DECLARATION OF COMPLIANCE SAR ASSESSMENT Part 1 of 2 Motorola Solutions Inc. EME Test Laboratory Motorola Solutions Malaysia Sdn Bhd Plot 2A, Medan Bayan Lepas, Mukim 12 SWD 11900 Bayan Lepas Penang, Malaysia. **Date of Report:** 10/4/2023 Report Revision: D **Responsible Engineer:** Lee Kin Kting (EME Engineer) **Report Author:** Lee Kin Kting (EME Engineer) **Date/s Tested:** 8/21/2023 - 8/25/2023, 09/06/2023 - 09/07/2023, 09/14/2023 **Manufacturer:** Motorola Solutions Inc. **DUT Description:** Handheld Portable –T803 FRS Consumer Radio 462-467MHz Green Test TX mode(s): CW (PTT) & BT Max. Power output: Refer table 4 Nominal Power: Refer table 4 **Tx Frequency Bands:** LMR 462.5500 – 462.7250 MHz, 467.5625- 467.7125 MHz, 2.402-2.480GHz **Signaling type:** FM (CW), GFSK & $\pi/4$ -DQPSK (Bluetooth) **Model(s) Tested:** T803 (PMUE5446B) **Model(s) Certified:** Refer Table 1 **Serial Number(s):** 17520ZN0375, 17520ZN0377 Classification: General Population / Uncontrolled Environment Firmware Version: NA004 **Applicant Name:** Motorola Solutions Inc. **Applicant Address:** 8000 West Sunrise Boulevard, Fort Lauderdale, Florida 33322 **FCC ID:** AZ489FT7174 FCC Test Firm Registration 823256 **Number:** IC: 109U-89FT7174 **ISED Test Site registration:** 24843 The test results clearly demonstrate compliance with General Population / Uncontrolled Environment RF Exposure limits of 1.6 W/kg averaged over 1 gram per the requirements of FCC 47 CFR § 2.1093 and RSS-102 (Issue 5) Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 4.0 of this report (no deviation from standard methods). This report shall not be reproduced without written approval from an officially designated representative of the Motorola Solutions Inc EME Laboratory. I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements. This reporting format is consistent with the suggested guidelines of the TIA TSB-150 December 2004. The results and statements contained in this report pertain only to the device(s) evaluated. Tey Pei Loo (Approval Signatory) Approval Date: 10/4/2023 # Part 1 of 2 | 1.0 | Introdu | ection | 5 | | | | | |------|-----------------------------|---|-----|--|--|--|--| | 2.0 | FCC S | AR Summary | 5 | | | | | | 3.0 | Abbreviations / Definitions | | | | | | | | 4.0 | Refere | nced Standards and Guidelines | 6 | | | | | | 5.0 | SAR L | imits | . 7 | | | | | | 6.0 | Descri | ption of Device Under Test (DUT) | . 7 | | | | | | 7.0 | Option | al Accessories and Test Criteria | 8 | | | | | | | 7.1 | Antennas | 8 | | | | | | | 7.2 | Batteries | 8 | | | | | | | 7.3 | Body worn Accessory | 8 | | | | | | | 7.4 | Audio Accessories | 9 | | | | | | 8.0 | Descri | otion of Test System1 | .(| | | | | | | 8.1 | Descriptions of Robotics/Probes/Readout Electronics | .(| | | | | | | 8.2 | Description of Phantom(s) | . 1 | | | | | | | 8.3 | Description of Simulated Tissue1 | . 1 | | | | | | 9.0 | Additio | onal Test Equipment1 | .2 | | | | | | 10.0 | SAR N | Measurement System Validation and Verification | .3 | | | | | | | 10.1 | System Validation 1 | .3 | | | | | | | 10.2 | System Verification | 3 | | | | | | | 10.3 | Equivalent Tissue Test Results | .4 | | | | | | 11.0 | Enviro | nmental Test Conditions | 5 | | | | | | 12.0 | DUT T | Test Setup and Methodology | 5 | | | | | | | 12.1 | Measurements | . 5 | | | | | | | 12.2 | DUT Configuration(s) | .6 | | | | | | | 12.3 | DUT Positioning Procedures | .6 | | | | | | | | 12.3.1 Body | .6 | | | | | | | | 12.3.2 Head | 6 | | | | | | | | 12.3.3 Face | . 16 | |------|---------|---|------| | | 12.4 | DUT Test Channels | . 17 | | | 12.5 | SAR Result Scaling Methodology | . 17 | | | 12.6 | DUT Test Plan | . 18 | | 13.0 | DUT T | est Data | . 18 | | | 13.1 | Assessment at the Body for band 462.5500 – 462.7250 MHz | . 18 | | | 13.2 | Assessment at the Body with other audio accessories | . 19 | | | 13.3 | Assessment of wireless BT configuration | . 19 | | | 13.4 | Assessment at the Face for band 462.5500 – 462.7250 MHz | . 20 | | | 13.5 | Assessment for ISED, Canada | . 20 | | | 13.6 | Assessment at the Body for band 467.5625 - 467.7150MHz | . 20 | | | 13.7 | Assessment at the Body with other audio accessories | .21 | | | 13.8 | Assessment of wireless BT configuration | .21 | | | 13.9 | Assessment at the Face for band 467.5625 - 467.7150MHz | . 22 | | | 13.10 | Assessment for ISED, Canada | . 22 | | | 13.11 | Assessment at the Bluetooth band | . 22 | | | 13.12 | ISED Canada Requirement | . 23 | | 14.0 | Shorte | ned Scan Assessment | . 23 | | 15.0 | Simult | aneous Transmission | . 24 | | | 15.1 | Simultaneous Transmission Exclusion for BT | . 24 | | 16.0 | Results | s Summary | . 25 | | 17.0 | Variab | ility Assessment | . 25 | | 18.0 | System | 1 Uncertainty | . 25 | # **APPENDICES** - A Measurement Uncertainty Budget - B Probe Calibration Certificates - C Dipole Calibration Certificates # Part 2 of 2 # **APPENDICES** - D System Verification Check Scans - E DUT Scans - F Shorten Scan of Highest SAR Configuration - G DUT Test Position Photos - H DUT, Body worn and audio accessories Photos # **Report Revision History** | Date | Revision | Comments | | | | |------------|----------|---|--|--|--| | | | | | | | | 09/19/2023 | A | Initial release | | | | | 09/24/2023 | В | Update BT Antenna Gain Value and ISED BT exclusion calculation | | | | | 09/24/2023 | С | Update the Table 4 and Section 13.12 ISED Canada Requirement | | | | | 10/4/2023 | D | Revise SAR summary table to include simultaneous transmission SAR | | | | ### 1.0 Introduction This report details the utilization, test setup, test equipment, and test results of the Specific Absorption Rate (SAR) measurements performed at the Motorola Solutions Inc. EME Test Laboratory for handheld portable model number T803 (PMUE5446B). This device is classified as General Population/Uncontrolled Environment and model certified is list as below: Table 1 | Model | Description | |------------------|---| | T803 (PMUE5446B) | T803 FRS Consumer Radio 462-467 MHZ Green | | T802 (PMUE5381B) | T802 FRS Consumer Radio 462-467 MHZ Blue | # 2.0 FCC SAR Summary Table 2 | Equipment Class | Frequency band (MHz) | Max Calc at
Body (W/kg) | Max Calc at
Face (W/kg) | | |------------------------|------------------------|----------------------------|----------------------------|--| | | | 1g-SAR | 1g-SAR | | | FRF | 462.5500 – 462.7250 | 1.48 | 0.88 | | | TRI | 467.5625 - 467.7125 | 1.13 | 0.63 | | | DSS | 2402-2480MHz | 0.09 | 0.09 | | | Highest Simultar | neous Transmission SAR | 1.57 | 0.97 | | ### 3.0 Abbreviations / Definitions BT: Bluetooth CNR: Calibration Not Required CW: Continuous Wave DUT: Device under Test FRF: Part 95 Family Radio Face Held Transmitter DSS: Direct Spread Spectrum EME: Electromagnetic Energy FM: Frequency Modulation NA: Not Applicable PTT: Push to Talk SAR: Specific Absorption Rate NiMH: Nickel Metal Hydride Audio accessories: These accessories allow communication while the DUT is worn on the body. Body worn accessories: These accessories allow the DUT to be worn on the body of the Maximum Power: Defined as the upper limit of the production line final test station # 4.0 Referenced Standards and Guidelines This product is designed to comply with the following applicable national and international standards and guidelines. - Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, FCC, Washington, D.C.: 1997. - Institute of Electrical and Electronics Engineers (IEEE) C95.1-2019 - International Commission on Non-Ionizing Radiation Protection (ICNIRP) 2020 - Ministry of Health (Canada) Safety Code 6 (2015), Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz - RSS-102 (Issue 5) Radio Frequency (RF) Exposure Compliance of Radio communication Apparatus (All Frequency Bands) - Australian Communications Authority Radio communications (Electromagnetic Radiation Human Exposure) Standard (2014) - ANATEL, Brazil Regulatory Authority, Resolution No 700 of September 28, 2018 "Approves the Regulation on the Assessment of Human Exposure to Electric, Magnetic and Electromagnetic Fields Associated with the Operation of Radio communication Transmitting Stations. - IEC/IEEE 62209-1528-2020- Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Part 1528: Human models, instrumentation, and procedures (Frequency range of 4 MHz to 10 GHz) - FCC KDB 643646 D01 SAR Test for PTT Radios v01r03 - FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 - FCC KDB 865664 D02 RF Exposure Reporting v01r02 - FCC KDB 447498 D01 General RF Exposure Guidance v06 ### 5.0 SAR Limits Table 3 | | SAR (W/kg) | | | | |---|------------------------------|---------------------|--|--| | EXPOSURE LIMITS | (General Population / | (Occupational / | | | | EM OSCRE EIMITS | Uncontrolled Exposure | Controlled Exposure | | | | | Environment) | Environment) | | | | Spatial Average - ANSI - | al Average - ANSI - | | | | | (averaged over the whole body) | 0.00 | 0.4 | | | | Spatial Peak - ANSI - | 1.6 | 8.0 | | | | (averaged over any 1-g of tissue) | 1.0 | 8.0 | | | | Spatial Peak – ICNIRP/ANSI - | 4.0 | 20.0 | | | | (hands/wrists/feet/ankles averaged over 10-g) | 4.0 | 20.0 | | | | Spatial Peak -
ICNIRP - | 2.0 | 10.0 | | | | (Head and Trunk 10-g) | 2.0 | 10.0 | | | # **6.0** Description of Device Under Test (DUT) This device operates in a half duplex system. A half duplex system only allows the user to transmit or receive. This device cannot transmit and receive simultaneously. The user must stop transmitting in order to receive a signal or listen for a response, regardless of PTT button or use of voice activated audio accessories. This type of operation, along with the RF safety booklet, which instructs the user to transmit no more than 50% of the time, justifies the use of 50% duty factor for this device. This device also incorporates Bluetooth LE/BR device with 64% duty cycle. Installing Talk about App on smart phone and connecting smart phone to device over Bluetooth allows sharing location, text message and headset profile support, wireless PTT are allows by any external BT audio connected to Talk about App. Table 3 below summarizes the bands and maximum conducted output powers. Maximum conducted output powers are defined as upper limit of the production line final test station. Table 4 | Radio Type | Band (MHz) | Transmission | Duty Cycle (%) | Conducted Nominal
Power (Average
detector) | Conducted Declared Max
Power (Average detector) | |------------|------------------------|--------------|----------------|--|--| | LMR | 467.5625 –
467.7125 | FM | *50 | 0.70 W | 0.78 W | | LMR | 462.5500 –
462.7250 | FM | *50 | 1.94 W | 2.10 W | | BT LE | 2402 - 2480 | GFSK | 64 | 2.51 mW | 3.16 mW | | BT | 2402 - 2480 | π/4-DQPSK | 64 | 2.51 mW | 3.16 mW | Note - * includes 50% PTT operation The intended operating positions are "at the face" with the DUT at least 2.5cm from the mouth, and "at the body" by means of the offered body worn accessories. Body worn audio and PTT operation is accomplished by means of optional remote accessories that are connected to the radio. Operation at the body without an audio accessory attached is possible by means of BT accessories. # 7.0 Optional Accessories and Test Criteria This device is offered with optional accessories. All accessories were individually evaluated during the test plan creation to determine if testing was required per the guidelines outlined in "SAR Test Reduction Considerations for Occupational PTT Radios" FCC KDB 643646 to assess compliance of this device. The following sections identify the test criteria and details for each accessory category. Refer to Exhibit 7B for antenna separation distances. # 7.1 Antennas Table 5 | Antenna No. | Antenna Models | Description | Selected for test | Tested | |-------------|------------------------|---|-------------------|--------| | 1 | Fixed Helix
Antenna | FRS Radio Helix Antenna 462-468 MHz,
1/2 wave, 5.55cm,
462.5500MH - 462.7250MHz: 1.93dBi
467.5625MH - 467.7125MHz: 0.23dBi | Yes | Yes | | 2 Internal | | Bluetooth Chip Antenna 2402-2480 MHz, 0.277 Wave, 0.1 cm, 2400MHz: -1.26 dBi, 2450MHz: -0.76 dBi, 2500MHz: -0.58 dBi | Yes | No | # 7.2 Batteries # Table 6 | Battery No. | Battery Models | Description | Selected
for test | Tested | Comments | |-------------|-----------------------|------------------------------------|----------------------|--------|------------| | 1 | 1532 | 1300 mAh 3xAA NiMH | Yes | Yes | Inbox item | | 1 | 1332 | Rechargeable Battery Pack. | 103 | 103 | moox nem | | 2 | AA Alkaline | 3xAA Alkaline individual batteries | Yes | Yes | | | 3 | PMNN4477A | 800 mAh 3xAA NiMH Rechargeable | Yes | Yes | | | 3 | I WINNAA//A | Battery Pack | 168 | 108 | | # 7.3 Body worn Accessory # Table 7 | Body worn No. | Body worn Models | Description | Selected for test | Tested | Comments | |---------------|-------------------------|------------------------------------|-------------------|--------|----------| | 1 | 1564028V01 | TLKR- T3 T40 T50 T60 XTB Belt Clip | Yes | Yes | | | 1 | (PMLN7438A) | 12KK- 13 140 130 100 X1B Belt Clip | 1 68 | 168 | | # 7.4 Audio Accessories Table 8 | Audio No. | Audio Acc.
Models | Description | Selected
for test | Tested | Comments | |-----------|----------------------|--|----------------------|--------|----------------------------| | 1 | NTN9396B
(56320B) | Earbud W/Boom Microphone | Yes | Yes | Default audio | | 2 | NTN8868C
(53725C) | Headset w/Swivel Boom Microphone | Yes | Yes | | | 3 | NTN8870D
(53727B) | Earbud W/Push-to-Talk Microphone | No | No | By similarity to NTN8868C | | 4 | NTN8867A
(53724C) | Single Pin Remote Speaker Microphone | Yes | Yes | | | 5 | PMLN7251A | Earbud with PTT Microphone | No | No | By similarity to IXTN4011A | | 6 | PMLN7705A | Single Pin Throat Mic With PTT/VOX | Yes | Yes | | | 7 | GU6443A (1518) | Surveillance Headset | No | No | By similarity to IXTN4011A | | 8 | IXTN4011A | Single Pin Earpiece With Boom
Mic/Vox | Yes | Yes | | | 9 | IXTN4022A | Single Pin Surveillance Earpiece | Yes | Yes | | • # 8.0 Description of Test System DASY5TM Test System # 8.1 Descriptions of Robotics/Probes/Readout Electronics Table 9 | Dosimetric System type | System version | DAE type | Probe Type | |---------------------------------|----------------|----------|------------| | Schmid & Partner Engineering AG | 52 10 2 1405 | DAE4 | EXDV4 | | SPEAG DASY 5 | 52.10.2.1495 | DAE4 | (E-Field) | The DASY5TM system is operated per the instructions in the DASY5TM Users Manual. The complete manual is available directly from SPEAGTM. All measurement equipment used to assess SAR compliance was calibrated according to ISO/IEC 17025 A2LA guidelines. Section 9.0 presents additional test equipment information. Appendices B and C present the applicable calibration certificates. # 8.2 Description of Phantom(s) Table 10 | Phantom Type | Phantom(s) Used | Material Parameters | Phantom Dimensions LxWxD (mm) | Material
Thickness
(mm) | Support
Structure
Material | Loss
Tangent
(wood) | |--------------|-----------------|---|---------------------------------------|-------------------------------|----------------------------------|---------------------------| | Triple Flat | NA | 200MHz -6GHz;
Er = 3-5, | 00MHz -6GHz;
Er = 3-5, 280x175x175 | | Wood | < 0.05 | | SAM | NA | Loss Tangent = ≤ 0.05 $300 \text{MHz -6GHz};$ $\text{Er} = < 5,$ $\text{Loss Tangent} = \leq 0.05$ Human Model | | 2mm
+/- 0.2mm | | | | Oval Flat | V | 300MHz -6GHz;
Er = 4+/-1,
$Loss\ Tangent = \le 0.05$ | 600x400x190 | | | | # 8.3 Description of Simulated Tissue The sugar based simulate tissue is produced by placing the correct measured amount of De-ionized water into a large container. Each of the dried ingredients are weighed and added to the water carefully to avoid clumping. If the solution has a high sugar concentration the water is pre-heated to aid in dissolving the ingredients. The solution is mixed thoroughly, covered, and allowed to sit overnight prior to use. The simulated tissue mixture was mixed based on the Simulated Tissue Composition indicated in Table 11. During the daily testing of this product, the applicable mixture was used to measure the Di-electric parameters at each of the tested frequencies to verify that the Di-electric parameters were within the tolerance of the tissue specifications. # **Simulated Tissue Composition (percent by mass)** Table 11 | Ingredients | 450MHz | |------------------|--------| | Ingredients | Head | | Sugar | 56.0 | | Diacetin | 0 | | De ionized-Water | 39.10 | | Salt | 3.80 | | HEC | 1.0 | | Bact. | 0.1 | # 9.0 Additional Test Equipment The Table below lists additional test equipment used during the SAR assessment. Table 12 | Equipment Type | Model Number | Serial Number | Calibration
Date | Calibration Due Date | |---------------------------|---------------------------|---------------|---------------------|----------------------| | SPEAG PROBE | EX3DV4 | 7486 | 6/18/2022 | 6/18/2025 | | SPEAG DAE | DAE4 | 850 | 4/14/2022 | 4/14/2025 | | POWER AMPLIFIER | 50W 1000A | 14715 | CNR | CNR | | POWER METER | E4418B | GB40206480 | 11/30/2022 | 11/30/2023 | | POWER SENSOR | E4412A | MY61060011 | 4/10/2023 | 4/10/2024 | | POWER METER | E4417A | GB41292245 | 11/11/2022 | 11/11/2023 | | POWER SENSOR | E4412A | MY61050006 | 4/12/2023 | 4/12/2024 | | POWER METER | E4419B | GB42420608 | 11/14/2022 | 11/14/2023 | | POWER SENSOR | E9301B | MY55210006 | 5/18/2023 | 5/18/2024 | | BI-DIRECTIONAL COUPLER | 3020A | 40295 | 6/9/2023 | 6/9/2024 | | VECTOR SIGNAL GENERATOR | E4438C | MY45091270 | 9/21/2022 | 9/21/2023 | | POWER SUORCE | SE UMS 160 CB | 4302 | 11/10/2022 | 11/10/2023 | | POWER METER | E4418B | GB40206480 | 11/30/2022 | 11/30/2023 | | THERMOMETER | HH806AU | 080307 | 11/28/2022 | 11/28/2023 | | TEMPERATURE PROBE | 80PK-22 | 06032017 | 11/28/2022 | 11/28/2023 | | DATA LOGGER | DSB | 16326831 | 11/16/2022 | 11/16/2023 | | DIELECTRIC ASSESSMENT KIT | DAK-3.5 | 1120 | 10/3/2022 | 10/3/2023 | | THERMOMETER | 1523 | 3492108 | 11/4/2022 | 11/4/2023 | | TEMPERATURE PROBE | PR-10L-4-100-
1/4-6-BX | WNWR037791 | 11/4/2022 | 11/4/2023 | | NETWORK ANALYZER | E5071B | MY42403147 | 2/21/2023 | 2/21/2024 | | NETWORK ANALYZER | E5071B | MY42403218 | 9/24/2022 | 9/24/2023 | | SPEAG DIPOLE | D450V3 | 1053 | 2/17/2022 | 2/17/2025 | # 10.0 SAR Measurement System Validation and Verification DASY output files of the probe/dipole calibration certificates and system verification test results are included in appendices B, C & D respectively. # **10.1** System Validation The SAR measurement system was validated according to procedures in KDB 865664. The validation status summary Table is below. Table 13 | Dates
| Probe Ca
Poi | | Probe
SN | | Measured Tissue
Parameters | | | | | | |------------|-----------------|------|-------------|------------------|-------------------------------|-------------|-----------|----------|--|--| | | 101 | IIIt | SIN | σ ε _r | | Sensitivity | Linearity | Isotropy | | | | | | CV | V | | | | | | | | | 02/21/2023 | Head | 450 | 7486 | 0.88 | 42.7 | Pass | Pass | Pass | | | # 10.2 System Verification System verification checks were conducted each day during the SAR assessment. The results are normalized to 1W. Appendix D includes DASY plots with the largest deviation from the qualified source SAR target for each dipole. The Table below summarizes the daily system check results used for the SAR assessment. Table 14 | | | | | System Check | System Check Test | | | |----------|----------|------------|-----------|--------------|-------------------|-------------|-----------| | Probe | Tissue | Dipole Kit | Ref SAR @ | Results | Results when | Tested | | | Serial # | Type | / Serial # | 1W (W/kg) | Measured | normalized to 1W | Date | Deviation | | | | | | (W/kg) | (W/kg) | | (%) | | | | | | 1.19 | 4.76 | 08/21/2023@ | 3.50 | | | | | | 1.24 | 4.96 | 08/22/2023 | 7.80 | | | IEEE/IEC | SPEAG | 4.60 +/- | 1.12 | 4.48 | 08/23/2023 | -2.60 | | 7486 | Head | D450V3 / | 10% | 1.23 | 4.92 | 08/24/2023@ | 7.00 | | | Ticau | 1053 | 1070 | 1.18 | 4.72 | 09/06/2023 | 2.60 | | | | | | 1.09 | 4.36 | 09/07/2023 | -5.20 | | | | | | 1.15 | 4.60 | 09/14/2023 | 0.00 | # **10.3** Equivalent Tissue Test Results Simulated tissue prepared for SAR measurements is measured daily and within 24 hours prior to actual SAR testing to verify that the tissue is within \pm -5% of target parameters at the center of the transmit band. This measurement is done using the applicable equipment indicated in section 9.0. The Table below summarizes the measured tissue parameters used for the SAR assessment. Table 15 | Frequency (MHz) | Tissue Type | Conductivity
Target (S/m) | Dielectric Constant
Target | Conductivity
Meas. (S/m) | Dielectric
Constant
Meas. | Tested Date | |-----------------|-------------|------------------------------|-------------------------------|-----------------------------|---------------------------------|--------------------| | | | | | 0.85 | 42.1 | 08/21/2023@ | | | | | | 0.85 | 42.9 | 08/22/2023 | | 450 | | 0.87 | 43.5 | 0.86 | 42.5 | 08/23/2023 | | | | (0.83-0.91) | (41.3-45.7) | 0.86 | 42.1 | 08/24/2023@ | | | | (0.83-0.91) | (41.3-43.7) | 0.87 | 41.9 | 09/06/2023 | | | IEEE/ | | | 0.89 | 42.7 | 09/07/2023 | | | | | | 0.89 | 43.4 | 09/14/2023 | | | | | | 0.86 | 41.8 | 08/21/2023@ | | | IEC Head | 0.07 | 42.4 | 0.87 | 42.6 | 08/22/2023 | | 463 | | 0.87
(0.83-0.91) | 43.4
(41.3-45.6) | 0.88 | 41.6 | 09/06/2023 | | | | (0.83-0.91) | (41.3-43.0) | 0.90 | 42.4 | 09/07/2023 | | | | | | 0.91 | 43.1 | 09/14/2023 | | | | | | 0.86 | 41.8 | 08/22/2023 | | 460 | | 0.87 | 43.4 | 0.88 | 42.1 | 08/23/2023 | | 468 | | (0.83-0.91) | (41.2-45.6) | 0.87 | 41.7 | 08/24/2023@ | | | | | | 0.91 | 43.0 | 09/14/2023 | # FCC ID: AZ489FT7174 / IC: 109U-89FT7174 # 11.0 Environmental Test Conditions The EME Laboratory's ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within +/ - 2°C of the temperature at which the dielectric properties were determined. The liquid depth within the phantom used for measurements was at least 15cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The Table below presents the range and average environmental conditions during the SAR tests reported herein: Table 16 | | Target | Measured | |---------------------|------------|----------------------| | Ambient Temperature | 18 – 25 °C | Range: 19.4 – 22.1°C | | Ambient Temperature | 10 – 23 °C | Avg. 20.9 °C | | Tigano Tompopotuno | 18 – 25 °C | Range: 20.2-20.9°C | | Tissue Temperature | 16-23 C | Avg. 20.5°C | Relative humidity target range is a recommended target The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the SAR scans are repeated. # 12.0 DUT Test Setup and Methodology # 12.1 Measurements SAR measurements were performed using the DASY system described in section 8.0 using zoom scans. Oval flat phantoms filled with applicable simulated tissue were used for body and face testing. The Table below includes the step sizes and resolution of area and zoom scans per KDB 865664 requirements. Table 17 | Description | | ≤3 GHz | > 3 GHz | | | |--|--------------------------------|---|--|--|--| | Maximum distance from closest measurem probe sensors) to phantom surface | ent point (geometric center of | 5 ± 1 mm | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$ | | | | Maximum probe angle from probe axis to | phantom surface normal at the | 30° ± 1° | 20° ± 1° | | | | | | ≤ 2 GHz: ≤ 15 mm | 3 – 4 GHz: ≤ 12 mm | | | | | | $2 - 3 \text{ GHz: } \le 12 \text{ mm}$ | 4 – 6 GHz: ≤ 10 mm | | | | | | When the x or y dimension of the test device, in the | | | | | Maximum area scan spatial resolution: $\Delta x = \Delta x$ | Area, ΔyArea | measurement plane orientation, is smaller than the above, the | | | | | | | measurement resolution | must be \leq the corresponding x or y | | | | | | dimension of the test dev | rice with at least one measurement | | | | | | point on the test device. | | | | | Maximum zoom scan spatial resolution: Δ2 | xZoom, ΔyZoom | ≤ 2 GHz: ≤ 8 mm | 3 – 4 GHz: ≤ 5 mm* | | | | | | $2-3 \text{ GHz:} \leq 5 \text{ mm*}$ | $4-6 \text{ GHz: } \leq 4 \text{ mm*}$ | | | | Maximum zoom scan spatial resolution, | uniform grid: ΔzZoom(n) | | 3 – 4 GHz: ≤ 4 mm | | | | normal to phantom surface | | ≤ 5 mm | $4-5 \text{ GHz: } \leq 3 \text{ mm}$ | | | | | | | $5-6$ GHz: ≤ 2 mm | | | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. * When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. # **12.2 DUT Configuration(s)** The DUT is a portable device operational at the body and face as described in section 6.0 while using the applicable accessories listed in section 7.0. All accessories listed in section 7.0 of this report were considered when implementing the guidelines specified in KDB 643646. # **12.3 DUT Positioning Procedures** The positioning of the device for each body location is described below and illustrated in Appendix $G_{\scriptscriptstyle{\bullet}}$ # 12.3.1 Body The DUT was positioned in normal use configuration against the phantom with the offered body worn accessory and the offered audio accessories as applicable. # 12.3.2 Head Not applicable. ### 12.3.3 Face The DUT was positioned with its' front and back sides separated 2.5cm from the phantom. ### **12.4 DUT Test Channels** The number of test channels was determined by using the following IEC/IEEE 62209-1528-2020 equation. The use of this equation produces the same or more test channels compared to the FCC KDB 447498 number of test channels formula. $$N_c = 2 * roundup[10 * (f_{high} - f_{low}) / f_c] + 1$$ Where N_c = Number of channels $F_{high} = Upper channel$ $F_{low} = Lower \ channel$ F_c = Center
channel # 12.5 SAR Result Scaling Methodology The calculated 1-gram averaged SAR results indicated as "Max Calc. 1g-SAR" in the data Tables is determined by scaling the measured SAR to account for power leveling variations and drift. Appendix F includes a shortened scan to justify SAR scaling for drift. For this device the "Max Calc. 1g-SAR" is scaled using the following formula: $$Max_Calc = SAR_meas \cdot 10^{\frac{-Drift}{10}} \cdot \frac{P_max}{P_int} \cdot DC$$ $P_{max} = Maximum Power (W)$ P int = Initial Power (W) Drift = DASY drift results (dB) $SAR_meas = Measured 1-g SAR (W/kg)$ DC = Transmission mode duty cycle in % where applicable 50% duty cycle is applied for PTT operation Note: for conservative results, the following are applied: If $P_{int} > P_{max}$, then $P_{max}/P_{int} = 1$. Drift = 1 for positive drift Additional SAR scaling was applied using the methodologies outlined in FCC KDB 865664 using tissue sensitivity values. SAR was scaled for conditions where the tissue permittivity was measured above the nominal target and for tissue conductivity that was measured below the nominal target. Negative or reduced SAR scaling is not permitted. ### 12.6 DUT Test Plan The guidelines and requirements outlined in section 4.0 were used to assess compliance of this device. All modes of operation identified in section 6.0 were considered during the development of the test plan. All tests were performed in CW and 50% duty cycle was applied to PTT configurations in the final results. Bluetooth transmitter is carry with 64% duty cycle. The function were connecting Smartphone to allows sharing location, text message and PTT, standalone and simultaneous BT testing were assessed in sections 13.9 and 15.1 per the guidelines of KDB 447498. ### 13.0 DUT Test Data # 13.1 Assessment at the Body for band 462.5500 – 462.7250 MHz Conducted power measurements for channel within FCC allocated frequency range 462.5500-462.7250 MHz was measured and listed in Table 18. Table 18 | Test frequency: 462.6250 MHz | | | | | | | |------------------------------|-----------|--|--|--|--|--| | Battery | Power (W) | | | | | | | 1532 | 1.73 | | | | | | | AA Alkaline | 1.97 | | | | | | | PMNN4477A | 1.72 | | | | | | # Assessments at the Body with Belt Clip 1564028V01 (PMLN7438A) DUT assessment with fixed antennas, batteries and above mentioned body worn accessory. Table 19 | A | ntenna | Battery | Carry
Accessory | Cable
Accessory | Test Freq
(MHz) | Init
Pwr
(W) | SAR
Drift
(dB) | Meas.
1g-
SAR
(W/kg) | Max
Calc.
1g-SAR
(W/kg) | Run# | |-------|-------------|---------------------------|--------------------|--------------------|--------------------|--------------------|----------------------|-------------------------------|----------------------------------|-----------------| | | | 1532 | 15640203701 | | | 1.73 | -0.63 | 2.00 | 1.40 | BL-AB-230821-09 | | Fixed | AA Alkaline | 1564028V01
(PMLN7438A) | 56320B | 462.6250 | 1.97 | -0.06 | 1.96 | 1.06 | BL-AB-230821-10 | | | | | PMNN4477A | (11111117743011) | | | 1.72 | -0.67 | 2.00 | 1.42 | BL-AB-230821-11 | # 13.2 Assessment at the Body with other audio accessories Assessment per "KDB 643646 Body SAR Test consideration for Audio Accessories without Built-in Antenna" (adapting SAR thresholds to general population limits). SAR plots of the highest results (bolded) are presented in Appendix E. Table 20 | Antenna | Battery | Carry
Accessory | Cable
Accessory | Test Freq
(MHz) | Init
Pwr
(W) | SAR
Drift
(dB) | Meas.
1g-SAR
(W/kg) | Max Calc.
1g-SAR
(W/kg) | Run# | |---------|-----------|--------------------|--------------------|--------------------|--------------------|----------------------|---------------------------|-------------------------------|-----------------| | | | | NTN8868C | | 50 1.72 | -0.94 | 1.85 | 1.40 | BL-AB-230906-08 | | | | 15640203701 | IXTN4011A | | | -0.06 | 1.71 | 1.06 | BL-AB-230906-09 | | Fixed | PMNN4477A | A (PMLN7438A) | NTN8867A | 462.6250 | | -0.99 | 1.89 | 1.45 | BL-AB-230906-10 | | | | | IXTN4022A | | | -0.88 | 1.89 | 1.41 | BL-AB-230906-11 | | | | | PMLN7705AR | | | -0.07 | 1.86 | 1.15 | BL-AB-230906-12 | # 13.3 Assessment of wireless BT configuration Assessment using the overall highest SAR configuration at the body from above without an audio accessory attached. Table 21 | Antenna | Battery | Carry
Accessory | Cable
Accessory | Test Freq
(MHz) | Init
Pwr
(W) | SAR
Drift
(dB) | Meas.
1g-SAR
(W/kg) | Max Calc.
1g-SAR
(W/kg) | Run# | |---------|-----------|---------------------------|--------------------|--------------------|--------------------|----------------------|---------------------------|-------------------------------|------------------| | Fixed | PMNN4477A | 1564028V01
(PMLN7438A) | None | 462.6250 | 1.72 | -0.66 | 1.94 | 1.38 | EMR-AB-230914-21 | # 13.4 Assessment at the Face for band 462.5500 – 462.7250 MHz DUT assessment with offered antennas, default battery with front of DUT positioned 2.5cm facing phantom per KDB 643646. Optional batteries were tested per the requirements of KDB 643646. Refer to Table 18 for highest output power channel. SAR plot of the highest results (bolded) is present in Appendix E. Table 22 | Antenna | Battery | Carry Accessory | Cable
Accessory | Test Freq
(MHz) | Init
Pwr
(W) | SAR
Drift
(dB) | Meas.
1g-
SAR
(W/kg) | Max
Calc.
1g-SAR
(W/kg) | Run# | |---------|-------------|-------------------|--------------------|--------------------|--------------------|----------------------|-------------------------------|----------------------------------|--------------------| | | 1532 | Radio Front 2.5cm | None | 462.6250 | 1.73 | -0.58 | 1.21 | 0.84 | AR-FACE-230822-05@ | | Fixed | AA Alkaline | Radio Front 2.5cm | | | 1.97 | -0.23 | 1.26 | 0.71 | AR-FACE-230822-11 | | | PMNN4477A | Radio Front 2.5cm | | | 1.72 | -0.74 | 1.22 | 0.88 | AR-FACE-230822-12 | # 13.5 Assessment for ISED, Canada Based on the assessment results for body and face per KDB643646 D01, additional tests were not required for the Industry Canada frequency range (462.5500 – 462.7250MHz) as the testing performed is in compliance with Industry Canada frequency range. The frequency range only has one channel; no additional tests were required for low, mid and high frequency channels as per ISED Notice 2016-DRS001. # 13.6 Assessment at the Body for band 467.5625 - 467.7150MHz Conducted power measurements for channel within FCC allocated frequency range 467.5625 - 467.7150 MHz was measured and listed in Table 23. Table 23 | Test frequency: 467.6375 MHz | | | | | | | | | | |------------------------------|-----------|--|--|--|--|--|--|--|--| | Battery | Power (W) | | | | | | | | | | 1532 | 0.63 | | | | | | | | | | AA Alkaline | 0.75 | | | | | | | | | | PMNN4477A | 0.62 | | | | | | | | | # Assessments at the Body with Belt Clip 1564028V01 (PMLN7438A) DUT assessment with fixed antennas, batteries and above mentioned body worn accessory per KDB 643646. Refer to Table 23 for highest output power channel. Table 24 | Antenna | Battery | Carry
Accessory | Cable
Accessory | Test Freq
(MHz) | Init
Pwr
(W) | SAR
Drift
(dB) | Meas.
1g-
SAR
(W/kg) | Max
Calc.
1g-SAR
(W/kg) | Run# | |---------|-------------|---------------------------|--------------------|--------------------|--------------------|----------------------|-------------------------------|----------------------------------|------------------| | Fixed | 1532 | 15740203701 | 56320B | 467.6375 | 0.63 | -0.70 | 1.35 | 0.99 | AR-AB-230822-14 | | | AA Alkaline | 1564028V01
(PMLN7438A) | | | 0.75 | -1.07 | 1.47 | 0.98 | EMR-AB-230822-15 | | | PMNN4477A | | | | 0.62 | -0.66 | 1.39 | 1.02 | EMR-AB-230822-16 | # 13.7 Assessment at the Body with other audio accessories Assessment per "KDB 643646 Body SAR Test consideration for Audio Accessories without Built-in Antenna" (adapting SAR thresholds to general population limits). Table 25 | Antenna | Battery | Carry
Accessory | Cable
Accessory | Test Freq
(MHz) | Init
Pwr
(W) | SAR
Drift
(dB) | Meas.
1g-SAR
(W/kg) | Max Calc.
1g-SAR
(W/kg) | Run# | |---------|-----------|--------------------|--------------------|--------------------|--------------------|----------------------|---------------------------|-------------------------------|------------------| | | | 1564028V01 | NTN8868C | 467.6375 | | -0.59 | 1.39 | 1.00 | BL-AB-230824-13 | | | | | IXTN4011A | | 0.62 | -0.62 | 1.25 | 0.91 | BL-AB-230824-14 | | Fixed | PMNN4477A | | NTN8867A | | | -0.44 | 1.43 | 1.00 | BL-AB-230824-15 | | | | | IXTN4022A | | | -0.80 | 1.31 | 0.99 | BL-AB-230825-01@ | | | | | PMLN7705AR | | | -0.71 | 1.40 | 1.04 | BL-AB-230825-02@ | # 13.8 Assessment of wireless BT configuration Assessment using the overall highest SAR configuration at the body from above without an audio accessory attached. SAR plots of the highest results (bolded) are presented in Appendix E. Table 26 | Antenna | Battery | Carry
Accessory | Cable
Accessory | Test Freq
(MHz) | Init
Pwr
(W) | SAR
Drift
(dB) | Meas.
1g-SAR
(W/kg) | Max Calc.
1g-SAR
(W/kg) | Run# | |---------|-----------|--------------------|--------------------|--------------------|--------------------|----------------------|---------------------------|-------------------------------|------------------| | Fixed | PMNN4477A | 1564028V01 | None | 467.6375 | 0.62 | -0.97 | 1.44 | 1.13 | EMR-AB-230914-23 | ### 13.9 Assessment at the Face for band 467.5625 - 467.7150MHz Conducted power measurements for channel within frequency range 467.5625 - 467.7150 MHz was measured and listed in Table 23. DUT assessment with offered antennas, default battery with front of DUT positioned 2.5cm facing phantom per KDB 643646. Optional batteries were tested per the requirements of KDB 643646. Refer to Table 23 for highest output power channel.
SAR plot of the highest results (bolded) is present in Appendix E. Table 27 | Antenna | Battery | Carry Accessory | Cable
Accessory | Test Freq
(MHz) | Init
Pwr
(W) | SAR
Drift
(dB) | Meas.
1g-
SAR
(W/kg) | Max
Calc.
1g-SAR
(W/kg) | Run# | |---------|-------------|-------------------|--------------------|--------------------|--------------------|----------------------|-------------------------------|----------------------------------|-------------------| | | KEBT-1300 | | None | 467.6375 | 0.63 | -0.82 | 0.84 | 0.63 | AR-FACE-230823-15 | | Fixed | AA Alkaline | Radio Front 2.5cm | | | 0.75 | -0.19 | 0.79 | 0.43 | AR-FACE-230823-16 | | | PMNN4477A | | | | 0.62 | -0.84 | 0.82 | 0.62 | AR-FACE-230823-17 | ### 13.10 Assessment for ISED, Canada Based on the assessment results for body and face per KDB643646 D01, additional tests were not required for the Industry Canada frequency range (467.5625 – 467.7150MHz) as the testing performed is in compliance with Industry Canada frequency range. The frequency range only has one channel; no additional tests were required for low, mid and high frequency channels as per ISED Notice 2016-DRS001. ### 13.11 Assessment at the Bluetooth band Per guidelines in KDB 447498, the following formula was used to determine the test exclusion for standalone Bluetooth transmitter; [(max. power of channel, including tune-up tolerance, mW)/ (min. test separation distance, mm)] *[$\sqrt{F_{(GHz)}}$] = 0.6, which is \leq 3 for 1-g SAR ### Where: Max. Power = 2.02 mW (3.16 mW*64% duty cycle) Min. test separation distance = 5mm for actual test separation < 5mm F (GHz) = 2.48 GHz Per the result from the calculation above, the standalone SAR assessment was not required for Bluetooth band. # 13.12 ISED Canada Requirement Based on RSS-102 Issue 5, exemption limits for SAR evaluation for controlled devices At Bluetooth frequency band with separation distance ≤ 5 mm was 5 mW. Standalone Bluetooth LE transmitter operates at maximum time-averaged power: - = 3.16 mW * 64% - = 2.02 mW or 3.05 dBm Equivalent isotropically radiated power (EIRP): - = Maximum conducted power, dBm + Antenna gain, dBi - = 3.05 dBm + (-0.58 dBi) - = 2.47 dBm or 1.80 mW Since the output power level, 1.80 mW is below the threshold power level of 3.84 mW, SAR test is not required for Bluetooth. ### 14.0 Shortened Scan Assessment A "shortened" scan using the highest SAR configuration overall from above was performed to validate the SAR drift of the full DASY5TM coarse and zoom scans. Note that the shortened scan represents the zoom scan performance result; this is obtained by first running a coarse scan to find the peak area and then, using a newly charged battery, a zoom scan only was performed. The results of the shortened cube scan presented in Appendix F demonstrate that the scaling methodology used to determine the calculated SAR results presented herein are valid. The SAR result from the Table below is provided in Appendix F. Table 28 | Antenna | Battery | Carry
Accessory | Cable
Accessory | Test
Freq
(MHz) | | SAR
Drift
(dB) | Meas.
1g-SAR
(W/kg) | Max Calc.
1g-SAR
(W/kg) | Run# | |---------|-----------|---------------------------|--------------------|-----------------------|------|----------------------|---------------------------|-------------------------------|---------------------| | Fixed | PMNN4477A | 1564028V01
(PMLN7438A) | NTN9396B | 462.6250 | 1.72 | -0.43 | 2.20 | 1.48 | BL-AB-230907-
12 | # 15.0 Simultaneous Transmission The Table below summarizes the simultaneous transmission conditions for this device. Table 29 | Exposure Conditions | Item | Capable Simultaneous Transmit Configurations | |----------------------------|------|--| | Body-Worn | 1 | FRS + BT | | Face | 1 | FRS + BT | ### 15.1 Simultaneous Transmission Exclusion for BT Per guidelines in KDB 447498, the following formula was used to determine the test exclusion to an antenna that transmits simultaneously with other antennas for test distances ≤ 50 mm: [(max. power of channel, including tune-up tolerance, mW)/ (min. test separation distance, mm)] *[\sqrt{F} (GHz)/X] = 0.09 W/kg, which is \leq 0.4 W/kg (1g) ### Where: X = 7.5 for 1g-SAR Max. Power = 2.02 mW (3.16 mW*64% duty cycle) Min. test separation distance = 5mm for actual test separation < 5mm F(GHz) = 2.48 GHz Per the result from the calculation above, simultaneous transmission SAR test exclusion is applied and therefore the sum of 1-g SAR test exclusion are: | Exposure
Conditions | FRS
462.55 -
462.725
MHz | FRS
467.5625 –
467.7125
MHz | BT
2402 -
2480
MHz | Sum of
1-g SAR
(W/kg)
462.55 -
462.725 +
BT | Sum of
1-g SAR
(W/kg)
467.5625 –
467.7125 +
BT | |------------------------|-----------------------------------|--------------------------------------|-----------------------------|--|---| | Body-Worn | 1.48 | 1.13 | 0.09 | 1.57 | 1.22 | | Face | 0.88 | 0.63 | 0.09 | 0.97 | 0.72 | # **16.0** Results Summary Based on the test guidelines from section 4.0 and satisfying frequencies within FCC bands and ISED Canada Frequency bands, the highest Operational Maximum Calculated 1-gram average SAR values found for this filing: Table 30 | Equipment Class | Frequency band (MHz) | Max Calc at
Body (W/kg) | Max Calc at
Face (W/kg) | |------------------------|------------------------|----------------------------|----------------------------| | | | 1g-SAR | 1g-SAR | | FRF | 462.5500 – 462.7250 | 1.48 | 0.88 | | FRF | 467.5625 – 467.7125 | 1.13 | 0.63 | | DSS | 2402 - 2480 | 0.09 | 0.09 | | Highest Simultar | neous Transmission SAR | 1.57 | 0.97 | All results are scaled to the maximum output power. The test results clearly demonstrate compliance with FCC General Population/ Uncontrolled Environment RF Exposure limits of 1.6 W/kg averaged over 1 gram per the requirements of FCC 47 CFR § 2.1093 and RSS-102 (Issue 5) # 17.0 Variability Assessment Per the guidelines in KDB 865664 SAR variability assessment is required because SAR results are above 0.8W/kg (General population). The Table below includes test results of the original measurement(s), the repeated measurement(s), and the ratio (SAR_{high}/SAR_{low}) for the applicable test configuration(s). Table 31 | Run# | Antenna | Battery | Carry
Accessory | Cable
Accessory | Freq. | Adj C
alc. 1g-
SAR
(W/kg) | Ratio | Comments | |-----------------|---------|------------|--------------------|--------------------|----------|------------------------------------|-------|---| | BL-AB-230906-10 | Fixed | PMNN4477A | 1564028V01 | NTN8867A | 462.6250 | 1.19 | 1.02 | No additional repeated scans is required due to the | | BL-AB-230907-12 | rixed | rwinn44//A | (PMLN7438A) | 11111000/A | 402.0230 | 1.21 | 1.02 | $Ratio \; (SAR_{high}/SAR_{low}) < \\ 1.20$ | # **18.0** System Uncertainty A system uncertainty analysis is not required for this report per KDB 865664 because the highest report SAR value for General Population exposure is less than 1.5W/kg. Per the guidelines of ISO/IEC 17025 a reported system uncertainty is required and therefore measurement uncertainty budget is included in Appendix A. # Appendix A **Measurement Uncertainty Budget** **Uncertainty Budget for Device Under Test, for 450 MHz** | | | | | e = | | | h = c x f / | i = | | |--|---------|------------------|------|--------|-------|------------------------------|-------------|-----------|------------------| | a | b | \boldsymbol{c} | d | f(d,k) | f | g | e | c x g / e | \boldsymbol{k} | | | IEEE | Tol. | Prob | | c_i | c_i | 1 g | 10 g | | | | 1528 | (± %) | Dist | | (1 g) | (10 g) | u_i | u_i | | | Uncertainty Component | section | (= /0) | Dist | Div. | (- 8) | (_ _ _ _ _ _ _ _ _ _ | (±%) | (±%) | v_i | | Measurement System | | | | | | | (1 1 / | (1 1) | | | Probe Calibration | E.2.1 | 6.7 | N | 1.00 | 1 | 1 | 6.7 | 6.7 | 8 | | Axial Isotropy | E.2.2 | 4.7 | R | 1.73 | 0.707 | 0.707 | 1.9 | 1.9 | 8 | | Hemispherical Isotropy | E.2.2 | 9.6 | R | 1.73 | 0.707 | 0.707 | 3.9 | 3.9 | 8 | | Boundary Effect | E.2.3 | 1.0 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | 8 | | Linearity | E.2.4 | 4.7 | R | 1.73 | 1 | 1 | 2.7 | 2.7 | 8 | | System Detection Limits | E.2.5 | 1.0 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | 8 | | Readout Electronics | E.2.6 | 0.3 | N | 1.00 | 1 | 1 | 0.3 | 0.3 | ∞ | | Response Time | E.2.7 | 1.1 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | ∞ | | Integration Time | E.2.8 | 1.1 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | 8 | | RF Ambient Conditions - Noise | E.6.1 | 3.0 | R | 1.73 | 1 | 1 | 1.7 | 1.7 | 8 | | RF Ambient Conditions - Reflections | E.6.1 | 0.0 | R | 1.73 | 1 | 1 | 0.0 | 0.0 | 8 | | Probe Positioner Mech. Tolerance | E.6.2 | 0.4 | R | 1.73 | 1 | 1 | 0.2 | 0.2 | 8 | | Probe Positioning w.r.t Phantom | E.6.3 | 1.4 | R | 1.73 | 1 | 1 | 0.8 | 0.8 | 8 | | Max. SAR Evaluation (ext., int., avg.) | E.5 | 3.4 | R | 1.73 | 1 | 1 | 2.0 | 2.0 | 8 | | Test sample Related | | | | | | | | | | | Test Sample Positioning | E.4.2 | 3.2 | N | 1.00 | 1 | 1 | 3.2 | 3.2 | 29 | | Device Holder Uncertainty | E.4.1 | 4.0 | N | 1.00 | 1 | 1 | 4.0 | 4.0 | 8 | | SAR drift | 6.6.2 | 5.0 | R | 1.73 | 1 | 1 | 2.9 | 2.9 | ∞ | | Phantom and Tissue Parameters | | | | | | | | | | | Phantom Uncertainty | E.3.1 | 4.0 | R | 1.73 | 1 | 1 | 2.3 | 2.3 | ∞ | | Liquid Conductivity (target) | E.3.2 | 5.0 | R | 1.73 | 0.64 | 0.43 | 1.8 | 1.2 | ∞ | | Liquid Conductivity (measurement) | E.3.3 | 3.3 | N | 1.00 | 0.64 | 0.43 | 2.1 | 1.4 | 8 | | Liquid Permittivity (target) | E.3.2 | 5.0 | R | 1.73 | 0.6 | 0.49 | 1.7 | 1.4 | ∞ | | Liquid Permittivity (measurement) | E.3.3 | 1.9 | N |
1.00 | 0.6 | 0.49 | 1.1 | 0.9 | 8 | | Combined Standard Uncertainty | | | RSS | | | | 12 | 11 | 482 | | Expanded Uncertainty | | | | | | | | | | | (95% CONFIDENCE LEVEL) | | | k=2 | | | | 23 | 23 | | Notes for uncertainty budget Tables: - a) Column headings *a-k* is given for reference. - b) Tol. Tolerance in influence quantity. - c) Prob. Dist. Probability distribution - d) N, R normal, rectangular probability distributions - e) Div. divisor used to translate tolerance into normally distributed standard uncertainty - f) *ci* sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR. - g) *ui* SAR uncertainty - h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty Uncertainty Budget for System Validation (dipole & flat phantom) for 450 MHz | | | | | | | | <i>h</i> = | <i>i</i> = | | |--|----------|-------|-------|--------|-------|--------|--------------------|--------------------|----------| | | , | | 7 | e = | | | cxf/ | c x g / | 7 | | a | b | c | d | f(d,k) | J | g | e | e | k | | | IEEE | Tol. | Prob. | | c_i | c_i | 1 g | 10 g | | | | 1528 | (± %) | Dist. | | (1 g) | (10 g) | \boldsymbol{u}_i | \boldsymbol{u}_i | | | Uncertainty Component | section | | | Div. | | | (±%) | (±%) | v_i | | Measurement System | | | | | | | | | | | Probe Calibration | E.2.1 | 6.7 | N | 1.00 | 1 | 1 | 6.7 | 6.7 | ∞ | | Axial Isotropy | E.2.2 | 4.7 | R | 1.73 | 1 | 1 | 2.7 | 2.7 | ∞ | | Spherical Isotropy | E.2.2 | 9.6 | R | 1.73 | 0 | 0 | 0.0 | 0.0 | ∞ | | Boundary Effect | E.2.3 | 1.0 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | ∞ | | Linearity | E.2.4 | 4.7 | R | 1.73 | 1 | 1 | 2.7 | 2.7 | ∞ | | System Detection Limits | E.2.5 | 1.0 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | ∞ | | Readout Electronics | E.2.6 | 0.3 | N | 1.00 | 1 | 1 | 0.3 | 0.3 | ∞ | | Response Time | E.2.7 | 1.1 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | ∞ | | Integration Time | E.2.8 | 0.0 | R | 1.73 | 1 | 1 | 0.0 | 0.0 | × | | RF Ambient Conditions - Noise | E.6.1 | 3.0 | R | 1.73 | 1 | 1 | 1.7 | 1.7 | ∞ | | RF Ambient Conditions - Reflections | E.6.1 | 0.0 | R | 1.73 | 1 | 1 | 0.0 | 0.0 | ∞ | | Probe Positioner Mechanical Tolerance | E.6.2 | 0.4 | R | 1.73 | 1 | 1 | 0.2 | 0.2 | ∞ | | Probe Positioning w.r.t. Phantom | E.6.3 | 1.4 | R | 1.73 | 1 | 1 | 0.8 | 0.8 | ∞ | | Max. SAR Evaluation (ext., int., avg.) | E.5 | 3.4 | R | 1.73 | 1 | 1 | 2.0 | 2.0 | ∞ | | Dipole | | | | | | | | | | | Dipole Axis to Liquid Distance | 8, E.4.2 | 2.0 | R | 1.73 | 1 | 1 | 1.2 | 1.2 | ∞ | | Input Power and SAR Drift Measurement | 8, 6.6.2 | 5.0 | R | 1.73 | 1 | 1 | 2.9 | 2.9 | × × | | Phantom and Tissue Parameters | | | | | | | | | | | Phantom Uncertainty | E.3.1 | 4.0 | R | 1.73 | 1 | 1 | 2.3 | 2.3 | × × | | Liquid Conductivity (target) | E.3.2 | 5.0 | R | 1.73 | 0.64 | 0.43 | 1.8 | 1.2 | ∞ | | Liquid Conductivity (measurement) | E.3.3 | 3.3 | R | 1.73 | 0.64 | 0.43 | 1.2 | 0.8 | ∞ | | Liquid Permittivity (target) | E.3.2 | 5.0 | R | 1.73 | 0.6 | 0.49 | 1.7 | 1.4 | ∞ | | Liquid Permittivity (measurement) | E.3.3 | 1.9 | R | 1.73 | 0.6 | 0.49 | 0.6 | 0.5 | ∞ | | Combined Standard Uncertainty | | | RSS | | | | 10 | 9 | 99999 | | Expanded Uncertainty | | | | | | | | | | | (95% CONFIDENCE LEVEL) | | | k=2 | | | | 19 | 18 | | Notes for uncertainty budget Tables: - a) Column headings *a-k* is given for reference. - b) Tol. Tolerance in influence quantity. - c) Prob. Dist. Probability distribution - d) N, R normal, rectangular probability distributions - e) Div. divisor used to translate tolerance into normally distributed standard uncertainty - f) ci sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR. - g) ui SAR uncertainty - h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty # Appendix B # **Probe Calibration Certificates** Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Motorola Solutions MY Calibration Equipment used (M&TE critical for calibration) Certificate No: EX3-7486_Jun21 S C # CALIBRATION CERTIFICATE Object EX3DV4 - SN:7486 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes Calibration date: June 18, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 09-Apr-21 (No. 217-03343) | Apr-22 | | DAE4 | SN: 660 | 23-Dec-20 (No. DAE4-660 Dec20) | Dec-21 | | Reference Probe ES30V2 | SN: 3013 | 30-Dec-20 (No. ES3-3013_Dec20) | Dec-21 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | Certificate No: EX3-7486 Jun21 Page 1 of 23 ### Calibration Laboratory of Schmid & Partner Engineering AG Zoughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL NORMx,y,z ConvF DCP tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 3 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system ### Calibration is Performed According to the Following Standards: - IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - EC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent
ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): In a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-7486 Jun21 Page 2 of 23 EX3DV4 - SN:7486 June 18, 2021 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7486 ### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (µV/(V/m) ²) ^A | 0.38 | 0.47 | 0.49 | ± 10.1 % | | DCP (mV) ⁸ | 99.0 | 91.5 | 97.5 | | Calibration Results for Modulation Response | UID | Communication System Name | I | A
dB | B
dB√μV | С | D
dB | VR
mV | Max
dev. | Max
Unc ^E
(k=2) | |---------|-------------------------------|---|---------|------------|-------|-------------|----------|---|---| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 133.9 | ± 3.3 % | 4 4.7 % | | | SACTEST. | Y | 0.00 | 0.00 | 1.00 | 000.00.00 | 137.2 | | | | | | Z | 0.00 | 0.00 | 1.00 | | 135.5 | | | | 10352- | Pulse Waveform (200Hz, 10%) | X | 6.91 | 76.74 | 14.90 | 10.00 | 60.0 | ± 4.2 % | ± 9.6 % | | AAA | | Y | 10.94 | 82.20 | 16.58 | 5765555 | 60.0 | 0.000.00000000 | -20000000000000000000000000000000000000 | | | | Z | 20.00 | 91.76 | 20.63 | | 60.0 | | | | 10353- | Pulse Waveform (200Hz, 20%) | X | 20.00 | 88.86 | 17.47 | 6.99 | 80.0 | ± 2.9 % | ±9.6 % | | AAA | | Y | 20.00 | 89.09 | 17.63 | (6133/2011) | 80.0 | 100000000000000000000000000000000000000 | 2.000,0 | | | | 2 | 20.00 | 96.75 | 21.92 | | 80.0 | 1 | | | 10354- | Pulse Waveform (200Hz, 40%) | X | 20.00 | 95.06 | 19.03 | 3.98 | 95.0 | ±1.8 % | ± 9.6 % | | AAA | | Y | 20.00 | 92.53 | 18.10 | 2034200 | 95.0 | | 100 A | | | | Z | 20.00 | 110.11 | 26.85 | | 95.0 | | | | 10355- | Pulse Waveform (200Hz, 60%) | X | 20.00 | 110.08 | 24.67 | 2.22 | 120.0 | ±1.1% | ± 9.6 % | | AAA | | Y | 20.00 | 100.93 | 20.96 | | 120.0 | | | | | | Z | 20.00 | 129.65 | 34.26 | | 120.0 | | | | 10387- | QPSK Waveform, 1 MHz | X | 1.70 | 67.37 | 15.57 | 1.00 | 150.0 | ± 2.1 % | ± 9.6 % | | AAA | 5-340 (1000) (MIN OF MARKET) | Y | 1.87 | 67.98 | 16.23 | 1000000 | 150.0 | | 0.0000000000000000000000000000000000000 | | | | Z | 1.76 | 67.40 | 15.78 | | 150.0 | 1 | | | 10388- | QPSK Waveform, 10 MHz | X | 2.20 | 68.20 | 16.06 | 0.00 | 150.0 | ±1.1% | ± 9.6 % | | AAA | | Y | 2.49 | 69.66 | 16.90 | S18350 | 150.0 | | | | | | Z | 2.30 | 68.67 | 16.34 | | 150.0 | | | | 10396- | 64-QAM Waveform, 100 kHz | X | 2.65 | 70.40 | 19.07 | 3.01 | 150.0 | ±1.2 % | ± 9.6 % | | AAA | | Y | 2.42 | 67.66 | 18.00 | | 150.0 | BERRINGE. | | | 97.0505 | | Z | 3.07 | 72.66 | 20.27 | | 150.0 | 1 | | | 10399- | 64-QAM Waveform, 40 MHz | X | 3.50 | 67.23 | 15.93 | 0.00 | 150.0 | ±1.2% | ± 9.6 % | | AAA | 122 | Y | 3.58 | 67.22 | 16.14 | | 150.0 | | A STATE OF | | | | Z | 3.57 | 67.43 | 16.09 | 1 | 150.0 | | | | 10414- | WLAN CCDF, 64-QAM, 40MHz | X | 4.81 | 65.83 | 15.67 | 0.00 | 150.0 | ±1.9 % | ± 9.6 % | | AAA | 25 22 | Y | 4.89 | 65.53 | 15.74 | g. | 150.0 | | 2 3.0 70 | | | | Z | 4.89 | 65,87 | 15.76 | -8 | 150.0 | 1 | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: EX3-7486_Jun21 ⁶ The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ⁹ Numerical linearization parameter: uncertainty not required. ² Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. June 18, 2021 EX3DV4- SN:7486 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7486 # Sensor Model Parameters | | C1
fF | C2
fF | α
V-1 | T1
ms.V ⁻² | T2
ms.V ⁻¹ | T3
ms | T4
V-2 | T5
V-1 | Т6 | |---|----------|----------|----------|--------------------------|--------------------------|----------|-----------|-----------|------| | X | 37.0 | 271.91 | 34.67 | 5.55 | 0.05 | 4.99 | 1.70 | 0.00 | 1.01 | | Υ | 44.1 | 342.17 | 38.13 | 10.19 | 0.00 | 5.01 | 0.00 | 0.31 | 1.00 | | Z | 40.8 | 304.97 | 35.65 | 8.14 | 0.00 | 5.05 | 1.92 | 0.03 | 1.01 | # Other Probe Parameters | Sensor Arrangement | Triangular | |--|------------| | Connector Angle (*) | -159.9 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Dlameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | | and the control of th | | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. Certificate No: EX3-7486_Jun21 Page 4 of 23 EX3DV4-- SN:7486 June 18, 2021 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7486 ### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|--------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 150 | 52.3 | 0.76 | 13.52 | 13.52 | 13.52 |
0.00 | 1.00 | ± 13.3 % | | 300 | 45.3 | 0.87 | 12.20 | 12.20 | 12.20 | 0.09 | 1.25 | ± 13.3 % | | 450 | 43.5 | 0.87 | 11.24 | 11.24 | 11.24 | 0.16 | 1,30 | ± 13.3 % | | 750 | 41.9 | 0.89 | 10.44 | 10.44 | 10.44 | 0.48 | 0.80 | ± 12.0 % | | 835 | 41.5 | 0.90 | 10.15 | 10.15 | 10.15 | 0.29 | 1.13 | ± 12.0 % | | 900 | 41.5 | 0.97 | 10.02 | 10.02 | 10.02 | 0.38 | 0.92 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 8.99 | 8.99 | 8.99 | 0.32 | 0.80 | ± 12.0 % | | 1810 | 40.0 | 1.40 | 8.58 | 8.58 | 8.58 | 0.30 | 0.86 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.37 | 8.37 | 8.37 | 0.28 | 0.86 | ± 12.0 % | | 2100 | 39.8 | 1.49 | 8.32 | 8.32 | 8.32 | 0.31 | 0.84 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 8.02 | 8.02 | 8.02 | 0.33 | 0.90 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.69 | 7.69 | 7.69 | 0.30 | 0.85 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.38 | 7.38 | 7,38 | 0.35 | 0.85 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 7.20 | 7.20 | 7.20 | 0.30 | 1.35 | ± 14.0 % | | 3700 | 37.7 | 3.12 | 7.11 | 7.11 | 7.11 | 0.30 | 1.35 | ± 14.0 % | | 5250 | 35.9 | 4.71 | 5.46 | 5.46 | 5.46 | 0.40 | 1.80 | ± 14.0 % | | 5500 | 35.6 | 4.96 | 4.93 | 4.93 | 4.93 | 0.40 | 1.80 | ± 14.0 % | | 5600 | 35.5 | 5.07 | 4.73 | 4.73 | 4.73 | 0.40 | 1.80 | ± 14.0 % | | 5750 | 35.4 | 5.22 | 4.90 | 4.90 | 4.90 | 0.40 | 1.80 | ± 14.0 % | Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), alse it is restricted to ± 50 MHz. The uncertainty is the RSS of the CorwF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for CorwF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of CorwF assessed at 6 MHz is 4-9 MHz, and CorwF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. * At frequencies up to 6 GHz, the validity of tissue parameters (is and or) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the CorwF uncertainty for indicated target tissue parameters. * Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Certificate No: EX3-7486_Jun21 Page 5 of 23 EX3DV4- SN:7486 June 18, 2021 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7486 ### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|-----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 150 | 61.9 | 0.80 | 13,16 | 13.16 | 13.16 | 0.00 | 1.00 | ± 13.3 % | | 300 | 58.2 | 0.92 | 11.73 | 11.73 | 11.73 | 0.04 | 1.25 | ± 13.3 % | | 450 | 56.7 | 0.94 | 11.40 | 11.40 | 11.40 | 0.11 | 1.20 | ± 13.3 % | | 750 | 55.5 | 0.96 | 10.20 | 10.20 | 10.20 | 0.45 | 0.85 | ± 12.0 % | | 835 | 55.2 | 0.97 | 9.91 | 9.91 | 9.91 | 0.37 | 0.95 | ± 12.0 % | | 900 | 55.0 | 1.05 | 9.71 | 9.71 | 9.71 | 0.36 | 0.99 | ± 12.0 % | | 1450 | 54.0 | 1.30 | 9.02 | 9.02 | 9.02 | 0.40 | 0.80 | ± 12.0 % | | 1810 | 53.3 | 1.52 | 8.28 | 8,28 | 8.28 | 0.40 | 0.86 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 8.12 | 8.12 | 8.12 | 0.36 | 0.95 | ± 12.0 % | | 2100 | 53.2 | 1.62 | 8.10 | 8.10 | 8.10 | 0.33 | 1.00 | ± 12.0 % | | 2300 | 52.9 | 1,81 | 7.84 | 7.84 | 7.84 | 0.45 | 0.90 | ± 12.0 % | | 2450 | 52,7 | 1.95 | 7.65 | 7.65 | 7.65 | 0.45 | 0.90 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 7.46 | 7.46 | 7.46 | 0.33 | 0.80 | ± 12.0 % | | 3500 | 51.3 | 3.31 | 6.52 | 6.52 | 6.52 | 0.40 | 1.35 | ± 14.0 % | | 3700 | 51.0 | 3.55 | 6.42 | 6.42 | 6.42 | 0.40 | 1.35 | ± 14.0 % | | 5250 | 48.9 | 5.36 | 4.70 | 4.70 | 4.70 | 0.50 | 1.90 | ± 14.0 % | | 5500 | 48,6 | 5.65 | 4.14 | 4.14 | 4,14 | 0.50 | 1.90 | ± 14.0 % | | 5600 | 48.5 | 5.77 | 4.08 | 4.08 | 4.08 | 0.50 | 1.90 | ± 14.0 % | | 5750 | 48.3 | 5.94 | 4.19 | 4.19 | 4.19 | 0.50 | 1.90 | ± 14.0 % | ^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. ¹ At frequencies up to 6 GHz, the validity of tissue parameters (s and a) can be released to ± 10% if fluid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ² Atpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance targer than half the probe tip diameter from the boundary. Certificate No: EX3-7486_Jun21 Page 6 of 23 EX3DV4-- SN:7486 June 18, 2021 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: EX3-7486_Jun21 Page 7 of 23 June 18, 2021 EX3DV4- SN:7486 # Dynamic Range f(SAR_{head}) (TEM cell , f_{oval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: EX3-7486_Jun21 Page 9 of 23 # **Conversion Factor Assessment** # Deviation from Isotropy in Liquid Error (o, 3), f = 900 MHz Certificate No: EX3-7486_Jun21 Page 10 of 23 Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) EX3DV4-SN:7486 June 18, 2021 ## **Appendix: Modulation Calibration Parameters** | UID | Rev | Communication System Name | Group | PAR
(dB) | Unc ^e
(k=2) | |-------|----------------|---|-----------|-------------|---------------------------| | 10010 | | CW | CW | 0.00 | ± 4.7 % | | 10010 | CAA | SAR Validation (Square, 100ms, 10ms) | Test | 10.00 | ± 9.6 % | | 1.000 | CAB | UMTS-FDD (WCDMA) | WCDMA | 2.91 | ± 9.6 % | | 10012 | CAB | IEEE 802.11b WIFI 2.4 GHz (DSSS, 1 Mbps) | WLAN | 1.87 | ± 9.6 % | | 10013 | CAB | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps) | WLAN | 9.46 | ± 9.6 % | | 10021 | DAC | GSM-FDD (TDMA, GMSK) | GSM | 9.39 | ± 9.6 % | | 10023 | DAC | GPRS-FDD (TDMA, GMSK, TN 0) | GSM | 9.57 | ± 9.6 % | | 10024 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1) | GSM | 6.56 | ± 9.6 % | | 10025 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0) | GSM | 12.62 | ± 9.6 % | | 10026 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1) | GSM | 9.55 | ± 9.6 % | | 10027 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2) | GSM | 4.80 | ± 9.6 % | | 10028 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3) | GSM | 3.55 | ± 9.6 % | | 10029 | DAC | EDGE-FDD (TDMA, BPSK, TN 0-1-2) | GSM | 7.78 | ± 9.6 % | | 10030 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH1) | Bluetooth | 5.30 | ± 9.6 % | | 10031 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH3) | Bluetooth | 1,87 | ± 9.6 % | | 10032 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH5) | Bluetooth | 1.16 | ± 9.6 % | | 10033 | CAA | JEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1) | Bluetooth | 7.74 | ± 9.6 % | | 10034 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3) | Bluetooth | 4.53 | ± 9.6 % | | 10035 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5) | Bluetooth | 3.83 | ± 9.6 % | | 10036 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH1) | Bluetooth | 8.01 | ± 9.6 % | | 10037 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH3) | Bluetooth | 4.77 | ± 9.6 % | | 10038 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH5) | Bluetooth | 4.10 | ± 9.6 % | | 10039 | CAB | CDMA2000 (1xRTT, RC1) | CDMA2000 | 4.57 | ± 9.6 % | | 10042 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate) | AMPS | | 30, 37, 50, 74 | | 10044 | CAA | IS-91/EIA/TIA-563 FDD (FDMA, FM) | AMPS | 7.78 | ± 9.6 % | | 10048 | CAA | DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24) | DECT | 0.00 | ± 9.6 % | | 10049 | CAA | DECT (TDD, TDMA/FDM, GFSK, Double Stot, 12) | | 13.80 | ± 9.6 % | | 10056 | CAA | UMTS-TDD (TD-SCDMA, 1.28 Mcps) | DECT | 10.79 | ±9.6 % | | 10058 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) | TD-SCDMA | 11.01 | ± 9.6 % | | 10059 | and the second | IEEE 802.11b WIFI 2.4 GHz (DSSS, 2 Mbps) | GSM | 6.52 | ± 9.6 % | | 10060 | CAB | | WLAN | 2.12 | ± 9.6 % | | 10061 | CAB | IEEE 802.11b WIFI 2.4 GHz (DSSS, 5.5 Mbps) | WLAN | 2.83 | ± 9.6 % | | 10062 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps) | WLAN | 3.60 | ± 9.6 % | | | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps) | WLAN | 8.68 | ± 9.6 % | | 10063 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps) | WLAN | 8.63 | ± 9.6 % | | 10064 | CAD | IEEE 802.11a/h WiFl 5 GHz (OFDM, 12 Mbps) | WLAN | 9.09 | ± 9.6 % | | 10065 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps) | WLAN | 9.00 | ± 9.6 % | | 10066 | CAD | IEEE 802:11a/h WiFi 5 GHz (OFDM, 24 Mbps) | WLAN | 9.38 | ± 9.6 % | | 10067 | CAD | IEEE 802,11a/h WiFi 5 GHz (OFDM, 38 Mbps) | WLAN | 10.12 | ± 9.6 % | | 10068 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps) | WLAN | 10,24 | ± 9.6 % | | 0069 | CAD | IEEE 802.11a/h WIFi 5 GHz (OFDM, 54 Mbps) | WLAN | 10.56 | ± 9.6 % | | 10071 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps) | WLAN | 9.83 | ± 9.6 % | | 0072 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps) | WLAN | 9.62 | ±9.6% | | 0073 | CAB | IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 18 Mbps) | WLAN | 9.94 | ± 9.6 % | | 0074 | CAB | IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 24 Mbps) | WLAN | 10.30 | ± 9.6 % | | 0075 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps) | WLAN | 10.77 | ± 9.6 % | | 0076 | CAB | IEEE 802.11g WiFl 2.4 GHz (DSSS/OFDM, 48
Mbps) | WLAN | 10.94 | ± 9.6 % | | 0077 | CAB | IEEE 802.11g WiFl 2.4 GHz (DSSS/OFDM, 54 Mbps) | WLAN | 11.00 | ± 9.6 % | | 0081 | CAB | CDMA2000 (1xRTT, RC3) | CDMA2000 | 3.97 | ± 9.6 % | | 0082 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate) | AMPS | 4.77 | ± 9.6 % | | 0090 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-4) | GSM | 6.56 | ±9.6 % | | 0097 | CAC | UMTS-FDD (HSDPA) | WCDMA | 3.98 | | | 0098 | DAC | UMTS-FDD (HSUPA, Subtest 2) | WCDMA | 3.98 | ±9.6 %
±9.6 % | Certificate No: EX3-7486_Jun21 Page 11 of 23 | 10099 | CAC | EDGE-FDD (TDMA, 8PSK, TN 0-4) | GSM | 9.55 | ± 9.6 % | |-------|-----|---|--|-------|---------| | 10100 | CAC | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-FDD | 5.67 | ± 9.6 % | | 10101 | CAB | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.42 | ± 9.6 % | | 10102 | CAB | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-FDD | 6.60 | ± 9.6 % | | 10103 | DAC | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-TDD | 9.29 | ± 9.6 % | | 10104 | CAE | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-TDD | 9.97 | ± 9.6 % | | 10105 | CAE | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-TDD | 10.01 | ± 9.6 % | | 10108 | CAE | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-FDD | 5.80 | ± 9.6 % | | 10109 | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 18-QAM) | LTE-FDD | 6.43 | ± 9.6 % | | 10110 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | LTE-FDD | 5.75 | ± 9.6 % | | 10111 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | LTE-FDD | 6.44 | ± 9.6 % | | 10112 | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-FDD | 6.59 | ±9.6 % | | 10113 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 84-QAM) | LTE-FDD | 6.62 | ± 9.6 % | | 10114 | CAG | IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK) | WLAN | 8.10 | ± 9.6 % | | 10115 | CAG | IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM) | WLAN | 8.46 | ± 9.6 % | | 10116 | CAG | IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM) | WLAN | 8.15 | ± 9.6 % | | 10117 | CAG | IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK) | WLAN | 8.07 | ± 9.6 % | | 10118 | CAD | IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM) | WLAN | 8.59 | ± 9.6 % | | 10119 | CAD | IEEE 802.11n (HT Mixed, 135 Mixes, 64-QAM) | WLAN | 8.13 | ± 9.6 % | | 10140 | CAD | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-FDD | 6.49 | ±9.6 % | | 10141 | CAD | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 84-QAM) | LTE-FOD | 6.53 | ± 9.6 % | | 10142 | CAD | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10143 | CAD | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-FDD | 6.35 | ± 9.6 % | | 10144 | CAC | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.65 | ±9.6 % | | 10145 | CAC | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-FDD | 5.76 | ± 9.6 % | | 10146 | CAC | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.41 | ±9.6 % | | 10147 | CAC | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.72 | ±9.69 | | 10149 | CAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.42 | ± 9.6 % | | 10150 | CAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 84-QAM) | LTE-FDD | 6.60 | | | 10151 | CAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-TDD | 100 | ± 9.6 % | | 10152 | CAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-TDD | 9.28 | ± 9.6 % | | 10153 | CAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-TOD | 9.92 | ± 9.6 % | | 10154 | CAE | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-FDD | 5.75 | ± 9.6 % | | 10155 | CAF | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-FDD | - | ± 9.6 % | | 10156 | CAF | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-FDD | 6.43 | ± 9.6 % | | 10157 | CAF | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-FDD | 5.79 | ±9.6% | | 10158 | - | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-FDD | 6.49 | ± 9.6 % | | 10159 | CAE | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-FDD | 6.62 | ±9.6 % | | 10160 | | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-FDD | 6.56 | ± 9.6 % | | 10161 | CAG | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-FDD | 5.82 | ± 9.6 % | | 10162 | CAG | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-FDD | 6.43 | ± 9.6 % | | 10166 | CAG | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-GAM) | The state of s | 6.58 | ± 9.6 9 | | 10167 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, (JFSK) LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 18-QAM) | LTE-FDD | 5.46 | ± 9.6 % | | 10168 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.21 | ± 9.6 % | | 10169 | CAG | | LTE-FDO | 6.79 | ± 9.6 % | | 10170 | CAG | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10171 | CAG | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10171 | CAE | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-FDD | 6.49 | ± 9.6 % | | 10172 | CAE | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-TOD | 9.21 | ± 9.6 % | | 10173 | CAE | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | | CAF | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10175 | CAF | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-FDD | 5.72 | ± 9.6 % | | 10176 | CAF | LTE-FOD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10177 | CAE | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10178 | CAE | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10179 | AAE | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10180 | CAG | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | Certificate No: EX3-7486_Jun21 Page 12 of 23 | 10181 | CAG | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-FDD | 5.72 | ± 9.6 % | |-----------|-------------------|--|---|-------|---------------------------------------| | 10182 | CAG | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-FDD | 6.52 | ±9.6 % | | 10183 | CAG | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10184 | CAG | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10185 | CAL | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-FDD | 6.51 | ± 9.6 % | | 10186 | CAG | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10187 | CAG | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10188 | CAG | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-FD0 | 6.52 | ± 9.6 % | | 10189 | CAE | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | LTE-FDO | 6.50 | ± 9.6 % | | 10193 | CAE | IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) | WLAN | 8.09 | ±9.6 % | | 10194 | AAD | IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) | WLAN | 8.12 | ± 9.6 % | | 10195 | CAE | IEEE 802.11n (HT Greenfield, 65 Mbps. 64-QAM) | WLAN | 8.21 | ± 9.6 % | | 10196 | CAE | IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK) | WLAN | 8.10 | ± 9.6 % | | 10197 | AAE | IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM) | WLAN | 8.13 | ±9.6 % | | 10198 | CAF | IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) | WLAN | 8.27 | ±9.6 % | | 10219 | CAF | IEEE 802.1tn (HT Mixed, 7.2 Mbps, BPSK) | WLAN | 8.03 | ± 9.6 % | | 10220 | AAF | IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM) | WLAN | 8.13 | ±9.6 % | | 10221 | CAC | IEEE 802,11n (HT Mixed, 72,2 Mbps, 64-QAM) | WLAN | 8.27 | ± 9.6 % | | 10222 | CAC | IEEE 802.11n (HT Mixed, 15 Mbps, BPSK) | WLAN | 8.06 | ± 9.6 % | | 10223 | CAD | IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM) | WLAN | 8.48 | ± 9.6 % | | 10224 | CAD | IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM) | WLAN | 8.08 | ± 9.6 % | | 10225 | CAD | UMTS-FDD (HSPA+) | WCDMA | 5.97 | ± 9.6 % | | 10226 | CAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-TOD | 9.49 | ± 9.6 % | | 10227 | CAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | LTE-TOD | 10.26 | ± 9.6 % | | 10228 | CAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-TOD | 9.22 | ±9.6 % | | 10229 | DAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-TOD | 9.22 | C C C C C C C C C C C C C
C C C C C C | | 10230 | CAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-TDD | 2007 | ± 9.6 % | | 10231 | CAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-TOD | 10.25 | ± 9.6 % | | 10232 | The second second | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | LTE-TDD | 9.19 | ± 9.6 % | | 10233 | CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | 200000000000000000000000000000000000000 | 9.48 | ± 9.6 % | | 10234 | CAD | LTE-TOD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) LTE-TOD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-TDD | 10.25 | ± 9.6 % | | 10235 | CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-TDD | 9.21 | ± 9.6 % | | 10236 | CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | | 9.48 | ± 9.6 % | | 10237 | CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-TDO | 10.25 | ± 9.6 % | | 10238 | CAD | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-TDD | 9.21 | ± 9.6 % | | 10239 | CAB | | LTE-TDO | 9.48 | ± 9.6 % | | 10239 | CAB | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-TDO | 10.25 | ± 9.6 % | | 10240 | CAB | LTE-TOD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-TDO | 9.21 | ± 9.6 % | | 10241 | CAB | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-TDO | 9.82 | ± 9.6 % | | 0.0000000 | CAD | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-TDD | 9.86 | ± 9.6 % | | 10243 | CAD | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | LTE-TDD | 9.46 | ± 9.6 % | | 10244 | CAD | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-TDO | 10.06 | ± 9.6 % | | 100000000 | CAG | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-TDO | 10.06 | ± 9.6 % | | 10246 | CAG | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-TDD | 9.30 | ± 9.6 % | | 10247 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-TDO | 9.91 | ± 9.6 % | | 10248 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-TDD | 10.09 | ± 9.6 % | | 10249 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-TOO | 9.29 | ± 9.6 % | | 10250 | CAG | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-TOD | 9,81 | ± 9.6 % | | 10251 | CAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-TDD | 10.17 | ±9.6 % | | 10252 | CAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-TDD | 9.24 | ± 9.6 % | | 10253 | CAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-TDD | 9.90 | ± 9.6 % | | 10254 | CAB | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-TDD | 10.14 | ± 9.6 % | | 10255 | CAB | LTE-TOD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-TDD | 9.20 | ± 9.6 % | | 10256 | CAB | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-TOD | 9.96 | ± 9.6 % | | 10257 | CAD | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-TDD | 10.08 | ± 9.6 % | | 10258 | CAD | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-TDD | 9.34 | ± 9.6 % | | 10259 | CAD | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-TDD | 9.98 | ± 9.6 % | Certificate No: EX3-7486_Jun21 Page 13 of 23 | 10260 | CAG | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-TDD | 9.97 | ± 9.6 % | |-------|------------------------|---|---|--|------------------------------| | 10261 | CAG | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-TDO | 9.24 | ±9.6 % | | 10262 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | LTE-TDD | 9.83 | ± 9.6 % | | 10263 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-TDO | 10.16 | ± 9.6 % | | 10264 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | LTE-TDD | 9.23 | ±9.6 % | | 10265 | CAG | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-TOD | 9.92 | ± 9.6 % | | 10266 | CAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-TDD | 10.07 | ± 9.6 % | | 10267 | CAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-TDD | 9.30 | ± 9.6 % | | 10268 | CAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-TDD | 10.06 | ± 9.6 % | | 10269 | CAB | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) | LTE-TDO | 10.13 | ±9.6 % | | 10270 | CAB | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK) | LTE-TDD | 9.58 | ± 9.6 % | | 10274 | CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10) | WCDMA | 4.87 | ± 9.6 % | | 10275 | CAD | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4) | WCDMA | 3.96 | ± 9.6 % | | 10277 | CAD | PHS (QPSK) | PHS | 11.81 | ± 9.6 % | | 10278 | CAD | PHS (QPSK, BW 884MHz, Rolloff 0.5) | PHS | 11.81 | ± 9.6 % | | 10279 | CAG | PHS (QPSK, BW 884MHz, Rolloff 0.38) | PHS | 12.18 | ± 9.6 % | | 10290 | CAG | CDMA2000, RC1, SO55, Full Rate | CDMA2000 | 3.91 | ± 9.6 % | | 10291 | CAG | CDMA2000, RC3, SO55, Full Rate | CDMA2000 | 3.46 | ± 9.6 % | | 10292 | CAG | CDMA2000, RC3, SO32, Full Rate | CDMA2000 | 3.39 | ± 9.6 % | | 10293 | CAG | COMA2000, RC3, SO3, Full Rate | CDMA2000 | 3.50 | ± 9.6 % | | 10295 | CAG | CDMA2000, RC1, SO3, 1/8th Rate 25 fr. | CDMA2000 | 12.49 | ± 9.6 % | | 10297 | CAF | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-FDD | 5.81 | ± 9.6 % | | 10298 | CAF | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-FDD | 5.72 | ± 9.6 % | | 10299 | CAF | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-FDD | 6.39 | ± 9.6 % | | 10300 | CAC | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.60 | ±9.6 % | | 10301 | CAC | IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC) | WiMAX | 12.03 | ± 9.6 % | | 10302 | CAB | IEEE 802,16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3CTRL) | WIMAX | 12.57 | ± 9.6 % | | 10303 | CAB | IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 84QAM, PUSC) | WMAX | 12.52 | ± 9.6 % | | 10304 | CAA | IEEE 802,16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC) | WMAX | 11.86 | ± 9.6 % | | 10305 | CAA | IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC) | WMAX | 15.24 | ± 9.6 % | | 10306 | CAA | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC) | WMAX | 14.67 | ± 9.6 % | | 10307 | AAB | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC) | WMAX | 14.49 | ± 9.6 % | | 10308 | AAB | IEEE 802,16a WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) | WiMAX | 14.46 | ± 9.6 % | | 10309 | AAB | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM,AMC 2x3) | WiMAX | 14.58 | ± 9.6 % | | 10310 | AAB | IEEE 802,16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3 | WIMAX | 14.57 | ± 9.6 % | | 10311 | AAB | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK) | LTE-FDD | 6.06 | ± 9.6 % | | 10313 | AAD | DEN 1:3 | IDEN | 10.51 | ± 9.6 % | | 10314 | AAD | IDEN 1:8 | IDEN | 13.48 | ± 9.6 % | | 10315 | AAD | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc) | WLAN | 1,71 | ± 9.6 % | | 10316 | AAD | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc) | WLAN | 8.36 | ± 9.6 % | | 10317 | AAA | IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc) | WLAN | 8.36 | ± 9.6 % | | 10352 | AAA | Pulse Waveform (200Hz, 10%) | Generic | 10.00 | ± 9.6 % | | 10353 | AAA | Pulse Waveform (200Hz, 20%) | Generic | 6.99 | ± 9.6 % | | 10354 | AAA | Pulse Waveform (200Hz, 40%) | Generic | 3.98 | ± 9.6 % | | 10355 | AAA | Pulse Waveform (200Hz, 60%) | Generic | 2.22 | ± 9.6 % | | 10356 | AAA | Pulse Waveform (200Hz, 80%) | Generic | 0.97 | ± 9.6 % | | 10387 | AAA | QPSK Waveform, 1 MHz | Generic | 5.10 | ± 9.6 % | | 10388 | | QPSK Waveform, 10 MHz | Generic | 5.22 | Continue Color Colors of the | | 10396 | AAA | 64-QAM Waveform, 100 kHz | Generic | and the same of th | ± 9.6 % | | 10399 | AAA | 64-QAM Waveform, 40 MHz | Generic | 6.27 | ± 9.6 % | | 10400 | the sales of the sales | IEEE 802.11ac WiFI (20MHz, 64-QAM, 99pc dc) | WLAN | | ± 9.6 % | | 10401 | AAD | IEEE 802.11ac WIFI (20MHz, 64-QAM, 99pc dc) | WLAN | 8.37 | ±9.6 % | | 10402 | AAA | | 150000000000000000000000000000000000000 | 8.60 | ± 9.6 % | | 10403 | AAA | IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc) | WLAN | 8.53 | ±9.6 % | | 10404 | AAB | CDMA2000 (1xEV-DO, Rev. 0) | CDMA2000 | 3.76 | ± 9.6 % | | | AAB | CDMA2000 (1xEV-DO, Rev. A) | CDMA2000 | 3.77 | ± 9.6 % | | 10406 | AAD | CDMA2000, RC3, SO32, SCH0, Full Rate | CDMA2000 | 5.22 | ± 9.6 % | Certificate No: EX3-7486_Jun21 Page 14 of 23 | 10410 | AAA | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub=2,3,4,7,8,9) | LTE-TOO | 7.82 | ± 9.6 % | |--------|-----|---|----------|------------
---| | 10414 | AAA | WLAN CCDF, 64-QAM, 40MHz | Generic | 8.54 | ± 9.6 % | | 10415 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc dc) | WLAN | 1.54 | ± 9.6 % | | 10416 | AAA | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc) | WLAN | 8.23 | ± 9.6 % | | 10417 | AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc dc) | WLAN | 8.23 | ± 9.6 % | | 10418 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) | WLAN | 8.14 | ± 9.6 % | | 10419 | AAA | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) | WLAN | 8.19 | ± 9.6 % | | 10422 | AAA | IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) | WLAN | 8.32 | ± 9.6 % | | 10423 | AAA | IEEE 802.11n (HT Greenfield, 43.3 Mpps, 16-QAM) | WLAN | 8.47 | ± 9.6 % | | 10424 | AAE | IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) | WLAN | 8.40 | ± 9.6 % | | 10425 | AAE | IEEE 802,11n (HT Greenfield, 15 Mbps, BPSK) | WLAN | 8.41 | ± 9.6 % | | 10426 | AAE | IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) | WLAN | 8.45 | ±9.6% | | 10427 | AAB | IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) | WLAN | 8.41 | ± 9.6 % | | 10430 | AAB | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) | LTE-FDD | 8.28 | ± 9.6 % | | 10431 | AAC | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) | LTE-FDD | 8.38 | ± 9.6 % | | 10432 | AAB | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) | LTE-FDD | 8.34 | ± 9.6 % | | 10433 | AAC | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) | LTE-FDD | 8.34 | ± 9.6 % | | 10434 | AAG | W-CDMA (BS Test Model 1, 64 DPCH) | WCDMA | 8.60 | ±9.6 % | | 10435 | AAA | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ±9.6 % | | 10447 | AAA | LTE-FDD (GFDMA, 5 MHz, E-TM 3.1, Clipping 44%) | LTE-FDD | 7.56 | ±9.6 % | | 10448 | AAA | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) | LTE-FDD | 7.53 | ±9.6 % | | 10449 | - | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%) | LTE-FDD | 75,755,711 | 111111111111111111111111111111111111111 | | 10450 | AAC | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) | LTE-FDD | 7.51 | ± 9.6 % | | 10451 | AAA | W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) | | 7.48 | ± 9.6 % | | 10453 | AAA | | WCDMA | 7.59 | ± 9.6 % | | 10456 | AAC | Validation (Square, 10ms, 1ms) | Test | 10.00 | ± 9.6 % | | 28.288 | AAC | IEEE 802,11ac WiFi (160MHz, 64-QAM, 99pc dc) | WLAN | 8.63 | ± 9.6 % | | 10457 | AAC | UMTS-FDD (DC-HSDPA) | WCDMA | 6.62 | ± 9.6 % | | 10458 | AAC | CDMA2000 (1xEV-DO, Rev. B, 2 carriers) | CDMA2000 | 6.55 | ± 9.6 % | | 10459 | AAC | CDMA2000 (1xEV-DO, Rev. B, 3 carriors) | CDMA2000 | 8.25 | ± 9.6 % | | 10460 | AAC | UMTS-FDD (WCDMA, AMR) | WCDMA | 2.39 | ± 9.6 % | | 10461 | AAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 10462 | AAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.30 | ± 9.6 % | | 10463 | AAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.56 | ± 9.6 % | | 10464 | AAD | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 10465 | AAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.32 | ± 9.6 % | | 10466 | AAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL, Sub) | LTE-TDD | 8.57 | ± 9.6 % | | 10467 | AAA | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 10468 | AAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL, Sub) | LTE-TDD | 8.32 | ± 9.6 % | | 10469 | AAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.56 | ± 9.6 % | | 10470 | AAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 10471 | AAC | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 % | | 10472 | AAC | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.57 | ± 9.6 % | | 10473 | AAA | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Sub) | LTE-TOD | 7.82 | ± 9.6 % | | 10474 | AAC | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Sub) | LTE-TOO | 8.32 | ± 9.6 % | | 10475 | AAD | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Sub) | LTE-TOO | 8.57 | ± 9.6 % | | 10477 | AAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 18-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 % | | 10478 | AAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.57 | ± 9.6 % | | 10479 | AAC | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10480 | AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.18 | ±9.6 % | | 10481 | AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.45 | ± 9.6 % | | 10482 | AAA | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Sub) | LTE-TOD | 7.71 | ± 9.6 % | | 10483 | AAA | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 18-QAM, Sub) | LTE-TOD | 8.39 | ± 9.6 % | | 10484 | AAB | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.47 | ± 9.6 % | | 10485 | AAB | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Sub) | LTE-TOD | 7.59 | ± 9.6 % | | 10486 | AAB | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.38 | | | | HAB | I will the (earl blind, so to his, a mile, 10-date, un add) | TIE-IDD | 0.38 | ± 9.6 % | Certificate No: EX3-7486_Jun21 Page 15 of 23 | 10488 | AAC | LTE-TDO (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Sub) | LTE-TDO | 7.70 | ± 9.6 % | |-------|-----|---|---------|------|---------| | 10489 | AAC | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.31 | ± 9.6 % | | 10490 | AAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Sub) | LTE-TDO | 8.54 | ± 9.6 % | | 10491 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10492 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.41 | ± 9.6 % | | 10493 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.55 | ± 9.6 % | | 10494 | AAF | LTE-TDO (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub) | LTE-TDO | 7.74 | ± 9.6 % | | 10495 | AAF | LTE-TDO (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Sub) | LTE-TOO | 8.37 | ± 9.6 % | | 10496 | AAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.54 | ± 9.6 % | | 10497 | AAE | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Sub) | LTE-TDO | 7.67 | ± 9.6 % | | 10498 | AAE | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.40 | ± 9.6 % | | 10499 | AAC | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.68 | ± 9.6 % | | 10500 | AAF | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Sub) | LTE-TDD | 7.67 | ± 9.6 % | | 10501 | AAF | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.44 | ± 9.6 % | | 10502 | AAB | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.52 | ± 9.6 % | | 10503 | AAB | LTE-TOD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Sub) | LTE-TOD | 7.72 | ± 9.6 % | | 10504 | AAB | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Sub) | LTE-TOO | 8.31 | ± 9.6 % | | 10505 | AAC | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Sub) | LTE-TDD | 8,54 | ± 9.6 % | | 10506 | AAC | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10507 | AAC | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 18-QAM, UL Sub) | LTE-TDD | 8.36 | ± 9.6 % | | 10508 | AAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.55 | ± 9.6 % | | 10509 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Sub) | LTE-TOO | 7.99 | ± 9.6 % | | 10510 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Sub) | LTE-TOD | 8,49 | ± 9.6 % | | 10511 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.51 | ± 9.6 % | | 10512 | AAF | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Sub) | LTE-TOO | 7.74 | ± 9.6 % | | 10513 | AAF | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.42 | ± 9.6 % | | 10514 | AAE | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.45 | ± 9.6 % | | 10515 | AAE | IEEE 802,11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc dc) | WLAN | 1,58 | ± 9.6 % | | 10516 | AAE | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc) | WLAN | 1.57 | ± 9.6 % | | 10517 | AAF | IEEE 802.11b WIFI 2.4 GHz (DSSS, 11 Mbps, 99pc dc) | WLAN | 1.58 | ± 9.6 % | | 10518 | AAF | IEEE 802.11a/h WIFI 5 GHz (OFDM, 9 Mbps, 99pc dc) | WLAN | 8.23 | ± 9.6 % | | 10519 | AAF | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc) | WLAN | 8.39 | ± 9.6 % | | 10520 | AAB | IEEE 802.11a/h WIFI 5 GHz (OFDM, 18 Mbps, 99pc dc) | WLAN | 8.12 | ± 9.6 % | | 10521 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc dc) | WLAN | 7.97 | ± 9.6 % | | 10522 | AAB | IEEE 802.11a/h WIFi 5 GHz (OFDM, 36 Mbps, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10523 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc) | WLAN | 8.08 | ± 9.6 % | | 10524 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc) | WLAN | 8.27 | ± 9.6 % | | 10525 | AAC | IEEE 802.11ac WIFI (20MHz, MCS0, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10526 | AAF | IEEE 802.11ac WiFi (20MHz, MCS1, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10527 | AAF | IEEE 802 11ac WIFI (20MHz, MCS2, 99ac dc) | WLAN | 8.21 | ± 9.6 % | | 10528 | AAF | IEEE 802.11ac WiFi (20MHz, MCS3, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10529 | AAF | IEEE 802.11ac WiFi (20MHz, MCS4, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10531 | AAF | IEEE 802.11ac WiFI (20MHz, MCS6, 99pc dc) | WLAN | 8.43 | ± 9.6 % | | 10532 | AAF | IEEE 802,11ac WiFi (20MHz, MCS7, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10533 | AAE | IEEE 802.11ac WIFI (20MHz, MCS8, 99oc dc) | WLAN | 8.38 | ± 9.6 % | | 10534 | AAE | IEEE 802.11ac WiFi (40MHz, MCS0, 99oc dc) | WLAN | 8.45 | ± 9.6 % | | 10535 | AAE | IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10536 | AAF | IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc) | WLAN | 8.32 | ± 9.6 % | | 0537 | AAF | IEEE 802,11ac WiFI (40MHz, MCS3, 99pc dc) | WLAN | 8.44 | ± 9.6 % | | 0538 | AAF | IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc) | WLAN | 8.54 | ± 9.6 % | | 0540 | AAA | IEEE 802.11ac WiFI (40MHz, MCS6, 99pc dc) | WLAN | 8.39 | ±9.6 % | | 10541 | AAA | IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc) | WLAN | 8.46 | 19.6% | | 10542 | AAA | IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc) | WLAN | 8.65 | ± 9.6 % | | 10543 | AAC | IEEE
802.11ac WiFi (40MHz, MCS9, 99pc dc) | WLAN | 8.65 | ± 9.6 % | | 10544 | AAC | IEEE 802.11ac WiFi (80MHz, MCS0, 99pc dc) | WLAN | 8.47 | | | | 70% | IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc) | AAPAA. | 0,47 | ± 9.6 % | Certificate No: EX3-7486_Jun21 Page 16 of 23 | 10546 | AAC | IEEE 802.11ac WiFi (80MHz, MCS2, 99pc dc) | WLAN | 8.35 | ±9.6 % | |-------|------|---|------|------|---------| | 10547 | AAC | IEEE 802.11ac WiFi (80MHz, MCS3, 99pc dc) | WLAN | 8.49 | ± 9.6 % | | 10548 | AAC | IEEE 802.11ac WiFi (80MHz, MCS4, 99pc dc) | WLAN | 8.37 | ± 9.6 % | | 10550 | AAC | IEEE 802.11ac WiFi (80MHz, MCS6, 99pc dc) | WLAN | 8.38 | ± 9.6 % | | 10551 | AAC | IEEE 802.11ac WIFI (80MHz, MCS7, 99pc dc) | WLAN | 8.50 | ± 9.6 % | | 10552 | AAC | IEEE 802.11ac WiFi (80MHz, MCS8, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10553 | AAC | IEEE 802 11ac WiFi (80MHz, MCS9, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10554 | AAC | IEEE 802.11ac WiFi (160MHz, MCS0, 99pc dc) | WLAN | 8.48 | ± 9.6 % | | 10555 | AAC | IEEE 802.11ac WiFi (160MHz, MCS1, 99pc dc) | WLAN | 8.47 | ± 9.6 % | | 10556 | AAC | IEEE 802.11ac WIFI (160MHz, MCS2, 99pc dc) | WLAN | 8.50 | ± 9.6 % | | 10557 | AAC | IEEE 802 11ac WiFi (160MHz, MCS3, 99pc dc) | WLAN | 8.52 | ± 9.6 % | | 10558 | AAC | IEEE 802.11ac WiFi (160MHz, MCS4, 99pc dc) | WLAN | 8.61 | ± 9.6 % | | 10560 | AAC | IEEE 802.11ac WiFi (160MHz, MCS6, 99pc dc) | WLAN | 8.73 | ± 9.6 % | | 10561 | AAC | IEEE 802.11ac WiFt (160MHz, MCS7, 99pc dc) | WLAN | 8.56 | ± 9.6 % | | 10562 | AAC | IEEE 802.11ac WiFi (160MHz, MCS8, 99pc dc) | WLAN | 8.69 | ± 9.6 % | | 10563 | AAC | IEEE 802.11ac WiFi (160MHz, MCS9, 99pc dc) | WLAN | 8.77 | ± 9.6 % | | 10564 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10565 | AAC | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10566 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc) | WLAN | 8.13 | ± 9.6 % | | 10567 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc) | WLAN | 8.00 | ± 9.6 % | | 10568 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc) | WLAN | 8.37 | ± 9.6 % | | 10569 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc) | WLAN | 8.10 | ± 9.6 % | | 10570 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc) | WLAN | B.30 | ± 9.6 % | | 10571 | AAC | IEEE 802.11b WIFI 2.4 GHz (DSSS, 1 Mbps, 90pc dc) | WLAN | 1,99 | ± 9.6 % | | 10572 | AAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc dc) | WLAN | 1.99 | ± 9.6 % | | 10573 | AAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc) | WLAN | 1.98 | ± 9.6 % | | 10574 | AAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc dc) | WLAN | 1.98 | ± 9.6 % | | 10575 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc) | WLAN | 8.59 | ± 9.6 % | | 10576 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc) | WLAN | 8.60 | ± 9.6 % | | 10577 | AAC | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10578 | AAD | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc) | WLAN | 8.49 | ± 9.6 % | | 10579 | AAD | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc) | WLAN | 8.36 | ± 9.6 % | | 10580 | AAD | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc) | WLAN | 8.76 | ± 9.6 % | | 10581 | AAD | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc) | WLAN | 8.35 | ± 9.6 % | | 10582 | AAD | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc) | WLAN | 8.67 | ± 9.6 % | | 10583 | AAD | IEEE 802.11a/h WIFI 5 GHz (OFDM, 6 Mbps, 90pc dc) | WLAN | 8.59 | ± 9.6 % | | 105B4 | AAD | IEEE 802.11a/h WiFl 5 GHz (OFDM, 9 Mbps, 90pc dc) | WLAN | 8.60 | ±9.6 % | | 10585 | AAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10586 | AAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc) | WLAN | 8.49 | ± 9.6 % | | 10587 | AAA | IEEE 802.11a/h WIFI 5 GHz (OFDM, 24 Mbps, 90pc dc) | WLAN | 8.36 | ± 9.6 % | | 10588 | AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc) | WLAN | 8.76 | ± 9.6 % | | 10589 | AAA | IEEE 802.11a/h WIFI 5 GHz (OFDM, 48 Mbps, 90pc dc) | WLAN | 8.35 | ± 9.6 % | | 10590 | AAA. | IEEE 802.11a/h WIFI 5 GHz (OFDM, 54 Mbps, 90pc dc) | WLAN | 8.67 | ± 9.6 % | | 10591 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc do) | WLAN | 8.63 | ± 9.6 % | | 10592 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc dc) | WLAN | 8.79 | ± 9.6 % | | 10593 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc dc) | WLAN | 8.64 | ± 9.6 % | | 10594 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10595 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10596 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc dc) | WLAN | 8.71 | ±9.6 % | | 10597 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc dc) | WLAN | 8.72 | ± 9.6 % | | 10598 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc dc) | WLAN | 8.50 | ±9.6% | | 0599 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc dc) | WLAN | 8.79 | ± 9.6 % | | 10600 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc dc) | WLAN | 8.88 | ± 9.6 % | | 10601 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10802 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc dc) | WLAN | 8.94 | ± 9.6 % | | 10603 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc dc) | WLAN | 9.03 | ± 9.6 % | Certificate No: EX3-7486_Jun21 Page 17 of 23 | 10604 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc dc) | WLAN | 8.76 | ± 9.6 % | |----------------|----------|---|---|-------|---------| | 10605 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc dc) | WLAN | 8.97 | ±9.6 % | | 10606 | AAC | IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc dc) | WLAN | 8.82 | ±9.6 % | | 10607 | AAC | IEEE 802.11ac WiFi (20MHz, MCS0, 90pc dc) | WLAN | 8.64 | ± 9.6 % | | 10608 | AAC | IEEE 802.11ac WiFi (20MHz, MCS1, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10609 | AAC | IEEE 802.11ac WiFi (20MHz, MCS2, 90pc dc) | WLAN | 8.57 | ± 9.6 % | | 10610 | AAC | IEEE 802.11ac WiFi (20MHz, MCS3, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10611 | AAC | IEEE 802.11ac WIFI (20MHz, MCS4, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10612 | AAC | IEEE 802.11ac WiFi (20MHz, MCS5, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10613 | AAC | IEEE 802.11ac WiFi (20MHz, MCS6, 90pc dc) | WLAN | 8.94 | ± 9.6 % | | 10614 | AAC | IEEE 802.11ac WiFi (20MHz, MCS7, 90pc dc) | WLAN | 8.59 | ± 9.6 % | | 10615 | AAC | IEEE 802.11ac WiFi (20MHz, MCS8, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10616 | AAC | IEEE 802.11ac WIFI (40MHz, MCS0, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10617 | AAC | IEEE 802.11ac WiFi (40MHz, MCS1, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10618 | AAC | IEEE 802 11ac WiFI (40MHz, MCS2, 90pc dc) | WLAN | 8.58 | ± 9.6 % | | 10619 | AAC | IEEE 802.11ac WiFi (40MHz, MCS3, 90pc dc) | WLAN | 8.86 | ± 9.6 % | | 10620 | AAC | IEEE 802.11ac WiFi (40MHz, MCS4, 90pc dc) | WLAN | 8.87 | ± 9.6 % | | 10621 | AAC | IEEE 802.11ac WIFI (40MHz, MCS5, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10622 | AAC | IEEE 802.11ac WiFi (40MHz, MCS6, 90pc dc) | WLAN | 8.68 | ± 9.6 % | | 10823 | AAC | IEEE 802.11ac WIFI (40MHz, MCS7, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10624 | AAC | IEEE 802.11ac WiFI (40MHz, MCS8, 90pc dc) | WLAN | 8.98 | | | 10625 | AAC | IEEE 802.11ac WiFi (40MHz, MCS9, 90pc dc) | WLAN | | ± 9.6 % | | 10626 | AAC | IEEE 802.11ac WiFi (80MHz, MCS0, 90pc dc) | WLAN | 8.96 | ± 9.6 % | | 10627 | 11.50.00 | IEEE 802.11ac WiFi (80MHz, MCS1, 90pc dc) | U.S. (175, 175, 175, 175, 175, 175, 175, 175, | 8.83 | ± 9.6 % | | 10628 | AAC | IEEE 802.11ac WiFi (80MHz, MCS2, 90pc dc) | WLAN | 8.88 | ± 9.6 % | | 10629 | AAC | IEEE 802.11ac WiFi (80MHz, MCS2, 90pc dc) | WLAN | 8.71 | ± 9.6 % | | 10630 | AAC | IEEE 802.11ac WIFI (80MHz, MCS3, 90pc 0c) | WLAN | 8.85 | ± 9.6 % | | 10631 | AAC | | WLAN | 8.72 | ± 9.6 % | | 10632 | AAC | IEEE 802.11ac WIFI (80MHz, MCS5, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10633 | AAC | IEEE 802.11ac WIFI (80MHz, MCS6, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10634 | AAC | IEEE 802.11ac WiFi (80MHz, MCS7, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 10635 | AAC | IEEE 802.11ac WiFi (80MHz, MCS8, 90pc dc) | WLAN | 8.80 | ± 9.6 % | | 10636 | AAC | IEEE 802.11ac WiFi (80MHz, MCS9, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10636 | AAC | IEEE 802.11ac WIFI (160MHz, MCS0, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | and the second | AAC | IEEE 802.11ac WIFI (160MHz, MCS1, 90pc dc) | WLAN | 8,79 | ± 9.6 % | | 10638 | AAC | IEEE 802.11ac WiFI (160MHz, MCS2, 90pc dc) | WLAN | 8.86 | ± 9.6 % | | 10639 | AAC | IEEE 802.11ac WiFi (160MHz, MCS3, 90pc dc) | WLAN | 8.85 | ±9.6 % | | 10840 | AAC | IEEE 802.11ac WIFi (160MHz, MCS4, 90pc dc) | WLAN | 8.98 | ± 9.6 % | | 10641 | AAC | IEEE 802.11ac WiFi (160MHz, MCS5, 90pc dc) | WLAN | 9.06 | ± 9.6 % | | 10642 | AAC | IEEE 802.11ac WiFi (160MHz, MCS6, 90pc dc) | WLAN | 9.06 | ± 9.6 % | | 10643 | AAC | IEEE 802.11ac WiFi (160MHz, MCS7, 90pc dc) | WLAN | 8.89 | ± 9.6 % | | 10644 | AAC | IEEE 802.11ac WiFi (160MHz, MCS8, 90pc dc) | WLAN | 9.05 | ± 9.6 % | | 10645 | AAC | IEEE 802.11ac WIFI (160MHz, MCS9, 90pc dc) | WLAN | 9.11 | ± 9.6 % | | 10646 | AAC | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub=2,7) | LTE-TDD | 11.96 | ±9.6 % | | 10647 | AAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub=2,7) | LTE-TDD | 11.96 | ±9.6 % | | 10648 | AAC | CDMA2000 (1x Advanced) | CDMA2000 | 3.45 | ± 9.6 % | | 10652 | AAC | LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 6.91 | ± 9.6 % | | 10653 | AAC | LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 7.42 | ± 9.6 % | | 10654 | AAC | LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 6.96 | ± 9.6 % | | 10655 | AAC | LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 7.21 | ±9.6 % | | 10658 | AAC | Pulse Waveform (200Hz, 10%) | Test | 10.00 | ± 9.6 % | | 10659 | AAC | Pulse Waveform (200Hz,
20%) | Test | 6.99 | ± 9.6 % | | 10660 | AAC | Pulse Waveform (200Hz, 40%) | Test | 3.98 | ± 9.6 % | | 10661 | AAC | Pulse Waveform (200Hz, 60%) | Test | 2.22 | ± 9.6 % | | 10662 | AAC | Pulse Waveform (200Hz, 80%) | Test | 0.97 | ±9.6 % | | 10670 | AAC | Bluefooth Low Energy | Bluetooth | 2.19 | ± 9.6 % | | 10671 | AAD | IEEE 802,11ax (20MHz, MCS0, 90pc dc) | WLAN | 9.09 | ± 9.6 % | Certificate No: EX3-7486_Jun21 Page 18 of 23 | 10672 | AAD | IEEE 802.11ax (20MHz, MCS1, 90pc dc) | WLAN | 8.57 | ± 9.6 % | |-------|-----|---------------------------------------|------|------|---------| | 10673 | AAD | IEEE 802.11ax (20MHz, MCS2, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10674 | AAD | IEEE 802.11ax (20MHz, MCS3, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10675 | AAD | IEEE 802.11ax (20MHz, MCS4, 90pc dc) | WLAN | 8.90 | ± 9.6 % | | 10676 | AAD | IEEE 802.11ax (20MHz, MCS5, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10677 | AAD | IEEE 802.11ax (20MHz, MC56, 90pc dc) | WLAN | 8.73 | ± 9.6 % | | 10678 | AAD | IEEE 802.11ax (20MHz, MCS7, 90pc dc) | WLAN | 8.78 | ±9.6 % | | 10679 | AAD | IEEE 802.11ax (20MHz, MCS8, 90pc dc) | WLAN | 8.89 | ± 9.6 % | | 10680 | AAD | IEEE 802.11ax (20MHz, MCS9, 90pc dc) | WLAN | 8.80 | ± 9.6 % | | 10681 | AAG | IEEE 802.11ax (20MHz, MCS10, 90pc dc) | WLAN | 8.62 | ± 9.6 % | | 10682 | AAF | IEEE 802.11ax (20MHz, MCS11, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 10683 | AAA | IEEE 802.11ax (20MHz, MCS0, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10684 | AAC | IEEE 802.11ax (20MHz, MCS1, 99pc dc) | WLAN | 8.26 | ± 9.6 % | | 10685 | AAC | IEEE 802.11ax (20MHz, MCS2, 99pc dc) | WLAN | 8.33 | ± 9.6 % | | 10686 | AAC | IEEE 802.11ax (20MHz, MCS3, 99pc dc) | WLAN | 8.28 | ± 9.6 % | | 10687 | AAE | IEEE 802.11ax (20MHz, MCS4, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10688 | AAE | IEEE 802.11ax (20MHz, MCS5, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10689 | AAD | IEEE 802.11ax (20MHz, MCS6, 99pc dc) | WLAN | 8.55 | ± 9.6 % | | 10690 | AAE | IEEE 802.11ax (20MHz, MCS7, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10691 | AAB | IEEE 802.11ax (20MHz, MCS8, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10692 | AAA | FEEE 802.11ax (20MHz, MCS9, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10693 | AAA | IEEE 802.11ax (20MHz, MCS10, 99pc dc) | WLAN | 8.25 | ±9.6% | | 10694 | AAA | IEEE 802.11ax (20MHz, MCS11, 99pc do) | WLAN | 8.57 | ± 9.6 % | | 10695 | AAA | IEEE 802.11ax (40MHz, MCS0, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10696 | AAA | IEEE 802.11ax (40MHz, MCS1, 90pc dc) | WLAN | 8.91 | ± 9.6 % | | 10697 | AAA | IEEE 802.11ax (40MHz, MCS2, 90pc dc) | WLAN | 8.61 | ± 9.6 % | | 10698 | AAA | IEEE 802.11ax (40MHz, MCS3, 90pc dc) | WLAN | 8.89 | ± 9.6 % | | 10699 | AAA | IEEE 802.11ax (40MHz, MCS4, 90pc dc) | WLAN | 8.82 | ±9.6% | | 10700 | AAA | IEEE 802.11ax (40MHz, MCS5, 90pc dc) | WLAN | 8.73 | ± 9.6 % | | 10701 | AAA | IEEE 802.11ax (40MHz, MCS6, 90pc dc) | WLAN | 8.86 | ± 9.6 % | | 10702 | AAA | IEEE 802.11ax (40MHz, MCS7, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10703 | AAA | IEEE 802.11ax (40MHz, MCS8, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10704 | AAA | IEEE 802.11ax (40MHz, MCS9, 90pc dc) | WLAN | 8.56 | ± 9.6 % | | 10705 | AAA | IEEE 802.11ax (40MHz, MCS10, 90pc dc) | WLAN | 8.69 | ± 9.6 % | | 10706 | AAC | IEEE 802.11ax (40MHz, MCS11, 90pc dc) | WLAN | 8.66 | ± 9.6 % | | 10707 | AAC | IEEE 802.11ax (40MHz, MCS0, 99pc dc) | WLAN | 8.32 | ± 9.6 % | | 10708 | AAC | IEEE 802.11ax (40MHz, MCS1, 99pc dc) | WLAN | 8.55 | ± 9.6 % | | 10709 | AAC | IEEE 802.11ax (40MHz, MCS2, 99pc dc) | WLAN | 8.33 | ± 9.6 % | | 10710 | AAC | IEEE 802.11ax (40MHz, MCS3, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10711 | AAC | IEEE 802.11ax (40MHz, MCS4, 99pc dc) | WLAN | 8.39 | ± 9.6 % | | 10712 | AAC | IEEE 802.11ax (40MHz, MCS5, 99pc dc) | WLAN | 8.67 | ± 9.6 % | | 10713 | AAC | IEEE 802.11ax (40MHz, MCS6, 99pc dc) | WLAN | 8.33 | ± 9.6 % | | 10714 | AAC | IEEE 802.11ax (40MHz, MCS7, 99pc dc) | WLAN | 8.26 | ± 9.6 % | | 10715 | AAC | IEEE 802.11ax (40MHz, MCS8, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10716 | AAC | IEEE 802.11ax (40MHz, MCS9, 99pc dc) | WLAN | 8.30 | ± 9.6 % | | 10717 | AAC | IEEE 802.11ax (40MHz, MCS10, 99pc dc) | WLAN | 8.48 | ± 9.6 % | | 10718 | AAC | IEEE 802.11ax (40MHz, MCS11, 99pc dc) | WLAN | 8.24 | ± 9.6 % | | 10719 | AAC | IEEE 802.11ax (80MHz, MCS0, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 0720 | AAC | IEEE 802.11ax (80MHz, MCS1, 90pc dc) | WLAN | 8.87 | ± 9.6 % | | 0721 | AAC | IEEE 802.11ax (80MHz, MCS2, 90pc dc) | WLAN | 8.76 | ± 9.6 % | | 10722 | AAC | IEEE 802.11ax (80MHz, MCS3, 90pc dc) | WLAN | 8.55 | ± 9.6 % | | 10723 | AAC | IEEE 802,11ax (80MHz, MCS4, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10724 | AAC | IEEE 802.11ax (80MHz, MCS5, 90pc dc) | WLAN | 8.90 | ± 9.6 % | | 10725 | AAC | IEEE 802.11ax (80MHz, MCS6, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10726 | AAC | IEEE 802.11ax (80MHz, MCS7, 90pc dc) | WLAN | 8.72 | ± 9.6 % | | 10727 | AAC | IEEE 802.11ax (80MHz, MCS8, 90pc dc) | WLAN | 8.66 | ± 9.6 % | Certificate No: EX3-7486_Jun21 Page 19 of 23 | 10728 | AAC | IEEE 802.11ax (80MHz, MCS9, 90pc dc) | WLAN | 8.65 | ± 9.6 % | |----------------|-----|---|--|--------|---------| | 10729 | AAC | IEEE 802.11ax (80MHz, MCS10, 90pc dc) | WLAN | 8.64 | ± 9.6 % | | 10730 | AAC | IEEE 802.11ax (80MHz, MCS11, 90pc dc) | WLAN | 8.67 | ± 9.6 % | | 10731 | AAC | IEEE 802.11ax (80MHz, MCS0, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10732 | AAC | IEEE 802.11ax (80MHz, MCS1, 99pc dc) | WLAN | 8.46 | ± 9.6 % | | 10733 | AAC | IEEE 802.11ax (80MHz, MCS2, 99pc dc) | WLAN | 8.40 | ± 9.6 % | | 10734 | AAC | IEEE 802.11ax (80MHz, MCS3, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10735 | AAC | IEEE 802.11ax (80MHz, MCS4, 99pc dc) | WLAN | 8.33 | ± 9.6 % | | 10736 | AAC | IEEE 802.11ex (80MHz, MCS5, 99pc dc) | WLAN | 8.27 | ± 9.6 9 | | 10737 | AAG | IEEE 802.11ax (80MHz, MCS8, 99pc dc) | WLAN | 8.36 | ± 9.6 9 | | 10738 | AAC | IEEE 802.11ax (80MHz, MCS7, 99pc dc) | WLAN | 8.42 | ± 9.6 % | |
10739 | AAC | IEEE 802.11ax (80MHz, MCS8, 99pc dc) | WLAN | 8.29 | ± 9.6 9 | | 10740 | AAC | IEEE 802.11ax (80MHz, MCS9, 99pc dc) | WLAN | 8.48 | ±9.69 | | 10741 | AAC | IEEE 802.11ax (80MHz, MCS10, 99pc dc) | WLAN | 8.40 | ± 9.6 9 | | 10742 | AAC | IEEE 802.11ax (80MHz, MCS11, 99pc dc) | WLAN | 8.43 | ± 9.6 9 | | 10743 | AAC | IEEE 802.11ax (160MHz, MCS0, 90pc dc) | WLAN | 8.94 | ± 9.6 9 | | 10744 | AAC | IEEE 802.11ax (160MHz, MCS1, 90pc dc) | WLAN | 9.16 | ± 9.6 9 | | 10745 | AAC | IEEE 802.11ax (160MHz, MCS2, 90pc dc) | WLAN | 8.93 | ± 9.6 9 | | 10746 | AAC | IEEE 802.11ax (160MHz, MCS3, 90pc dc) | WLAN | 9.11 | ± 9.6 % | | 10747 | AAC | IEEE 802.11ax (160MHz, MCS4, 90pc dc) | WLAN | 9.04 | ± 9.6 % | | 10748 | AAC | IEEE 802.11ax (160MHz, MCS5, 90pc dc) | WLAN | 8.93 | ± 9.6 9 | | 10749 | AAC | IEEE 802.11ax (160MHz, MCS6, 90pc dc) | WLAN | 8.90 | ± 9.6 % | | 10750 | AAC | IEEE 802.11ax (160MHz, MCS7, 90pc dc) | WLAN | 8.79 | ± 9.6 ° | | 10751 | AAC | IEEE 802 11ax (160MHz, MCS8, 90pc dc) | WLAN | 8.82 | ± 9.6 ° | | 10752 | AAC | IEEE 802.11ax (160MHz, MCS8, 90pc dc) | WLAN | 8.81 | ± 9.6 ° | | 10753 | AAC | IEEE 802.11ax (160MHz, MCS10, 90pc dc) | WLAN | 300000 | 100.00 | | 10754 | - | IEEE 802.11ax (160MHz, MCS11, 90pc dc) | WLAN | 9.00 | ± 9.6 | | 10755 | AAC | IEEE 802.11ax (160MHz, MCS0, 99pc dc) | WLAN | 8.94 | ± 9.61 | | 10756 | AAC | IEEE 802.11ax (160MHz, MCS1, 99pc dc) | WLAN | 8.64 | ± 9.6 ° | | 10757 | AAC | IEEE 802.11ax (160MHz, MCS2, 99pc dc) | WLAN | 8.77 | ± 9.6 % | | 10758 | AAC | IEEE 802.11ax (160MHz, MCS3, 99pc dc) | The second secon | 8.77 | ± 9.6 ° | | 10759 | AAC | IEEE 802.11ax (160MHz, MCS4, 99pc dc) | WLAN | 8.69 | ±9.61 | | 10760 | AAC | IEEE 802.11ax (160MHz, MCS4, 98pc dc) | WLAN | 8.58 | ± 9.6 | | 10760 | AAC | I south the state of | 100000000000000000000000000000000000000 | 8.49 | ±9.6 | | 10762 | AAC | IEEE 802.11ax (160MHz, MCS8, 99pc dc) IEEE 802.11ax (160MHz, MCS7, 99pc dc) | WLAN | 8.58 | ± 9.6 ° | | 10763 | AAC | IEEE 802.11ax (160MHz, MCS8, 99pc dc) | WLAN | 8.49 | ± 9.6 | | | AAC | | WLAN | 8.53 | ± 9.6 | | 10764 | AAC | IEEE 802.11ax (160MHz, MCS9, 99pc dc) | WLAN | 8.54 | ± 9.6 | | 10765 | AAC | IEEE 802.11ax (160MHz, MCS10, 99pc dc) | WLAN | 8.54 | ± 9.6 ° | | 10766
10767 | AAC | IEEE 802.11ax (160MHz, MCS11, 99pc dc) | WLAN | 8.51 | ± 9.6 5 | | | AAC | 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 7.99 | ± 9.6 | | 10768 | AAC | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.01 | ± 9.6 9 | | 10769 | AAC | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TOD | 8.01 | ± 9.6 ° | | 10770 | AAC | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ± 9.6 | | 10771 | AAC | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TOD | 8.02 | ± 9.6 ° | | 10772 | AAC | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TOD | 8.23 | ± 9.6 ° | | 10773 | AAC | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.03 | ± 9.6 | | 10774 | AAC | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ± 9.6 | | 10775 | AAC | 5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.31 | ± 9.6 | | 10776 | AAC | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.30 | ± 9.6 | | 10777 | AAC | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.30 | ± 9.6 | | 10778 | AAC | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 5 | | 10779 | AAC | 5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.42 | ± 9.6 ° | | 10780 | AAC | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.38 | ± 9.6 9 | | 10781 | AAC | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.38 | ± 9.6 ° | | 10782 | AAC | 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.43 | ± 9.6 ° | | 10783 | AAC | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.31 | ± 9.6 9 | Certificate No: EX3-7486_Jun21 Page 20 of 23 | 10784 | AAC | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.29 | ± 9.6 % | |-------|-----|---|---------------|------|---------| | 10785 | AAC | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.40 | ± 9.6 % | | 10786 | AAC | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10787 | AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.44 | ± 9.6 % | | 10788 | AAC | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.39 | ± 9.6 % | | 10789 | AAC | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10790 | AAC | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.39 | ± 9.6 % | | 10791 | AAC | 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.83 | ± 9.6 % | | 10792 | AAC | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.92 | ± 9.6 % | | 10793 | AAC | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.95 | ± 9.6 % | | 10794 | AAC | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.82 | ± 9.6 % | | 10795 | AAC | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.84 | ±9.6 9 | | 0796 | AAC | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.82 | ± 9.6 % | | 0797 | AAC | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 KHz) | 5G NR FR1 TDD | 8.01 | ± 9.6 3 | | 0798 | AAC | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.89 | ± 9.6 9 | | 0799 | AAC | 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.93 | ± 9.6 5 | | 10801 | AAC | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.89 | ± 9.6 5 | | 0802 | AAC | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.87 | ± 9.6 | | 0803 | AAE | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.93 | ± 9.6 | | 10805 | AAD | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 | | 10806 | AAD | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 | | 10809 | AAD | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 | | 10810 | AAD | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 | | 10812 | AAD | 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 | | 0817 | AAD | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 2000 | - | | 10818 | AAD | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.35 | ±9.6 | | 0819 | - | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | | ± 9.6 | | 10820 | AAD | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.33 | ± 9.6 | | 10821 | - | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) | | 8.30 | ± 9.6 | | 10822 | AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 KHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 ° | | 10823 | AAD | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 ° | | 10824 | AAC | | 5G NR FR1 TDD | 8.36 | ± 9.6 ° | | 10825 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.39 | ± 9.6 | | 10827 | AAD | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 ° | | | AAD | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.42 | ± 9.6 | | 10828 | AAE | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz) | 5G NR FR1 TDO | 8.43 | ± 9.6 ° | | 10829 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.40 | ± 9.6 | | 10830 | AAD | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.63 | ± 9.6 | | 10831 | AAD | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.73 | ± 9.6 9 | | 10832 | AAD | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.74 | ± 9.6 ° | | 10833 | AAD | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ± 9.6 | | 10834 | AAD | 5G NR (CP-OFDM, 1 R8, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.75 | ± 9.6 ° | | 10835 | AAD | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ± 9.6 ° | | 10836 | AAE | 5G NR (CP-OFDM, 1 R8, 50 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.66 | ± 9.6 | | 10837 | AAD | 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.68 | ± 9.6 ° | | 10839 | AAD | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ± 9.6 ° | | 10840 | AAD | 5G NR (CP-OFDM, 1 R8, 90 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.67 | ± 9.6 | | 10841 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.71 | ± 9.6 ° | | 10843 | AAD | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.49 | ± 9.6 ° | | 10844 | AAD | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 | | 10846 | AAD | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 ° | | 10854 | AAD | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 ° | | 10855 | AAD | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.36 | ± 9.6 | | 10856 | AAD | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 9 | | 10857 | AAD | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) | 50 NR FR1 TDD | 8.35 | ± 9.6 | | 10858 | AAD | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.36 | ± 9.6 9 | | 10859 | AAD | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 9 | Certificate No: EX3-7486_Jun21 Page 21 of 23 EX3DV4- SN:7486 June 18, 2021 | 10860 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | |-------|-----|--|---------------|------|---------| | 10861 | AAD | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.40 | ± 9.6 % | | 10863 | AAD | 5G NR (CP-OFDM, 100% R8, 80 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10864 | AAE | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)
 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10865 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10866 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10868 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.89 | ± 9.6 % | | 10869 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.75 | ± 9.6 % | | 10870 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.86 | ± 9.6 % | | 10871 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 5.75 | ± 9.6 % | | 10872 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.52 | ± 9.6 % | | 10873 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.61 | ± 9.6 % | | 10874 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.65 | ± 9.6 % | | 10875 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 7.78 | ± 9.6 % | | 10876 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 8.39 | ± 9.6 % | | 10877 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 7.95 | ± 9.6 % | | 10878 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.41 | ± 9.6 % | | 10879 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.12 | ± 9.6 % | | 10880 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.38 | ± 9.6 % | | 10881 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.75 | ± 9.6 % | | 10882 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.96 | ± 9.6 % | | 10883 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.57 | ± 9.6 % | | 10884 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.53 | ± 9.6 % | | 10865 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TOD | 6.61 | ± 9.6 % | | 0880 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.65 | ± 9.6 % | | 10887 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 7.78 | ± 9.6 % | | 10888 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 8.35 | ± 9.6 % | | 10689 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.02 | ± 9.6 % | | 10690 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.40 | ± 9.6 % | | 10891 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.13 | ± 9.6 % | | 10892 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.41 | ± 9.6 % | | 10897 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.66 | ± 9.6 % | | 10898 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TOD | 5.67 | ± 9.6 % | | 10899 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.67 | ± 9.6 % | | 10900 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10901 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10902 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10903 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10904 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10905 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10906 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10907 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.78 | ± 9.6 % | | 10908 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.93 | ± 9.6 % | | 10909 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.96 | ± 9.6 % | | 10910 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.83 | ± 9.6 % | | 10911 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.93 | ± 9.6 % | | 10912 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10913 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10914 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.85 | ± 9.6 % | | 10915 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.83 | ± 9.6 % | | 0916 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz) | 50 NR FR1 TDD | 5.87 | ± 9.6 % | | 10917 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.94 | ± 9.6 % | | 10918 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.86 | ± 9.6 % | | 10919 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.86 | ± 9.6 % | | 10920 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.87 | ± 9.6 % | | 10921 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | Certificate No: EX3-7486_Jun21 Page 22 of 23 EX3DV4-SN:7486 June 18, 2021 | 10923 A 10924 A 10925 A 10926 A 10927 A 10928 A 10929 A 10930 A 10931 A 10932 A 10933 A 10934 A 10935 A 10935 A 10935 A 10936 A 10937 A | AAD AAD AAD AAD AAAD AAAD AAAD AAAD AA | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD 5G NR FR1 FDD | 5.82
5.84
5.84
5.95
5.84
5.94
5.52
5.52
5.51
5.51
5.51
5.51
5.51
5.51 | ±9.6%
±9.6%
±9.6%
±9.6%
±9.6%
±9.6%
±9.6%
±9.6%
±9.6%
±9.6%
±9.6%
±9.6%
±9.6%
±9.6% | |---|---|--
--|--|--| | 10924 A
10925 A
10926 A
10927 A
10928 A
10929 A
10930 A
10931 A
10932 A
10933 A
10935 A
10935 A
10936 A
10937 A
10938 A
10938 A
10939 A | AAD AAD AAD AAD AAD AAD AAD AAD AAAD A | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD 5G NR FR1 TDD 5G NR FR1 TDD 5G NR FR1 TDD 5G NR FR1 FDD | 5.84
5.95
5.84
5.94
5.52
5.52
5.51
5.51
5.51
5.51
5.51
5.90 | ±9.6%
±9.6%
±9.6%
±9.6%
±9.6%
±9.6%
±9.6%
±9.6%
±9.6%
±9.6%
±9.6%
±9.6% | | 10925 A
10926 A
10927 A
10928 A
10929 A
10930 A
10931 A
10932 A
10933 A
10933 A
10935 A
10936 A
10937 A
10938 A
10939 A | AAD AAD AAD AAD AAD AAD AAD AAAD AAA AAA AAA AAA AAA AAA AAA AAAB AAB | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD 5G NR FR1 TDD 5G NR FR1 TDD 5G NR FR1 FDD | 5.84
5.95
5.84
5.94
5.52
5.52
5.51
5.51
5.51
5.51
5.51
5.90 | ±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 % | | 10926 A
10927 A
10928 A
10929 A
10930 A
10931 A
10932 A
10933 A
10933 A
10935 A
10936 A
10937 A
10938 A
10939 A | AAD AAD AAD AAD AAD AAD AAB AAA AAA AAA | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD 5G NR FR1 TDD 5G NR FR1 FDD | 5.95
5.84
5.94
5.52
5.52
5.52
5.51
5.51
5.51
5.51
5.51 | ±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 % | | 10927 A 10928 A 10929 A 10930 A 10931 A 10932 A 10933 A 10933 A 10934 A 10936 A 10937 A 10938 A 10939 A | AAD AAD AAD AAD AAB AAA AAA AAA AAA AAA | 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD 5G NR FR1 FDD | 5.94
5.52
5.52
5.52
5.51
5.51
5.51
5.51
5.51 | ±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 % | | 10928 A
10929 A
10930 A
10931 A
10931 A
10932 A
10933 A
10934 A
10935 A
10937 A
10937 A
10938 A
10939 A | AAD AAD AAB AAA AAA AAA AAA AAA AAA AAA | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD
5G FDD | 5.94
5.52
5.52
5.52
5.51
5.51
5.51
5.51
5.51 | ±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 % | | 10929 A
10930 A
10931 A
10932 A
10933 A
10934 A
10935 A
10935 A
10936 A
10937 A
10938 A
10939 A | AAD AAD AAB AAA AAA AAA AAA AAA AAA AAB AAB | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD
5G FDD | 5,52
5,52
5,51
5,51
5,51
5,51
5,51
5,51 | ±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 % | | 10930 A
10931 A
10932 A
10933 A
10934 A
10935 A
10936 A
10937 A
10938 A
10939 A | AAD AAB AAA AAA AAA AAA AAA AAA AAB AAB | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD
5G NR FR1 FDD | 5,52
5,52
5,51
5,51
5,51
5,51
5,51
5,51 | ±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 % | | 10931 A
10932 A
10933 A
10934 A
10935 A
10936 A
10937 A
10938 A
10939 A | AAD AAB AAA
AAA AAA AAAC AAB AAB AAB AAB | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD
5G NR FR1 FDD | 5.52
5.51
5.51
5.51
5.51
5.51
5.51
5.90 | ± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 % | | 10932 A
10933 A
10934 A
10935 A
10936 A
10937 A
10938 A
10939 A | AAB
AAA
AAA
AAC
AAB
AAB
AAB | SG NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) SG NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) SG NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) SG NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) SG NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) SG NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) SG NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD
5G NR FR1 FDD
5G NR FR1 FDD
5G NR FR1 FDD
5G NR FR1 FDD | 5.51
5.51
5.51
5.51
5.51
5.51
5.90 | ±9.6 %
±9.6 %
±9.6 %
±9.6 % | | 10933 A
10934 A
10935 A
10936 A
10937 A
10938 A
10939 A | AAA
AAA
AAC
AAB
AAB
AAB | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD
5G NR FR1 FDD
5G NR FR1 FDD
5G NR FR1 FDD | 5.51
5.51
5.51
5.90 | ± 9.6 %
± 9.6 %
± 9.6 % | | 10934 A
10935 A
10936 A
10937 A
10938 A
10939 A | AAA
AAC
AAB
AAB
AAB | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD
5G NR FR1 FDD
5G NR FR1 FDD | 5.51
5.51
5.90 | ± 9.6 %
± 9.6 %
± 9.6 % | | 10935 A
10936 A
10937 A
10938 A
10939 A | AAA
AAC
AAB
AAB
AAB | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD
5G NR FR1 FDD | 5.51
5.51
5.90 | ± 9.6 %
± 9.6 % | | 10936 A
10937 A
10938 A
10939 A
10940 A | AAC
AAB
AAB
AAB
AAB | 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)
5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)
5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.90 | ± 9.6 % | | 10937 A
10938 A
10939 A
10940 A | AAB
AAB
AAB | 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)
5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 1.00 (0.00 (| 5.90 | | | 10938 A
10939 A
10940 A | AAB
AAB
AAB | 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)
5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | - | | | 10939 A
10940 A | AAB
AAB | | | 5.77 | ± 9.6 % | | 10940 A | AAB | | 5G NR FR1 FDD | 5.90 | ± 9.6 % | | - A | | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.82 | ± 9.6 % | | 10011 | 4 (100) | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.89 | ± 9.6 % | | 10941 A | AAB | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.83 | ± 9.6 % | | 10942 A | AAB | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.85 | ± 9.6 % | | 77.7 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.95 | ± 9.6 % | | 10944 A | AAB | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.81 | ± 9.6 % | | 10945 A | AAB | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.85 | ±9.6 % | | 10946 A | AAC | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.83 | ± 9.6 % | | 10947 A | AAB | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.87 | ± 9.6 % | | 10948 A | AAB | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.94 | ± 9.6 % | | 10949 A | AAB | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.87 | ± 9.6 % | | 10950 A | AAB | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.94 | ± 9.6 % | | 10951 A | AAB | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.92 | ± 9.6 % | | Marie Control | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.25 | ± 9.6 % | | 10953 A | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.15 | ± 9.6 % | | 10954 A | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.23 | ± 9.6 % | | 10955 A | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.42 | ± 9.6 % | | | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.14 | ± 9.6 % | | CONTRACTOR OF THE PARTY | AAC | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.31 | ± 9.6 % | | CONTRACTOR OF THE PARTY | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.61 | ± 9.6 % | | Market Company | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.33 | ± 9.6 % | | | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.32 | ± 9.6 % | | | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.36 | ± 9.6 % | | | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TOD | 9.40 | ± 9.6 % | | | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.55 | ± 9.6 % | | Principal Control | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.29 | ± 9.6 % | | 100000000000000000000000000000000000000 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.37 | ± 9.6 % | | | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.55 | ± 9.6 % | | where the contract of | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.42 | ± 9.6 % | | | AAB | 5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.49 | ± 9.6 % | | 100 | AAB | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 11.59 | ± 9.6 % | | | AAB | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 9.06 | | | | AAB | 5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz) | 5G NR FR1 TDD | 10.28 | ± 9.6 %
± 9.6 % | E. Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Certificate No: EX3-7486_Jun21 Page 23 of 23 FCC ID: AZ489FT7174 / IC: 109U-89FT7174 Report ID: P39731-EME-00029 # Appendix C # **Dipole Calibration Certificates** Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates | CALIBRATION C | ERTIFICATE | | | |--|-----------------------------------|--|--| | Object | D450V3 - SN:10 | 53 | | | Calibration procedure(s) | QA CAL-15.v9
Calibration Proce | dure for SAR Validation Source | s below 700 MHz | | Calibration
date: | February 17, 202 | 2 | | | | | ional standards, which realize the physical ur | | | | | robability are given on the following pages a | | | All calibrations have been conducte | ed in the closed laborato | ry facility: environment temperature (22 ± 3) ^o | 'C and humidity < 70%. | | Calibration Equipment used (M&TE | critical for calibration) | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | ower sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | ower sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | leference 20 dB Attenuator | SN: CC2552 (20x) | 09-Apr-21 (No. 217-03343) | Apr-22 | | ype-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 3877 | 31-Dec-21 (No. EX3-3877 Dec21) | Dec-22 | | DAE4 | SN: 654 | 26-Jan-22 (No. DAE4-654_Jan22) | Jan-23 | | Secondary Standards | ID# | | 100000000
1000000000000000000000000000 | | Power meter E4419B | - Control - Control | Check Date (in house) | Scheduled Check | | Power meter E4419B
Power sensor E4412A | SN: GB41293874 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | ower sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Tower sensor E4412A
RF generator HP 8648C | SN: 000110210
SN: US3642U01700 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Vertwork Analyzer Agillent E8358A | SN: US41080477 | 04-Aug-99 (in house check Jun-20)
31-Mar-14 (in house check Oct-20) | In house check: Jun-22
In house check: Oct-22 | | 7. 82 | 20 | | | | | Name | Function | Signature | | Calibrated by: | Jeffrey Katzman | Laboratory Technician | AH | | | | | C. an | | Approved by: | Sven Kühn | Deputy Manager | 9/ | | | | | Issued: February 18, 2 | Certificate No: D450V3-1053_Feb22 Page 1 of 8 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D450V3-1053_Feb22 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-----------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | ELI4 Flat Phantom | Shell thickness: 2 ± 0.2 mm | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 450 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 43.5 | 0.87 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 43.3 ± 6 % | 0.85 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.13 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 4.60 W/kg ± 18.1 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 0.757 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 3.07 W/kg ± 17.6 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 56.7 | 0.94 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 56.2 ± 6 % | 0.94 mha/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | **** | | # SAR result with Body TSL | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.16 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 4.63 W/kg ± 18.1 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 0.780 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 3.12 W/kg ± 17.6 % (k=2) | Certificate No: D460V3-1053_Feb22 #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 58.5 Ω - 1.7 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 21.9 dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 54.0 Ω - 6.8 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 22.4 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.351 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | Manufactured by | SFEAG | Certificate No: D450V3-1053_Feb22 Page 4 of 8 #### DASY5 Validation Report for Head TSL Date: 15.02.2022 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1053 Communication System: UID 0 - CW; Frequency: 450 MHz Medium parameters used: f = 450 MHz; $\sigma = 0.85 \text{ S/m}$; $\epsilon_f = 43.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3877; ConvF(10.64, 10.64, 10.64) @ 450 MHz; Calibrated: 31.12.2021 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn654; Calibrated: 26.01,2022 - Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ### Dipole Calibration for Head Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 39.17 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 1.74 W/kg SAR(1 g) = 1.13 W/kg; SAR(10 g) = 0.757 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (> 15 mm) Ratio of SAR at M2 to SAR at M1 = 64.8% Maximum value of SAR (measured) = 1.52 W/kg Certificate No: D450V3-1053_Feb22 Page 5 of 8 #### Impedance Measurement Plot for Head TSL Certificate No: D450V3-1053_Feb22 Page 6 of 8 #### DASY5 Validation Report for Body TSL Date: 17.02.2022 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1053 Communication System: UID 0 - CW; Frequency: 450 MHz Medium parameters used: f = 450 MHz; $\sigma = 0.94 \text{ S/m}$; $\varepsilon_r = 56.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ####
DASY52 Configuration: - Probe: EX3DV4 SN3877; ConvF(10.64, 10.64, 10.64) @ 450 MHz; Calibrated: 31.12.2021 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn654; Calibrated: 26.01.2022 - Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Body Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 41.70 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.75 W/kg SAR(1 g) = 1.16 W/kg; SAR(10 g) = 0.780 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (> 15 mm) Ratio of SAR at M2 to SAR at M1 = 66.3% Maximum value of SAR (measured) = 1.54 W/kg 0 dB = 1.54 W/kg = 1.88 dBW/kg Certificate No: D450V3-1053_Feb22 # Impedance Measurement Plot for Body TSL Certificate No: D450V3-1053_Feb22 Page 8 of 8 # **Dipole Data** The table below includes dipole impedance and return loss measurement data measured by Motorola Solutions' EME lab. The results meet the requirements stated in KDB 865664. | Dipole 450-1053 | Head | | | |-----------------|-----------|-----------------|-------------| | Dipole 430-1033 | Impedance | | Return Loss | | Date Measured | real
Ω | imag j Ω | dB | | 04/14/22 | 53.67 | -6.74 | -23.23 | | 02/11/23 | 49.82 | -7.88 | -21.75 |