TEST REPORT DT&C Co., Ltd. 42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel: 031-321-2664, Fax: 031-321-1664 1. Report No: DRRFCC1902-0020(1) 2. Customer · Name : Sena Technologies, Inc. · Address: 19, Heolleung-ro 569-gil, Gangnam-gu, Seoul, South Korea 3. Use of Report: FCC Original Grant 4. Product Name / Model Name: X-COM2 / SP65 FCC ID: S7A-SP65 5. Test Method Used: IEEE 1528-2013, FCC SAR KDB Publications (Details in test report), Test Specification: CFR §2.1093 6. Date of Test: 2019.03.11 7. Testing Environment: See appended test report. 8. Test Result: Refer to the attached test result. Affirmation Tested by Name: BumJun Park Reviewed by Name: HakMin Kim The test results presented in this test report are limited only to the sample supplied by applicant and the use of this test report is inhibited other than its purpose. This test report shall not be reproduced except in full, without the written approval of DT&C Co., Ltd. 2019.03.13. DT&C Co., Ltd. If this report is required to confirmation of authenticity, please contact to report@dtnc.net ## **Test Report Version** | Test Report No. | Date | Description | |--------------------|---------------|------------------| | DRRFCC1902-0020 | Feb. 22, 2019 | Initial issue | | DRRFCC1902-0020(1) | Mar. 13, 2019 | Bluetooth retest | ## **Table of Contents** | 1. DESCRIPTION OF DEVICE | 4 | |---|-------------| | 1.1 Guidance Applied 1.2 DUT Antenna Locations 1.3 Power Reduction for SAR 1.4 Power Reduction for SAR 1.5 Device Serial Numbers 2. INTROCUCTION | 4
4
4 | | 3. DESCRIPTION OF TEST EQUIPMENT | | | 3.1 SAR MEASUREMENT SETUP | | | 3.2 Probe Specification | | | 3.3 Probe Calibration Process | | | 3.3.1 E-Probe Calibration | 8 | | 3.4 Data Extrapolation | | | 3.5 SAM Twin PHANTOM | | | 3.7 Brain Simulation Mixture Characterization | | | 3.8 SAR TEST EQUIPMENT | 11 | | 4. TEST SYSTEM SPECIFICATIONS | 12 | | 5. SAR MEASUREMENT PROCEDURE | 13 | | 5.1 Measurement Procedure | | | 6. RF EXPOSURE LIMITS | | | 7. SAR MEASUREMENT PROCEDURES | 16 | | 7.1 Measured and Reported SAR | 16 | | 8. Nominal and Maximum Output Power Spec and RF Conducted Powers | | | 8.1 Bluetooth Nominal and Maximum Output Power Spec and Conducted Powers | 17 | | 9. SYSTEM VERIFICATION | | | 9.1 Tissue Verification | | | 10. SAR TEST RESULTS | | | 10.1 Head SAR Results | | | 10.2 SAR Test Notes | | | 11. FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS | | | 11.1 Simultaneous Transmission Procedures | 20 | | 11.2 Simultaneous Transmission Capabilities | | | 11.3 Head SAR Simultaneous Transmission Analysis | | | 13. CONCLUSION | | | | | | 14. REFERENCES | | | Attachment 1. – Probe Calibration Data | | | Attachment 2. – Dipole Calibration Data | | | Attachment 3 - SAR SYSTEM VALIDATION | 46 | ## 1. DESCRIPTION OF DEVICE Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC). #### **General Information** | EUT type | X-COM2 | | | | | | | |--------------------------|--|---------------|-----------------|--|--|--|--| | FCC ID | S7A-SP65 | | | | | | | | Equipment model name | SP65 | | | | | | | | Equipment add model name | N/A | | | | | | | | Equipment serial no. | Identical prototype | | | | | | | | Mode(s) of Operation | Bluetooth | | | | | | | | TX Frequency Range | Frequency | | | | | | | | 1X Frequency Nange | Bluetooth | Data | 2402 ~ 2480 MHz | | | | | | RX Frequency Range | Bluetooth Data 2402 ~ 2480 MHz | | | | | | | | | | Reported SAR | | | | | | | Equipment
Class | Band | 1g SAR (W/kg) | | | | | | | Class | | Head | | | | | | | DSS | Bluetooth | (| 0.73 | | | | | | Simultaneous SAF | R per KDB 690783 D01v01r03 | | 0.83 | | | | | | FCC Equipment Class | Part 15 Spread Spectrum Transmitter(DSS) | | | | | | | | Date(s) of Tests | 2019.03.11 | | | | | | | | Antonno Timo | Internal PCB Type Antenna(module 0) | | | | | | | | Antenna Type | PCB antenna(Module 1) which is connected to external by a unique connector(U.FL) | | | | | | | | Functions | Bluetooth (2.4GHz) is supported. | | | | | | | ## 1.1 Guidance Applied - IEEE 1528-2013 - FCC KDB Publication 447498 D01v06 (General RF Exposure Guidance) - FCC KDB Publication 865664 D01v01r04 (SAR Measurement 100 MHz to 6 GHz) - FCC KDB Publication 865664 D02v01r02 (RF Exposure Reporting) - October 2017 TCB Workshop Notes (Bluetooth Duty Factor) ## 1.2 DUT Antenna Locations Note: At the applicant's request, the SAR test was performed at a separation distance of 10 mm. #### 1.3 Power Reduction for SAR Per FCC KDB 447498 D01v06, the SAR exclusion threshold for distances < 50 mm is defined by the following equation: $$\frac{\textit{Max Power of Channel (mW)}}{\textit{Test Separation Dist (mm)}} * \sqrt{\textit{Frequency(GHz)}} \le 3.0$$ Table 1.1 SAR exclusion threshold for distances < 50 mm (M0 Antenna) | Mode | Equation | Result | SAR exclusion threshold | Required SAR | |--------------|-----------------|--------|-------------------------|--------------| | Bluetooth | [(4/10* √2.480] | 0.6 | 3.0 | X | | Bluetooth LE | [(1/10* √2.440] | 0.1 | 3.0 | X | Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation. #### 1.4 Power Reduction for SAR There is no power reduction used for any band/mode implemented in this device for SAR purposes. ## 1.5 Device Serial Numbers | Band & Mode | Serial Number | |-------------|---------------| | Bluetooth | FCC #1 | ## 2. INTROCUCTION The FCC and Industry Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. #### **SAR Definition** Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ) It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. 2.1) $$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$ Fig. 2.1 SAR Mathematical Equation SAR is expressed in units of Watts per Kilogram (W/kg). $$SAR = \frac{\sigma \cdot E^2}{\rho}$$ where: σ = conductivity of the tissue-simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³) E = Total RMS electric field strength (V/m) NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane. ## 3. DESCRIPTION OF TEST EQUIPMENT #### 3.1 SAR MEASUREMENT SETUP Measurements are performed using the DASY5 automated dosimetric assessment system. The DASY5 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, desktop computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. 3.1). A cell controller system contains the power supply, robot controller each pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the Intel Core i7-3770 3.40 GHz desktop computer with Windows 7 system and SAR Measurement Software DASY5,A/D interface card, monitor, mouse, and keyboard. The Staubli Robotis connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to
the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card. Figure 3.1 SAR Measurement System Setup The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail. ## 3.2 Probe Specification **Calibration** In air from 10 MHz to 6 GHz In brain and muscle simulating tissue at Frequencies of 750 MHz, 835 MHz, 900 MHz, 1750 MHz, 1900 MHz, 2300 MHz, 2450 MHz, 2600 MHz, 3500 MHz, 3700 MHz, 5200 MHz, 5300 MHz, 5500 MHz, 5600 MHz, 5800 MHz Frequency 10 MHz to 6 GHz **Linearity** ± 0.2 dB(30 MHz to 6 GHz) **Dynamic** 10 μ W/g to > 100 mW/g Range Linearity: ±0.2dB **Dimensions** Overall length: 337 mm Tip length 20 mm Body diameter 12 mm Tip diameter 2.5 mm Distance from probe tip to sensor center 1.0 mm **Application** SAR Dosimetry Testing Compliance tests of mobile phones Figure 3.2 Triangular Probe Configurations Figure 3.3 Probe Thick-Film Technique **DAE System** The SAR measurements were conducted with the dosimetric probe EX3DV4 designed in the classical triangular configuration(see Fig. 3.2) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multitier line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum. #### 3.3 Probe Calibration Process #### 3.3.1 E-Probe Calibration #### **Dosimetric Assessment Procedure** Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than +/- 10%. The spherical isotropy was evaluated with the procedure and found to be better than +/-0.25dB. The sensitivity parameters (Norm X, Norm Y, Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe is tested. ### Free Space Assessment The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a waveguide above 1GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity at the proper orientation with the field. The probe is then rotated 360 degrees. #### Temperature Assessment * E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium, correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent the remits or based temperature probe is used in conjunction with the E-field probe. $$SAR = C \frac{\Delta T}{\Delta t}$$ $$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$ where: where: Δt = exposure time (30 seconds), heat capacity of tissue (brain or muscle), ΔT = temperature increase due to RF exposure. σ = simulated tissue conductivity, = Tissue density (1.25 g/cm³ for brain tissue) SAR is proportional to $\Delta T \, / \, \Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field; Figure 3.4 E-Field and Temperature Measurements at 900MHz Figure 3.5 E-Field and Temperature Measurements at 1800MHz ## 3.4 Data Extrapolation The DASY5 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below; with $$V_i = \text{compensated signal of channel i}$$ $(i=x,y,z)$ $$U_i = \text{input signal of channel i} \qquad (i=x,y,z)$$ $$U_i = \text{input signal of channel i} \qquad (i=x,y,z)$$ $$cf = \text{crest factor of exciting field} \qquad (DASY parameter)$$ $$dcp_i = \text{diode compression point} \qquad (DASY parameter)$$ From the compensated input signals the primary field data for each channel can be evaluated: E-field probes: with $$V_i$$ = compensated signal of channel i (i = x,y,z) Norm_i = sensor sensitivity of channel i (i = x,y,z) $\mu V/(V/m)^2$ for E-field probes ConvF = sensitivity of enhancement in solution E_i = electric field strength of channel i in V/m The RSS value of the field components gives the total field strength (Hermetian magnitude): $$E_{bd} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$ The primary field data are used to calculate the derived field units. $$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$ with $SAR = local specific absorption rate in W/g = total field strength in V/m $\sigma = conductivity in [mho/m] \text{ or [Siemens/m]}$ $\rho = equivalent tissue density in g/cm^3$$ The power flow density is calculated assuming the excitation field to be a free space field. $$P_{pur} = \frac{E_{tot}^2}{3770}$$ with $P_{pwe} = \text{equivalent power density of a plane wave in W/cm}^2$ = total electric field strength in V/m #### 3.5 SAM Twin PHANTOM The SAM Twin Phantom V5.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. 3.6) Figure 3.6 SAM Twin Phantom ## **SAM Twin Phantom Specification:** Construction The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot. Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure. Shell Thickness $2 \pm 0.2 \text{ mm}$ Filling VolumeApprox. 25 litersDimensionsLength: 1000 mm Width: 500 mm Height: adjustable feet ## **Specific Anthropomorphic Mannequin (SAM) Specifications:** The phantom for handset SAR assessment testing is a low-loss dielectric shell, with shape and dimensions derived from the anthropometric data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM Twin Phantom shell is bisected along the mid-sagittal plane into right and left halves (see Fig. 3.7). The perimeter sidewalls of each phantom halves are extended to allow filling with liquid to a depth that is sufficient to minimized reflections from the upper surface. The liquid depth is maintained at a minimum depth of 15cm to minimize reflections from the upper surface. Figure 3.7 Sam Twin Phantom shell ## 3.6 Device Holder for Transmitters In combination with the Twin SAM Phantom V4.0/V4.0c, V5.0 or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests. Figure 3.8 Mounting Device #### 3.7 Brain Simulation Mixture Characterization The brain and muscle mixtures consist of a viscous gel using hydrox-ethylcellulose (HEC) gelling agent and saline solution (see Table 3.1). Preservation with a bactericide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture
is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Harts grove. Figure 3.9 Simulated Tissue **Table 3.1 Composition of the Tissue Equivalent Matter** | Ingradianta (9/ hy waight) | Frequency (MHz) | |--------------------------------|-----------------| | Ingredients (% by weight) | 2450 | | Tissue Type | Head | | Water | 71.88 | | Salt (NaCl) | 0.160 | | Sugar | • | | HEC | • | | Bactericide | • | | Triton X-100 | 19.97 | | DGBE | 7.990 | | Diethylene glycol hexyl ether | • | | Polysorbate (Tween) 80 | • | | Target for Dielectric Constant | 39.2 | | Target for Conductivity (S/m) | 1.80 | Salt: 99 % Pure Sodium Chloride Sugar: 98 % Pure Sucrose Water: De-ionized, 16M resistivity HEC: Hydroxyethyl Cellulose DGBE: 99 % Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy) ethanol] Triton X-100(ultra pure): Polyethylene glycol mono[4-(1,1,3,3-tetramethylbutyl)phenyl] ether #### 3.8 SAR TEST EQUIPMENT Table 3.2 Test Equipment Calibration | | Table 5.2 Test Equipment Cambration | | | | | | | | |-------------|--|--------------|------------|------------|---------------|-----------------|--|--| | | Туре | Manufacturer | Model | Cal.Date | Next.Cal.Date | S/N | | | | \boxtimes | SEMITEC Engineering | SEMITEC | N/A | N/A | N/A | Shield Room | | | | \boxtimes | Robot | SPEAG | TX90XL | N/A | N/A | F13/5RR2A1/A/01 | | | | \boxtimes | Robot Controller | SPEAG | CS8C | N/A | N/A | F13/5RR2A1/C/01 | | | | \boxtimes | Joystick | SPEAG | N/A | N/A | N/A | S-13200990 | | | | \boxtimes | Intel Core i7-3770 3.40 GHz Windows 7 Professional | N/A | N/A | N/A | N/A | N/A | | | | \boxtimes | Probe Alignment Unit LB | N/A | N/A | N/A | N/A | SE UKS 030 AA | | | | \boxtimes | Device Holder | SPEAG | SD000H01HA | N/A | N/A | N/A | | | | \boxtimes | Twin SAM Phantom | SPEAG | QD000P40CD | N/A | N/A | 1786 | | | | \boxtimes | Data Acquisition Electronics | SPEAG | DAE4V1 | 2018-08-22 | 2019-08-22 | 1396 | | | | \boxtimes | Dosimetric E-Field Probe | SPEAG | EX3DV4 | 2018-09-25 | 2019-09-25 | 3933 | | | | | 2450MHz SAR Dipole | SCHMID | D2450V2 | 2018-08-24 | 2020-08-24 | 920 | | | | \boxtimes | Network Analyzer | Agilent | E5071C | 2018-12-19 | 2019-12-19 | MY46111534 | | | | \boxtimes | Signal Generator | Agilent | E4438C | 2018-07-04 | 2019-07-04 | US41461520 | | | | \boxtimes | Amplifier | EMPOWER | BBS3Q7ELU | 2018-07-10 | 2019-07-10 | 1020 | | | | \boxtimes | High Power RF Amplifier | EMPOWER | BBS3Q8CCJ | 2018-07-06 | 2019-07-06 | 1005 | | | | \boxtimes | Power Meter | HP | EPM-442A | 2018-12-19 | 2019-12-19 | GB37170267 | | | | \boxtimes | Power Meter | HP | EPM-442A | 2018-12-18 | 2019-12-18 | GB37170413 | | | | \boxtimes | Power Meter | Anritsu | ML2495A | 2018-07-04 | 2019-07-04 | 1435003 | | | | \boxtimes | Power Sensor | Anritsu | MA2490A | 2018-07-04 | 2019-07-04 | 1409034 | | | | \boxtimes | Power Sensor | HP | 8481A | 2018-12-18 | 2019-12-18 | US37294267 | | | | \boxtimes | Power Sensor | HP | 8481A | 2018-12-19 | 2019-12-19 | 3318A96566 | | | | \boxtimes | Directional Coupler | HP | 772D | 2018-12-19 | 2019-12-19 | 2702A65976 | | | | \boxtimes | Low Pass Filter 3.0GHz | Micro LAB | LA-30N | 2018-07-05 | 2019-07-05 | 2 | | | | \boxtimes | Attenuators(3 dB) | Agilent | 8491B | 2018-12-19 | 2019-12-19 | MY39260700 | | | | \boxtimes | Attenuators(10 dB) | WEINSCHEL | 23-10-34 | 2018-12-19 | 2019-12-19 | BP4387 | | | | \boxtimes | Dielectric Probe kit | SCHMID | DAK-3.5 | 2018-07-24 | 2019-07-24 | 1046 | | | | \boxtimes | Power Splitter | Anritsu | K241B | 2018-12-18 | 2019-12-18 | 1301183 | | | | \boxtimes | Bluetooth Tester | TESCOM | TC-3000B | 2018-12-18 | 2019-12-18 | 3000B770243 | | | NOTE(S): 1. The E-field probe was calibrated by SPEAG, by temperature measurement procedure. Dipole Verification measurement is performed by DT&C before each test. The brain and muscle simulating material are calibrated by DT&C using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain and muscle-equivalent material. Each equipment item was used solely within its respective calibration period. 2. CBT(Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. signal generator) to determine the losse of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements. ## 4. TEST SYSTEM SPECIFICATIONS #### **Automated TEST SYSTEM SPECIFICATIONS:** ## **Positioner** Robot Stäubli Unimation Corp. Robot Model: TX90XL Repeatability 0.02 mm No. of axis 6 ## **Data Acquisition Electronic (DAE) System** **Cell Controller** **Processor** Intel Core i7-3770 Clock Speed 3.40 GHz Operating System Windows 7 Professional Data Card DASY5 PC-Board **Data Converter** **Features** Signal, multiplexer, A/D converter. & control logic Software DASY5 Connecting Lines Optical downlink for data and status info Optical uplink for commands and clock PC Interface Card **Function** 24 bit (64 MHz) DSP for real time processing Link to DAE 4 16 bit A/D converter for surface detection system serial link to robot direct emergency stop output for robot E-Field Probes Model EX3DV4 S/N: 3933 **Construction** Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz **Linearity** ± 0.2 dB (30 MHz to 6 GHz) **Phantom** **Phantom** SAM Twin Phantom (V5.0) Shell Material Composite Thickness 2.0 ± 0.2 mm Figure 4.1 DASY5 Test System ## 5. SAR MEASUREMENT PROCEDURE #### **5.1 Measurement Procedure** The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013: - The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 5.1) and IEEE1528-2013. - 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value. Figure 5.1 Sample SAR Area Scan - 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 5.1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details): - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 5.1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell). - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR. - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found. - 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated. | | | | ≤ 3 GHz | >3 GHz | | |--|---|---|--|--|--| | Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | | | 5 mm ± 1 mm | ½·δ·ln(2) mm ± 0.5 mm | | | Maximum probe angle from probe axis to phantom
surface normal at the measurement location | | | 30°±1° | 20°±1° | | | T | | | ≤ 2 GHz: ≤ 15 mm
2 − 3 GHz: ≤ 12 mm | 3 – 4 GHz: ≤ 12 mm
4 – 6 GHz: ≤ 10 mm | | | Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area} | | | When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device. | | | | Maximum zoom scan spatial resolution: Δx _{Zoom} , Δy _{Zoom} | | ≤
2 GHz: ≤ 8 mm
2 – 3 GHz: ≤ 5 mm | 3 – 4 GHz: ≤ 5 mm*
4 – 6 GHz: ≤ 4 mm* | | | | H. | uniform grid: Δz _{Zoom} (n) | | ≤ 5 mm | 3 – 4 GHz: ≤ 4 mm
4 – 5 GHz: ≤ 3 mm
5 – 6 GHz: ≤ 2 mm | | | Maximum zoom
scan spatial
resolution, normal to
phantom surface | graded | Δz _{Zoom} (1): between
1 st two points closest
to phantom surface | ≤ 4 mm | 3 – 4 GHz: ≤3 mm
4 – 5 GHz: ≤2.5 mm
5 – 6 GHz: ≤2 mm | | | | grid $\Delta z_{Zoun}(n>1)$:
between subsequent
points | | ≤1.5·Δz _z | non(n-1) mm | | | Minimum zoom
scan volume | X V Z | | ≥ 30 mm | 3 – 4 GHz: ≥ 28 mm
4 – 5 GHz: ≥ 25 mm
5 – 6 GHz: ≥ 22 mm | | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details. Table 5.1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04* ^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. ## 6. RF EXPOSURE LIMITS #### **Uncontrolled Environment:** UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. #### **Controlled Environment:** CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. Table 6.1.SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 | | HUMAN EXPOSURE LIMITS | | | | | | |--|---|---|--|--|--|--| | | General Public Exposure
(W/kg) or (mW/g) | Occupational Exposure
(W/kg) or (mW/g) | | | | | | SPATIAL PEAK SAR *
(Brain) | 1.60 | 8.00 | | | | | | SPATIAL AVERAGE SAR **
(Whole Body) | 0.08 | 0.40 | | | | | | SPATIAL PEAK SAR ***
(Hands / Feet / Ankle / Wrist) | 4.00 | 20.0 | | | | | - 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time. - 2. The Spatial Average value of the SAR averaged over the whole body. - 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time. Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e.as a result of employment or occupation). ## 7. SAR MEASUREMENT PROCEDURES ## 7.1 Measured and Reported SAR Per FCC KDB Publication 447498 D01v06, When SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported SAR. The highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03. Unless specifically authorized through a KDB inquiry, the SAM (head) phantom is generally unacceptable for testing the SAR of other head and body exposure conditions; for example, testing headsets at the SAM phantom ear location is generally unacceptable. ## 8. Nominal and Maximum Output Power Spec and RF Conducted Powers This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06. ## 8.1 Bluetooth Nominal and Maximum Output Power Spec and Conducted Powers | Mandalata d A | | M0 Antenna | | | M1 Antenna | | | |---------------|--------------|------------|-----------|------------|------------|-----------|------------| | Modulated Av | verage [dBm] | Low [dBm] | Mid [dBm] | High [dBm] | Low [dBm] | Mid [dBm] | High [dBm] | | Bluetooth | Maximum | 4.0 | 6.0 | 6.0 | 15.0 | 16.0 | 16.0 | | 1 Mbps | Nominal | 3.0 | 5.0 | 5.0 | 14.0 | 15.0 | 15.0 | | Bluetooth | Maximum | 2.0 | 3.0 | 2.0 | 7.0 | 8.0 | 7.0 | | 2 Mbps | Nominal | 1.0 | 2.0 | 1.0 | 6.0 | 7.0 | 6.0 | | Bluetooth | Maximum | 2.0 | 3.0 | 2.0 | 7.0 | 8.0 | 7.0 | | 3 Mbps | Nominal | 1.0 | 2.0 | 1.0 | 6.0 | 7.0 | 6.0 | Table 8.1.1 Bluetooth Nominal and Maximum Output Power Spec | | | M0 Antenna | | | M1 Antenna | | | |---------|-----------|-----------------------------------|-----------------------------------|-----------------------------------|--------------------------------|--------------------------------|-----------------------------------| | Channel | Frequency | Frame AVG Output
Power (1Mbps) | Frame AVG Output
Power (2Mbps) | Frame AVG Output
Power (3Mbps) | Frame AVG Output Power (1Mbps) | Frame AVG Output Power (2Mbps) | Frame AVG Output
Power (3Mbps) | | | (MHz) | (dBm) | (dBm) | (dBm) | (dBm) | (dBm) | (dBm) | | Low | 2402 | 3.71 | 1.64 | 1.63 | 14.40 | 6.27 | 6.26 | | Mid | 2441 | 5.91 | 2.30 | 2.30 | 15.82 | 7.33 | 7.34 | | High | 2480 | 5.45 | 1.76 | 1.75 | 15.38 | 6.73 | 6.72 | Table 8.1.2 Bluetooth Average RF Power | Band | F | Modulated Average[dBm] - M0 Antenna | | | |--------------|-----------------|-------------------------------------|---------|--| | Band | Frequency [MHz] | Maximum | Nominal | | | Bluetooth LE | 2402 | -3.0 | -4.0 | | | | 2440 | -1.0 | -2.0 | | | | 2480 | -2.0 | -3.0 | | Table 8.1.3 Bluetooth LE Nominal and Maximum Output Power Spec | Channel | Frequency | Frame AVG Output Power(LE) - M0 Antenna | |---------|-----------|---| | Channel | (MHz) | (dBm) | | Low | 2402 | -3.50 | | Mid | 2440 | -1.71 | | High | 2480 | -2.22 | Table 8.1.4 Bluetooth LE Average RF Power #### Bluetooth Conducted Powers procedures - 1. Bluetooth (BDR, EDR) - 1) Enter DUT mode in EUT and operate it. - When it operating, The EUT is transmitting at maximum power level and duty cycle fixed. - 2) Instruments and EUT were connected like Figure 8.1(A). - 3) The maximum output powers of BDR(1 Mbps), EDR(2, 3 Mbps) and each frequency were set by a Bluetooth Tester. - 4) Power levels were measured by a Power Meter. - 2. Bluetooth (LE) - 1) Enter LÈ mode in EUT and operate it. - When it operating, The EUT is transmitting at maximum power level and duty cycle fixed. - 2) Instruments and EUT were connected like Figure 8.1(B). - 3) The average conducted output powers of LE and each frequency can measurement according to setting program in EUT. - 4) Power levels were measured by a Power Meter. Figure 8.1 Average Power Measurement Setup The average conducted output powers of Bluetooth were measured using above test setup and a wideband gated RF power meter when the EUT is transmitting at its maximum power level. ## 9. SYSTEM VERIFICATION ## 9.1 Tissue Verification | | MEASURED TISSUE PARAMETERS | | | | | | | | | | | | | |-----------------|----------------------------|----------------------|---------------------|--------------------------------|--------------------------------------|------------------------------------|--|--------------------------------------|------------------------|--------------------|--|--|--| | Date(s) | Tissue
Type | Ambient
Temp.[°C] | Liquid
Temp.[°C] | Measured
Frequency
[MHz] | Target
Dielectric
Constant, εr | Target
Conductivity,
σ (S/m) | Measured
Dielectric
Constant, ɛr | Measured
Conductivity,
σ (S/m) | Er
Deviation
[%] | σ
Deviation [%] | | | | | | | | | 2402 | 39.270 | 1.766 | 39.643 | 1.743 | 0.95 | -1.30 | | | | | Mar. 11. 2019 | 2450 | 20.4 21.2 | 20.4 | 2441 | 39.210 | 1.793 | 39.618 | 1.793 | 1.04 | 0.00 | | | | | IVIAI. 11. 2019 | Mai. 11. 2019 Head | | 21.2 | 2450 | 39.200 | 1.800 | 39.609 | 1.803 | 1.04 | 0.17 | | | | | | | | | 2480 | 39.170 | 1.823 | 39.505 | 1.828 | 0.86 | 0.27 | | | | The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB 865664 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software. ## **Measurement Procedure for Tissue verification:** - The network analyzer and probe system was configured and calibrated. - The probe was immersed in the sample which was placed in a nonmetallic container.
Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle - The complex admittance with respect to the probe aperture was measured The complex relative permittivity , for example from the below equation (Pournaropoulos and $$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{[\ln(b/a)]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{a} \cos\phi' \frac{\exp[-j\omega r(\mu_{0}\varepsilon_{r}\varepsilon_{0})^{1/2}]}{r} d\phi' d\rho' d\rho$$ where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$. ## 9.2 Test System Verification ± 10 % of the specifications at 2450 MHz by using the SAR Dipole kit(s). (Graphic Plots Attached) | | SYSTEM DIPOLE VERIFICATION TARGET & MEASURED | | | | | | | | | | | | | |--------------------|--|--------------------|---------------|----------------|--------------------------|-------------------------|-----------|------------------------|--|---|--|---------------|--| | SAR
System
| Freq.
[MHz] | SAR
Dipole kits | Date(s) | Tissue
Type | Ambient
Temp.
[°C] | Liquid
Temp.
[°C] | Probe S/N | Input
Power
(mW) | 1 W
Target
SAR _{1g}
(W/kg) | Measured
SAR _{1g}
(W/kg) | 1 W Normalized
SAR _{1g} (W/kg) | Deviation [%] | | | D | 2450 | D2450V2, SN: 920 | Mar. 11. 2019 | Head | 20.4 | 21.2 | 3933 | 100 | 51.9 | 5.31 | 53.1 | 2.31 | | Note: Full system validation status and results can be found in Attachment 3. Figure 9.1 Dipole Verification Test Setup Diagram & Photo ## **10. SAR TEST RESULTS** #### 10.1 Head SAR Results Table 10.1.1 Bluetooth Head SAR (M1 Antenna) | | | | | | | MEASURE | MENT RESULT | S | | | | | | | |--|----|-----------|--------------------|--------------------|----------------|--------------|------------------|--------|---------------|-----------|---|-------------------|---------------|-------| | FREQU | | Mode | Maximum
Allowed | Conducted
Power | Drift
Power | Phantom | Device
Serial | Rate | Duty
Cycle | 1g
SAR | Scaling | Scaling
Factor | 1g
Scaled | Plots | | MHz | Ch | | Power
[dBm] | [dBm] | [dB] | Position | Number | [Mbps] | (%) | (W/kg) | Factor | (Duty
Cycle) | SAR
(W/kg) | # | | 2441 | 39 | Bluetooth | 16.0 | 15.82 | -0.090 | 10 mm [Left] | FCC #1 | 1 | 77.0 | 0.537 | 1.042 | 1.299 | 0.727 | A1 | | ANSI / IEEE C95.1-1992 – SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Exposure | | | | | | | | | | | Head
1.6 W/kg (mW/g)
eraged over 1 gram | 1 | | | ### 10.2 SAR Test Notes #### General Notes: - 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06. - 2. Liquid tissue depth was at least 15.0 cm for all frequencies. - 3. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units - 4. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06. #### Bluetooth Notes: Bluetooth SAR was measured with the device connected to a call simulator with hopping disabled with DH5 operation. Per October 2016 TCB Workshop Notes, the reported SAR was scaled to the 100% transmission duty factor to determine compliance. Refer to section 8.1 for the time-domain plot and calculation for the duty factor of the device. ## 11. FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS #### 11.1 Simultaneous Transmission Procedures This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the sum 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is \leq 1.6 W/kg. The different test positon in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1-g or 10-g SAR. Table 11.1.1 Estimated SAR (M0 Antenna) | Mode | Frequency | Maximum Allo | wed Power | Separation Distance (Hand) | Estimated SAR (Body) | |------------------|-----------|--------------|-----------|----------------------------|----------------------| | Wode | [MHz] | [dBm] | [mW] | [mm] | [W/kg] | | Bluetooth 1 Mbps | 2441 | 6 4 | | 10 | 0.084 | | Bluetooth LE | 2441 | -1 1 | | 10 | 0.017 | ## 11.2 Simultaneous Transmission Capabilities According to FCC KDB Publication 447498 D01v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the DUT are shown in Figure 11.1 and are color-coded to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another. This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06. **Table 11.2.1 Simultaneous Transmission Scenarios** | No. | Capable TX Configuration | Bluetooth M0 Antenna | Bluetooth LE M0 Antenna | Bluetooth M1 Antenna | Bluetooth M0 + Bluetooth M1 | |-----|-----------------------------|----------------------|-------------------------|----------------------|-----------------------------| | 1 | Bluetooth M0 Antenna | No | Yes | Yes | No | | 2 | Bluetooth LE M0 Antenna | Yes | No | Yes | Yes | | 3 | Bluetooth M1 Antenna | Yes | Yes | No | No | | 4 | Bluetooth M0 + Bluetooth M1 | No | Yes | No | No | ## 11.3 Head SAR Simultaneous Transmission Analysis Table 11.4.1 Simultaneous Transmission Scenario | Exposure | Configuration | Bluetooth M0 SAR (W/kg) | Bluetooth LE M0 SAR (W/kg) | ΣSAR (W | //kg) | |-----------|---------------|----------------------------|----------------------------|-------------------------|-------------| | Condition | Configuration | 1 | 2 | 1+2 | | | Head SAR | 10 mm [Left] | 0.084 | 0.017 | 0.101 | | | Exposure | Configuration | Bluetooth M0 SAR (W/kg) | Bluetooth M1 SAR (W/kg) | ΣSAR (W/kg) | | | Condition | Configuration | 1 | 2 | 1+2 | | | Head SAR | 10 mm [Left] | 0.084 | 0.727 | 0.811 | | | Exposure | C# | Bluetooth LE M0 SAR (W/kg) | Bluetooth M1 SAR (W/kg) | ΣSAR (W | //kg) | | Condition | Configuration | 1 | 2 | 1+2 | | | Head SAR | 10 mm [Left] | 0.017 | 0.727 | 0.744 | | | Exposure | C | Bluetooth LE M0 SAR (W/kg) | Bluetooth M0 SAR (W/kg) | Bluetooth M1 SAR (W/kg) | ΣSAR (W/kg) | | Condition | Configuration | 1 | 2 | 3 | 1+2+3 | | Head SAR | 10 mm [Left] | 0.017 | 0.084 | 0.727 | 0.828 | ## 12. MEASUREMENT UNCERTAINTIES ## 2450 MHz Head | Error Description | Uncertainty | Probability | Divisor | (Ci) | (Ci) | Standard | Standard | vi 2 or | |-------------------------------------|-------------|--------------|---------|------|------|----------|----------|---------| | End Description | value ±% | Distribution | DIVISOI | 1g | 10g | (1g) | (10g) | Veff | | Measurement System | | | | | | - | | | | Probe calibration | ± 6.0 | Normal | 1 | 1 | 1 | ± 6.0 % | ± 6.0 % | ∞ | | Isotropy | ± 1.3 | Normal | 1 | 1 | 1 | ± 1.3 % | ± 1.3 % | ∞ | | Boundary Effects | ± 2.0 | Rectangular | √3 | 1 | 1 | ± 1.2 % | ± 1.2 % | ∞ | | Probe Linearity | ± 0.3 | Normal | 1 | 1 | 1 | ± 0.3 % | ± 0.3 % | ∞ | | Probe modulation response | ± 0.0 | Rectangular | √3 | 1 | 1 | ± 0.0 % | ± 0.0 % | ∞ | | Detection limits | ± 0.25 | Rectangular | √3 | 1 | 1 | ± 0.14 % | ± 0.14 % | ∞ | | Readout Electronics | ± 0.3 | Normal | 1 | 1 | 1 | ± 0.3 % | ± 0.3 % | ∞ | | Response time | ± 0.8 | Rectangular | √3 | 1 | 1 | ± 0.46 % | ± 0.46 % | ∞ | | Integration time | ± 2.6 | Rectangular | √3 | 1 | 1 | ± 1.5 % | ± 1.5 % | ∞ | | RF Ambient Conditions – Noise | ± 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | ∞ | | RF Ambient Conditions – Reflections | ± 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | ∞ | | Probe Positioner | ± 0.8 | Rectangular | √3 | 1 | 1 | ± 0.46 % | ± 0.46 % | ∞ | | Probe Positioning | ± 6.7 | Rectangular | √3 | 1 | 1 | ± 3.9 % | ± 3.9 % | ∞ | | Algorithms for Max. SAR Eval. | ± 4.0 | Rectangular | √3 | 1 | 1 | ± 2.3 % | ± 2.3 % | ∞ | | Test Sample Related | | | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | 1 | ± 2.9 % | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | 1 | ± 3.6 % | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | 1 | ± 2.9 % | ± 2.9 % | ∞ | | SAR Scaling | ± 0.0 | Rectangular | √3 | 1 | 1 | ± 0.0 % | ± 0.0 % | ∞ | | Physical Parameters | | | | | | | | | | Phantom Shell | ± 7.6 | Rectangular | √3 | 1 | 1 | ± 4.4 % | ± 4.4 % | ∞ | | SAR correction | ± 0.0 | Normal | 1 | 1 | 0.84 | ± 0.0 % | ± 0.0 % | ∞ | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | 0.43 | ± 1.8 % | ± 1.2 % | ∞ | | Liquid conductivity (Meas.) | ± 3.8 | Normal | 1 | 0.78 | 0.71 | ± 3.0 % | ± 2.7 % | 10 | | Liquid permittivity (Target) | ± 5.0 | Rectangular | √3 | 0.60 | 0.49 | ± 1.7 % | ± 1.4 % | ∞ | | Liquid permittivity (Meas.) | ± 4.0 | Normal | 1 | 0.23 | 0.26 | ± 0.9 % | ± 1.0 % | 10 | | Temp. unc Conductivity | ± 1.9 | Rectangular | √3 | 0.78 | 0.71 | ± 0.9 % | ± 0.8 % | ∞ | | Temp. unc Permittivity | ± 1.8 | Rectangular | √3 | 0.23 | 0.26 | ± 0.2 % | ± 0.3 % | ∞ | | Combined Standard Uncertainty | | | | | |
± 11.6 % | ± 11.4 % | 330 | | Expanded Uncertainty (k=2) | | | | | | ± 23.2 % | ± 22.8 % | | The above measurement uncertainties are according to IEEE Std 1528 ## 13. CONCLUSION #### **Measurement Conclusion** The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under the worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested. Please note that the absorption and distribution of electromagnetic energy in the body are every complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role impossible biological effect are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. ## 14. REFERENCES - [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996. - [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006. - [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992. - [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002. - [5] IEEE Standards Coordinating Committee 39 –Standards Coordinating Committee 34 IEEE Std. 1528-2013,Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices. - [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995. - [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113. - [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1-124. - [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175. - [10] Schmid& Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2. - [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct.1996, pp. 1865-1873. - [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23. - [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bio electromagnetics, Canada: 1987, pp. 29-36. - [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995. - [15] W. Gander, Computer mathematick, Birkhaeuser, Basel, 1992. - [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992. - [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652. - [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995. - [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone. - [20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3 GHz), 2016. - [21] RSS-102 Radio Frequency Exposure Compliance of Radio communication Apparatus (All Frequency Bands) Issue 5, March 2015. - [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015 - [23] SAR Measurement procedures for IEEE 802.11a/b/g KDB Publication 248227 D01v02 - [24] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474D02-D04 - [25] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04 - [26] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02 - [27] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02 - [28] Anexo à Resolução No. 533, de 10 de September de 2009. - [29] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body(frequency range of 30 MHz to 6 GHz), 2010. ## Attachment 1. - Probe Calibration Data Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client DT&C (Dymstec) Certificate No: EX3-3933_Sep18 ## **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3933 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: September 25, 2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 04-Apr-18 (No. 217-02682) | Apr-19 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-17 (No. ES3-3013_Dec17) | Dec-18 | | DAE4 | SN: 660 | 21-Dec-17 (No. DAE4-660_Dec17) | Dec-18 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-18) | In house check: Jun-20 | | Network Analyzer F8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-17) | In house check: Oct-18 | Calibrated by: Calibrated by: Claudio Leubler Certificate No: EX3-3933_Sep18 Page 1 of 11 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X
to the robot coordinate system #### Calibration is Performed According to the Following Standards: - IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - EC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-3933_Sep18 FCC ID: S7A-SP65 EX3DV4 - SN:3933 September 25, 2018 ## Probe EX3DV4 SN:3933 Manufactured: July 24, 2013 Calibrated: September 25, 2018 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: EX3-3933_Sep18 Page 3 of 11 EX3DV4- SN:3933 September 25, 2018 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3933 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (µV/(V/m) ²) ^A | 0.50 | 0.52 | 0.19 | ± 10.1 % | | DCP (mV) ^B | 104.5 | 98.7 | 93.5 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ^c
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 144.0 | ±2.7 % | | | | Y | 0.0 | 0.0 | 1.0 | | 147.5 | | | | | Z | 0.0 | 0.0 | 1.0 | | 142.5 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6). B Numerical linearization parameter: uncertainty not required. Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. FCC ID: S7A-SP65 Report No.: DRRFCC1902-0020(1) September 25, 2018 EX3DV4-SN:3933 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3933 ## Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|----------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 41.9 | 0.89 | 10.76 | 10.76 | 10.76 | 0.35 | 1.00 | ± 12.0 % | | 835 | 41.5 | 0.90 | 10.26 | 10.26 | 10.26 | 0.46 | 0.83 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.91 | 9.91 | 9.91 | 0.43 | 0.80 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.83 | 8.83 | 8.83 | 0.34 | 0.83 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.54 | 8.54 | 8.54 | 0.25 | 0.80 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.90 | 7.90 | 7.90 | 0.41 | 0.80 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.61 | 7.61 | 7.61 | 0.21 | 1.16 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.41 | 7.41 | 7.41 | 0.25 | 1.00 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 7.30 | 7.30 | 7.30 | 0.27 | 1.20 | ± 13.1 % | | 3700 | 37.7 | 3.12 | 7.13 | 7.13 | 7.13 | 0.25 | 1.20 | ± 13.1 % | | 5200 | 36.0 | 4.66 | 5.24 | 5.24 | 5.24 | 0.40 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 5.02 | 5.02 | 5.02 | 0.40 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 4.87 | 4.87 | 4.87 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.71 | 4.71 | 4.71 | 0.40 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.77 | 4.77 | 4.77 | 0.40 | 1.80 | ± 13.1 % | ^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Certificate No: EX3-3933_Sep18 EX3DV4-SN:3933 September 25, 2018 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3933 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|----------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 55.5 | 0.96 | 10.43 | 10.43 | 10.43 | 0.32 | 1.02 | ± 12.0 % | | 835 | 55.2 | 0.97 | 10.27 | 10.27 | 10.27 | 0.44 | 0.80 | ± 12.0 % | | 900 | 55.0 | 1.05 | 10.20 | 10.20 | 10.20 | 0.42 | 0.80 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 8.62 | 8.62 | 8.62 | 0.31 | 0.88 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 8.21 | 8.21 | 8.21 | 0.38 | 0.80 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 7.86 | 7.86 | 7.86 | 0.34 | 0.88 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.75 | 7.75 | 7.75 | 0.34 | 0.95 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 7.63 | 7.63 | 7.63 | 0.31 | 0.95 | ± 12.0 % | | 3500 | 51.3 | 3.31 | 7.13 | 7.13 | 7.13 | 0.30 | 1.25 | ± 13.1 % | | 3700 | 51.0 | 3.55 | 7.08 | 7.08 | 7.08 | 0.30 | 1.25 | ± 13.1 % | | 5200 | 49.0 | 5.30 | 4.67 | 4.67 | 4.67 | 0.50 | 1.90 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 4.51 | 4.51 | 4.51 | 0.50 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 4.14 | 4.14 | 4.14 | 0.50 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 4.01 | 4.01 | 4.01 | 0.50 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 4.10 | 4.10 | 4.10 | 0.50 | 1.90 | ± 13.1 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency Certificate No: EX3-3933_Sep18 below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that
the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. September 25, 2018 EX3DV4-SN:3933 ## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) EX3DV4- SN:3933 September 25, 2018 ## Receiving Pattern (ϕ), $\theta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) EX3DV4- SN:3933 September 25, 2018 ## Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) EX3DV4- SN:3933 September 25, 2018 ## **Conversion Factor Assessment** ## Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz Certificate No: EX3-3933_Sep18 Page 10 of 11 EX3DV4- SN:3933 September 25, 2018 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3933 ## Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 77.9 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Certificate No: EX3-3933_Sep18 Page 11 of 11 ## Attachment 2. - Dipole Calibration Data ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client DT&C (Dymstec) Calibration procedure(s) Certificate No: D2450V2-920 Aug18 # CALIBRATION CERTIFICATE Object D2450V2 - SN:920 And the second s QA CAL-05.v10 Calibration procedure for dipole validation kits above 700 MHz Calibration date: August 24, 2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |--------------------|---|------------------------| | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | SN: 5058 (20k) | 04-Apr-18 (No. 217-02682) | Apr-19 | | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683) | Apr-19 | | SN: 7349 | 30-Dec-17 (No. EX3-7349_Dec17) | Dec-18 | | SN: 601 | 26-Oct-17 (No. DAE4-601_Oct17) | Oct-18 | | ID# | Check Date (in house) | Scheduled Check | | SN: GB37480704 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | SN: US37292783 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | SN: MY41092317 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | SN: 100972 | 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 | | SN: US41080477 | 31-Mar-14 (in house check Oct-17) | In house check; Oct-18 | | Name | Function | Signature | | Manu Seitz | Laboratory Technician | Shiel | | Katja Pokovic | Technical Manager | Some | | | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477
Name
Manu Seitz | SN: 104778 | This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2450V2-920_Aug18 Issued: August 24, 2018 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2450V2-920_Aug18 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.1 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2450 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.7 ± 6 % | 1.86 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.3 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 51.9 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.18 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.4 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.8 ± 6 % | 2.02 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.3 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 52.1 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.22 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 24.6 W/kg ± 16.5 % (k=2) | Certificate No: D2450V2-920_Aug18 ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point |
57.3 Ω + 1.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.0 dB | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | 52.1 Ω + 6.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.9 dB | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.153 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## **Additional EUT Data** | Manufactured by | SPEAG | | | | | |-----------------|-------------------|--|--|--|--| | Manufactured on | December 19, 2012 | | | | | Certificate No: D2450V2-920_Aug18 ## **DASY5 Validation Report for Head TSL** Date: 23.08.2018 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:920 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.86$ S/m; $\varepsilon_r = 37.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 30.12.2017 · Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 26.10.2017 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 115.8 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 26.4 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.18 W/kg Maximum value of SAR (measured) = 21.8 W/kg 0 dB = 21.8 W/kg = 13.38 dBW/kg Certificate No: D2450V2-920_Aug18 ## Impedance Measurement Plot for Head TSL ## DASY5 Validation Report for Body TSL Date: 24.08.2018 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:920 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.02$ S/m; $\epsilon_r = 51.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.01, 8.01, 8.01) @ 2450 MHz; Calibrated: 30.12.2017 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 26.10.2017 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.0 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 26.2 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.22 W/kg Maximum value of SAR (measured) = 21.6 W/kg 0 dB = 21.6 W/kg = 13.34 dBW/kg ## Impedance Measurement Plot for Body TSL ## **Attachment 3. - SAR SYSTEM VALIDATION** ## **SAR System Validation** Per FCC KDB 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media. A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included. **Table Attachment 3.1 SAR System Validation Summary** | SAR
System | Freq.
[MHz] | Date | Probe
SN | Probe
Type | Probe CAL. Point | | PERM. | COND. | CW Validation | | | MOD. Validation | | | |---------------|----------------|------------|-------------|---------------|------------------|------|--------|-------|------------------|--------------------|-------------------|-----------------|----------------|------| | | | | | | | | (εr) | (σ) | Sensi-
tivity | Probe
Linearity | Probe
Isortopy | MOD. Type | Duty
Factor | PAR | | D | 2450 | 2018.10.19 | 3933 | EX3DV4 | 2450 | Head | 38.885 | 1.851 | PASS | PASS | PASS | OFDM | PASS | PASS | NOTE: While the probes have been calibrated for both a CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to KDB 865664.