Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton **Shenzhen City** Certificate No. CLA13-1023_Jan24 # CALIBRATION CERTIFICATE Object CLA13 - SN: 1023 Calibration procedure(s) QA CAL-15.v10 Calibration Procedure for SAR Validation Sources below 700 MHz Calibration date: January 22, 2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# Cal Date (Certificate No.) | | Scheduled Calibration | | | |---------------------------------|---|-----------------------------------|------------------------|--|--| | Power meter NRP2 | SN: 104778 30-Mar-23 (No. 217-03804/03805) | | Mar-24 | | | | Power sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | | | Power sensor NRP-Z91 | SN: 103245 | 30-Mar-23 (No. 217-03805) | Mar-24 | | | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 30-Mar-23 (No. 217-03809) | Mar-24 | | | | Type-N mismatch combination | SN: 310982 / 06327 | 30-Mar-23 (No. 217-03810) | · Mar-24 | | | | Reference Probe EX3DV4 | SN: 3877 | 10-Jan-24 (No. EX3-3877_Jan24) | Jan-25 | | | | DAE4 | SN: 654 | 15-Jan-24 (No. DAE4-654_Jan24) | Jan-25 | | | | | | | | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | | | Power meter NRP2 | SN: 107193 | 08-Nov-21 (in house check Dec-22) | In house check: Dec-24 | | | | Power sensor NRP-Z91 | SN: 100922 | 15-Dec-09 (in house check Dec-22) | In house check: Dec-24 | | | | Power sensor NRP-Z91 | SN: 100418 | 01-Jan-04 (in house check Dec-22) | In house check: Dec-24 | | | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-22) | In house check: Jun-24 | | | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | | | | | , | | | | | Name | Function | Signature | | | | Calibrated by: | Krešimir Franjić | Laboratory Technician | 4/ | | | | | | | | | | | | propriote de la constitución de constitución de la | | | | | | Approved by: | Sven Kühn | Technical Manager | C / | | | | | | | D. C. | | | | 1 | | | | | | Issued: January 23, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: CLA13-1023_Jan24 Page 1 of 6 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z not applicable or not measured N/A Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook ## Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Page 2 of 6 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | D/(01 bystom comigaration, as far as fier g | | AN PRODUCE R AND R | | |---|----------------------------------|----------------------------------|--| | DASY Version | DASY5 | V52.10.4 | | | Extrapolation | Advanced Extrapolation | | | | Phantom | ELI4 Flat Phantom | Shell thickness: 2 ± 0.2 mm | | | EUT Positioning | Touch Position | | | | Zoom Scan Resolution | dx, $dy = 4.0$ mm, $dz = 1.4$ mm | Graded Ratio = 1.4 (Z direction) | | | Frequency | 13 MHz ± 1 MHz | | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 55.0 | 0.75 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 53.0 ± 6 % | 0.72 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## **SAR** result with Head TSL | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|------------------|---------------------------| | SAR measured | 1 W input power | 0.606 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 0.621 W/kg ± 18.4 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|------------------|---------------------------| | SAR measured | 1 W input power | 0.327 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 0.335 W/kg ± 18.0 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 50.0 Ω + 2.5 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 31.9 dB | | ## **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| # **DASY5 Validation Report for Head TSL** Date: 22.01.2024 Test Laboratory: SPEAG, Zurich, Switzerland DUT: CLA13; Type: CLA13; Serial: CLA13 - SN: 1023 Communication System: UID 0 - CW; Frequency: 13 MHz Medium parameters used: f = 13 MHz; $\sigma = 0.72$ S/m; $\epsilon_r = 53$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ## DASY52 Configuration: Probe: EX3DV4 - SN3877; ConvF(15.33, 15.33, 15.33) @ 13 MHz; Calibrated: 10.01.2024 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn908; Calibrated: 15.01.2024 Phantom: ELI v6.0; Type: QDOVA003AA; Serial: TP:2034 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # CLA Calibration for HSL-LF Tissue/CLA-13, touch configuration, Pin=1W/Zoom Scan, dist=1.4mm (8x10x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 33.35 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 1.26 W/kg SAR(1 g) = 0.606 W/kg; SAR(10 g) = 0.327 W/kg Smallest distance from peaks to all points 3 dB below = 21.1 mm Ratio of SAR at M2 to SAR at M1 = 75.9% Maximum value of SAR (measured) = 0.777 W/kg 0 dB = 0.777 W/kg = -1.10 dBW/kg ## Impedance Measurement Plot for Head TSL Schmid & Partner Engineering AG s p e a g Report No.: FA4D1311A Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 www.speag.swiss, info@speag.swiss ## IMPORTANT NOTICE #### **USAGE OF THE DAE4** The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points: **Battery Exchange**: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out. **Shipping of the DAE**: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside. **E-Stop Failures**: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements. **Repair**: Minor repairs are performed at no extra cost during the calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect. **DASY Configuration Files:** Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file. #### **Important Note:** Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer. #### **Important Note:** Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the E-stop assembly is allowed by certified SPEAG personnel only and is part of the calibration procedure. #### **Important Note:** To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE. ## Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton **Kunshan City** Certificate No: DAE4-1649_Jul24 Accreditation No.: SCS 0108 # **CALIBRATION CERTIFICATE** Object DAE4 - SD 000 D04 BO - SN: 1649 Calibration procedure(s) QA CAL-06.v30 Calibration procedure for the data acquisition electronics (DAE) Calibration date: July 03, 2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|--------------------|----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 29-Aug-23 (No:37421) | Aug-24 | | | | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Auto DAE Calibration Unit | SE UWS 053 AA 1001 | 23-Jan-24 (in house check) | In house check: Jan-25 | | Calibrator Box V2.1 | SE UMS 006 AA 1002 | 23-Jan-24 (in house check) | In house check: Jan-25 | | | • | | | Calibrated by: Name **Function** Adrian Gehring Laboratory Technician Approved by: Sven Kühn Technical Manager Issued: July 3, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE4-1649_Jul24 Page 1 of 5 Appendix C Report No.: FA4D1311A # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 ## Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ### Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE4-1649_Jul24 Page 2 of 5 # **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = 6.1μV, 61nV, full range = -100...+300 mV Low Range: 1LSB = full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | Х | Υ | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.663 ± 0.02% (k=2) | 404.640 ± 0.02% (k=2) | 404.450 ± 0.02% (k=2) | | Low Range | 3.95131 ± 1.50% (k=2) | 3.98690 ± 1.50% (k=2) | 3.97645 ± 1.50% (k=2) | # **Connector Angle** | Connector Angle to be used in DASY system | 99.0 ° ± 1 ° | |---|--------------| |---|--------------| Certificate No: DAE4-1649_Jul24 Appendix C Report No. : FA4D1311A # Appendix (Additional assessments outside the scope of SCS0108) 1. DC Voltage Linearity | High Range | • | Reading (μV) | Difference (μV) | Error (%) | |------------|---------|--------------|-----------------|-----------| | Channel X | + Input | 200033.11 | -1.59 | -0.00 | | Channel X | + Input | 20001.90 | -1.52 | -0.01 | | Channel X | - Input | -20008.04 | 1.53 | -0.01 | | Channel Y | + Input | 200034.18 | -0.62 | -0.00 | | Channel Y | + Input | 20000.91 | -2.38 | -0.01 | | Channel Y | - Input | -20011.90 | -2.25 | 0.01 | | Channel Z | + Input | 200034.96 | 0.07 | 0.00 | | Channel Z | + Input | 19999.54 | -3.71 | -0.02 | | Channel Z | - Input | -20012.28 | -2.66 | 0.01 | | Low Range | | Reading (μV) | Difference (μV) | Error (%) | |------------------|---|--------------|-----------------|-----------| | Channel X + Inpu | t | 1998.71 | 0.42 | 0.02 | | Channel X + Inpu | t | 197.91 | -0.10 | -0.05 | | Channel X - Inpu | t | -202.34 | -0.29 | 0.14 | | Channel Y + Inpu | t | 1997.56 | -0.38 | -0.02 | | Channel Y + Inpu | t | 197.05 | -0.88 | -0.44 | | Channel Y - Inpu | t | -203.51 | -1.17 | 0.58 | | Channel Z + Inpu | t | 1998.06 | 0.10 | 0.00 | | Channel Z + Inpu | t | 197.22 | -0.45 | -0.23 | | Channel Z - Inpu | t | -203.22 | -0.72 | 0.36 | # 2. Common mode sensitivity DASY measurement parameters; Auto Zero Time: 3 sec: Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 2.89 | 1.66 | | | - 200 | -1.29 | -2.59 | | Channel Y | 200 | -6.72 | -6.95 | | | - 200 | 5.98 | 4.84 | | Channel Z | 200 | 0.35 | 0.17 | | | - 200 | -1.86 | -1.85 | # 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | 0.65 | -3.70 | | Channel Y | 200 | 6.72 | - | 2.71 | | Channel Z | 200 | 9.32 | 4.17 | - | Certificate No: DAE4-1649_Jul24