Maximum Permissible Exposure

FCC ID: 2AUXBDSGW-010C

Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2m normally can be maintained between the user and the device.

(a) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ²)	Averaging Times E 2 , H 2 or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100000			5	6

(b) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ²)	Averaging Times E 2 , H 2 or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100000			1.0	30

Note: f=frequency in MHz; *Plane-wave equivalent power density

MPE Calculation Method

 $E (V/m) = (30*P*G)^{0.5}/d$ Power Density: Pd $(W/m^2) = E^2/377$

 $\mathbf{E} = \text{Electric Field (V/m)}$

P = Peak RF output Power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

 $Pd = (30*P*G) / (377*d^2)$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

Calculated Result and Limit

902-928M Band

Antenna Gain: 1.1dBi

Assembly Antenna Gain (Numeric)	Frequency (MHz)	Output Power (dBm)	Peak Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
1.288	902.3	26.28	424.620	0.10880	0.602	Compiles
1.288	908.7	26.23	419.759	0.10756	0.606	Compiles
1.288	914.9	26.36	432.514	0.11082	0.610	Compiles
1.288	923.3	26.27	423.643	0.10855	0.616	Compiles
1.288	927.5	25.80	380.189	0.09742	0.618	Compiles

2.4G Band

Antenna Gain: 2.8dBi

Assembly Antenna Gain (Numeric)	Output Power (dBm)	Peak Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
1.905	22.86	193.197	0.07321	1	Compiles

802.11n HT 40 was the worst Case

5G Band

Antenna Gain: 0.2dBi

A	ssembly Antenna Gain Jumeric)	Output Power (dBm)	Peak Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
	1.047	4.87	3.069	0.0006	1	Compiles

802.11n VHT20 was the worst Case