

	Mode	HSDPA	HSDPA	HSDPA	HSDPA					
	Subset	1	2	3	4					
	Loopback Mode			Test Mode 1						
	Rel99 RMC			12.2kbps RM	C					
	HSDPA FRC			H-Set1						
WCDMA	Power Control Algorithm			Algorithm2						
WCDMA General	βc	2/15	12/15	15/15	15/15					
Set ings	βd	1 /15	15/15	8/15	4/15					
Set mgs	βd (SF)			64						
	βc/βd	2/15	12/15	15/8	15/4					
	βhs	4/15	24/15	30/15	30/15					
	MPR(dB)	0	0	0.5	0.5					
	DACK	8								
	DNAK			8						
HSDPA	DCQI			8						
Specific	Ack-Nack repetition			3						
Settings	factor			5						
Settings	CQI Feedback			4ms						
	CQI Repetition Factor		2							
	Ahs=βhs/ βc			30/15						

WCDMA HSUPA

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification.

	Mode	HSUPA	HSUPA	HSUPA	HSUPA	HSUPA					
	Subset	1	2	3	4	5					
	Loopback Mode			Test Mode 1							
	Rel99 RMC			12.2kbps RMC	2						
	HSDPA FRC			H-Set1							
	HSUPA Test		H	SUPA Loopba	ck						
WCDMA	Power Control			Algorithm2							
General	Algorithm	11/17	6/15		2/15	15/15					
Settings	βc	11/15	6/15	15/15	2/15	15/15					
g	βd	15/15	15/15	9/15	15/15	0					
	βec	209/225	12/15	30 15	2/15	5/15					
	βc/βd	11/15	6/15	15/9	2/15	-					
	βhs	22/15	12/15	30/15	4/15	5/15					
	CM(dB)	1.0	3.0	2.0	3.0	1.0					
	MPR(dB)	0	2	1	2	0					
	DACK			8							
	DNAK			8							
HSDPA	DCQI			8							
Specific	Ack-Nack repetition			3							
Settings	factor										
Seeings	CQI Feedback			4ms							
	CQI Repetition Factor	2									
		Ahs= β hs/ β c 30/15									
	DE-DPCCH	6	8	8	5	7					
	DHARQ	0	0	0	0	0					
	AG Index	20	12	15	17	21					
	ETFCI	75	67	92	71	81					
	Associated Max UL Data Rate k ps	242.1	174.9	482.8	205.8	308.9					
HSUPA Specific Settings	Reference E_FCls	E-TFC E-TFC E-TFC E-TFC E-TFC E-TFC E-TFC E-TFC	1 PO 4 CI 67 I PO 18 CI 71 I PO23 CI 75 I PO26 CI 81	E-TFCI 11 E-TFCI PO4 E-TFCI 92 E-TFCI PO 18	E-TFCI 11 E E-TFCI PO 4 E-TFCI 67 E-TFCI PO 18 E-TFCI 71 E-TFCI PO23 E-TFCI 75 E-TFCI PO26 E-TFCI 81 E-TFCI PO 27						

China Certification ICT Co., Ltd (Dongguan)

Report No.: 2403X37662E-20

HSPA+

Sub- test	β _c (Note3)	βd	β _{HS} (Note1)	β_{ec}	β _{ed} (2xSF2)	β _{ed} (2xSF4)	CM (dB)	MPR (dB)	AG Index	E-TFCI (Note 5)	E-TFCI (boost)
	(((Note 4)	(Note 4)	(Note 2)	(Note 2)	(Note 4)	` ´	. ,
1	1	0	30/15	30/15	β _{ed} 1: 30/15	β _{ed} 3: 24/15	3.5	2.5	14	105	105
					β _{ed} 2: 30/15	β _{ed} 4: 24/15					
Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 30/15$ with $\beta_{hs} = 30/15 * \beta_c$.											
Note 2	: CM =	= 3.5 a	and the MF	PR is bas	ed on the relative	e CM difference,	MPR = M	AX(CM-1	,0).		
Note 3	: DPD	CH is	not config	ured, the	refore the β_c is s	et to 1 and $\beta_d =$	0 by defau	lt.			
Note 4					set by Absolute						
Note 5	: All th	e sub	-tests requ	uire the U	E to transmit 2S	F2+2SF4 16QAI	M EDCH a	nd they a	pply for l	JE using I	E-
DPDCH category 7. E-DCH TTI is set to 2ms TTI and E-DCH table index = 2. To support these E-DCH											
configurations DPDCH is not allocated. The UE is signalled to use the extrapolation algorithm.											

The following tests were conducted according to the test requirements in Table C.11.1.4 of 3GPP TS 34.121-1

LTE (FDD):

The following tests were conducted according to the test requirements in 3GPP TS36.101

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3

Modulation	Cha	Channel bandwidth / Transmission bandwidth (RB)							
	1.4 MHz								
OPSK	> 5	>4	>8	> 12	> 16	> 18	≤ 1		
16 QAM	≤ 5	≤4	≤8	≤ 12	≤ 16	≤ 18	≤ 1		
16 QAM	> 5	> 4	>8	> 12	> 16	> 18	≤2		

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS_01".

Network Signalling value	Requirements (sub-clause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RB})	A-MPR (dB)
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	NA
			3	>5	≤ 1
	8_03 6.6.2.2.1	0.4.10.00.05	5	>6	≤1
NS_03		2, 4,10, 23, 25, 35, 36	10	>6	≤1
			15	>8	≤1
			20	>10	≤ 1
NS 04	6.6.2.2.2	41	5	>6	≤ 1
110_04	0.0.2.2.2		10, 15, 20	See Tab	le 6.2.4-4
NS_05	6.6.3.3.1	1	10,15,20	≥ 50	≤1
NS_06	6.6.2.2.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.6-1	n/a
NS 07	6.6.2.2.3	13	10	Table 6.2.4-2	Table 6.2.4-2
113_07	6.6.3.3.2	13		14010-0.2.4-2	14010 0.2.4-2
NS_08	6.6.3.3.3	19	10, 15	> 44	≤ 3
NS 09	6.6.3.3.4	21	10, 15	> 40	≤1
	0.0.3.3.4			> 55	≤ 2
NS_10		20	15, 20	Table 6.2.4-3	Table 6.2.4-3
NS_11	6.6.2.2.1	23'	1.4, 3, 5, 10	Table 6.2.4-5	Table 6.2.4-5
NS_32			-		
Note 1: A	pplies to the lower	block of Band 23, i.e.	a carrier place	d in the 2000-201	10 MHz region.

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

6.3 Maximum Target Output Power

Max Target Power(dBm)							
		Channel					
Mode/Band	Low	Middle	High				
GSM 850	34.1	34.1	34.1				
GPRS 1 TX Slot	34.1	34.1	34.1				
GPRS 2 TX Slot	31.9	31.9	31.9				
GPRS 3 TX Slot	29.7	29.7	29.7				
GPRS 4 TX Slot	27.6	27.6	27.6				
EDGE 1 TX Slot	27	27	27				
EDGE 2 TX Slot	26.9	26.9	26.9				
EDGE 3 TX Slot	25.6	25.6	25.6				
EDGE 4 TX Slot	22.7	22.7	22.7				
PCS 1900	31.1	31.1	31.1				
GPRS 1 TX Slot	30.7	30.7	30.7				
GPRS 2 TX Slot	28.5	28.5	28.5				
GPRS 3 TX Slot	26.9	26.9	26.9				
GPRS 4 TX Slot	24.9	24.9	24.9				
EDGE 1 TX Slot	26.8	26.8	26.8				
EDGE 2 TX Slot	26.4	26.4	26.4				
EDGE 3 TX Slot	26.1	26.1	26.1				
EDGE 4 TX Slot	24	24	24				
WCDMA Band 2	23.5	23.5	23.5				
HSDPA	23	23	23				
HSUPA	23.1	23.1	23.1				
HSPA+	20.6	20.6	20.6				
WCDMA Band 5	23.4	23.4	23.4				
HSDPA	22.1	22.1	22.1				
HSUPA	23	23	23				
HSPA+	21.3	21.3	21.3				
LTE Band 2	24.4	24.4	24.4				
LTE Band 4	24.4	24.4	24.4				
LTE Band 5	24.1	24.1	24.1				
LTE Band 7	24.8	24.8	24.8				
LTE Band 12	24.4	24.4	24.4				
WLAN 2.4G(802.11b)	10.1	10.1	10.1				
WLAN 2.4G(802.11g)	10.4	10.4	10.4				
WLAN 2.4G(802.11n ht20)	10.1	10.1	10.1				

Note: The Maximum Target Power for LTE bands corresponds to their maximumpower in QPSK modes with maximum bandwidth.

6.4 Test Results:

GSM:

Band	Channel No.	Frequency (MHz)	RF Output Power (dBm)
GSM 850	128	824.2	33.71
	190	836.6	33.92
	251	848.8	33.72
PCS 1900	512	1850.2	30.80
	661	1880	30.95
	810	1909.8	30.77

GPRS:

Band Channel No.	Channel Frequency		RF Output Power (dBm)				
	No.	(MHz)	1 slot	2 slots	3 slots	4 slots	
	128	824.2	33.74	31.72	29.64	27.53	
GSM 850	190	836.6	33.96	31.69	29.64	27.54	
	251	848.8	33.91	31.78	29.63	27.44	
	512	1850.2	30.44	28.36	26.84	24.77	
PCS 1900	661	1880	30.55	28.25	26.60	24.56	
	810	1909.8	30.14	28.01	26.38	24.07	

EGPRS:

Band	Channel	Frequency	requency RF Output Power (dBm)				
	No. (MHz)	1 slot	2 slots	3 slots	4 slots		
	128	824.2	26.92	26.49	24.71	21.74	
GSM 850	190	836.6	26.72	26.40	25.45	22.41	
	251	848.8	26.48	26.78	25.27	22.55	
	512	1850.2	26.67	26.26	25.96	23.67	
PCS 1900	661	1880	26.64	25.97	26.02	23.89	
	810	1909.8	26.57	25.85	24.22	23.63	

For SAR, the time based average power is relevant, the difference in between depends on the duty cycle of the TDMA signal.

Number of Time slot	1	2	3	4
Duty Cycle	1:8	1:4	1:2.66	1:2
Time based Ave. power compared to slotted Ave. power	-9 dB	-6 dB	-4.25 dB	-3 dB
Crest Factor	8	4	2.66	2

The time based average power for GPRS

Band Channel No.	Channel	Channel Frequency		Time based average Power (dBm)				
	No.	(MHz)	1 slot	2 slot	3 slots	4 slots		
	128	824.2	24.74	25.72	25.39	24.53		
GSM 850	190	836.6	24.96	25.69	25.39	24.54		
	251	848.8	24.91	25.78	25.38	24.44		
	512	1850.2	21.44	22.36	22.59	21.77		
PCS 1900	661	1880	21.55	22.25	22.35	21.56		
	810	1909.8	21.14	22.01	22.13	21.07		

The time based average power for EGPRS

Band Channel No.	Channel	Frequency	Time based average Power (dBm)				
	No.	(MHz)	1 slot	2 slot	3 slots	4 slots	
	128	824.2	17.92	20.49	20.46	18.74	
GSM 850	190	836.6	17.72	20.4	21.2	19.41	
	251	848.8	17.48	20.78	21.02	19.55	
	512	1850.2	17.67	20.26	21.71	20.67	
PCS 1900	661	1880	17.64	19.97	21.77	20.89	
	810	1909.8	17.57	19.85	19.97	20.63	

Note:

1. Radio Communication Analyzer (MT8820C) was used for the measurement of GSM peak and average output power for active timeslots.

2 .For GSM voice, 1 timeslot has been activated with power level 5 (850 MHz band) and 0 (1900 MHz band).

3 .For GPRS, 1, 2, 3 and 4timeslots has been activated separately with power level 3(850 MHz band) and 3(1900 MHz band).

WCDMA:

WCDMA Band 2:

Test Mode	Conducted	Average Output P	ower(dBm)
Test Mode	Lowest Channel	Middle Channel	Highest Channel
WCDMA R99	23.30	23.42	23.20
HSDPA Subtest 1	22.91	22.65	22.84
HSDPA Subtest 2	22.56	22.52	22.52
HSDPA Subtest 3	22.53	22.29	22.45
HSDPA Subtest 4	22.53	22.38	22.62
HSUPA Subtest 1	22.82	21.19	21.56
HSUPA Subtest 2	22.23	22.50	22.73
HSUPA Subtest 3	21.38	21.18	21.62
HSUPA Subtest 4	22.94	22.95	22.99
HSUPA Subtest 5	21.50	21.85	21.83
HSPA+	20.52	20.47	20.41

WCDMA Band 5:

Teat Mada	Conducted	Average Output P	ower(dBm)
Test Mode	Lowest Channel	Middle Channel	Highest Channel
WCDMA R99	23.20	23.21	23.26
HSDPA Subtest 1	22.04	22.02	21.98
HSDPA Subtest 2	21.79	21.68	21.96
HSDPA Subtest 3	21.53	21.36	21.63
HSDPA Subtest 4	21.52	21.41	21.66
HSUPA Subtest 1	22.60	22.91	22.93
HSUPA Subtest 2	22.73	21.20	21.90
HSUPA Subtest 3	21.27	21.03	21.45
HSUPA Subtest 4	21.94	22.19	22.25
HSUPA Subtest 5	21.14	21.14	21.17
HSPA+	21.17	21.19	21.11

Note:

- 1. The default test configuration is to measure SARwith an established radio link between the EUT and a communication test set using a 12.2 kbps RMC (reference measurement Channel) Configured in Test Loop Model 1.
- 2. KDB 941225 D01-Body SAR is not required for HSDPA/HSUPA/HSPA+ when the maximum average output of each RF channel is less than ¹/₄ dB higher than measured 12.2kbps RMC or the maximum SAR for 12.2kbps RMC is < 75% of SAR limit.

LTE Band 2:

Test Bandwidth	Test Modulation	Resource Block & RB offset	Target MPR	Meas MPR	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		RB1#0	0	0	23.75	24.15	23.95
		RB1#3	0	0	23.86	23.94	24.04
	ODCK	RB1#5	0	0	23.96	24.12	24.12
	QPSK	RB3#0	1	1	24.04	24.12	24.12
		RB3#3	1	1	24.13	24.12	24.12
1 414		RB6#0	1	1	22.95	23.13	22.98
1.4M		RB1#0	1	1	23.66	22.92	23.66
		RB1#3	1	1	23.66	22.86	23.55
	16.041	RB1#5	2	2	23.76	22.82	23.58
	16-QAM	RB3#0	2	2	22.92	23.22	23.11
		RB3#3	2	2	22.93	23.17	23.22
		RB6#0	2	2	22.07	22.11	22.25
		RB1#0	0	0	23.93	23.98	24
		RB1#8	0	0	24.09	24.21	23.93
	ODEK	RB1#14	0	0	23.92	24.12	23.93
	QPSK	RB6#0	1	1	22.92	23.1	22.96
		RB6#9	1	1	22.91	23.03	23.12
214		RB15#0	1	1	23.11	22.89	23.25
3M		RB1#0	1	1	23.14	23.07	23.5
		RB1#8	1	1	23.14	23	23.52
	16.04M	RB1#14	1	1	23.15	22.87	23.37
	16-QAM	RB6#0	2	2	22.22	22.3	22.13
		RB6#9	2	2	22.25	22.21	22.16
		RB15#0	2	2	22.16	22.25	22.25
		RB1#0	0	0	24.22	24.12	24.07
		RB1#13	0	0	24.13	23.99	23.98
	ODEK	RB1#24	0	0	24.08	24.14	24.06
	QPSK	RB15#0	1	1	22.91	23	23.05
		RB15#10	1	1	23.03	23	23.23
5M		RB25#0	1	1	22.91	23.03	23.12
		RB1#0	1	1	23.01	22.7	22.54
		RB1#13	1	1	22.94	22.78	22.51
	16.0 AM	RB1#24	1	1	23.05	22.85	22.51
	16-QAM	RB15#0	2	2	22.1	22.17	22.33
		RB15#10	2	2	22.02	22.24	22.23
		RB25#0	2	2	22.16	22.15	22.4

Test Bandwidth	Test Modulation	Resource Block & RB offset	Target MPR	Meas MPR	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		RB1#0	0	0	23.94	24.12	24.1
		RB1#25	0	0	23.99	24.15	24.01
	ODGV	RB1#49	1	1	24.11	24.15	24.01
	QPSK	RB25#0	1	1	23.08	23.17	23.02
		RB25#25	1	1	22.88	23.2	23
1014		RB50#0	1	1	23.04	23.02	23.17
10M		RB1#0	1	1	23.27	22.62	23.47
		RB1#25	1	1	23.29	22.58	23.46
	16.0434	RB1#49	1	1	23.29	22.57	23.57
	16-QAM	RB25#0	2	2	22.17	22.22	22.16
		RB25#25	2	2	22.23	22.22	22.24
		RB50#0	2	2	22.31	22.21	22.26
		RB1#0	0	0	23.95	23.83	24.08
		RB1#38	0	0	23.93	23.95	24.06
	ODGV	RB1#74	1	1	23.81	23.89	24.05
	QPSK	RB36#0	1	1	22.92	22.99	23.05
		RB36#39	1	1	22.79	23.14	23.09
1516		RB75#0	1	1	22.96	22.91	23.17
15M		RB1#0	1	1	23.31	23.19	23.32
		RB1#38	1	1	23.5	23.24	23.37
	16.0434	RB1#74	2	2	23.36	23.2	23.34
	16-QAM	RB36#0	2	2	22.19	22.2	22.16
		RB36#39	2	2	22.12	22.25	22.26
		RB75#0	2	2	22.13	22.24	22.15
		RB1#0	0	0	24.13	24.13	24.11
		RB1#50	0	0	24.15	24.24	24.08
	ODCV	RB1#99	0	0	24.19	24.33	24.17
	QPSK	RB50#0	1	1	23.63	23.75	23.52
		RB50#50	1	1	22.86	23.17	23.08
2014		RB100#0	1	1	23.08	23.21	23.12
20M		RB1#0	1	1	22.97	23.12	23.5
		RB1#50	1	1	23.15	23.13	23.56
	16.0414	RB1#99	2	2	23.16	23.28	23.39
	16-QAM	RB50#0	2	2	22.16	22.32	22.31
		RB50#50	2	2	22.07	22.28	22.26
		RB100#0	2	2	22.17	22.29	22.15

LTE Band 4:

Test Bandwidth	Test Modulation	Resource Block & RB offset	Target MPR	Meas MPR	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		RB1#0	0	0	23.93	24.18	24.01
		RB1#3	0	0	23.97	24.14	23.98
	ODCK	RB1#5	0	0	24.00	24.07	23.88
	QPSK	RB3#0	1	1	24.26	24.15	24.35
		RB3#3	1	1	24.26	24.19	24.27
1.474		RB6#0	1	1	23.11	23.19	23.13
1.4M		RB1#0	1	1	22.85	23.89	23.78
		RB1#3	1	1	22.90	23.87	23.77
	16.0414	RB1#5	2	2	22.89	23.80	23.78
	16-QAM	RB3#0	2	2	23.28	23.23	23.20
		RB3#3	2	2	23.18	23.32	23.23
		RB6#0	2	2	22.49	22.43	22.28
		RB1#0	0	0	24.01	24.16	23.83
		RB1#8	0	0	24.10	24.14	23.84
	ODCK	RB1#14	0	0	24.03	24.18	-30.35
	QPSK	RB6#0	1	1	23.02	22.96	23.23
		RB6#9	1	1	23.00	22.94	23.17
2) (RB15#0	1	1	23.12	23.01	23.10
3M		RB1#0	1	1	23.34	23.57	23.78
		RB1#8	1	1	23.17	23.55	23.77
	16.0414	RB1#14	1	1	23.18	23.64	23.77
	16-QAM	RB6#0	2	2	22.38	22.23	22.11
		RB6#9	2	2	22.44	22.09	22.22
		RB15#0	2	2	22.12	22.34	22.38
		RB1#0	0	0	24.28	24.19	24.12
		RB1#13	0	0	24.30	24.19	24.05
	ODCK	RB1#24	0	0	24.16	24.12	24.07
	QPSK	RB15#0	1	1	23.13	23.18	23.30
		RB15#10	1	1	23.11	23.04	23.26
53.4		RB25#0	1	1	23.06	23.10	23.13
5M		RB1#0	1	1	23.00	22.82	22.51
		RB1#13	1	1	23.11	22.88	22.36
	16.0414	RB1#24	1	1	23.10	22.84	22.48
	16-QAM	RB15#0	2	2	22.12	22.30	22.34
		RB15#10	2	2	22.17	22.31	22.34
		RB25#0	2	2	22.04	22.17	22.25

Test Bandwidth	Test Modulation	Resource Block & RB offset	Target MPR	Meas MPR	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		RB1#0	0	0	23.89	24.06	24.06
		RB1#25	0	0	24.03	24.13	23.99
	ODGV	RB1#49	1	1	24.05	24.11	23.97
	QPSK	RB25#0	1	1	23.14	23.23	23.13
		RB25#25	1	1	23.13	23.02	22.96
1016		RB50#0	1	1	23.13	22.99	23.05
10M		RB1#0	1	1	23.83	22.57	23.29
		RB1#25	1	1	23.81	22.57	23.38
	160434	RB1#49	1	1	23.82	22.72	23.35
	16-QAM	RB25#0	2	2	22.24	22.42	22.37
		RB25#25	2	2	22.24	22.36	22.21
		RB50#0	2	2	22.28	22.17	22.17
		RB1#0	0	0	24.04	23.95	24.13
		RB1#38	0	0	24.09	23.91	23.95
		RB1#74	1	1	24.00	24.03	24.08
	QPSK	RB36#0	1	1	22.91	23.13	23.06
		RB36#39	1	1	23.15	23.09	23.01
		RB75#0	1	1	23.08	22.98	23.01
15M		RB1#0	1	1	23.24	23.32	23.31
		RB1#38	1	1	23.23	23.33	23.35
		RB1#74	2	2	23.28	23.40	23.17
	16-QAM	RB36#0	2	2	22.18	22.25	22.08
		RB36#39	2	2	22.23	22.31	22.21
		RB75#0	2	2	22.18	22.20	22.15
		RB1#0	0	0	23.97	23.90	24.17
		RB1#50	0	0	24.17	24.11	24.20
	obau	RB1#99	0	0	24.12	23.95	24.04
	QPSK	RB50#0	1	1	23.28	23.39	23.32
		RB50#50	1	1	23.06	23.07	23.20
2014		RB100#0	1	1	22.97	23.09	23.19
20M		RB1#0	1	1	23.08	23.25	23.79
		RB1#50	1	1	23.08	23.05	23.70
	160434	RB1#99	2	2	23.14	23.08	23.84
	16-QAM	RB50#0	2	2	22.29	22.23	22.23
		RB50#50	2	2	22.07	22.30	22.27
		RB100#0	2	2	22.17	22.21	22.22

LTE Band 5:

Test Bandwidth	Test Modulation	Resource Block & RB offset	Target MPR	Meas MPR	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		RB1#0	0	0	23.76	23.92	23.8
		RB1#3	0	0	23.81	23.82	23.78
	ODEK	RB1#5	0	0	23.8	23.82	23.73
	QPSK	RB3#0	1	1	23.92	23.73	23.78
		RB3#3	1	1	23.96	23.82	23.79
1 414		RB6#0	1	1	22.96	22.9	22.85
1.4M		RB1#0	1	1	23.15	23.37	23.52
		RB1#3	1	1	23.04	23.28	23.57
	16.0414	RB1#5	2	2	23.07	23.25	23.5
	16-QAM	RB3#0	2	2	22.87	22.97	22.65
		RB3#3	2	2	22.99	23.04	22.65
		RB6#0	2	2	21.97	22.18	21.76
		RB1#0	0	0	23.85	23.85	23.77
		RB1#8	0	0	23.68	23.96	23.8
	ODCK	RB1#14	0	0	23.72	23.74	23.75
	QPSK	RB6#0	1	1	22.92	22.7	22.86
		RB6#9	1	1	22.81	22.93	22.79
2) (RB15#0	1	1	22.88	22.78	22.76
3M		RB1#0	1	1	23.11	22.31	22.9
		RB1#8	1	1	22.93	22.38	23.04
	16.0414	RB1#14	1	1	23.13	22.3	22.77
	16-QAM	RB6#0	2	2	21.99	22.06	21.93
		RB6#9	2	2	22.2	22.24	21.77
		RB15#0	2	2	21.92	22.16	22.01
		RB1#0	0	0	23.83	23.64	23.91
		RB1#13	0	0	23.82	23.67	23.65
	ODCK	RB1#24	0	0	23.84	23.8	23.79
	QPSK	RB15#0	1	1	22.75	22.81	22.67
		RB15#10	1	1	22.8	22.77	22.98
		RB25#0	1	1	22.78	22.78	22.79
5M		RB1#0	1	1	22.78	22.53	22.06
		RB1#13	1	1	22.9	22.45	21.97
	16.0414	RB1#24	1	1	22.72	22.43	21.99
	16-QAM	RB15#0	2	2	21.72	21.93	22.01
		RB15#10	2	2	21.83	21.99	21.99
		RB25#0	2	2	21.9	21.85	22.09

Test Bandwidth	Test Modulation	Resource Block & RB offset	Target MPR	Meas MPR	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		RB1#0	0	0	23.83	23.71	23.7
		RB1#25	0	0	23.97	23.76	23.89
	QPSK	RB1#49	1	1	23.95	23.76	23.87
	QPSK	RB25#0	1	1	22.78	22.93	22.8
		RB25#25	1	1	22.82	22.99	22.81
10M		RB50#0	1	1	22.73	22.73	22.79
TUM		RB1#0	1	1	23.39	23.21	22.96
		RB1#25	1	1	23.49	23.17	22.8
	16 O M	RB1#49	1	1	23.5	23	22.94
16-QAM	10-QAM	RB25#0	2	2	21.97	21.96	21.94
		RB25#25	2	2	22.06	21.87	21.99
		RB50#0	2	2	21.87	22.07	22.01

Report No.: 2403X37662E-20

LTE Band 7:

Test Bandwidth	Test Modulation	Resource Block & RB offset	Target MPR	Meas MPR	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		RB1#0	0	0	24.21	24.08	24.46
		RB1#13	0	0	24.17	24.06	24.33
	ODEK	RB1#24	0	0	23.25	24.18	24.01
	QPSK	RB15#0	1	1	23.23	23.12	23.27
		RB15#10	1	1	23.14	23.03	23.21
514		RB25#0	1	1	23	23.11	23.18
5M		RB1#0	1	1	23.26	22.44	23.29
		RB1#13	1	1	22.75	22.42	23.1
	16.0414	RB1#24	1	1	23.18	22.32	23.51
	16-QAM	RB15#0	2	2	22.14	22.18	22.17
		RB15#10	2	2	22.29	22.22	22.28
		RB25#0	2	2	22.25	22.26	22.28
		RB1#0	0	0	23.88	23.97	24.33
		RB1#25	0	0	24.06	23.91	24.18
	ODCK	RB1#49	0	0	23.96	23.92	24.25
	QPSK	RB25#0	1	1	23.06	23.07	23.18
		RB25#25	1	1	23.14	23.2	23.08
1014		RB50#0	1	1	23.01	23.12	23.2
10M		RB1#0	1	1	23.18	23.75	22.71
	16-QAM	RB1#25	1	1	23.41	23.97	22.85
		RB1#49	1	1	23.56	23.83	22.7
		RB25#0	2	2	22.12	22.28	22.58
		RB25#25	2	2	22.25	22.29	22.55
		RB50#0	2	2	22.15	22.18	22.39
		RB1#0	0	0	24.12	23.92	23.91
		RB1#38	0	0	24.1	23.95	24.08
	ODCK	RB1#74	0	0	24.1	23.97	24.09
	QPSK	RB36#0	1	1	23.15	23	23.12
		RB36#39	1	1	23.01	23.08	23.18
1516		RB75#0	1	1	23.07	23.15	23.06
15M		RB1#0	1	1	23.07	23.22	23.97
		RB1#38	1	1	23.15	23.34	24.03
	100414	RB1#74	1	1	23.26	23.4	23.93
	16-QAM	RB36#0	2	2	22.31	22.38	22.23
		RB36#39	2	2	22.38	22.23	22.15
		RB75#0	2	2	22.31	22.29	22.22

Test Bandwidth	Test Modulation	Resource Block & RB offset	Target MPR	Meas MPR	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		RB1#0	0	0	23.99	24.18	24.31
		RB1#50	0	0	24.67	24.36	24.64
	QPSK	RB1#99	0	0	24.55	23.55	24.61
	QPSK	RB50#0	1	1	23.26	23.16	23.07
		RB50#50	1	1	23.44	23.58	23.35
20M		RB100#0	1	1	23.04	23.16	23.18
20101		RB1#0	1	1	23.14	23.18	23.77
		RB1#50	1	1	23.11	23.28	23.8
	16 O M	RB1#99	1	1	23.28	23.18	24.3
16-QAM	10-QAM	RB50#0	2	2	22.41	22.31	22.2
		RB50#50	2	2	22.19	22.44	22.23
		RB100#0	2	2	22.29	22.3	22.26

LTE Band 12:

Test Bandwidth	Test Modulation	Resource Block & RB offset	Target MPR	Meas MPR	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		RB1#0	0	0	24.07	23.82	23.84
		RB1#3	0	0	24.10	23.44	23.79
	ODCK	RB1#5	0	0	23.99	23.88	23.91
	QPSK	RB3#0	1	1	24.03	24.03	23.85
		RB3#3	1	1	24.01	23.72	23.90
1.0.6		RB6#0	1	1	22.87	22.82	22.91
1.4M		RB1#0	1	1	22.33	22.01	22.82
		RB1#3	1	1	22.57	22.03	23.06
	16.0414	RB1#5	2	2	22.59	22.57	22.63
	16-QAM	RB3#0	2	2	22.43	22.81	22.79
		RB3#3	2	2	22.58	22.69	22.61
		RB6#0	2	2	21.82	21.98	21.99
		RB1#0	0	0	23.63	23.78	24.11
		RB1#8	0	0	23.84	23.79	24.19
	ODCK	RB1#14	0	0	23.77	23.83	24.06
	QPSK	RB6#0	1	1	22.82	22.91	23.00
		RB6#9	1	1	22.70	22.98	23.08
214		RB15#0	1	1	22.70	22.94	23.12
3M		RB1#0	1	1	22.00	23.08	22.33
		RB1#8	1	1	22.25	23.25	22.33
	16 O M	RB1#14	1	1	21.95	22.09	22.07
	16-QAM	RB6#0	2	2	22.06	21.91	22.22
		RB6#9	2	2	21.80	22.11	22.17
		RB15#0	2	2	22.22	22.14	21.85
		RB1#0	0	0	23.75	23.86	24.03
		RB1#13	0	0	23.79	23.91	24.29
	QPSK	RB1#24	0	0	23.93	24.01	24.17
	QLSK	RB15#0	1	1	22.84	22.88	23.00
		RB15#10	1	1	22.92	22.94	22.99
514		RB25#0	1	1	22.88	23.02	23.02
5M		RB1#0	1	1	22.72	22.25	23.15
		RB1#13	1	1	23.26	22.04	23.19
	16-QAM	RB1#24	1	1	22.02	22.01	21.76
	10-QAM	RB15#0	2	2	21.86	21.93	21.85
		RB15#10	2	2	22.10	22.05	21.73
		RB25#0	2	2	21.97	22.08	21.82

Test Bandwidth	Test Modulation	Resource Block & RB offset	Target MPR	Meas MPR	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		RB1#0	0	0	23.83	23.83	23.88
		RB1#25	0	0	23.94	23.98	23.94
	QPSK	RB1#49	1	1	23.84	23.87	23.78
	QPSK	RB25#0	1	1	22.64	22.79	22.83
		RB25#25	1	1	23.09	23.26	23.18
10M		RB50#0	1	1	22.70	22.79	22.85
10101		RB1#0	1	1	22.95	23.38	22.10
		RB1#25	1	1	22.80	23.35	22.05
	16 O M	RB1#49	1	1	21.65	22.03	21.96
16-QAM	10-QAM	RB25#0	2	2	21.78	21.89	21.97
		RB25#25	2	2	21.68	21.93	22.09
		RB50#0	2	2	21.88	21.74	21.76

WLAN 2.4G:

Mode	Channel frequency (MHz)	Duty Cycle (%)	Conducted Average Output Power(dBm)
	2412		10.01
802.11b	2437	100	10.03
	2462		9.80
	2412		10.18
802.11g	2437	100	10.28
	2462		10.11
	2412		9.90
802.11n ht20	2437	100	10.00
	2462		9.57

7. Standalone SAR test exclusion considerations

Antennas Location:

7.1 Standalone SAR test exclusion considerations

Face Up

Mode	Frequency (MHz)	Output Power (dBm)	Output Power (mW)	Distance (mm)	Calculated value	Threshold (1-g)	SAR Test Exclusion
WLAN 2.4G	2462	10.4	10.96	10	1.7	3.0	YES

Limb Worn

Mode	Frequency (MHz)	Output Power (dBm)	Output Power (mW)	Distance (mm)	Calculated value	Threshold (10-g)	SAR Test Exclusion
WLAN 2.4G	2462	10.4	10.96	0	3.4	7.5	YES

NOTE:

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] ·

 $[\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

7.2 Standalone SAR estimation:

Face Up

Mode	Frequency (MHz)	Output Power (dBm)	Output Power (mW)	Distance (mm)	Estimated 1-g (W/kg)	
WLAN 2.4G	2462	10.4	10.96	10	0.23	

Limb Worn

Mode	Frequency (MHz)	Output Power (dBm)	Output Power (mW)	Distance (mm)	Estimated 10-g (W/kg)
WLAN 2.4G	2462	10.4	10.96	0	0.18

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,mm)] · $[\sqrt{f(GHz)/x}]$ W/kg, for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR and x = 18.75 for 10-g SAR. When the minimum test separation distance is \leq 5 mm, a distance of 5 mm is applied to determine SAR

test Exclusion.

8. SAR MEASUREMENT RESULTS

This page summarizes the results of the performed dosimetric evaluation.

8.1 SAR Test Data

Environmental Conditions

Temperature:	22.4-23.1℃	21.9 - 22.7 ℃
Relative Humidity:	54 %	39 %
ATM Pressure:	100.1kPa	100.8 kPa
Test Date:	2024/09/21	2024/09/22

Testing was performed by Wen Chen, Leo Lu, Aixlee Li, Ken Zong.

GSM 850:

EUT	Frequency	Test Mode	Max. Meas. Power (dBm)	Max. Rated Power (dBm)	1g SAR (W/kg) , Limit=1.6W/kg				
Position	(MHz)				Scaled Factor	Meas. SAR	Scaled SAR	Plot	
Face Up GSM (10mm)	824.2	GSM	/	/	/	/	/	/	
	836.6	GSM	33.92	34.1	1.042	0.131	0.14	/	
(101111)	848.8	GSM	/	/	/	/	/	/	
	824.2	GPRS	/	/	/	/	/	/	
Face Up GPRS (10mm)	836.6	GPRS	31.69	31.9	1.05	0.132	0.14	1#	
()	848.8	GPRS	/	/	/	/	/	/	

EUT	Frequency	Test Mode	Max. Meas. Power (dBm)	Max. Rated	10g SAR (W/kg) , Limit=4.0W/kg				
Position	(MHz)			Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot	
Limb Worn GSM (0 mm)	824.2	GSM	/	/	/	/	/	/	
	836.6	GSM	33.92	34.1	1.042	0.329	0.34	/	
(*)	848.8	GSM	/	/	/	/	/	/	
	824.2	GPRS	/	/	/	/	/	/	
Limb Worn GPRS (0 mm)	836.6	GPRS	31.69	31.9	1.05	0.402	0.42	2#	
(*)	848.8	GPRS	/	/	/	/	/	/	

Note:

1. When the SAR value is less than half of the limit, testing for other channels are optional.

2. The EUT transmit and receive through the same GSM antenna while testing SAR.

3. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance.

4. When the maximum output power variation across the required test channels is > 0.5 dB, instead of the middle channel, the highest output power channel must be used.

5. The Multi-slot Classes of EUT is Class 12 which has maximum 4 Downlink slots and 4 Uplink slots, the maximum active slots is 5, when perform the multiple slots scan, 3DL+2UL is the worst case.

PCS 1900:

EUT Position	Frequency (MHz)	Test	Max. Meas.	Max. Rated Power (dBm)	1g SAR (W/kg) , Limit=1.6W/kg				
		Mode	Power (dBm)		Scaled Factor	Meas. SAR	Scaled SAR	Plot	
	1850.2	GSM	/	/	/	/	/	/	
Face Up GSM (10mm)	1880	GSM	30.95	31.1	1.035	0.436	0.45	3#	
(101111)	1909.8	GSM	/	/	/	/	/	/	
	1850.2	GPRS	/	/	/	/	/	/	
Face Up GPRS (10mm)	1880	GPRS	26.6	26.9	1.072	0.412	0.44	/	
	1909.8	GPRS	/	/	/	/	/	/	

EUT	Frequency (MHz)	Test	Max. Meas.	Max. Rated	10g SAR (W/kg) , Limit=4.0W/kg				
Position		Mode	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot	
	1850.2	GSM	/	/	/	/	/	/	
Limb Worn GSM (0 mm)	1880	GSM	30.95	31.1	1.035	1.24	1.28	4#	
(*)	1909.8	GSM	/	/	/	/	/	/	
	1850.2	GPRS	/	/	/	/	/	/	
Limb Worn GPRS (0 mm)	1880	GPRS	26.6	26.9	1.072	1.14	1.22	/	
(~)	1909.8	GPRS	/	/	/	/	/	/	

Note:

1. When the SAR value is less than half of the limit, testing for other channels are optional.

2. The EUT transmit and receive through the same GSM antenna while testing SAR.

3. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance.

4. When the maximum output power variation across the required test channels is > 0.5 dB, instead of the middle channel, the highest output power channel must be used.

5. The Multi-slot Classes of EUT is Class 12 which has maximum 4 Downlink slots and 4 Uplink slots, the maximum active slots is 5, when perform the multiple slots scan, 2DL+3UL is the worst case.

WCDMA Band 2:

EUT Position	· · · · · · · · · · · · · · · · · · ·		Max. Meas. Power (dBm)	Max. Rated Power (dBm)	1g SAR (W/kg) , Limit=1.6W/kg				
					Scaled Factor	Meas. SAR	Scaled SAR	Plot	
	1852.4	RMC	/	/	/	/	/	/	
Face Up (10mm)	1880	RMC	23.42	23.5	1.019	0.584	0.60	5#	
(1011111)	1907.6	RMC	/	/	/	/	/	/	

EUT Position	Frequency	Test	Max. Meas.	Max. Rated	10g SAI	R (W/kg)	, Limit=4.	0W/kg
	(MHz)	Mode	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot
Limb Worn (0 mm)	1852.4	RMC	/	/	/	/	/	/
	1880	RMC	23.42	23.5	1.019	1.84	1.87	6#
	1907.6	RMC	/	/	/	/	/	/

WCDMA Band 5:

EUT	Fraguanay	Test	Max. Meas.	Max. Rated	1g SAR (W/kg) , Limit=1.6W/kg					
Position	Frequency (MHz)	Mode	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot		
	826.4	RMC	/	/	/	/	/	/		
Face Up (10mm)	836.6	RMC	23.21	23.4	1.045	0.067	0.07	7#		
()	846.6	RMC	/	/	/	/	/	/		

EUT	Frequency	Test	Max. Meas.	Max. Rated	10g SAR (W/kg), Limit=4.0W/kg					
Position	(MHz)	Mode	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot		
	826.4	RMC	/	/	/	/	/	/		
Limb Worn (0 mm)	836.6	RMC	23.21	23.4	1.045	0.165	0.17	8#		
(******)	846.6	RMC	/	/	/	/	/	/		

Note:

1. When the SAR value is less than half of the limit, testing for other channels are optional.

2. The EUT transmit and receive through the same antenna while testing SAR.

3. The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 12.2 kbps RMC (reference measurement Channel) Configured in Test Loop Model.

4. KDB 941225 D01-Body SAR is not required for HSDPA/HSUPA/HSPA+ when the maximum average output of each RF channel is less than $\frac{1}{4}$ dB higher than measured 12.2kbps RMC or the maximum SAR for 12.2kbps RMC is < 75% of SAR limit.

5. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance.

LTE Band 2:

EUT	Frequency	Bandwidth	n Test	Max. Meas.	Max. Rated	1g SAR (W/kg) , Limit=1.6W/kg				
Position	(MHz)	(MHz)	Mode	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot	
	1860	20	1RB	/	/	/	/	/	/	
Face Up	1880	20	1RB	24.33	24.4	1.016	0.774	0.79	9#	
(10mm)	1900	20	1RB	/	/	/	/	/	/	
	1880	20	50%RB	23.75	24.4	1.161	0.673	0.78	/	

EUT	Frequency	Bandwidth	Test	Max. Max. Meas. Rated –		10g SAR (W/kg) , Limit=4.0W/kg				
Position	(MHz)	(MHz)	Mode	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot	
	1860	20	1RB	24.19	24.4	1.05	2.42	2.54	/	
	1880	20	1RB	24.33	24.4	1.016	2.63	2.67	10#	
x · 1 · · · ·	1900	20	1RB	24.17	24.4	1.054	2.36	2.49	/	
Limb Worn (0 mm)	1860	20	50%RB	23.63	24.4	1.194	1.95	2.33	/	
(0 mm)	1880	20	50%RB	23.75	24.4	1.161	2.11	2.45	/	
	1900	20	50%RB	23.52	24.4	1.225	1.95	2.39	/	
	1880	20	100%RB	23.21	24.4	1.315	1.93	2.54	/	

LTE Band 4:

EUT	Frequency	Bandwidth	Test	Max. Max. Meas. Rated		1g SAR (W/kg), Limit=1.6W/kg				
Position	(MHz)	(MHz)	Mode	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot	
	1720	20	1RB	24.17	24.4	1.054	0.983	1.04	/	
	1732.5	20	1RB	24.11	24.4	1.069	1.11	1.19	11#	
	1745	20	1RB	24.2	24.4	1.047	1.11	1.16	/	
Face Up (10mm)	1720	20	50%RB	23.28	24.4	1.294	0.752	0.97	/	
(Tolinii)	1732.5	20	50%RB	23.39	24.4	1.262	0.878	1.11	/	
	1745	20	50%RB	23.32	24.4	1.282	0.814	1.04	/	
	1732.5	20	100%RB	23.09	24.4	1.352	0.824	1.11	/	

EUT	Frequency	Bandwidth	Test	Max. Meas.	Max. Rated	10g SAR (W/kg), Limit=4.0W/kg				
Position	(MHz)	(MHz)	Mode	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot	
	1720	20	1RB	24.17	24.4	1.054	2.39	2.52	/	
	1732.5	20	1RB	24.11	24.4	1.069	2.51	2.68	12#	
· · · · · · · · · · · · · · · · · · ·	1745	20	1RB	24.2	24.4	1.047	1.98	2.07	/	
Limb Worn (0 mm)	1720	20	50%RB	23.28	24.4	1.294	1.85	2.39	/	
(0 1111)	1732.5	20	50%RB	23.39	24.4	1.262	2.03	2.56	/	
	1745	20	50%RB	23.32	24.4	1.282	1.94	2.49	/	
	1732.5	20	100%RB	23.09	24.4	1.352	1.96	2.65	/	

LTE Band 5:

EUT	Frequency	Bandwidth	Test	Max. Meas.	Max. Rated	1g SAR (W/kg) , Limit=1.6W/kg				
Position	(MHz)	(MHz)	Mode	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot	
	829	10	1RB	/	/	/	/	/	/	
Face Up	836.5	10	1RB	23.76	24.1	1.081	0.078	0.08	13#	
(10mm)	844	10	1RB	/	/	/	/	/	/	
	836.5	10	50%RB	22.99	24.1	1.291	0.064	0.08	/	

EUT	Frequency	Bandwidth	Test	Max. Meas.	Max. Rated	10g SA	R (W/kg)	, Limit=4	.0W/kg
Position	(MHz)	(MHz)	Mode	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot
	829	10	1RB	/	/	/	/	/	/
Limb Worn	836.5	10	1RB	23.76	24.1	1.081	0.239	0.26	14#
(0 mm)	844	10	1RB	/	/	/	/	/	/
	836.5	10	50%RB	22.99	24.1	1.291	0.185	0.24	/

LTE Band 7:

EUT	Frequency	Bandwidth	Test	Max. Meas.	Max. Rated	1g SAR (W/kg) , Limit=1.6W/kg				
Position	(MHz)	(MHz)	Mode	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot	
	2510	20	1RB	/	/	/	/	/	/	
Face Up	2535	20	1RB	24.36	24.8	1.107	0.382	0.42	15#	
(10mm)	2560	20	1RB	/	/	/	/	/	/	
	2535	20	50%RB	23.58	24.8	1.324	0.284	0.38	/	

EUT	Frequency	Bandwidth	Test	Max. Meas.	Max. Rated	10g SAR (W/kg) , Limit=4.0W/kg				
Position	(MHz)	(MHz)	Mode	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot	
	2510	20	1RB	/	/	/	/	/	/	
Limb Worn	2535	20	1RB	24.36	24.8	1.107	1.19	1.32	16#	
(0 mm)	2560	20	1RB	/	/	/	/	/	/	
	2535	20	50%RB	23.58	24.8	1.324	0.994	1.32	/	

EUT	Frequency	Bandwidth	Test	Max. Meas.	Max. Rated	1g SAR (W/kg) , Limit=1.6W/kg				
Position	(MHz)	(MHz)	Mode	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot	
	704	10	1RB	/	/	/	/	/	/	
Face Up	707.5	10	1RB	23.98	24.4	1.102	0.134	0.15	17#	
(10mm)	711	10	1RB	/	/	/	/	/	/	
	707.5	10	50%RB	23.26	24.4	1.3	0.107	0.14	/	

LTE Band 12:

EUT	Frequency	Bandwidth	Test	Max. Meas.	Max. Rated	10g SAR (W/kg) , Limit=4.0W/kg					
Position	(MHz)	(MHz)	Mode	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot		
	704	10	1RB	/	/	/	/	/	/		
Limbs Back	707.5	10	1RB	23.98	24.4	1.102	0.537	0.59	18#		
(0mm)	711	10	1RB	/	/	/	/	/	/		
	707.5	10	50%RB	23.26	24.4	1.3	0.449	0.58	/		

Note:

1. When the SAR value is less than half of the limit, testing for other channels are optional.

2. SAR for LTE band exposure configurations is measured according to the procedures of KDB 941225 D05 SAR for LTE Devices v02.

3. KDB941225D05-SAR for higher order modulation is required only when the highest maximum output power for the configuration in the higher order modulation is > 0.5 dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg

4. KDB941225D05-For QPSK with 100% RB allocation, when the reported SAR measured for the Highest output power channel is <1.45 W/kg, tests for the remaining required test channels are optional.

5.KDB941225D05- For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg.

6. KDB941225D05- Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offset the upper edge, middle and lower edge of each required test channel.

7. KDB941225D05- other channel bandwidths SAR test is required when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is > 0.5 dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg.

9. Measurement Variability

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz v01. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Note: The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

The Highest Measured SAR Configuration in Each Frequency Band

Head (Face Up)

SAR probe	Frequency		EUT Position	Meas. SA	R (W/kg)	Largest	
calibration point	Band	Freq.(MHz)		Original	Repeated	toSmallestSAR Ratio	
1750 MHz	LTE Band 4	1732.5	Face Up	1.11	1.06	1.05	

Note:

1. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20.

2. The measured SAR results **do not** have to be scaled to the maximum tune-up tolerance to determine if repeated measurements are required.

3. SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements.

10. DUT HOLDER PERTURBATIONS

In accordance with TCB workshop October 2016:

1) SAR perturbation due to test device holders, depending on antenna locations, buttons locations on phones or device, form factor (e.g. dongles etc.), the measured SAR could be influenced by the relative positions of the test device and its holder

2) SAR measurement standards have included protocols to evaluate this with a flat phantom, with and without the device holder

3) When the highest reported SAR of an antenna is > 1.2 W/kg, holderperturbation verification is required for each antenna, using the highest SAR configuration among all applicable frequency bandsin the same exact device and holder positions used for head and body SAR measurements; i.e. same device/button locations in the holder

PerIEEE 1528: 2013/Annex E/E.4.1.1:Device holder perturbation tolerance for a specific test device: Type B

When it is unknown if a device holder perturbs the fields of a test device, the SAR uncertainty shall be

assessed with a flat phantom (see Clause 5) by comparing the SAR with and without the device holder according to the following tests:

The SAR tolerance for device holder disturbance is computed using Equation (E.21) and entered in the

corresponding row of the appropriate uncertainty table with an assumed rectangular probability distribution $vi = \infty$ degrees of freedom:

$$SAR_{\text{tolerance}}[\%] = 100 \times \left(\frac{SAR_{\text{w/holder}} - SAR_{\text{w/o holder}}}{SAR_{\text{w/o holder}}}\right)$$
(E.21)

The Highest Measured SAR Configuration among allapplicable Frequency Band

Energy on av Dond	Free (MIII)	EUT Desition	Meas. S	SAR (W/kg)	The Device holder	
Frequency Band	Freq.(MHz)	EUT Position	With holder	Without holder	perturbationuncerta inty	
/	/	/	/	/	/	

11. SAR SIMULTANEOUS TRANSMISSION DESCRIPTION

Simultaneous Transmission:

Description of Simultaneous Transmit Capabilities						
Transmitter Combination	Simultaneous?	Hotspot?				
WWAN(GSM/WCDMA/LTE) + WLAN	\checkmark	×				

Simultaneous SAR test exclusion considerations:

Face Up Mode:

Mode(SAR1+SAR2)	Position Reported 3		SAR(W/kg)	ΣSAR <
		SAR1	SAR2	1.6W/kg
WWAN(GSM/WCDMA/LTE) + WLAN	Face Up	1.19	0.23	1.42

Conclusion:

Sum of SAR: Σ SAR ≤ 1.6 W/kg therefore simultaneous transmission SAR with Volume Scans is not required.

Limb Worn Mode:

Mode(SAR1+SAR2)	Position			$\Sigma SAR <$	
		SAR1	SAR2	4.0W/kg	
WWAN(GSM/WCDMA/LTE) + WLAN	Limb Worn	2.68	0.18	2.86	

Conclusion:

Sum of SAR: Σ SAR \leq 4.0 W/kg therefore simultaneous transmission SAR with Volume Scans is not required.

Report No.: 2403X37662E-20

12. SAR Plots

Please Refer to the Attachment.

APPENDIX A MEASUREMENT UNCERTAINTY

The uncertainty budget has been determined for the measurement system and is given in the following Table.

Measurement uncertainty evaluation for IEEE1528-2013 SAR test

Source of uncertainty	Tolerance/ uncertainty ±%	Probability distribution	Divisor	ci (1 g)	ci (10 g)	Standard uncertainty ± %, (1 g)	Standard uncertainty ± %, (10 g)		
Measurement system									
Probe calibration	6.55	N	1	1	1	6.3	6.3		
Axial Isotropy	4.7	R	√3	1	1	2.7	2.7		
Hemispherical Isotropy	9.6	R	√3	0	0	0.0	0.0		
Boundary effect	1.0	R	√3	1	1	0.6	0.6		
Linearity	4.7	R	√3	1	1	2.7	2.7		
Detection limits	1.0	R	√3	1	1	0.6	0.6		
Readout electronics	0.3	N	1	1	1	0.3	0.3		
Response time	0.0	R	√3	1	1	0.0	0.0		
Integration time	0.0	R	√3	1	1	0.0	0.0		
RF ambient conditions – noise	1.0	R	√3	1	1	0.6	0.6		
RF ambient conditions– reflections	1.0	R	√3	1	1	0.6	0.6		
Probe positioner mech. Restrictions	0.8	R	√3	1	1	0.5	0.5		
Probe positioning with respect to phantom shell	6.7	R	√3	1	1	3.9	3.9		
Post-processing	2.0	R	√3	1	1	1.2	1.2		
		Test sample	e related						
Test sample positioning	2.8	N	1	1	1	2.8	2.8		
Device holder uncertainty	6.3	N	1	1	1	6.3	6.3		
Drift of output power	5.0	R	√3	1	1	2.9	2.9		
		Phantom ar	nd set-up						
Phantom uncertainty (shape and thickness tolerances)	4.0	R	√3	1	1	2.3	2.3		
Liquid conductivity target)	5.0	R	√3	0.64	0.43	1.8	1.2		
Liquid conductivity meas.)	2.5	N	1	0.64	0.43	1.6	1.1		
Liquid permittivity target)	5.0	R	√3	0.6	0.49	1.7	1.4		
Liquid permittivity meas.)	2.5	N	1	0.6	0.49	1.5	1.2		
Combined standard uncertainty		RSS				12.2	12.0		
Expanded uncertainty 95 % confidence interval)						24.1	23.7		

Source of uncertainty	Tolerance/ uncertainty ± %	Probability distribution	Divisor	ci (1 g)	ci (10 g)	Standard uncertainty ± %, (1 g)	Standard uncertainty ± %, (10 g)		
Measurement system									
Probe calibration	6.55	Ν	1	1	1	6.3	6.3		
Axial Isotropy	4.7	R	√3	1	1	2.7	2.7		
Hemispherical Isotropy	9.6	R	√3	0	0	0.0	0.0		
Boundary effect	1.0	R	√3	1	1	0.6	0.6		
Linearity	4.7	R	√3	1	1	2.7	2.7		
Detection limits	1.0	R	√3	1	1	0.6	0.6		
Readout electronics	0.3	N	1	1	1	0.3	0.3		
Response time	0.0	R	√3	1	1	0.0	0.0		
Integration time	0.0	R	√3	1	1	0.0	0.0		
RF ambient conditions – noise	1.0	R	√3	1	1	0.6	0.6		
Probe positioning with respect to phantom shell	6.7	R	√3	1	1	3.9	3.9		
Probe positioner mech. Restrictions	0.8	R	√3	1	1	0.5	0.5		
RF ambient conditions– reflections	1.0	R	√3	1	1	0.6	0.6		
Post-processing	2.0	R	√3	1	1	1.2	1.2		
		Test samp	e related						
Test sample positioning	2.8	Ν	1	1	1	2.8	2.8		
Device holder uncertainty	6.3	Ν	1	1	1	6.3	6.3		
Drift of output power	5.0	R	√3	1	1	2.9	2.9		
		Phantom a	nd set-up		-				
Phantom uncertainty (shape and thickness tolerances)	4.0	R	√3	1	1	2.3	2.3		
Liquid conductivity target)	5.0	R	√3	0.64	0.43	1.8	1.2		
Liquid conductivity meas.)	2.5	N	1	0.64	0.43	1.6	1.1		
Liquid permittivity target)	5.0	R	√3	0.6	0.49	1.7	1.4		
Liquid permittivity meas.)	2.5	Ν	1	0.6	0.49	1.5	1.2		
Combined standard uncertainty		RSS				12.2	12.0		
Expanded uncertainty 95 % confidence interval)						24.0	23.6		

Measurement uncertainty evaluation for IEC62209-1 SAR test

APPENDIX B EUT TEST POSITION PHOTOS

Please Refer to the Attachment.

Page 64 of 65

APPENDIX C CALIBRATION CERTIFICATES

Please Refer to the Attachment.

***** END OF REPORT *****

Page 65 of 65