

# RADIO TEST REPORT FCC ID: 2AX5VWALLSW-NA

| Product:      | Power relay           |
|---------------|-----------------------|
| Trade Mark:   | ХЛГХ                  |
| Model No.:    | Ajax WallSwitch (9NA) |
| Family Model: | N/A                   |
| Report No.:   | S21102902702001       |
| Issue Date:   | 15 Nov. 2021          |

# **Prepared for**

AJAX SYSTEMS CYPRUS HOLDINGS LTD Ifigeneias, 17, Strovolos, 2007, Nicosia, Cyprus

# Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel:400-800-6106,0755-2320 0050 / 2320 0090 Website: http://www.ntek.org.cn





# TABLE OF CONTENTS

# NTEK 北测<sup>®</sup>



# **1 TEST RESULT CERTIFICATION**

| Applicant's               | s name                                                                                                                         | AJAX SYSTEMS CYPRUS HOLDINGS LTD                                                                   |                                                                                                                                                                      |  |  |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Address                   |                                                                                                                                | lfigeneias, 17, Strovolos, 2007, Nicosia, Cyprus                                                   |                                                                                                                                                                      |  |  |
| Manufactu                 | rer's Name:                                                                                                                    | "AJAX SYSTEMS MANUFACTURING" LIMITED LIABILITY COMPANY                                             |                                                                                                                                                                      |  |  |
| Address                   |                                                                                                                                | Sklyarenka, 5, Kyiv                                                                                | , 04073, Ukraine                                                                                                                                                     |  |  |
| Product de                | escription                                                                                                                     |                                                                                                    |                                                                                                                                                                      |  |  |
| Product na                | ame:                                                                                                                           | Power relay                                                                                        |                                                                                                                                                                      |  |  |
| Model and                 | /or type reference:                                                                                                            | Ajax WallSwitch (91                                                                                | NA)                                                                                                                                                                  |  |  |
| Family Mo                 | del:                                                                                                                           | N/A                                                                                                |                                                                                                                                                                      |  |  |
| Measurem                  | ent Procedure Used:                                                                                                            | APPLICABLE                                                                                         | STANDARDS                                                                                                                                                            |  |  |
| <u>от</u>                 |                                                                                                                                |                                                                                                    |                                                                                                                                                                      |  |  |
| 517                       | ANDARD/ TEST PR                                                                                                                |                                                                                                    | TEST RESULT                                                                                                                                                          |  |  |
| KDB558                    | FCC 47 CFR Part 2, Subpart J<br>FCC 47 CFR Part 15, Subpart C<br>KDB558074 D01 15.247 Meas Guidance v05r02<br>ANSI C63.10-2013 |                                                                                                    |                                                                                                                                                                      |  |  |
|                           | only to the tested sample                                                                                                      | le identified in the re                                                                            | in compliance with the FCC requirements. And it i                                                                                                                    |  |  |
| Technology<br>Ltd., perso | t shall not be reproduce<br>y Co., Ltd., this docume<br>onnel only, and shall be r                                             | nt may be altered or<br>noted in the revision                                                      | port.<br>hout the written approval of Shenzhen NTEK Testin<br>revised by Shenzhen NTEK Testing Technology Co                                                         |  |  |
| Technology<br>Ltd., perso | t shall not be reproduce<br>y Co., Ltd., this docume<br>onnel only, and shall be r                                             | ed except in full, with<br>nt may be altered or<br>noted in the revision<br>e only to the tested s | port.<br>hout the written approval of Shenzhen NTEK Testin<br>revised by Shenzhen NTEK Testing Technology Co<br>of the document.<br>ample identified in this report. |  |  |
| Technology<br>Ltd., perso | t shall not be reproduce<br>y Co., Ltd., this documen<br>onnel only, and shall be r<br>esults of this report relate            | ed except in full, with<br>nt may be altered or<br>noted in the revision<br>e only to the tested s | port.<br>hout the written approval of Shenzhen NTEK Testin<br>revised by Shenzhen NTEK Testing Technology Co<br>of the document.                                     |  |  |

# NTEK 北测®



# Report No.: S21102902702001

#### SUMMARY OF TEST RESULTS 2

| FCC Part15 (15.247), Subpart C |                                           |      |  |  |  |  |  |
|--------------------------------|-------------------------------------------|------|--|--|--|--|--|
| Standard Section               | Standard Section Test Item Verdict Remark |      |  |  |  |  |  |
| 15.207                         | Conducted Emission                        | PASS |  |  |  |  |  |
| 15.209 (a)<br>15.205 (a)       | Radiated Spurious Emission                | PASS |  |  |  |  |  |
| 15.247(a)(1)                   | Hopping Channel Separation                | PASS |  |  |  |  |  |
| 15.247(b)(2)                   | Peak Output Power                         | PASS |  |  |  |  |  |
| 15.247(a)(i)                   | Number of Hopping Frequency               | PASS |  |  |  |  |  |
| 15.247(a)(i)                   | Dwell Time                                | PASS |  |  |  |  |  |
| 15.247(a)(1)                   | Bandwidth                                 | PASS |  |  |  |  |  |
| 15.247 (d)                     | Band Edge Emission                        | PASS |  |  |  |  |  |
| 15.247 (d)                     | Spurious RF Conducted Emission            | PASS |  |  |  |  |  |
| 15.203                         | Antenna Requirement                       | PASS |  |  |  |  |  |

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.





# **3 FACILITIES AND ACCREDITATIONS**

# 3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

# 3.2 LABORATORY ACCREDITATIONS AND LISTINGS

| Site Description |                                                                    |
|------------------|--------------------------------------------------------------------|
| CNAS-Lab. :      | The Certificate Registration Number is L5516.                      |
| IC-Registration  | The Certificate Registration Number is 9270A.                      |
|                  | CAB identifier:CN0074                                              |
| FCC- Accredited  | Test Firm Registration Number: 463705.                             |
|                  | Designation Number: CN1184                                         |
| A2LA-Lab.        | The Certificate Registration Number is 4298.01                     |
|                  | This laboratory is accredited in accordance with the recognized    |
|                  | International Standard ISO/IEC 17025:2005 General requirements for |
|                  | the competence of testing and calibration laboratories.            |
|                  | This accreditation demonstrates technical competence for a defined |
|                  | scope and the operation of a laboratory quality management system  |
|                  | (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).     |
|                  | Shenzhen NTEK Testing Technology Co., Ltd.                         |
| Site Location :  | 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang     |
|                  | Street, Bao'an District, Shenzhen 518126 P.R. China.               |

# 3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement  $y\pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

| No. | Item                                | Uncertainty |
|-----|-------------------------------------|-------------|
| 1   | Conducted Emission Test             | ±2.80dB     |
| 2   | RF power, conducted                 | ±0.16dB     |
| 3   | Spurious emissions, conducted       | ±0.21dB     |
| 4   | All emissions, radiated(30MHz~1GHz) | ±2.64dB     |
| 5   | All emissions, radiated(1GHz~6GHz)  | ±2.40dB     |
| 6   | All emissions, radiated(>6GHz)      | ±2.52dB     |
| 7   | Temperature                         | ±0.5°C      |
| 8   | Humidity                            | ±2%         |

# NTEK 北测<sup>®</sup>



# 4 GENERAL DESCRIPTION OF EUT

| Product Feature and Specification |                                                                             |  |  |  |
|-----------------------------------|-----------------------------------------------------------------------------|--|--|--|
| Equipment                         | Power relay                                                                 |  |  |  |
| Trade Mark                        | ХЛГУ                                                                        |  |  |  |
| FCC ID                            | 2AX5VWALLSW-NA                                                              |  |  |  |
| Model No.                         | Ajax WallSwitch (9NA)                                                       |  |  |  |
| Family Model                      | N/A                                                                         |  |  |  |
| Model Difference                  | N/A                                                                         |  |  |  |
| Operating Frequency               | 905 MHz~926.5MHz                                                            |  |  |  |
| Modulation                        | GFSK                                                                        |  |  |  |
| Number of Channels                | 103 Channels                                                                |  |  |  |
| Antenna Type                      | External antenna                                                            |  |  |  |
| Antenna Gain                      | -10 dBi                                                                     |  |  |  |
| Power supply                      | ⊠AC supply: 110-230VAC, 50-60Hz, 13A, 3kW                                   |  |  |  |
|                                   | Adapter supply:                                                             |  |  |  |
| HW Version                        | WS.001.CSN.001v8; WS.001.RLC.001v8; WS.001.PWB.001v8; WS.001.RFM.001v8[9XX] |  |  |  |
| SW Version                        | 5.57.1.X                                                                    |  |  |  |
| FW Version                        | NA                                                                          |  |  |  |

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.





# **Revision History**

| Report No.      | Version | Description             | Issued Date  |  |
|-----------------|---------|-------------------------|--------------|--|
| S21102902702001 | Rev.01  | Initial issue of report | 15 Nov. 2021 |  |
|                 |         |                         |              |  |
|                 |         |                         |              |  |
|                 |         |                         |              |  |
|                 |         |                         |              |  |
|                 |         |                         |              |  |
|                 |         |                         |              |  |
|                 |         |                         |              |  |
|                 |         |                         |              |  |
|                 |         |                         |              |  |
|                 |         |                         |              |  |
|                 |         |                         |              |  |
|                 |         |                         |              |  |
|                 |         |                         |              |  |
|                 |         |                         |              |  |
|                 |         |                         |              |  |
|                 | •       | •                       | ·            |  |



# 5 DESCRIPTION OF TEST MODES

**NTEK** 北测

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report. Carrier Frequency and Channel list:

| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|---------|--------------------|---------|--------------------|---------|--------------------|
| 1       | 905                | 36      | 912.65             | 71      | 919.65             |
| 2       | 905.85             | 37      | 912.85             | 72      | 919.85             |
| 3       | 906.05             | 38      | 913.05             | 73      | 920.05             |
| 4       | 906.25             | 39      | 913.25             | 74      | 920.25             |
| 5       | 906.45             | 40      | 913.45             | 75      | 920.45             |
| 6       | 906.65             | 41      | 913.65             | 76      | 920.65             |
| 7       | 906.85             | 42      | 913.85             | 77      | 920.85             |
| 8       | 907.05             | 43      | 914.05             | 78      | 921.05             |
| 9       | 907.25             | 44      | 914.25             | 79      | 921.25             |
| 10      | 907.45             | 45      | 914.45             | 80      | 921.45             |
| 11      | 907.65             | 46      | 914.65             | 81      | 921.65             |
| 12      | 907.85             | 47      | 914.85             | 82      | 921.85             |
| 13      | 908.05             | 48      | 915.05             | 83      | 922.05             |
| 14      | 908.25             | 49      | 915.25             | 84      | 922.25             |
| 15      | 908.45             | 50      | 915.45             | 85      | 922.45             |
| 16      | 908.65             | 51      | 915.65             | 86      | 922.65             |
| 17      | 908.85             | 52      | 915.85             | 87      | 922.85             |
| 18      | 909.05             | 53      | 916.05             | 88      | 923.05             |
| 19      | 909.25             | 54      | 916.25             | 89      | 923.25             |
| 20      | 909.45             | 55      | 916.45             | 90      | 923.45             |
| 21      | 909.65             | 56      | 916.65             | 91      | 923.65             |
| 22      | 909.85             | 57      | 916.85             | 92      | 923.85             |
| 23      | 910.05             | 58      | 917.05             | 93      | 924.05             |
| 24      | 910.25             | 59      | 917.25             | 94      | 924.25             |
| 25      | 910.45             | 60      | 917.45             | 95      | 924.45             |
| 26      | 910.65             | 61      | 917.65             | 96      | 924.65             |
| 27      | 910.85             | 62      | 917.85             | 97      | 924.85             |
| 28      | 911.05             | 63      | 918.05             | 98      | 925.05             |
| 29      | 911.25             | 64      | 918.25             | 99      | 925.25             |
| 30      | 911.45             | 65      | 918.45             | 100     | 925.45             |
| 31      | 911.65             | 66      | 918.65             | 101     | 925.65             |
| 32      | 911.85             | 67      | 918.85             | 102     | 925.85             |
| 33      | 912.05             | 68      | 919.05             | 103     | 926.50             |
| 34      | 912.25             | 69      | 919.25             |         |                    |
| 35      | 912.45             | 70      | 919.45             |         |                    |



The following summary table is showing all test modes to demonstrate in compliance with the standard.

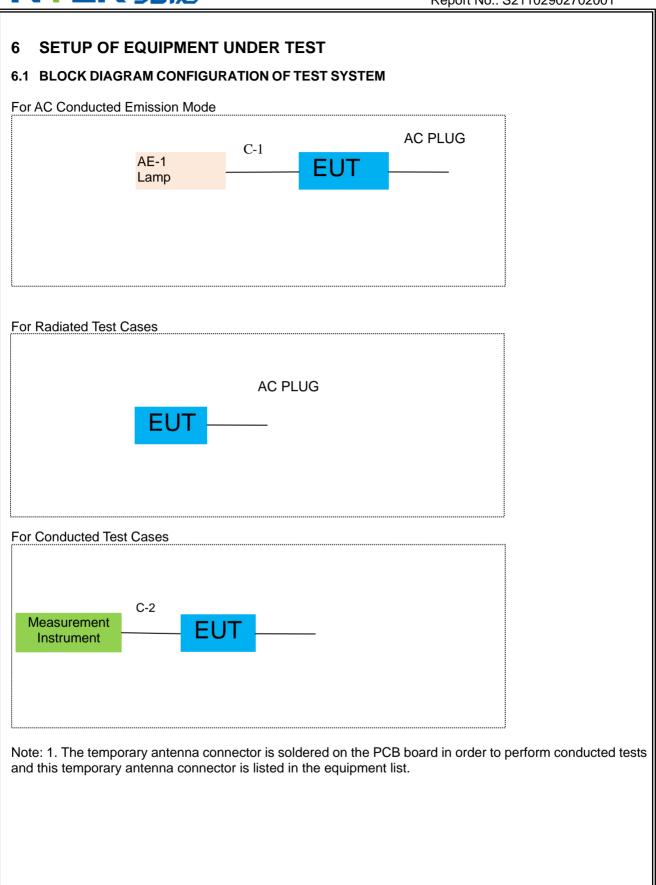
Certificate #4298.01

# For AC Conducted Emission

 Final Test Mode
 Description

 Mode 1
 normal link mode

Note: AC power line Conducted Emission was tested under maximum output power.


| For Radiated Test Cases     |                  |  |  |
|-----------------------------|------------------|--|--|
| Final Test Mode Description |                  |  |  |
| Mode 1 normal link mode     |                  |  |  |
| Mode 2 CH01(905MHz)         |                  |  |  |
| Mode 3 CH52(915.85MHz)      |                  |  |  |
| Mode 4                      | CH103(926.50MHz) |  |  |

Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

| For Conducted Test Cases    |                  |  |  |
|-----------------------------|------------------|--|--|
| Final Test Mode Description |                  |  |  |
| Mode 2 CH01(905MHz)         |                  |  |  |
| Mode 3 CH52(915.85MHz)      |                  |  |  |
| Mode 4                      | CH103(926.50MHz) |  |  |
| Mode 5                      | Hopping mode     |  |  |

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.





Certificate #4298.01

# NTEK 北测<sup>®</sup>



# 6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Item | Equipment | Model/Type No. | Series No. | Note |
|------|-----------|----------------|------------|------|
| AE-1 | Lamp      | N/A            | N/A        |      |
|      |           |                |            |      |
|      |           |                |            |      |
|      |           |                |            |      |
|      |           |                |            |      |

| Item | Cable Type  | Shielded Type | Ferrite Core | Length |
|------|-------------|---------------|--------------|--------|
| C-1  | Power Cable | NO            | NO           | 1m     |
| C-2  | RF Cable    | NO            | NO           | 0.1m   |
|      |             |               |              |        |
|      |             |               |              |        |
|      |             |               |              |        |
|      |             |               |              |        |
|      |             |               |              |        |

# Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

# NTEK 北测<sup>®</sup>



# Report No.: S21102902702001

# 6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

# Radiation& Conducted Test equipment

|      |                                             | cor equipment   |                 |                   |                  |                     |                           |
|------|---------------------------------------------|-----------------|-----------------|-------------------|------------------|---------------------|---------------------------|
| Item | Kind of<br>Equipment                        | Manufacturer    | Type No.        | Serial No.        | Last calibration | Calibrated<br>until | Calibrati<br>on<br>period |
| 1    | Spectrum<br>Analyzer                        | Aglient         | E4407B          | MY45108040        | 2021.04.27       | 2022.04.26          | 1 year                    |
| 2    | Spectrum<br>Analyzer                        | Agilent         | N9020A          | MY49100060        | 2021.07.01       | 2022.06.30          | 1 year                    |
| 3    | Spectrum<br>Analyzer                        | R&S             | FSV40           | 101417            | 2021.07.01       | 2022.06.30          | 1 year                    |
| 4    | Test Receiver                               | R&S             | ESPI7           | 101318            | 2021.04.27       | 2022.04.26          | 1 year                    |
| 5    | Bilog Antenna                               | TESEQ           | CBL6111D        | 31216             | 2021.03.29       | 2022.03.28          | 1 year                    |
| 6    | 50Ω Coaxial<br>Switch                       | Anritsu         | MP59B           | 6200983705        | 2020.05.11       | 2023.05.10          | 3 year                    |
| 7    | Horn Antenna                                | EM              | EM-AH-1018<br>0 | 2011071402        | 2021.03.29       | 2022.03.28          | 1 year                    |
| 8    | Broadband<br>Horn Antenna                   | SCHWARZBE<br>CK | BBHA 9170       | 803               | 2021.04.27       | 2022.04.26          | 1 year                    |
| 9    | Amplifier                                   | EMC             | EMC051835<br>SE | 980246            | 2021.07.01       | 2022.06.30          | 1 year                    |
| 10   | Active Loop<br>Antenna                      | SCHWARZBE<br>CK | FMZB 1519<br>B  | 055               | 2021.04.27       | 2022.04.26          | 1 year                    |
| 11   | Power Meter                                 | DARE            | RPR3006W        | 15I00041SN<br>084 | 2021.07.01       | 2022.06.30          | 1 year                    |
| 12   | Test Cable<br>(9KHz-30MHz)                  | N/A             | R-01            | N/A               | 2020.07.13       | 2023.07.12          | 3 year                    |
| 13   | Test Cable<br>(30MHz-1GHz)                  | N/A             | R-02            | N/A               | 2021.07.01       | 2022.06.30          | 1 year                    |
| 14   | High Test<br>Cable(1G-40G<br>Hz)            | N/A             | R-03            | N/A               | 2019.06.28       | 2022.06.27          | 3 year                    |
| 15   | High Test<br>Cable(1G-40G<br>Hz)            | N/A             | R-04            | N/A               | 2021.03.29       | 2022.03.28          | 1 year                    |
| 16   | Filter                                      | TRILTHIC        | 2400MHz         | 29                | 2021.07.01       | 2022.06.30          | 1 year                    |
| 17   | temporary<br>antenna<br>connector<br>(Note) | NTS             | R001            | N/A               | N/A              | N/A                 | N/A                       |

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list





| AC Co | AC Conduction Test equipment   |                 |           |            |                  |                     |                    |
|-------|--------------------------------|-----------------|-----------|------------|------------------|---------------------|--------------------|
| Item  | Kind of<br>Equipment           | Manufacturer    | Type No.  | Serial No. | Last calibration | Calibrated<br>until | Calibration period |
| 1     | Test Receiver                  | R&S             | ESCI      | 101160     | 2021.04.27       | 2022.04.26          | 1 year             |
| 2     | LISN                           | R&S             | ENV216    | 101313     | 2021.04.27       | 2022.04.26          | 1 year             |
| 3     | LISN                           | SCHWARZBE<br>CK | NNLK 8129 | 8129245    | 2021.04.27       | 2022.04.26          | 1 year             |
| 4     | 50Ω Coaxial<br>Switch          | ANRITSU<br>CORP | MP59B     | 6200983704 | 2020.05.11       | 2023.05.10          | 3 year             |
| 5     | Test Cable<br>(9KHz-30MH<br>z) | N/A             | C01       | N/A        | 2020.05.11       | 2023.05.10          | 3 year             |
| 6     | Test Cable<br>(9KHz-30MH<br>z) | N/A             | C02       | N/A        | 2020.05.11       | 2023.05.10          | 3 year             |
| 7     | Test Cable<br>(9KHz-30MH<br>z) | N/A             | C03       | N/A        | 2020.05.11       | 2023.05.10          | 3 year             |

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.



# 7 TEST REQUIREMENTS

# 7.1 CONDUCTED EMISSIONS TEST

# 7.1.1 Applicable Standard

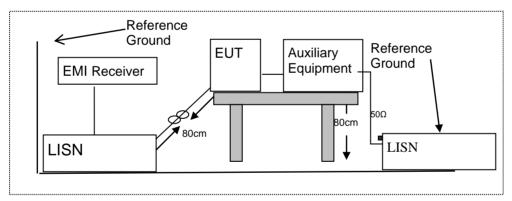
According to FCC Part 15.207(a)

# 7.1.2 Conformance Limit

|                | Conducted Emission Limit |         |  |  |
|----------------|--------------------------|---------|--|--|
| Frequency(MHz) | Quasi-peak               | Average |  |  |
| 0.15-0.5       | 66-56*                   | 56-46*  |  |  |
| 0.5-5.0        | 56                       | 46      |  |  |
| 5.0-30.0       | 60                       | 50      |  |  |

Certificate #4298.01

Note: 1. \*Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

# 7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

# 7.1.4 Test Configuration



### 7.1.5 Test Procedure

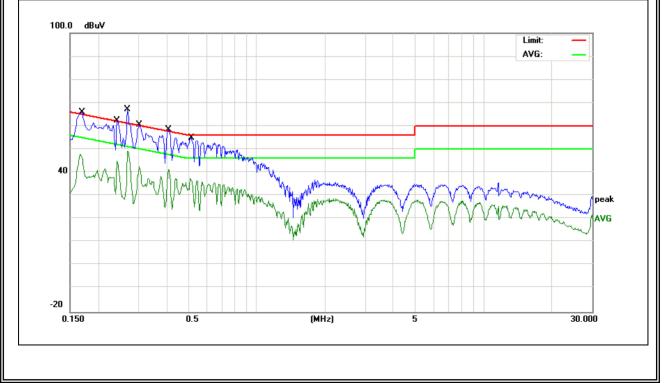
According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

# NTEK 北测<sup>®</sup>

ilac




# 7.1.6 Test Results

| EUT:           | Power relay   |             | Mod  | lel Name :         | Ajax W | allSwitch (9N | A)     |  |
|----------------|---------------|-------------|------|--------------------|--------|---------------|--------|--|
| Temperature:   | <b>26</b> ℃   | <b>26</b> ℃ |      | Relative Humidity: |        | 54%           |        |  |
| Pressure:      | 1010hPa       |             | Pha  | Phase : L          |        | L             |        |  |
| Test Voltage : | AC120V/60Hz   |             | Test | Test Mode: Mode 1  |        |               |        |  |
| Frequency      | Meter Reading | Facto       | or   | Emission Level     | Limits | Margin        | Remark |  |
| (MHz)          | (dBµV)        | (dB         | )    | (dBµV)             | (dBµV) | (dB)          | Remark |  |
| 0.1700         | 52.71         | 9.69        | 9    | 62.40              | 64.96  | -2.56         | QP     |  |
| 0.1700         | 38.18         | 9.69        | 9    | 47.87              | 54.96  | -7.09         | AVG    |  |
| 0.2420         | 50.97         | 9.63        | 3    | 60.60              | 62.02  | -1.42         | QP     |  |
| 0.2420         | 35.35         | 9.63        | 3    | 44.98              | 52.02  | -7.04         | AVG    |  |
| 0.2700         | 50.57         | 9.63        | 3    | 60.20              | 61.12  | -0.92         | QP     |  |
| 0.2700         | 39.51         | 9.63        | 3    | 49.14              | 51.12  | -1.98         | AVG    |  |
| 0.3020         | 48.97         | 9.63        | 3    | 58.60              | 60.19  | -1.59         | QP     |  |
| 0.3020         | 32.96         | 9.63        | 3    | 42.59              | 50.19  | -7.60         | AVG    |  |
| 0.4100         | 46.46         | 9.64        | 4    | 56.10              | 57.65  | -1.55         | QP     |  |
| 0.4100         | 31.71         | 9.64        | 4    | 41.35              | 47.65  | -6.30         | AVG    |  |
| 0.5140         | 42.25         | 9.65        | 5    | 51.90              | 56.00  | -4.10         | QP     |  |
| 0.5140         | 27.65         | 9.65        | 5    | 37.30              | 46.00  | -8.70         | AVG    |  |

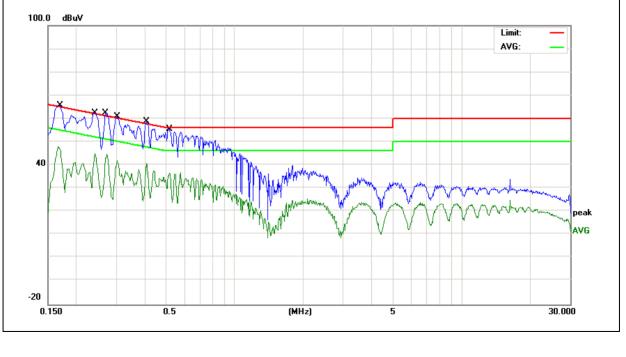
ACCREDITED Certificate #4298.01

### Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.



# NTEK 北测<sup>®</sup>




| EUT:           | Power relay  | Model Name. :      | Ajax WallSwitch (9NA) |
|----------------|--------------|--------------------|-----------------------|
| Temperature:   | <b>25</b> ℃  | Relative Humidity: | 51%                   |
| Pressure:      | 1010hPa      | Phase :            | Ν                     |
| Test Voltage : | AC 120V/60Hz | Test Mode:         | Mode 1                |

| Frequency | Meter Reading | Factor | Emission Level | Limits | Margin | Remark |
|-----------|---------------|--------|----------------|--------|--------|--------|
| (MHz)     | (dBµV)        | (dB)   | (dBµV)         | (dBµV) | (dB)   | Remark |
| 0.1700    | 52.57         | 9.63   | 62.20          | 64.96  | -2.76  | QP     |
| 0.1700    | 38.25         | 9.63   | 47.88          | 54.96  | -7.08  | AVG    |
| 0.2420    | 50.96         | 9.64   | 60.60          | 62.02  | -1.42  | QP     |
| 0.2420    | 35.27         | 9.64   | 44.91          | 52.02  | -7.11  | AVG    |
| 0.2700    | 50.55         | 9.65   | 60.20          | 61.12  | -0.92  | QP     |
| 0.2700    | 34.87         | 9.65   | 44.52          | 51.12  | -6.60  | AVG    |
| 0.3020    | 48.94         | 9.66   | 58.60          | 60.19  | -1.59  | QP     |
| 0.3020    | 32.42         | 9.66   | 42.08          | 50.19  | -8.11  | AVG    |
| 0.4100    | 46.69         | 9.71   | 56.40          | 57.65  | -1.25  | QP     |
| 0.4100    | 31.01         | 9.71   | 40.72          | 47.65  | -6.93  | AVG    |
| 0.5140    | 42.57         | 9.73   | 52.30          | 56.00  | -3.70  | QP     |
| 0.5140    | 27.01         | 9.73   | 36.74          | 46.00  | -9.26  | AVG    |

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.



# NTEK 北测



# 7.2 RADIATED SPURIOUS EMISSION

# 7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

# 7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

| According to FCC Fait 15.205, Restricted bands |                     |               |             |  |  |
|------------------------------------------------|---------------------|---------------|-------------|--|--|
| MHz                                            | MHz                 | MHz           | GHz         |  |  |
| 0.090-0.110                                    | 16.42-16.423        | 399.9-410     | 4.5-5.15    |  |  |
| 0.495-0.505                                    | 16.69475-16.69525   | 608-614       | 5.35-5.46   |  |  |
| 2.1735-2.1905                                  | 16.80425-16.80475   | 960-1240      | 7.25-7.75   |  |  |
| 4.125-4.128                                    | 25.5-25.67          | 1300-1427     | 8.025-8.5   |  |  |
| 4.17725-4.17775                                | 37.5-38.25          | 1435-1626.5   | 9.0-9.2     |  |  |
| 4.20725-4.20775                                | 73-74.6             | 1645.5-1646.5 | 9.3-9.5     |  |  |
| 6.215-6.218                                    | 74.8-75.2           | 1660-1710     | 10.6-12.7   |  |  |
| 6.26775-6.26825                                | 123-138             | 2200-2300     | 14.47-14.5  |  |  |
| 8.291-8.294                                    | 149.9-150.05        | 2310-2390     | 15.35-16.2  |  |  |
| 8.362-8.366                                    | 156.52475-156.52525 | 2483.5-2500   | 17.7-21.4   |  |  |
| 8.37625-8.38675                                | 156.7-156.9         | 2690-2900     | 22.01-23.12 |  |  |
| 8.41425-8.41475                                | 162.0125-167.17     | 3260-3267     | 23.6-24.0   |  |  |
| 12.29-12.293                                   | 167.72-173.2        | 3332-3339     | 31.2-31.8   |  |  |
| 12.51975-12.52025                              | 240-285             | 3345.8-3358   | 36.43-36.5  |  |  |
| 12.57675-12.57725                              | 322-335.4           | 3600-4400     | (2)         |  |  |
| 13.36-13.41                                    |                     |               |             |  |  |

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

|      | estricted<br>Jency(MHz) | Field Strength (µV/m) | Field Strength (dBµV/m) | Measurement Distance |
|------|-------------------------|-----------------------|-------------------------|----------------------|
| 0.0  | 09~0.490                | 2400/F(KHz)           | 20 log (uV/m)           | 300                  |
| 0.49 | 90~1.705                | 24000/F(KHz)          | 20 log (uV/m)           | 30                   |
| 1.7  | 705~30.0                | 30                    | 29.5                    | 30                   |
|      | 30-88                   | 100                   | 40                      | 3                    |
| 8    | 38-216                  | 150                   | 43.5                    | 3                    |
| 2    | 16-960                  | 200                   | 46                      | 3                    |
| Ab   | ove 960                 | 500                   | 54                      | 3                    |

Limits of Radiated Emission Measurement(Above 1000MHz)

| Frequency(MHz) | Class B (dBuV/m) (at 3M) |         |  |
|----------------|--------------------------|---------|--|
|                | PEAK                     | AVERAGE |  |
| Above 1000     | 74                       | 54      |  |

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

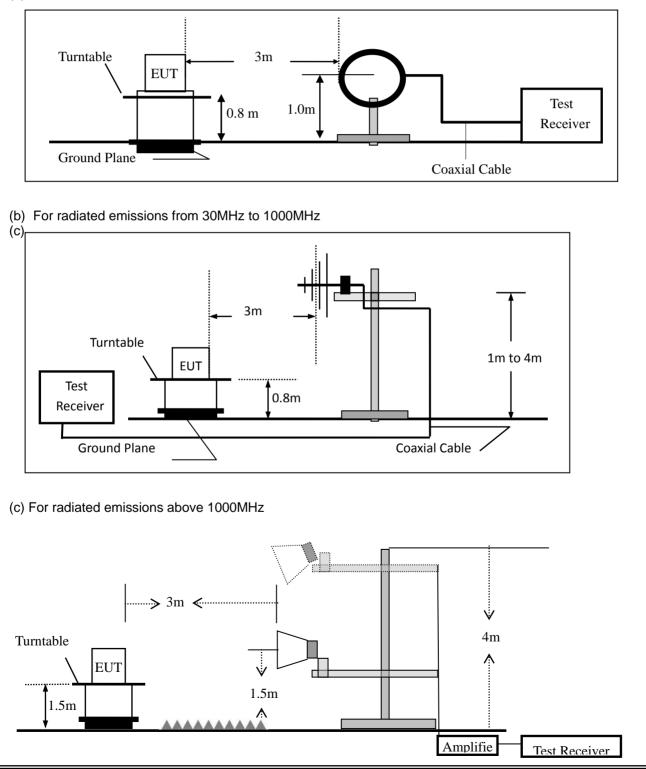
Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

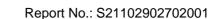
Limit line=Specific limits(dBuV) + distance extrapolation factor.






# 7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.


# 7.2.4 Test Configuration

# (a) For radiated emissions below 30MHz



Version.1.2

# NTEK 北测<sup>®</sup>



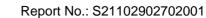
# 7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

ertificate #4298 01

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

| Spectrum Parameter                    | Setting                                          |
|---------------------------------------|--------------------------------------------------|
| Attenuation                           | Auto                                             |
| Start Frequency                       | 1000 MHz                                         |
| Stop Frequency                        | 10th carrier harmonic                            |
| RB / VB (emission in restricted band) | 1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average |


| Receiver Parameter     | Setting                          |
|------------------------|----------------------------------|
| Attenuation            | Auto                             |
| Start ~ Stop Frequency | 9kHz~150kHz / RB 200Hz for QP    |
| Start ~ Stop Frequency | 150kHz~30MHz / RB 9kHz for QP    |
| Start ~ Stop Frequency | 30MHz~1000MHz / RB 120kHz for QP |

a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.

- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported





| During the radiated emission t | During the radiated emission test, the Spectrum Analyzer was set with the following configurations: |                      |                 |  |  |  |  |  |  |  |
|--------------------------------|-----------------------------------------------------------------------------------------------------|----------------------|-----------------|--|--|--|--|--|--|--|
| Frequency Band (MHz)           | Function                                                                                            | Resolution bandwidth | Video Bandwidth |  |  |  |  |  |  |  |
| 30 to 1000                     | 30 to 1000 QP                                                                                       |                      | 300 kHz         |  |  |  |  |  |  |  |
| Ab aug 4000                    | Peak                                                                                                | 1 MHz                | 1 MHz           |  |  |  |  |  |  |  |
| Above 1000                     | Average                                                                                             | 1 MHz                | 10 Hz           |  |  |  |  |  |  |  |

Certificate #4298.01

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10\*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.





# 7.2.6 Test Results

# Spurious Emission below 30MHz (9KHz to 30MHz)

| EUT:         | Power relay       | Model No.:         | Ajax WallSwitch (9NA) |
|--------------|-------------------|--------------------|-----------------------|
| Temperature: | <b>20</b> ℃       | Relative Humidity: | 48%                   |
| Test Mode:   | Mode2/Mode3/Mode4 | Test By:           | Allen Liu             |

| Freq. | Ant.Pol. | Emission Level(dBuV/m) |    | Limit 3 | m(dBuV/m) | Over(dB) |    |  |
|-------|----------|------------------------|----|---------|-----------|----------|----|--|
| (MHz) | H/V      | PK                     | AV | PK      | AV        | PK       | AV |  |
|       |          |                        |    |         |           |          |    |  |

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

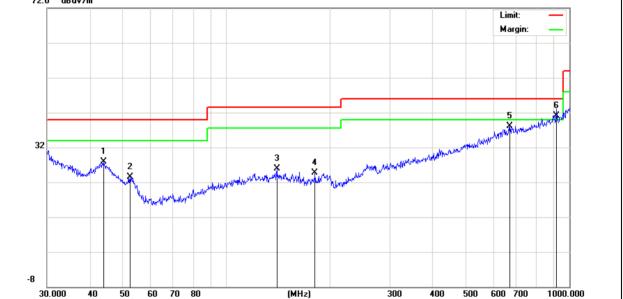






All the modulation modes have been tested, and the worst result was report as below:

| EUT:           | Power relay  | Model Name :       | Ajax WallSwitch (9NA) |
|----------------|--------------|--------------------|-----------------------|
| Temperature:   | 23 °C        | Relative Humidity: | 54%                   |
| Pressure:      | 1010hPa      | Test Mode:         | Mode 1                |
| Test Voltage : | AC 120V/60Hz |                    |                       |


Certificate #4298.01

| Polar | Frequency | Meter<br>Reading | Factor | Emission<br>Level | Limits   | Margin | Remark |  |
|-------|-----------|------------------|--------|-------------------|----------|--------|--------|--|
| (H/V) | (MHz)     | (dBuV)           | (dB)   | (dBuV/m)          | (dBuV/m) | (dB)   |        |  |
| V     | 43.9658   | 11.08            | 16.87  | 27.95             | 40.00    | -12.05 | QP     |  |
| V     | 52.3912   | 9.66             | 13.89  | 23.55             | 40.00    | -16.45 | QP     |  |
| V     | 140.3421  | 6.51             | 19.42  | 25.93             | 43.50    | -17.57 | QP     |  |
| V     | 181.2834  | 7.74             | 16.89  | 24.63             | 43.50    | -18.87 | QP     |  |
| V     | 670.4891  | 7.29             | 30.82  | 38.11             | 46.00    | -7.89  | QP     |  |
| V     | 916.0687  | 7.29             | 33.91  | 41.20             | 46.00    | -4.80  | QP     |  |

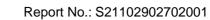
# Remark:

Emission Level = Meter Reading + Factor, Margin= Emission Level - Limit








# NTEK 北测<sup>® 【</sup>

| Polar | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Meter<br>Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Factor                    | Emission<br>Level     | Limits                       | Margin        | Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------|------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (H/V) | (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (dBuV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (dB)                      | (dBuV/m)              | (dBuV/m)                     | (dB)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Н     | 84.9993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.97                     | 21.77                 | 40.00                        | -18.23        | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Н     | 140.8351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.35                     | 25.51                 | 43.50                        | -17.99        | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Н     | 273.2341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.86                     | 28.70                 | 46.00                        | -17.30        | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Н     | 349.2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23.69                     | 30.38                 | 46.00                        | -15.62        | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Н     | 645.1195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30.30                     | 37.14                 | 46.00                        | -8.86         | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Н     | 848.0561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32.96                     | 41.51                 | 46.00                        | -4.49         | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                       |                              | Margin:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | n Level = Meter<br>dBuV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r Reading + F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | actor, Març               | gin= Emission         | Level - Limit                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                       |                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                       |                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                       |                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                       |                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                       |                              | 5 Jun Karland | high specific line in the specific line is the spec |
| 32    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 3                     | 4 hundred when               | druck Marine  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| m.    | Month and the Stand Strand Stran |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                         | MAN                   | 4 month and a strange of the |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | and her free free free free free free free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | at the her and the states | manything whether the |                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | and the state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and the state of t |                           |                       |                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                       |                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                       |                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                       |                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -8    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                       |                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30.0  | 00 40 50 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50 70 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (Mł                       |                       | 300 400 500                  | ) 600 700     | 1000.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



ila

ACCREDITED Certificate #4298.01



| Spurious     | s Emiss       | ion Above     | 1GHz (1G          | Hz to 2        | 25GHz)           |              |        |             |          |            |
|--------------|---------------|---------------|-------------------|----------------|------------------|--------------|--------|-------------|----------|------------|
| EUT:         | F             | Power relag   | у                 | Ν              | /lodel No.:      |              | Ajax   | WallSwit    | ch (9NA) |            |
| Temperature  | e: 2          | <b>20</b> ℃   |                   | F              | Relative Humidi  | ty:          | 48%    |             |          |            |
| Test Mode:   | ١             | Mode2/Mod     | de3/Mode4         | t T            | est By:          | y: Allen Liu |        |             |          |            |
| All the modu | lation m      | odes have     | been test         |                | d the worst resu | ult was      | s repo | ort as belo | w:       |            |
| Frequency    | Read<br>Level | Cable<br>loss | Antenna<br>Factor | Prean<br>Facto |                  | Lim          | iits   | Margin      | Remark   | Comment    |
| (MHz)        | (dBµV)        | ) (dB)        | dB/m              | (dB)           | ) (dBµV/m)       | (dBµ         | V/m)   | (dB)        |          |            |
|              |               |               | Low Ch            | annel (9       | 905 MHz)(GFSK    | )Abov        | /e 1G  |             |          |            |
| 1810         | 83.44         | 5.21          | 26.5              | 55.3           | 5 59.80          | 74.          | 00     | -14.20      | Pk       | Vertical   |
| 1810         | 62.49         | 5.21          | 26.5              | 55.3           | 5 38.85          | 54.          | 00     | -15.15      | AV       | Vertical   |
| 2715         | 78.25         | 6.48          | 28.49             | 55.1           | 1 58.11          | 74.          | 00     | -15.89      | Pk       | Vertical   |
| 2715         | 65.90         | 6.48          | 28.49             | 55.1           | 1 45.76          | 54.          | 00     | -8.24       | AV       | Vertical   |
| 1810         | 82.47         | 5.21          | 26.5              | 55.3           | 5 58.83          | 74.          | 00     | -15.17      | Pk       | Horizontal |
| 1810         | 63.47         | 5.21          | 26.5              | 55.3           | 5 39.83          | 54.          | 00     | -14.17      | AV       | Horizontal |
| 2715         | 80.42         | 6.48          | 28.49             | 55.1           | 1 60.28          | 74.          | 00     | -13.72      | Pk       | Horizontal |
| 2715         | 61.60         | 6.48          | 28.49             | 55.1           |                  | 54.          |        | -12.54      | AV       | Horizontal |
|              |               |               | Mid Char          | nnel (91       | 5.85 MHz)(GFS    | K)Abo        | ove 10 | G           |          |            |
| 1831.7       | 83.08         | 5.21          | 26.5              | 55.3           | 5 59.44          | 74.          | 00     | -14.56      | Pk       | Vertical   |
| 1831.7       | 65.55         | 5.21          | 26.5              | 55.3           | 5 41.91          | 54.          | 00     | -12.09      | AV       | Vertical   |
| 2747.55      | 83.45         | 7.10          | 28.49             | 55.1           | 1 63.93          | 74.          | 00     | -10.07      | Pk       | Vertical   |
| 2747.55      | 65.80         | 7.10          | 28.49             | 55.1           | 1 46.28          | 54.          | 00     | -7.72       | AV       | Vertical   |
| 1829.5       | 84.28         | 5.21          | 26.5              | 55.3           | 5 60.64          | 74.          | 00     | -13.36      | Pk       | Horizontal |
| 1829.5       | 64.93         | 5.21          | 26.5              | 55.3           | 5 41.29          | 54.          | 00     | -12.71      | AV       | Horizontal |
| 2744.25      | 79.88         | 7.10          | 28.49             | 55.1           | 1 60.36          | 74.          | 00     | -13.64      | Pk       | Horizontal |
| 2744.25      | 66.39         | 7.10          | 28.49             | 55.1           |                  | 54.          |        | -7.13       | AV       | Horizontal |
|              |               |               |                   | ,              | 26.5 MHz)(GFSI   | <) Abo       | ove 10 | 3           |          |            |
| 1855.5       | 81.81         | 5.21          | 26.5              | 55.3           |                  | 74.          | 00     | -15.83      | Pk       | Vertical   |
| 1855.5       | 62.33         | 5.21          | 26.5              | 55.3           |                  | 54.          | 00     | -15.31      | AV       | Vertical   |
| 2783.25      | 81.05         | 7.10          | 28.49             | 55.1           | 1 61.53          | 74.          | 00     | -12.47      | Pk       | Vertical   |
| 2783.25      | 63.01         | 7.10          | 28.49             | 55.1           |                  | 54.          | 00     | -10.51      | AV       | Vertical   |
| 1855.5       | 85.65         | 5.21          | 35.52             | 55.3           |                  | 74.          | 00     | -2.97       | Pk       | Horizontal |
| 1855.5       | 62.28         | 5.21          | 35.52             | 55.3           | 5 47.66          | 54.          | 00     | -6.34       | AV       | Horizontal |
| 2783.25      | 81.69         | 7.10          | 36.53             | 55.1           |                  | 74.          | 00     | -3.79       | Pk       | Horizontal |
| 2783.25      | 62.79         | 7.10          | 36.53             | 55.1           | 1 51.31          | 54.          | 00     | -2.69       | AV       | Horizontal |

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.





| Spurious                                                                             | Emission         | in Restri     | cted Band         |                  |                                  |       |           |        |          |            |
|--------------------------------------------------------------------------------------|------------------|---------------|-------------------|------------------|----------------------------------|-------|-----------|--------|----------|------------|
| EUT:                                                                                 | 1                | Power re      | lay               |                  | Model No.: Ajax WallSwitch (9NA) |       |           |        |          |            |
| Temperature                                                                          | :                | <b>20</b> ℃   |                   |                  | Relative<br>Humidity:            |       | 48%       |        |          |            |
| Test Mode: Mode2/ Mode4                                                              |                  |               |                   | Test By:         |                                  | Allen | Allen Liu |        |          |            |
| All the modulation modes have been tested, and the worst result was report as below: |                  |               |                   |                  |                                  |       |           |        |          |            |
| Frequency                                                                            | Reading<br>Level | Cable<br>Loss | Antenna<br>Factor | Preamp<br>Factor | Emission<br>Level                | Lin   | nits      | Margin | Detector | Comment    |
| (MHz)                                                                                | (dBµV)           | (dB)          | dB/m              | (dB)             | (dBµV/m)                         | (dBµ  | ıV/m)     | (dB)   | Туре     |            |
| 1240                                                                                 | 60.88            | 4.04          | 29.57             | 44.70            | 49.79                            | 7     | '4        | -24.21 | Pk       | Vertical   |
| 1240                                                                                 | 57.53            | 4.04          | 29.57             | 44.70            | 46.44                            | 5     | 54        | -7.56  | AV       | Vertical   |
| 1240                                                                                 | 62.56            | 4.04          | 29.57             | 44.70            | 51.47                            | 7     | '4        | -22.53 | Pk       | Horizontal |
| 1240                                                                                 | 58.38            | 4.04          | 29.57             | 44.70            | 47.29                            | 5     | 54        | -6.71  | AV       | Horizontal |
| 1804.6                                                                               | 64.73            | 4.26          | 29.87             | 44.40            | 54.46                            | 7     | '4        | -19.54 | Pk       | Vertical   |
| 1804.6                                                                               | 54.60            | 4.26          | 29.87             | 44.40            | 44.33                            | 5     | 54        | -9.67  | AV       | Vertical   |
| 1804.6                                                                               | 63.22            | 4.26          | 29.87             | 44.40            | 52.95                            | 7     | '4        | -21.05 | Pk       | Horizontal |
| 1804.6                                                                               | 52.64            | 4.26          | 29.87             | 44.40            | 42.37                            | 5     | 54        | -11.63 | AV       | Horizontal |

Note: (1) All other emissions more than 20dB below the limit.





# 7.3 NUMBER OF HOPPING CHANNEL

# 7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (i)and ANSI C63.10-2013

# 7.3.2 Conformance Limit

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.

# 7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

# 7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

# 7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW  $\geq$  RBW Sweep = auto Detector function = peak Trace = max hold





# 7.3.6 Test Results

| EUT: F                 | Power relay                                                                                                     | Model No.:               | Ajax WallSwit                                               | ch (9NA)       |
|------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------|----------------|
| Femperature: 2         | 20 °C                                                                                                           | Relative Humidity:       | 48%                                                         |                |
| Fest Mode:             | Mode 5(1Mbps)                                                                                                   | Test By:                 | Allen Liu                                                   |                |
|                        |                                                                                                                 |                          |                                                             |                |
| Numbe                  | er of Hopping (Channel):                                                                                        |                          | 103                                                         |                |
| Number of Ho           | pping Channel Plot                                                                                              |                          |                                                             |                |
| Agilent Spectru        | um Analyzer - Swept SA                                                                                          |                          |                                                             |                |
|                        | RF         50 Ω         AC         SENS           926.518000000 MHz         Trig: Free F         Trig: Free F   | Avg Type: Log-Pwr        | 04:53:35 PMNov 11, 2021<br>TRACE 1 2 3 4 5 6<br>TYPE MWWWWW | Peak Search    |
|                        | IFGain:Low Atten: 40 d                                                                                          | В                        | DET PINNNNN<br>2 926.518 MHz                                | Next Peak      |
| 10 dB/div              | Ref 30.00 dBm                                                                                                   | IVINI                    | 10.476 dBm                                                  |                |
| 20.0                   | 0 <sup>1</sup>                                                                                                  |                          | 2_                                                          | Next Pk Right  |
| 10.0                   | all a second | untulukutukukukukukukuku | anananan l                                                  | Next PK Right  |
| -10.0                  |                                                                                                                 |                          |                                                             |                |
| -20.0                  |                                                                                                                 |                          |                                                             | Next Pk Left   |
| -30.0                  |                                                                                                                 |                          |                                                             |                |
| -50.0                  | um V                                                                                                            |                          | - V Mark                                                    | Marker Delta   |
| -60.0                  |                                                                                                                 |                          |                                                             |                |
| Start 902.0<br>#Res BW |                                                                                                                 | Sweep 8.                 | Stop 928.00 MHz<br>200 ms (1001 pts)                        | Mkr→CF         |
| MKR MODE TR            |                                                                                                                 | FUNCTION FUNCTION WIDTH  | FUNCTION VALUE                                              |                |
| 1 N 1<br>2 N 1<br>3    | f 904.990 MHz 10.733 dBr<br>f 926.518 MHz 10.476 dBr                                                            |                          |                                                             |                |
| 4 5                    |                                                                                                                 |                          |                                                             | Mkr→RefLvl     |
|                        |                                                                                                                 |                          |                                                             |                |
| 9                      |                                                                                                                 |                          |                                                             | More<br>1 of 2 |
| 11<br><                |                                                                                                                 |                          | <b>&gt;</b>                                                 |                |
| MSG                    |                                                                                                                 | <b>K</b> ostatus         |                                                             |                |





# 7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

### 7.4.1 Applicable Standard

According to FCC Part 15.247(a) (1) and ANSI C63.10-2013

### 7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Certificate #4298.01

### 7.4.3 Measuring Instruments

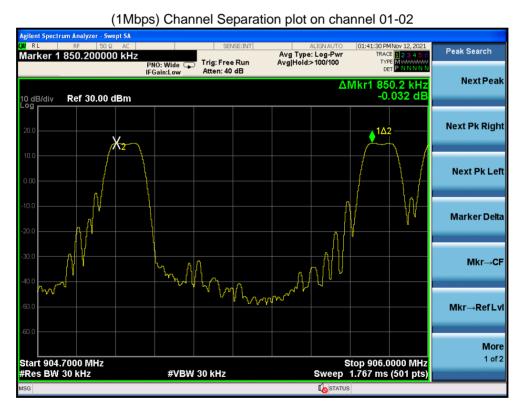
The Measuring equipment is listed in the section 6.3 of this test report.

### 7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

# 7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Measurement Bandwidth or Channel Separation RBW: Start with the RBW set to approximately 3% of the channel spacing; adjust as necessary to best identify the center of each individual channel. VBW  $\geq$  RBW Sweep = auto Detector function = peak Trace = max hold






# 7.4.6 Test Results

| EUT:               | Power re          | Power relay                   |         |                                            | I No.: Ajax WallSwitch (9NA) |         |               |         |  |
|--------------------|-------------------|-------------------------------|---------|--------------------------------------------|------------------------------|---------|---------------|---------|--|
| Temperature:       | <b>20</b> ℃       | <b>20</b> ℃                   |         |                                            | umidity:                     | 48%     |               |         |  |
| Test Mode:         | Mode2/M           | Mode2/Mode3/Mode4             |         | Test By:                                   |                              | Allen L | Allen Liu     |         |  |
|                    |                   |                               |         |                                            |                              |         |               |         |  |
| Modulation<br>Mode | Channel<br>Number | Channel<br>Frequency<br>(MHz) | C<br>Se | Measured<br>Channel<br>Separation<br>(kHz) |                              |         | _imit<br>kHz) | Verdict |  |
|                    | 01-02 902.50      |                               |         | 850.2                                      | >11                          | 6.7     | 20dB BW       | PASS    |  |
| GFSK               | 52-53             | 915.00                        |         | 200                                        | >11                          | 5.4     | 20dB BW       | PASS    |  |
|                    | 102-103           | 926.50                        |         | 651                                        | >11                          | 4.8     | 20dB BW       | PASS    |  |

# **Test Plot**







# (1Mbps) Channel Separation plot on channel 52-53

(1Mbps) Channel Separation plot on channel 102-103







# 7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

# 7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(i)) and ANSI C63.10-2013

# 7.5.2 Conformance Limit

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

# 7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

# 7.5.4 Test Setup

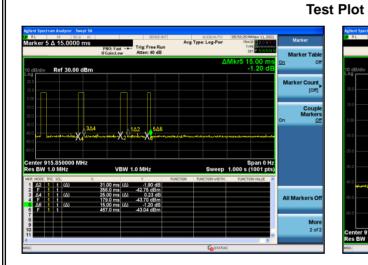
Please refer to Section 6.1 of this test report.

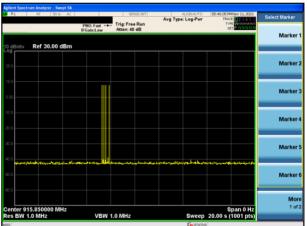
# 7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW< 200kHz VBW  $\geq$  RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT packet transmitting. Measure the maximum time duration of one single pulse.






# 7.5.6 Test Results


| EUT:         | Power relay       | Model No.:         | Ajax WallSwitch (9NA) |
|--------------|-------------------|--------------------|-----------------------|
| Temperature: | <b>20</b> ℃       | Relative Humidity: | 48%                   |
| Test Mode:   | Mode2/Mode3/Mode4 | Test By:           | Allen Liu             |

| Center<br>Frequency<br>( MHz) | Transmit Time<br>per Hop<br>(ms) | The Number of<br>Hop Within a<br>limited time<br>(N) | Dwell Time<br>(s) | Limits<br>(s) | Result |
|-------------------------------|----------------------------------|------------------------------------------------------|-------------------|---------------|--------|
| 915.85                        | 71                               | 1                                                    | 0.071             | 0.4           | Pass   |

Note:

- 1. Ton=31+25+15ms=71ms
- 2. Sweep time=20s;
- 3. Dwell Time(s) = Transmit Timeper Hopx N.





#### 11





# 7.5.7 Pseudorandom Frequency Hopping Sequence

Each frequency used equally on the average by each transmitter.

The channel order is determined by the Channel mapping Table, system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals

Certificate #4298.01

Pseudo-random sequence Table

| Channel | Frequency | Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|---------|-----------|
| Channel | (MHz)     | Channel | (MHz)     | Channel | (MHz)     |
| 1       | 905       | 36      | 912.65    | 71      | 919.65    |
| 55      | 916.45    | 37      | 912.85    | 81      | 921.65    |
| 56      | 916.65    | 38      | 913.05    | 77      | 920.85    |
| 46      | 914.65    | 2       | 905.85    | 74      | 920.25    |
| 47      | 914.85    | 51      | 915.65    | 26      | 910.65    |
| 24      | 910.25    | 9       | 907.25    | 27      | 910.85    |
| 25      | 910.45    | 10      | 907.45    | 72      | 919.85    |
| 75      | 920.45    | 54      | 916.25    | 73      | 920.05    |
| 76      | 920.65    | 22      | 909.85    | 78      | 921.05    |
| 28      | 911.05    | 23      | 910.05    | 82      | 921.85    |
| 29      | 911.25    | 7       | 906.85    | 79      | 921.25    |
| 52      | 915.85    | 8       | 907.05    | 84      | 922.25    |
| 53      | 916.05    | 48      | 915.05    | 83      | 922.05    |
| 57      | 916.85    | 49      | 915.25    | 80      | 921.45    |
| 58      | 917.05    | 50      | 915.45    | 85      | 922.45    |
| 59      | 917.25    | 18      | 909.05    | 3       | 906.05    |
| 60      | 917.45    | 19      | 909.25    | 4       | 906.25    |
| 61      | 917.65    | 20      | 909.45    | 5       | 906.45    |
| 62      | 917.85    | 21      | 909.65    | 11      | 907.65    |
| 63      | 918.05    | 31      | 911.65    | 12      | 907.85    |
| 64      | 918.25    | 32      | 911.85    | 13      | 908.05    |
| 65      | 918.45    | 33      | 912.05    | 6       | 906.65    |
| 69      | 919.25    | 66      | 918.65    | 39      | 913.25    |
| 70      | 919.45    | 67      | 918.85    | 40      | 913.45    |
| 30      | 911.45    | 68      | 919.05    | 41      | 913.65    |
| 34      | 912.25    | 90      | 923.45    | 97      | 924.85    |
| 35      | 912.45    | 91      | 923.65    | 98      | 925.05    |
| 86      | 922.65    | 92      | 923.85    | 15      | 908.45    |
| 87      | 922.85    | 100     | 925.45    | 42      | 913.85    |
| 88      | 923.05    | 95      | 924.45    | 14      | 908.25    |
| 89      | 923.25    | 102     | 925.85    | 99      | 925.25    |
| 16      | 908.65    | 43      | 914.05    | 94      | 924.25    |
| 17      | 908.85    | 44      | 914.25    | 96      | 924.65    |
| 93      | 924.05    | 45      | 914.45    |         |           |
| 101     | 925.65    | 103     | 926.5     |         |           |





# 7.6 20DB BANDWIDTH TEST

### 7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

### 7.6.2 Conformance Limit

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

# 7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

# 7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

# 7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW  $\geq$  1% of the 20 dB bandwidth VBW  $\geq$  RBW Sweep = auto Detector function = peak Trace = max hold





# 7.6.6 Test Results

| EUT:         | Power relay       | Model No.:         | Ajax WallSwitch (9NA) |
|--------------|-------------------|--------------------|-----------------------|
| Temperature: | <b>20</b> ℃       | Relative Humidity: | 48%                   |
| Test Mode:   | Mode2/Mode3/Mode4 | Test By:           | Allen Liu             |

| Test Channel | Frequency | Measured<br>Bandwidth<br>(KHz) | Limit | Verdict |
|--------------|-----------|--------------------------------|-------|---------|
|              | (MHz)     |                                | (kHz) |         |
|              |           | 1Mbps                          |       |         |
| 1            | 905.00    | 116.7                          | 250   | PASS    |
| 52           | 915.85    | 115.4                          | 250   | PASS    |
| 103          | 926.50    | 114.8                          | 250   | PASS    |



# **Test Plot**

ACCREDITED Certificate #4298.01

20dB Bandwidth plot on channel 01 (1Mbps)

| n                        |                                    |                                    |                                                                                     |                                                                                                                                                      |
|--------------------------|------------------------------------|------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| ~~ o                     | A.M.                               |                                    |                                                                                     | Center Fre<br>905.000000 MH                                                                                                                          |
|                          |                                    | Jun walk                           | hunne hilmhaussi                                                                    |                                                                                                                                                      |
| #                        | VBW 3.6 kHz                        | S                                  | Span 200 kHz<br>weep 171.4 ms                                                       | CF Ste<br>20.000 kF<br>Auto Ma                                                                                                                       |
|                          | Total Power                        | 16.2 d                             | Bm                                                                                  | Auto Ma<br>Freq Offs                                                                                                                                 |
| -11.683 kHz<br>116.7 kHz | OBW Power<br>x dB                  |                                    |                                                                                     | OF                                                                                                                                                   |
|                          | #<br>h<br>1.302 kHz<br>-11.683 kHz | 1.302 kHz<br>-11.683 kHz OBW Power | #VBW 3.6 kHz Si<br>h Total Power 16.2 d<br>1.302 kHz<br>-11.683 kHz OBW Power 99.00 | #VBW 3.6 kHz         Span 200 kHz           #VBW 3.6 kHz         Sweep 171.4 ms           h         Total Power         16.2 dBm           1.302 kHz |

20dB Bandwidth plot on channel 52 (1Mbps)



# 20dB Bandwidth plot on channel 103 (1Mbps)







# 7.7 PEAK OUTPUT POWER

### 7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

# 7.7.2 Conformance Limit

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Certificate #4298.01

### 7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

# 7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

# 7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW  $\geq$  the 20 dB bandwidth of the emission being measured VBW  $\geq$  RBW Sweep = auto Detector function = peak Trace = max hold





# 7.7.6 Test Results

| EUT:         | Power relay       | Model No.:         | Ajax WallSwitch (9NA) |
|--------------|-------------------|--------------------|-----------------------|
| Temperature: | <b>20</b> ℃       | Relative Humidity: | 48%                   |
| Test Mode:   | Mode2/Mode3/Mode4 | Test By:           | Allen Liu             |

| Test<br>Channel | Frequency | Power<br>Setting | Peak<br>Output<br>Power | LIMIT | Verdict |
|-----------------|-----------|------------------|-------------------------|-------|---------|
|                 | (MHz)     |                  | (dBm)                   | (dBm) |         |
|                 |           | 1 <b>M</b> b     | ops                     |       |         |
| 1               | 905.00    | Default          | 9.043                   | 30    | PASS    |
| 52              | 915.85    | Default          | 9.936                   | 30    | PASS    |
| 103             | 926.50    | Default          | 9.427                   | 30    | PASS    |





# **Test Plot**

Peak output Power plot on channel 01 (1Mbps)



Peak output Power plot on channel 52 (1Mbps)



Peak output Power plot on channel 103(1Mbps)



# NTEK 北测<sup>®</sup>



# 7.8 CONDUCTED BAND EDGE MEASUREMENT

# 7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

# 7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

# 7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

# 7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

# 7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

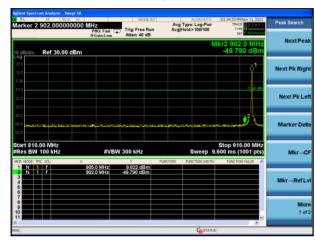
VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

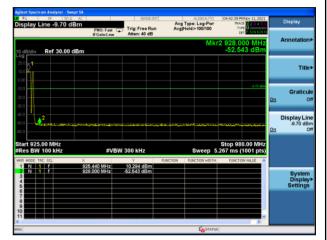
Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.




# 7.8.6 Test Results

| EUT:         | Power relay          | Model No.:         | Ajax WallSwitch (9NA) |
|--------------|----------------------|--------------------|-----------------------|
| Temperature: | 20 °C                | Relative Humidity: | 48%                   |
| Test Mode:   | Mode2 /Mode4/ Mode 5 | Test By:           | Allen Liu             |


ACCREDITED Certificate #4298.01

# **Test Plot**

# GFSK: Band Edge-Low Channel



# GFSK: Band Edge-High Channel



# GFSK: Band Edge-Low Channel (Hopping Mode)

# GFSK: Band Edge-High Channel (Hopping Mode)

| n RL<br>Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RF 50 s<br>Line -9.52 d        | Bm                  | l: Fast 🗔     | SENSE           | Ave                            | ALIGNAUTO<br>Type: Log-Pwr<br>Hold>100/100 | 04:41:20 PMN<br>TRACE<br>TYPE | 123456             |           | Display                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------|---------------|-----------------|--------------------------------|--------------------------------------------|-------------------------------|--------------------|-----------|----------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                | IFGa                | in:Low        | Atten: 40 di    |                                |                                            | DET                           | PNNNNN             |           | Annotation                                                     |
| 10 dB/div                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ref 30.00                      | dBm                 |               |                 |                                | N                                          | lkr2 902.<br>-51.39           | 0 MHz<br>5 dBm     | ſ,        | amotation                                                      |
| 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |                     |               |                 |                                |                                            |                               | 1                  |           | Title                                                          |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |                     |               |                 |                                |                                            |                               | Ň                  |           | The                                                            |
| 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                     |               |                 |                                |                                            |                               | 402.000            |           |                                                                |
| -10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                     |               |                 |                                |                                            |                               |                    | _         | Graticul                                                       |
| -30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                     |               |                 |                                |                                            |                               |                    | <u>On</u> | 0                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |                     |               |                 |                                |                                            |                               | - n - P            |           |                                                                |
| -40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                     |               |                 |                                |                                            |                               | 2                  |           | Disnlay Lin                                                    |
| 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                | a fala anna a facad | dere bereite  | manne           | nalaran meninan meninan        | روالدرجار وراحهم وجدو                      | and the second second         | 21<br>             |           | -9.52 dBr                                                      |
| 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r Freiling aus der Starten und |                     | Apres Marson, |                 | and an analysis of a parameter | ينوالع وهدو برو الفراه والعان              |                               |                    | On C      | -9.52 dBr                                                      |
| 50.0<br>60.0<br>Start 810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00 MHz<br>/ 100 KHz          | · ///               | #VBW          | / 300 kHz       |                                | Sweep 9                                    | Stop 910.                     | 00 MHz             |           | -9.52 dBr                                                      |
| 50 0<br>50 0<br>Start 810<br>#Res BW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I 100 KHZ                      | × 000 T             |               | Y               | FUNCTION                       | Sweep 9.                                   | Stop 910.<br>600 ms (10       | 00 MHz<br>001 pts) |           | -9.52 dBr                                                      |
| 50 0<br>60 0<br>50 0 | 100 kHz                        | ×<br>906.7<br>902.0 | MHz           |                 |                                |                                            | .600 ms (10                   | 00 MHz<br>001 pts) |           | Display Lin<br>-9.52 dBr<br>O<br>System<br>Display<br>Settings |
| 50 0<br>60 0<br>Start 810<br>FRes BW<br>WFR MODE 1<br>1 N<br>2 N<br>3<br>4<br>5<br>6<br>6<br>7<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100 kHz                        | 906.7               | MHz           | Y<br>10.482 dBm |                                |                                            | .600 ms (10                   | 00 MHz<br>001 pts) |           | -9.52 dBi<br>O<br>System<br>Display                            |
| 50.0<br>60.0<br>Start 810<br>#Res BW<br>#RF Mode 1<br>1<br>N<br>3<br>4<br>6<br>6<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 kHz                        | 906.7               | MHz           | Y<br>10.482 dBm |                                |                                            | .600 ms (10                   | 00 MHz<br>001 pts) |           | -9.52 dBi<br>O<br>System<br>Display                            |

|                                                 | AC                                                                                                              | SENSE:INT                    | ALIGNAUTO<br>Avg Type: Log-Pwr | 01:37:45 PMNov 11, 2021<br>TRACE                     | Peak Search  |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------|------------------------------------------------------|--------------|
| rker 2 928.00000                                | PNO: Fast                                                                                                       | Trig: Free Run               | Avg Hold>100/100               | TYPE M MANNAN                                        |              |
| dB/div Ref 30.00                                | IFGain:Low                                                                                                      | Atten: 40 dB                 | Mk                             | r2 928.000 MHz<br>-47.227 dBm                        | NextPea      |
|                                                 |                                                                                                                 |                              |                                |                                                      | Next Pk Righ |
|                                                 |                                                                                                                 |                              |                                | -10.43 dBm                                           | Next Pk Le   |
|                                                 | and and the second s | and the second second second |                                | alandfassi ayaan ahaan kaan kaan kaan kaan kaan kaan | Marker Delt  |
| art 925.00 MHz<br>es BW 100 kHz<br>MODE TRC SCL | ×                                                                                                               |                              | Sweep                          | Stop 980.00 MHz<br>5.267 ms (1001 pts)               | Mkr→C        |
| N 1 F<br>N 1 F                                  | 926.485 MHz<br>928.000 MHz                                                                                      | 9.692 dBm<br>-47.227 dBm     |                                |                                                      | Mkr→RefL     |
|                                                 |                                                                                                                 |                              |                                |                                                      | Mor<br>1 of  |

# NTEK 北测



# 7.9 SPURIOUS RF CONDUCTED EMISSION

# 7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

# 7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

# 7.9.3 Measuring Instruments

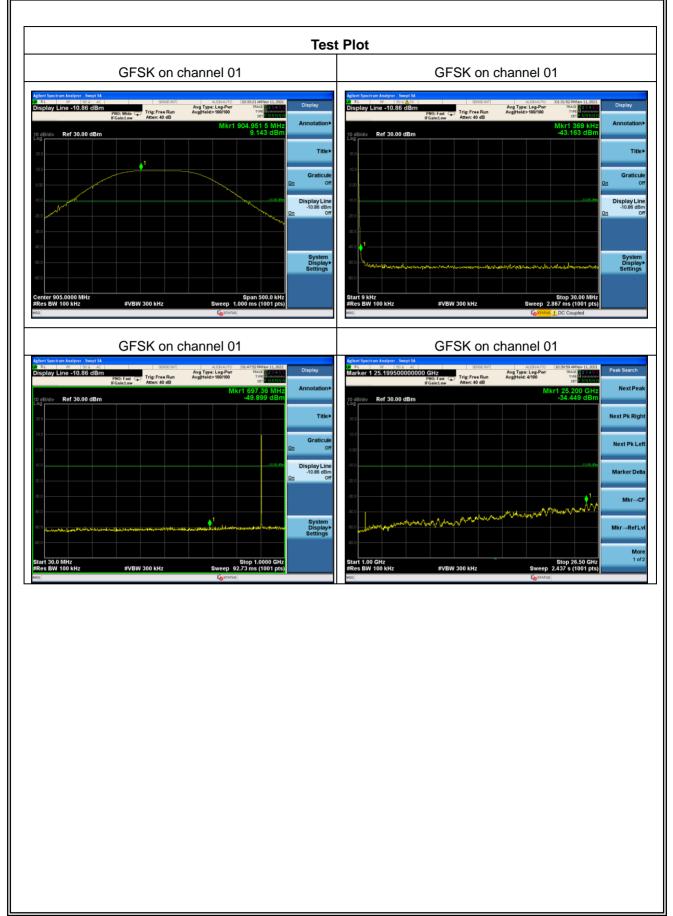
The Measuring equipment is listed in the section 6.3 of this test report.

# 7.9.4 Test Setup

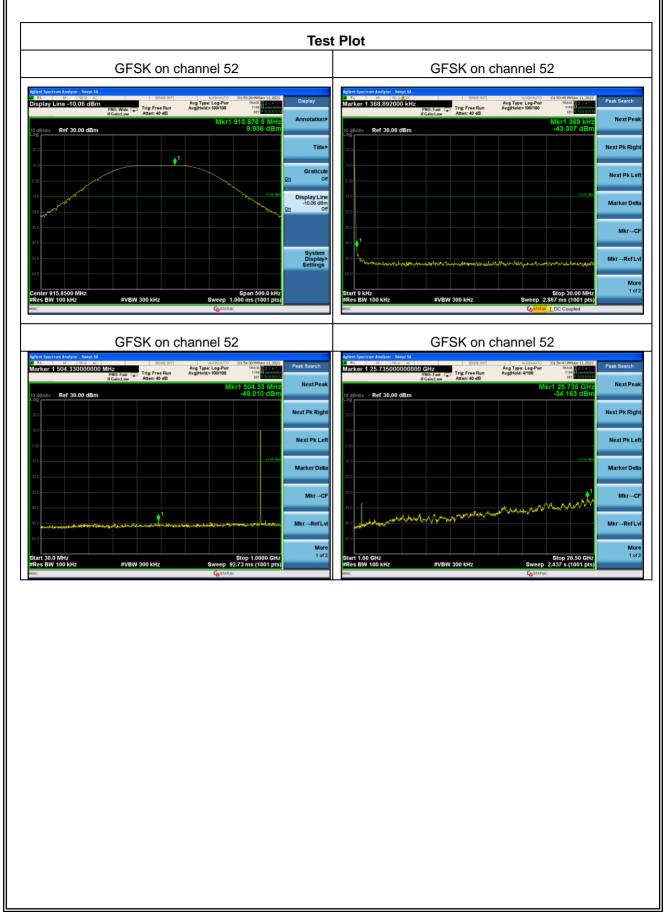
Please refer to Section 6.1 of this test report.

# 7.9.5 Test Procedure

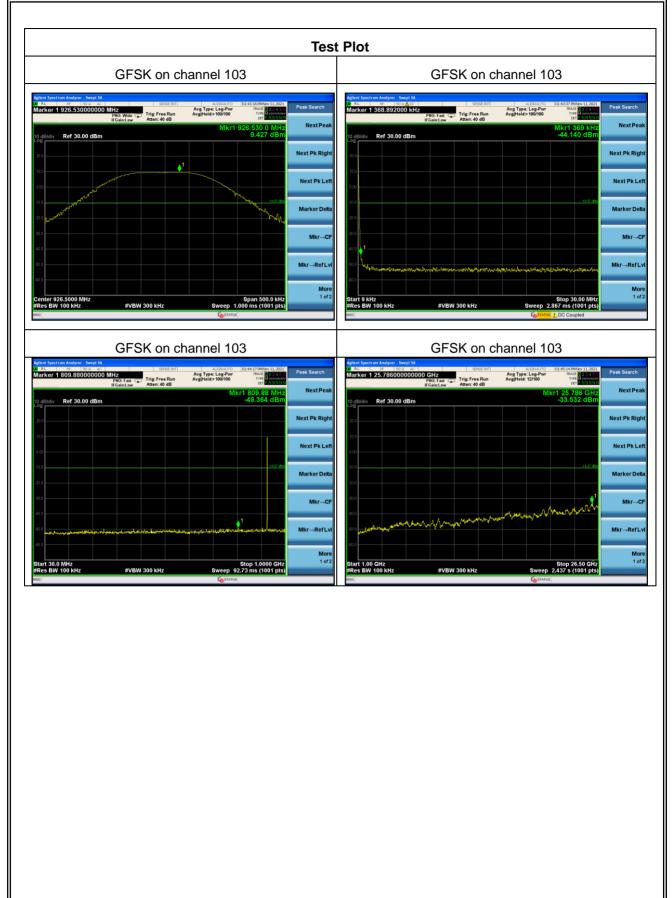
Establish an emission level by using the following procedure:


- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW  $\geq$  [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.


# 7.9.6 Test Results

Remark: The measurement frequency range is from 9KHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.


















# 7.10 ANTENNA APPLICATION

# 7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible partyshall be used with the device.

# 7.10.2 Result

The EUT has a unique antenna connector and use only the External antenna (Gain:-10dBi). It comply with the standard of 15.203 requirement.

END OF REPORT