

Report No.: EED32I00185902 Page 1 of 75

TEST REPORT

Product : WCDMA Digital Mobile Phone

Trade mark : RugGear

Model/Type reference : RG310, RG310EX, RG320EX

Serial Number : N/A

Report Number : EED32I00185902

FCC ID : ZLE-RG310

Date of Issue : Jul. 18, 2016

Test Standards : 47 CFR Part 15 Subpart C (2015)

Test result : PASS

Prepared for:

Power Idea Technology Limited.
4th Floor, A Section, Languang Science&technology Xinxi RD,
Hi-Tech Industrial Park North, Nanshan, ShenZhen, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tom-chen

Compiled by:

Kevin yang (Project Engineer)

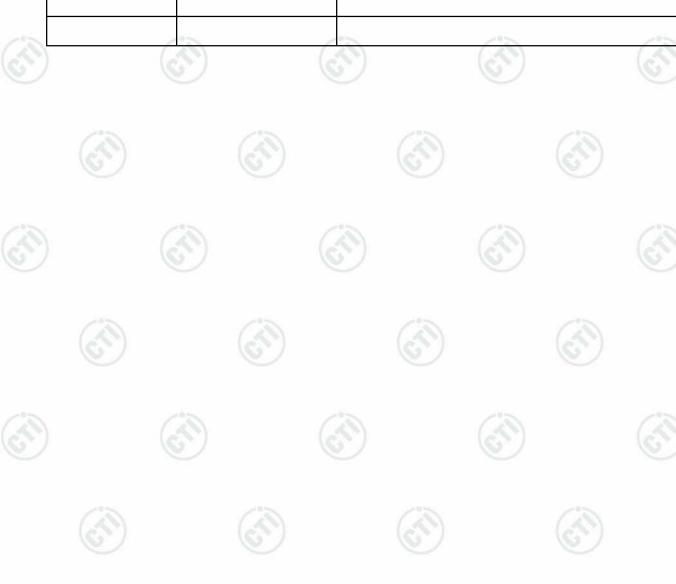
Tom chen (Test Project)

Sheek Luo (Reviewer)

Approved by:

Sheek Luo (Lab supervisor)

Jul. 18, 2016


Check No.: 2384307786

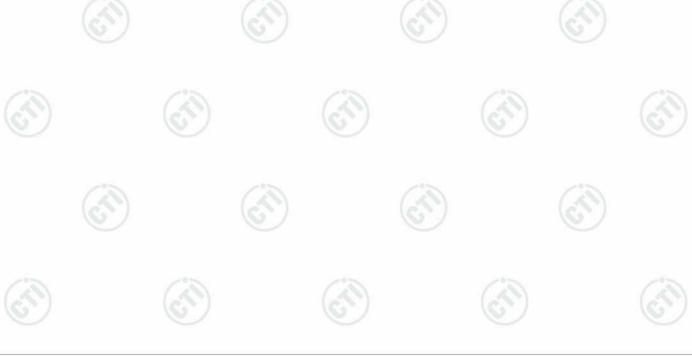
2 Version

Version No.	Date	Description
00	Jul. 18, 2016	Original
	**	

Page 3 of 75

3 Test Summary

Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Carrier Frequencies Separation	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Hopping Channel Number	47 CFR Part 15 Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS	
Dwell Time	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15 Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	


Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

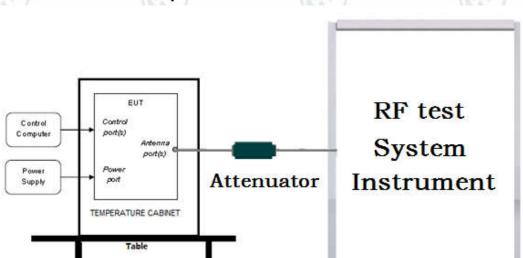
The tested sample and the sample information are provided by the client.

Model No.: RG310, RG310EX, RG320EX

Only the model RG310 was tested, the PCB, Schematic, Hardware etc were identical for the above models, Only different model name due to difference agent and marketing purposes.

4 Content

1 COVER PAGE			1
2 VERSION			2
3 TEST SUMMARY			
4 CONTENT			4
5 TEST REQUIREMENT			5
5.1 Test setup			
5.1.1 For Conducted test setup			
5.1.2 For Radiated Emissions test setu			
5.1.3 For Conducted Emissions test se	•		
5.2 TEST ENVIRONMENT			6
5.3 TEST CONDITION			6
6 GENERAL INFORMATION			7
6.1 CLIENT INFORMATION			7
6.2 GENERAL DESCRIPTION OF EUT			
6.3 PRODUCT SPECIFICATION SUBJECTIVE T	O THIS STANDARD		7
6.4 DESCRIPTION OF SUPPORT UNITS			
6.5 TEST LOCATION			
6.6 TEST FACILITY			
6.7 DEVIATION FROM STANDARDS			
6.8 ABNORMALITIES FROM STANDARD CONE			
6.9 OTHER INFORMATION REQUESTED BY THE 6.10 MEASUREMENT UNCERTAINTY (95% C			
1,20,74 1			
7 EQUIPMENT LIST		••••••	11
8 RADIO TECHNICAL REQUIREMENTS S	PECIFICATION		13
Appendix A): 20dB Occupied Bandwid			
Appendix B): Carrier Frequency Separ			
Appendix C): Dwell Time			
Appendix D): Hopping Channel Number			
Appendix E): Conducted Peak Output			
Appendix F): Band-edge for RF Condu			
Appendix G): RF Conducted Spurious Appendix H): Pseudorandom Frequence			
Appendix I): Antenna Requirement			
Appendix J): AC Power Line Conducte	d Fmission		49
Appendix K): Restricted bands around			
Appendix L): Radiated Spurious Emiss			
PHOTOGRAPHS OF TEST SETUP			
PHOTOGRAPHS OF EUT CONSTRUCTIO			


Page 4 of 75

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

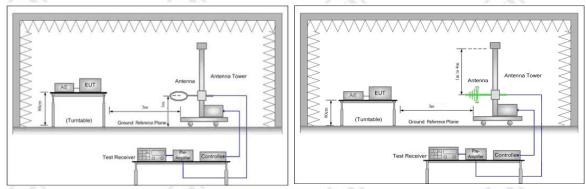


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

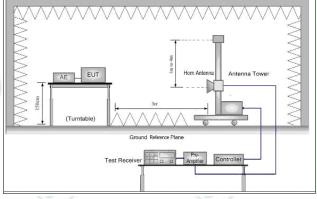
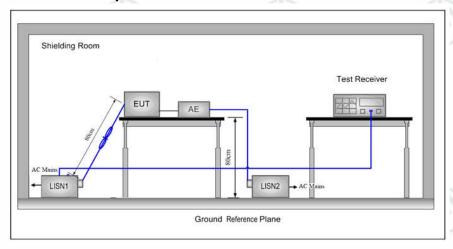


Figure 3. Above 1GHz


Page 5 of 75

Page 6 of 75

5.1.3 For Conducted Emissions test setup

Conducted Emissions setup

5.2 Test Environment

Operating Environment:			(4)
Temperature:	21°C	(6.)	0
Humidity:	54% RH		
Atmospheric Pressure:	10105mbar		

5.3 Test Condition

Toot Made	Tv	RF Channel			
Test Mode	l X	Low(L)	Middle(M)	High(H)	
GFSK/π/4DQPSK/	2402MHz ~2480 MHz	Channel 1	Channel 40	Channel79	
8DPSK(DH1,DH3,DH5)	2402NIDZ ~2460 NIDZ	2402MHz	2441MHz	2480MHz	

Test mode:

Pre-scan under all rate at Highest channel 79

Mode GFSK						
packets	1-DH1 1-DH3 1-DH5					
Power(dBm)	1.920	1.920	1.924			

Mode		π/4DQPSK		
packets	2-DH1	2-DH3	2-DH5	
Power(dBm)	1.888	1.891		
Mode	(27)	8DPSK	(25)	
packets	3-DH1	3-DH3	3-DH5	
Power(dBm)	1.927	1.930	1.932	

Through Pre-scan, 1-DH5 packet the power is the worst case of GFSK, 2-DH5 packet the power is the worst case of m/4DQPSK, 3-DH5 packet the power is the worst case of 8DPSK,

Page 7 of 75

6 General Information

6.1 Client Information

Applicant:	Power Idea Technology Limited.
Address of Applicant:	4th Floor, A Section, Languang Science&technology Xinxi RD, Hi-Tech Industrial Park North, Nanshan, ShenZhen, China
Manufacturer:	Power Idea Technology Limited.
Address of Manufacturer:	4th Floor, A Section, Languang Science&technology Xinxi RD, Hi-Tech Industrial Park North, Nanshan, ShenZhen, China

6.2 General Description of EUT

Product Name:	WCDMA Digital Mobile Phone	
Mode No.(EUT):	RG310, RG310EX, RG320EX	75
Test Mode No.:	RG310	(5,7,2)
Trade Mark:	RugGear	
EUT Supports Radios application:	Bluetooth V3.0+EDR	
Power Supply:	Model: HKC0055010-2D Input: 100-240V~ 50/60Hz 0.2A Output: 5.0V1.0A	
Battery	Li-ion 3.7V/3600mAh	
Sample Received Date:	Jun. 30, 2016	
Sample tested Date:	Jun. 30, 2016 to Jul. 18, 2016	(6%)

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz			
Bluetooth Version:	3.0+EDR	75		7.5
Modulation Type:	GFSK, π/4DQPSK, 8DPSK	(8.5)		(6.5)
Number of Channel:	79			
Sample Type:	Portable production			
Test Power Grade:	max	215	245	
Test software of EUT	Engineer Mode	(4)	(41)	
Antenna Type:	Integral			
Antenna Gain:	1.8dBi			
Test voltage:	AC 120V/60Hz			
Operation Frequency each	n of channel	(3)		(3)

Operation	r requericy ca	CIT OF CHAINING	7 A N				
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz

Report No.: EED32I00185902 Page 8 of 75

9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz	(6,))
			_				

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

Page 9 of 75

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of

Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

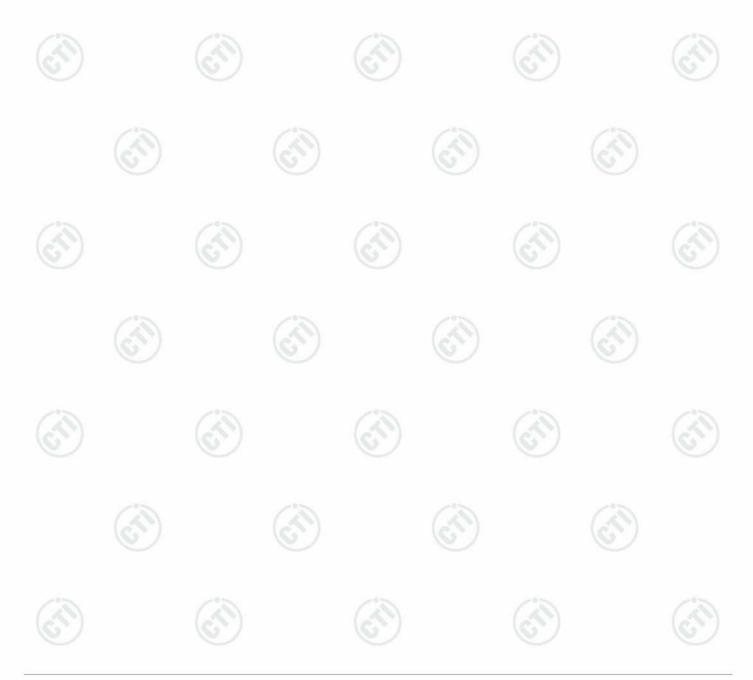
6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard ConditionsNone.

6.9 Other Information Requested by the Customer

None.



Report No. : EED32I00185902 Page 10 of 75

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
3	Dedicted Spurious emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Page 11 of 75

7 Equipment List

RF test system								
Equipment	Manufacturer	Manufacturer Mode No.		Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017			
Communication test set test set	Agilent	N4010A	MY51400230	04-01-2016	03-31-2017			
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017			
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017			
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017			
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017			
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001		01-12-2016	01-11-2017			
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-12-2016	01-11-2017			
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-12-2016	01-11-2017			
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-12-2016	01-11-2017			
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017			
PC-1	Lenovo	R4960d		04-01-2016	03-31-2017			
power meter & power sensor	R&S	OSP120	101374	04-01-2016	03-31-2017			
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-31-2017			
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		04-01-2016	03-31-2017			

Conducted disturbance Test								
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Receiver	R&S	ESCI	100009	06-16-2016	06-15-2017			
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017			
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017			
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017			
LISN	R&S	ENV216	100098	06-16-2016	06-15-2017			
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-15-2017			
Voltage Probe	R&S	ESH2-Z3		07-09-2014	07-07-2017			
Current Probe	R&S	EZ17	100106	06-16-2016	06-15-2017			
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	01-27-2017			
	7.307		7.907	1,40,7				

Report No. : EED32I00185902 Page 12 of 75

	3M	Semi/full-anech	oic Chamber		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3	6)	06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	05-23-2016	05-22-2017
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018
Horn Antenna	A.H.SYSTEMS	SAS-574	374	06-30-2015	06-28-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017
Multi device Controller	maturo	NCD/070/10711 112		01-12-2016	01-11-2017
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001	(4)	01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-12-2016	01-11-2017

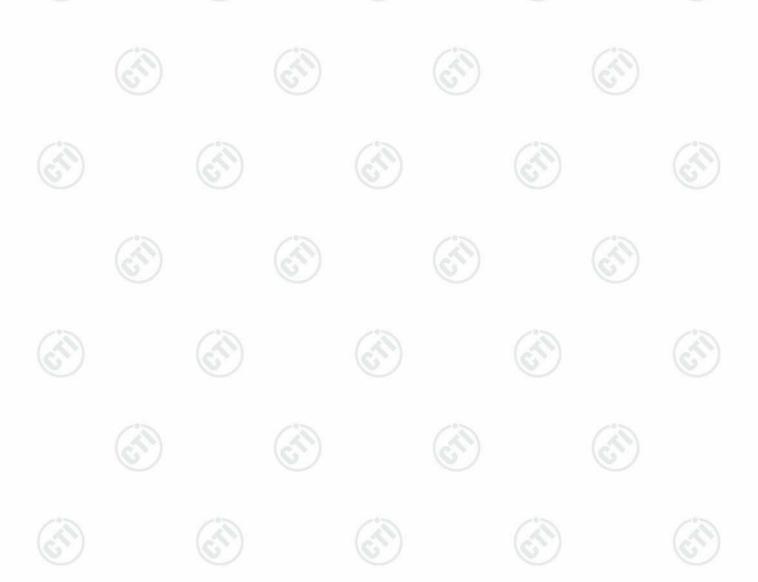
Report No.: EED32I00185902 Page 13 of 75

8 Radio Technical Requirements Specification

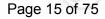
Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

est Results List:	/3	75	/"		
Test requirement	Test method	Test item	Verdict	Note	
Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A	
Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B	
Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C	
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D	
Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E	
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F	
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G	
Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H	
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)	
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J	
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K	
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L	



Report No. : EED32I00185902 Page 14 of 75


Appendix A): 20dB Occupied Bandwidth

Test Result

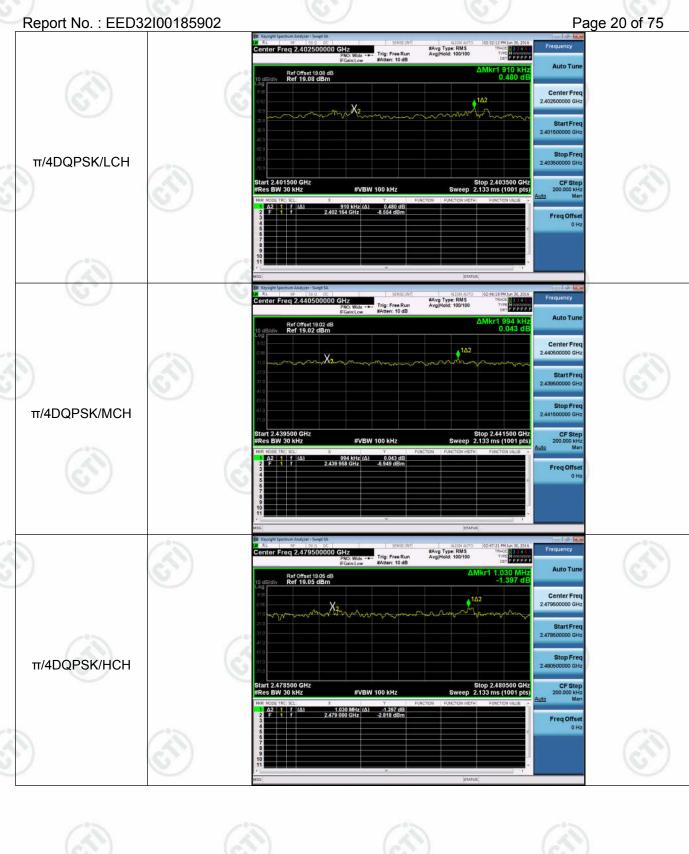
Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
GFSK	LCH	0.9559	0.87874	PASS	
GFSK	MCH	0.9547	0.87398	PASS	(0)
GFSK	НСН	0.9646	0.88861	PASS	
π/4DQPSK	LCH	1.279	1.1645	PASS	
π/4DQPSK	MCH	1.277	1.1777	PASS	Peak
π/4DQPSK	НСН	1.285	1.1699	PASS	detector
8DPSK	LCH	1.277	1.1747	PASS	
8DPSK	MCH	1.274	1.1669	PASS	13
8DPSK	НСН	1.277	1.1671	PASS	(6,6)

Page 18 of 75

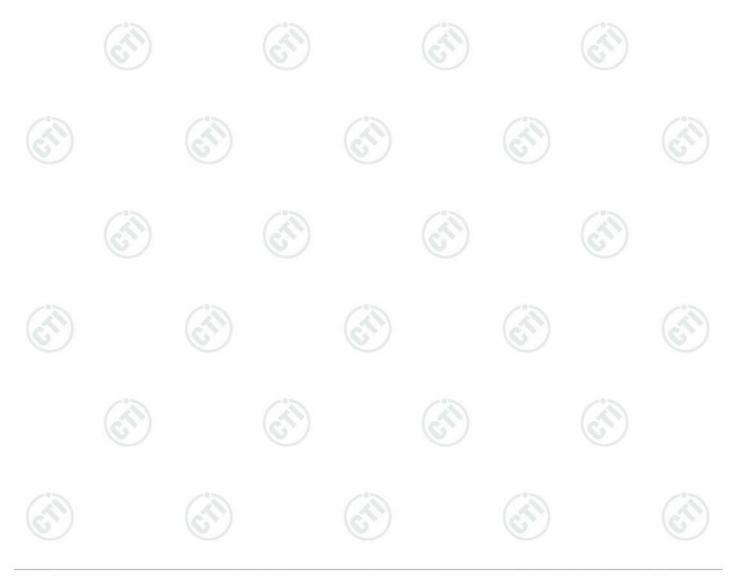
Appendix B): Carrier Frequency Separation

Result Table

Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	0.950	PASS
GFSK	MCH	0.912	PASS
GFSK	НСН	0.912	PASS
π/4DQPSK	LCH	0.910	PASS
π/4DQPSK	MCH	0.994	PASS
π/4DQPSK	HCH	1.030	PASS
8DPSK	LCH	1.082	PASS
8DPSK	MCH	1.016	PASS
8DPSK	НСН	1.008	PASS

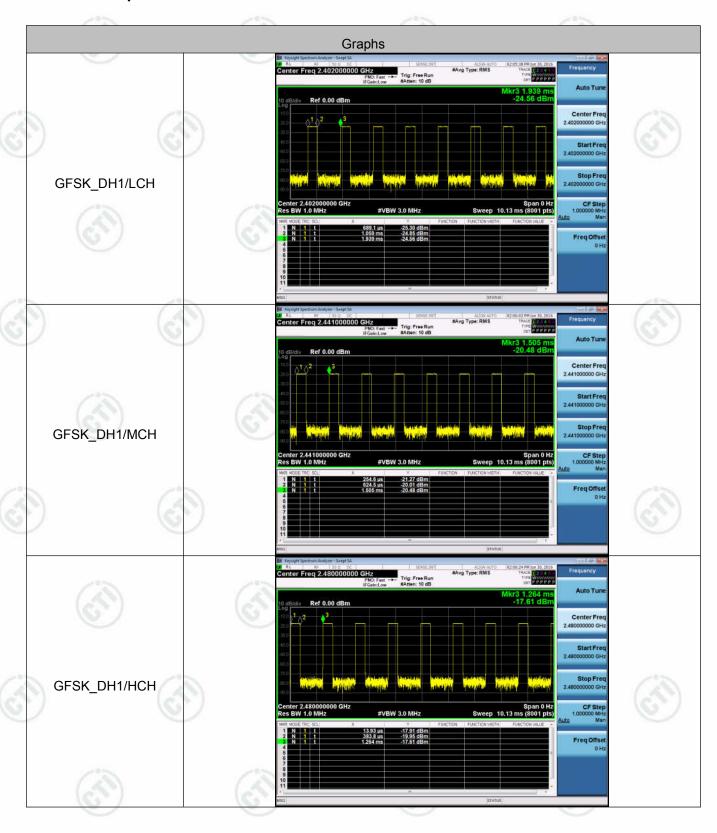


Report No. : EED32I00185902


Appendix C): Dwell Time

Page 22 of 75

Result Table


Mode	Packet	Channel	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Duty Cycle [%]	Verdict
GFSK	DH1	LCH	0.3699	320	0.118	0.30	PASS
GFSK	DH1	МСН	0.3699	320	0.118	0.30	PASS
GFSK	DH1	НСН	0.36987	320	0.118	0.30	PASS
GFSK	DH3	LCH	1.624	160	0.260	0.43	PASS
GFSK	DH3	MCH	1.624	160	0.260	0.43	PASS
GFSK	DH3	НСН	1.6241	160	0.260	0.43	PASS
GFSK	DH5	LCH	2.873	106.7	0.306	0.46	PASS
GFSK	DH5	MCH	2.871	106.7	0.306	0.46	PASS
GFSK	DH5	НСН	2.873	106.7	0.306	0.46	PASS

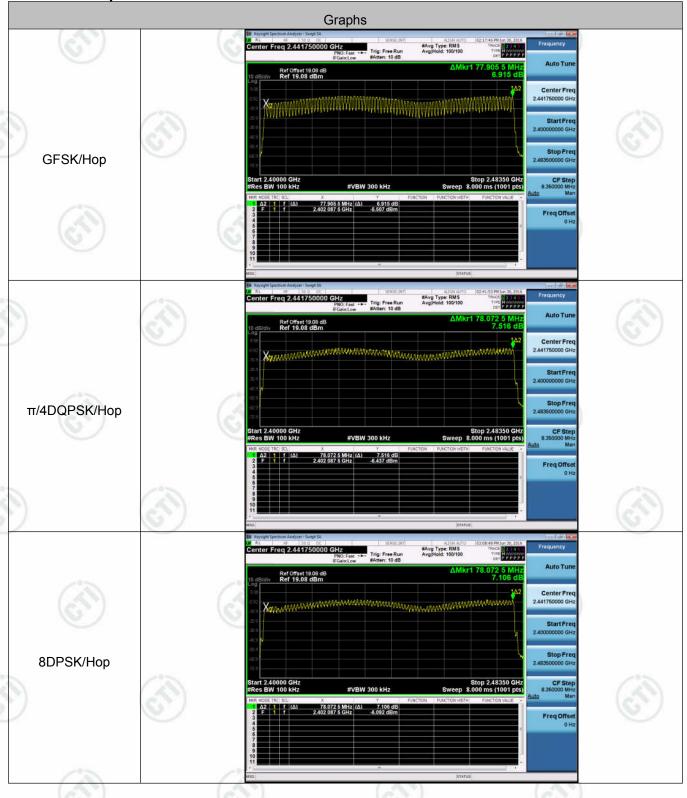
Remark: All modes are tested, only the worst mode GFSK is reported.

Report No.: EED32I00185902 Page 24 of 75 GFSK_DH3/LCH Center Free 2.441000000 GH GFSK_DH3/MCH GFSK_DH3/HCH -17.38 dBm -17.46 dBm -17.35 dBm

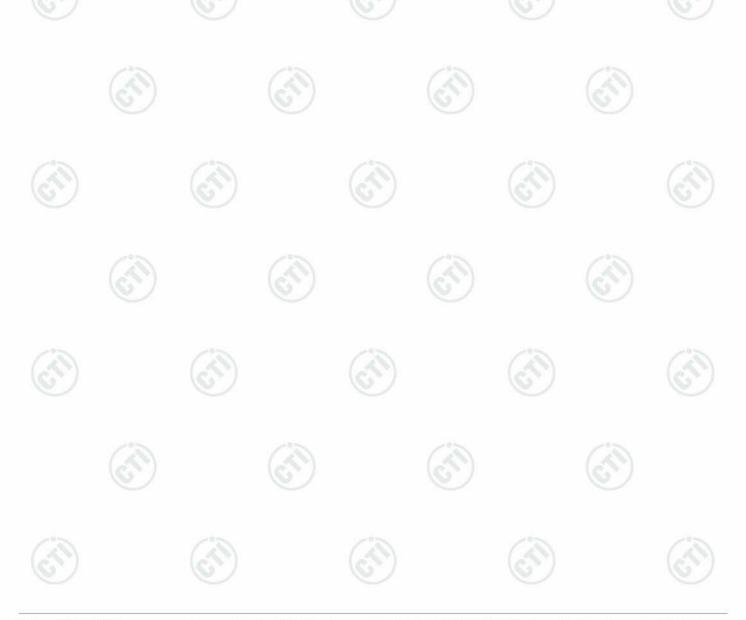
Report No.: EED32I00185902 Page 25 of 75 GFSK_DH5/LCH Center Free 2.441000000 GH GFSK_DH5/MCH GFSK_DH5/HCH -17.42 dBm -17.66 dBm -17.33 dBm

Page 26 of 75

Appendix D): Hopping Channel Number

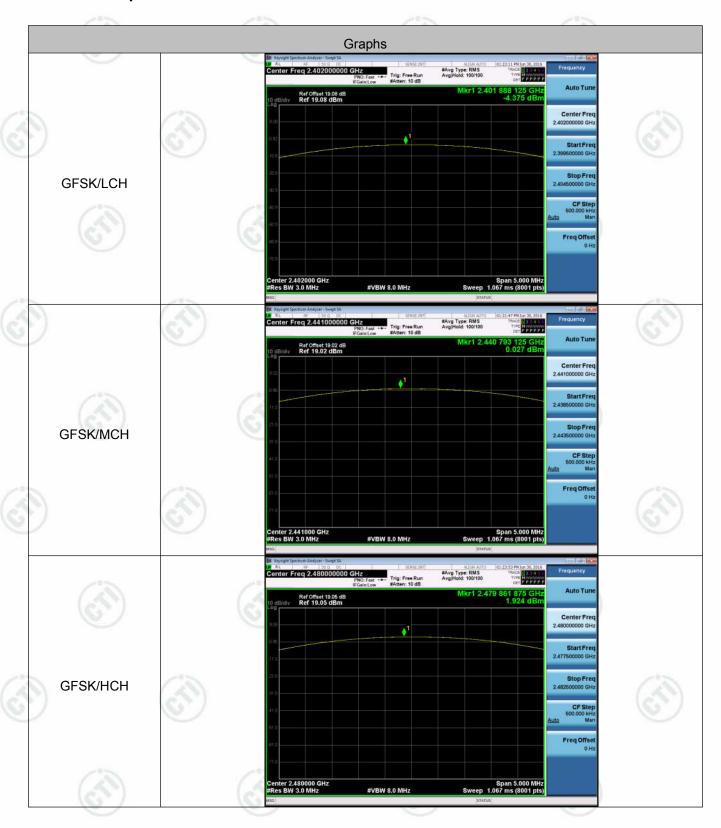

Result Table

Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	79	PASS
π/4DQPSK	Нор	79	PASS
8DPSK	Нор	79	PASS



Page 28 of 75

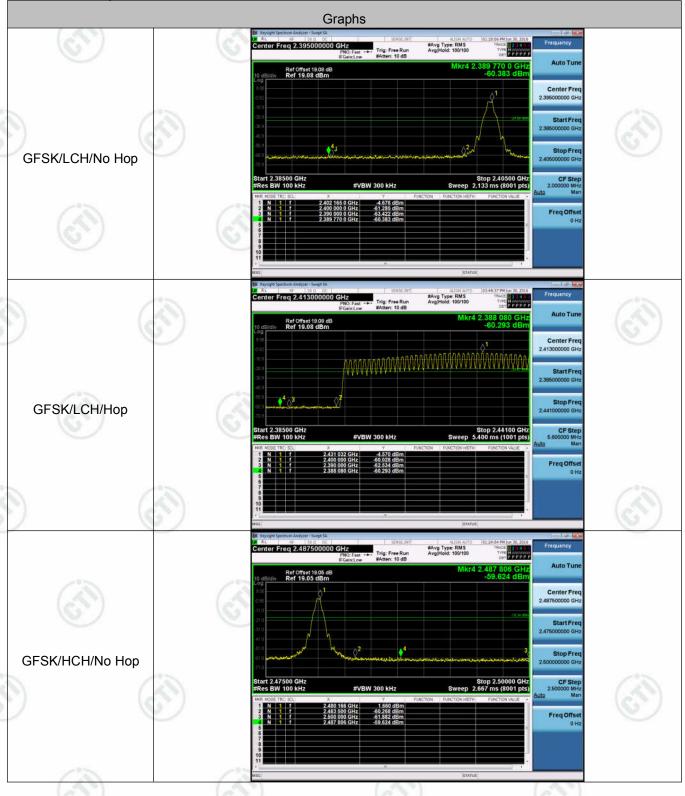
Appendix E): Conducted Peak Output Power


Result Table

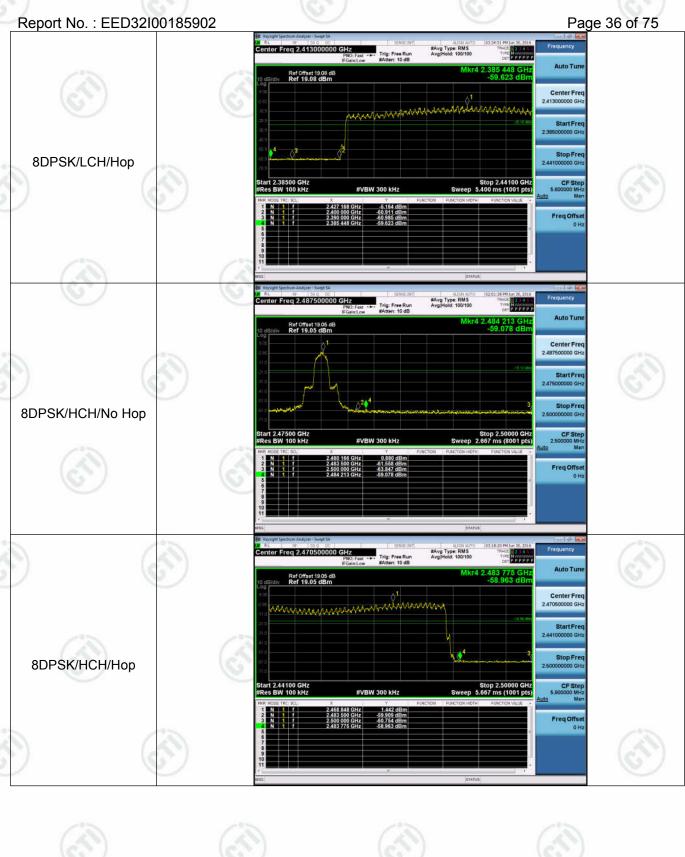
Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	-4.375	PASS
GFSK	MCH	0.027	PASS
GFSK	НСН	1.924	PASS
π/4DQPSK	LCH	-4.378	PASS
π/4DQPSK	MCH	-0.004	PASS
π/4DQPSK	нсн	1.893	PASS
8DPSK	LCH	-4.337	PASS
8DPSK	MCH	0.048	PASS
8DPSK	НСН	1.932	PASS

Report No.: EED32I00185902 Page 30 of 75 #Avg Type: RMS Avg/Hold: 100/100 906 875 GI -4.378 dB Ref Offset 19.08 dB Ref 19.08 dBm π/4DQPSK/LCH #Avg Type: RMS Avg/Hold: 100/100 Ref Offset 19.02 dB Ref 19.02 dBm Center Free 2.441000000 GH π/4DQPSK/MCH Ref Offset 19.05 dB Ref 19.05 dBm π/4DQPSK/HCH #VBW 8.0 MHz

Page 32 of 75 Report No.: EED32I00185902


Appendix F): Band-edge for RF Conducted Emissions

Result T	able	(1)		(3)	/	(3)			
Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict		
05014		0.400	-4.676	Off	-60.383	-24.68	PASS		
GFSK	LCH	2402	-4.570	On	-60.293	-24.57	PASS		
0501	НСН	0.400	1.660	Off	-59.624	-18.34	PASS		
GFSK		2480	1.860	On	-59.238	-18.14	PASS		
/4D 0D 0 4	LCH	3	0.100	-4.698	Off	-61.099	-24.70	PASS	
π/4DQPSK		2402	-5.355	On	-59.761	-25.36	PASS		
_/4DODOK				0.400	-0.441	Off	-57.637	-20.44	PASS
π/4DQPSK	HCH	2480	1.210	On	-58.386	-18.79	PASS		
apport.	1011	0.400	-6.533	Off	-60.554	-26.53	PASS		
8DPSK	LCH	2402	-5.164	On	-59.623	-25.16	PASS		
00001		0.400	0.880	Off	-59.078	-19.12	PASS		
8DPSK	HCH	HCH	2480	1.442	On	-58.963	-18.56	PASS	



Page 37 of 75

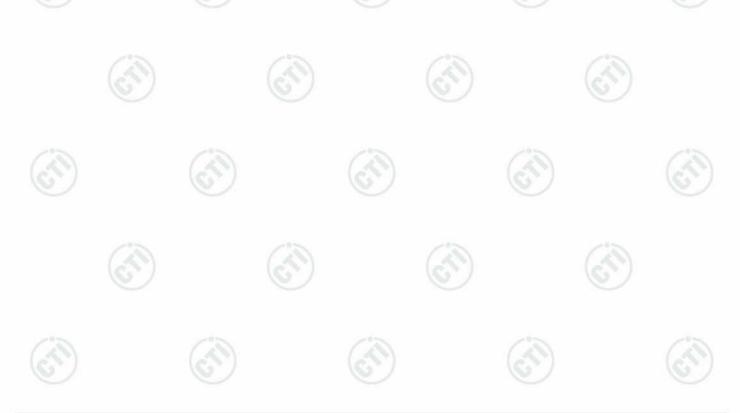
Appendix G): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	-5.121	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	MCH	-0.158	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	HCH	1.764	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	LCH	-5.529	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	MCH	-0.358	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	HCH	0.701	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	LCH	-5.372	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	MCH	-0.219	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	HCH	1.137	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graph

CENTRE TESTING INTERNATIONAL


Papart No.: EED32100185003

Pref

Report No. : EED32I00185902 Page 41 of 75

Report No.: EED32I00185902 Page 42 of 75 $\pi/4DQPSK_MCH_Graphs$ Ref Offset 19.02 dB Ref 19.02 dBm Pref #Avg Type: RMS Avg[Hold: 14/100 Ref Offset 19.02 dB Ref 19.02 dBm Puw



Report No.: EED32I00185902 Page 44 of 75 8DPSK_LCH_Graphs

Report No. : EED32100185902

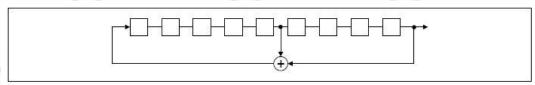
SDPSK MCH_Graphs

SUPPLIES AND THE PROPERTY OF THE PROPE

Report No.: EED32I00185902 Page 46 of 75 8DPSK_HCH_Graphs Ref Offset 19.05 dB Ref 19.05 dBm Pref #Avg Type: RMS Avg[Hold: 14/100 Ref Offset 19.05 dB Ref 19.05 dBm Puw

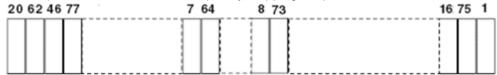
Appendix H): Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Page 48 of 75

Appendix I): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

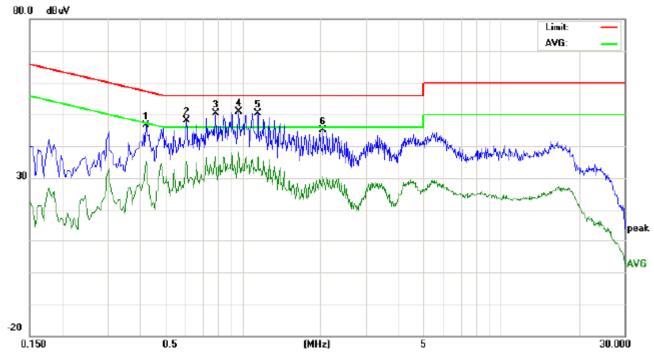
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1.8dBi.

Report No. : EED32I00185902 Page 49 of 75

Test Procedure:	Test frequency range :150KHz-	30MHz						
	1)The mains terminal disturbance voltage test was conducted in a shielded room.							
	 The EUT was connected to Stabilization Network) which power cables of all other un which was bonded to the gr for the unit being measured multiple power cables to a sexceeded. 	h provides a 50Ω/50µ hits of the EUT were ound reference plane d. A multiple socket of	uH + 5Ω linear imped connected to a secon in the same way as butlet strip was used	lance. The nd LISN 2 the LISN 1 to connec				
	3)The tabletop EUT was place reference plane. And for flow horizontal ground reference	or-standing arrangem						
	4) The test was performed wit EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT at LISN 2.	e vertical ground refer d to the horizontal gro he boundary of the u r LISNs mounted of etween the closest po	rence plane. The verticum reference plane in the contract and both top of the ground into of the LISN 1 and	cal ground . The LISN onded to a reference d the EUT.				
	 In order to find the maximum of the interface cables must conducted measurement. 			ent and all				
Limit:		Limit (c	ΙΒμV)					
Limit:	[[[[[[[[[[[[[[[[[[[
Limit:	Frequency range (MHz)	Quasi-peak	Average					
Limit:	Frequency range (MHz) 0.15-0.5	•	Average 56 to 46*					
Limit:		Quasi-peak	_					
Limit:	0.15-0.5	Quasi-peak 66 to 56*	56 to 46*					
Limit:	0.15-0.5 0.5-5	Quasi-peak 66 to 56* 56 60 with the logarithm of	56 to 46* 46 50 the frequency in the	range 0.15				



Page 50 of 75

Live line:

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasurem (dBuV)			nit uV)		rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.4220	36.70	33.50	25.12	9.90	46.60	43.40	35.02	57.41	47.41	-14.01	-12.39	Р	
2	0.6060	38.15	33.40	25.28	9.90	48.05	43.30	35.18	56.00	46.00	-12.70	-10.82	Р	
3	0.7860	40.37	35.60	27.08	9.90	50.27	45.50	36.98	56.00	46.00	-10.50	-9.02	Р	
4	0.9660	40.96	36.50	28.42	10.00	50.96	46.50	38.42	56.00	46.00	-9.50	-7.58	Р	
5	1.1460	40.37	35.10	26.17	10.00	50.37	45.10	36.17	56.00	46.00	-10.90	-9.83	Р	
6	2.0540	35.05	28.80	20.40	10.00	45.05	38.80	30.40	56.00	46.00	-17.20	-15.60	Р	



Neutral line:

			Read	ding_Le	vel	Correct	M	leasurem	ent	Lin	nit	Ma	rgin		
	No.	Freq.	(dBuV)		Factor		(dBuV)		(dBı	uV)	(0	dB)		
_		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
Ī	1	0.1819	34.12	29.00	18.22	9.80	43.92	38.80	28.02	64.39	54.39	-25.59	-26.37	Р	
Ī	2	0.4260	35.98	32.50	23.51	9.90	45.88	42.40	33.41	57.33	47.33	-14.93	-13.92	Р	
	3	0.6020	36.60	31.50	24.25	9.90	46.50	41.40	34.15	56.00	46.00	-14.60	-11.85	Р	
\$	4	0.7460	36.81	31.30	23.44	9.90	46.71	41.20	33.34	56.00	46.00	-14.80	-12.66	Р	
•	5	0.9940	39.80	31.80	23.26	10.00	49.80	41.80	33.26	56.00	46.00	-14.20	-12.74	Р	
	6	1.1980	38.26	29.80	21.39	10.00	48.26	39.80	31.39	56.00	46.00	-16.20	-14.61	Р	

Notes:

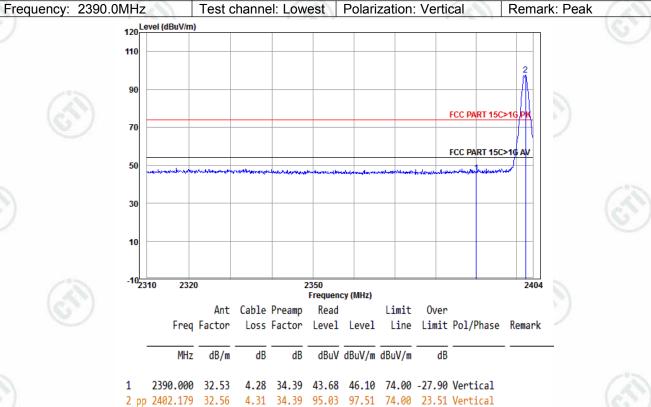
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. AC120V and 240V are tested and found the worst case is 120V, So only the 120V data were shown in the above.

Report No. : EED32I00185902 Page 52 of 75

Appendix K): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	:
	Ab 4011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	-05
Test Procedure:	Below 1GHz test procedu	ire as pelow:	(8	(1)		
	a. The EUT was placed of at a 3 meter semi-aner determine the position b. The EUT was set 3 me was mounted on the to c. The antenna height is determine the maximu polarizations of the and d. For each suspected er the antenna was tuned table was turned from e. The test-receiver system Bandwidth with Maxim f. Place a marker at the frequency to show combands. Save the spect for lowest and highest Above 1GHz test procedured. Different between above to fully Anechoic Chammeter (Above 18GHz to b. Test the EUT in the i. The radiation measure Transmitting mode, an j. Repeat above procedure.	on the top of a rochoic camber. The of the highest raters away from op of a variable-hivaried from one mission, the EUT to heights from 0 degrees to 36 mission, the EUT to heights from 0 degrees to 36 mission, the EUT to heights from 10 degrees to 36 mission, the EUT to heights from 10 degrees to 36 mission, the EUT to heights from 10 degrees to 36 mission, the restrict the mission of the restrict the pliance. Also mission analyzer place is the test site of the distance is 1 lowest channel ments are perforund the X axis of the distance is 1 lowest channel ments are perforund the X axis of the distance is 1 lowest channel ments are perforund the X axis of the distance is 1 lowest channel ments are perforund the X axis of the distance is 1 lowest channel ments are perforund the X axis of the distance is 1 lowest channel ments are perforund the X axis of the distance is 1 lowest channel ments are perforund the X axis of the distance is 1 lowest channel ments are perforund the X axis of the distance is 1 lowest channel ments are perforund the X axis of the distance is 1 lowest channel ments are perforund the X axis of the distance is 1 lowest channel ments are perforund the X axis of the distance is 1 lowest channel ments are perforund the X axis of the distance is 1 lowest channel ments are perforund the X axis of the distance is 1 lowest channel ments are perforund the X axis of th	ne table was adiation. the interfer neight anter meter to for eld strength make the r was arran 1 meter to 0 degrees to eak Detect cted band or easure any ot. Repeat to e, change fire form table meter and the Higher med in X, kis position	ence-receinna tower. bur meters h. Both hor heasuremenged to its for encest to the remissions for each por fo	wing antennal above the graziontal and vent. worst case are and the rotate maximum reard Specified the transmit in the restrict ower and modern and specified to 1.5 meter).	to, which cound the able ading.
Limit:	Frequency	Limit (dBµV			mark	
	30MHz-88MHz	40.0		- 1	eak Value	
		43.	5	Quasi-pe	eak Value	
	88MHz-216MHz			· ·		
	216MHz-960MHz	46.0		Quasi-pe	eak Value	
)	· ·		
	216MHz-960MHz	46.0)	Quasi-pe	eak Value	

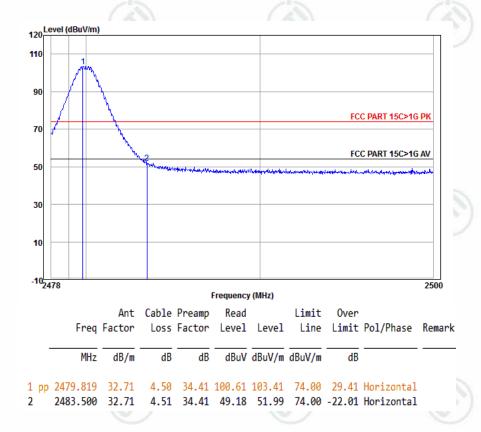



Page 53 of 75

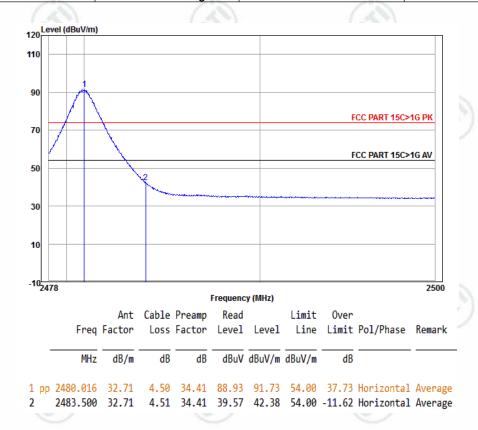
Test plot as follows:

Worse case mode:	GFSK(1-DH5)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Worse case mode: GFSK(1-DH5)

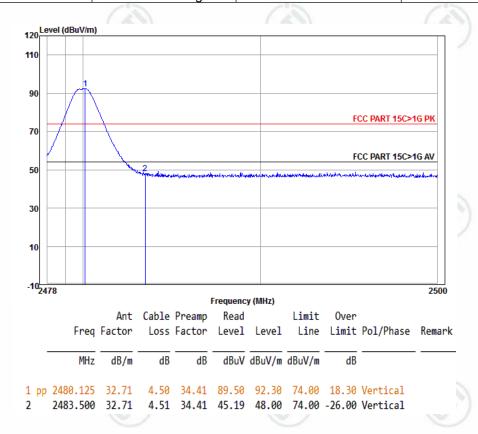


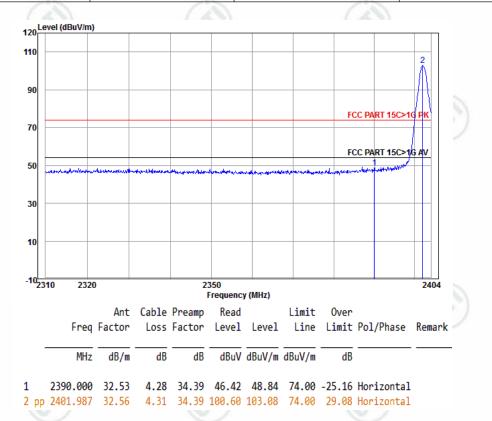
2 pp 2402.1/9 32.56 4.31 34.39 95.03 97.51 /4.00 23.51 Vertical



Report No.: EED32I00185902 Page 54 of 75

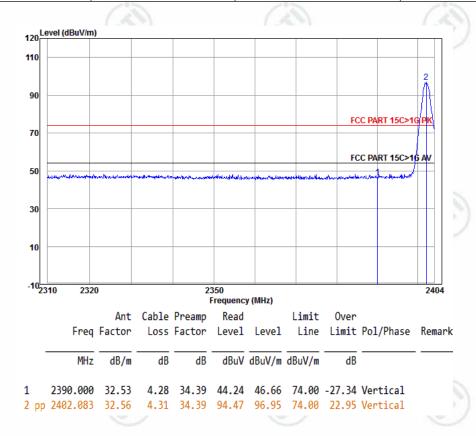
Worse case mode:	GFSK(1-DH5)	GFSK(1-DH5)			
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak		

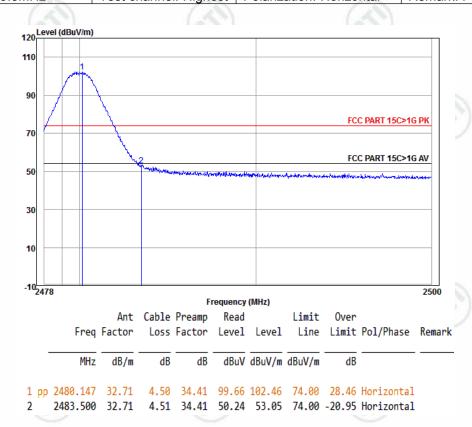

Worse case mode:	GFSK(1-DH5)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Average



Report No.: EED32I00185902 Page 55 of 75

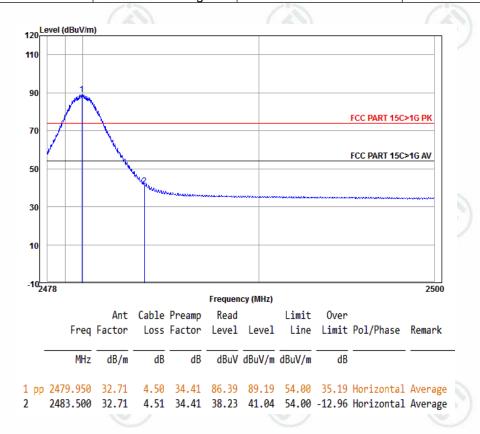
Worse case mode:	GFSK(1-DH5)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

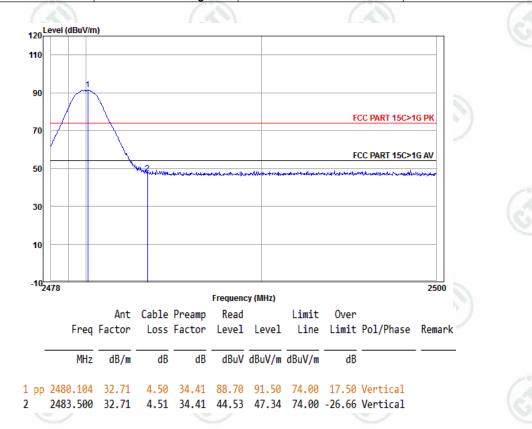

Worse case mode:	π/4DQPSK(2-DH5)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak



Report No.: EED32I00185902 Page 56 of 75

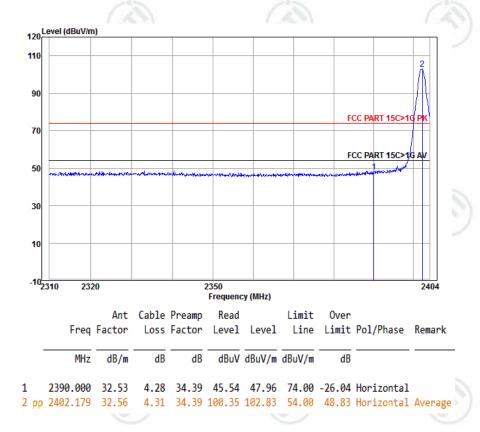
Worse case mode:	π/4DQPSK(2-DH5)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

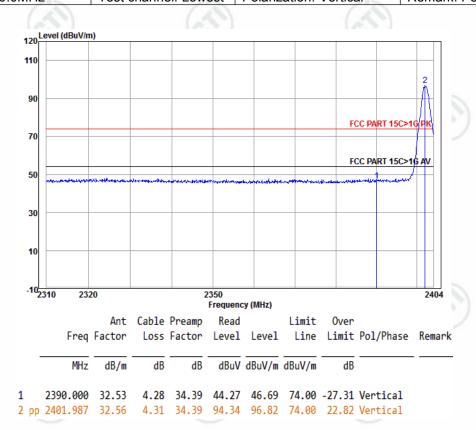

Worse case mode:	π/4DQPSK(2-DH5)			
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak	



Report No.: EED32I00185902 Page 57 of 75

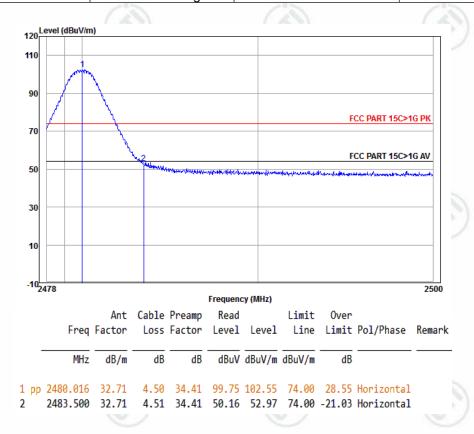
Worse case mode:	π/4DQPSK(2-DH5)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Average

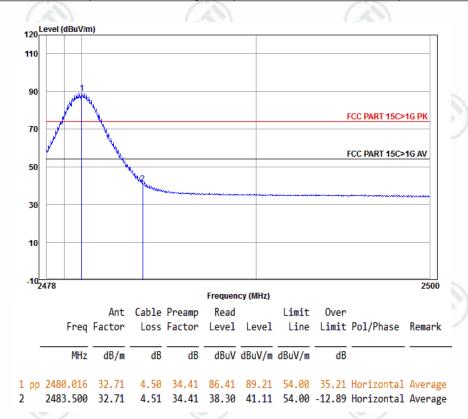

Worse case mode:	π/4DQPSK(2-DH5)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak



Report No. : EED32I00185902 Page 58 of 75

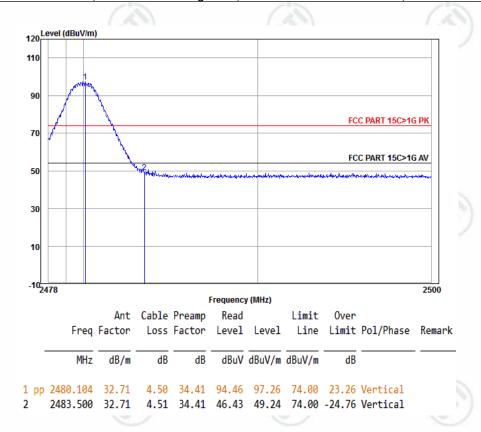
Worse case mode:	8DPSK(3-DH5)			
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak	


Worse case mode:	8DPSK(3-DH5)		
Frequency: 2390 0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

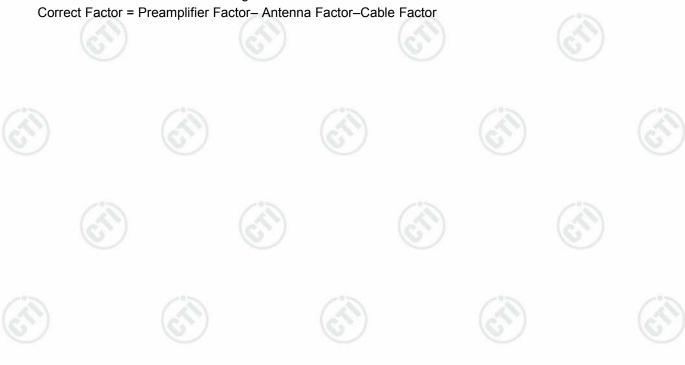


Report No. : EED32I00185902 Page 59 of 75

Worse case mode:	8DPSK(3-DH5)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak


	Worse case mode:	8DPSK(3-DH5)		
2	Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Average

Report No.: EED32I00185902 Page 60 of 75


Worse case mode:	8DPSK(3-DH5)			
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak	

Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, the 3-DH5 of data type is the worse case of 8DPSKmodulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Report No.: EED32I00185902 Page 61 of 75

Appendix L): Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Abovo 1CUz	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

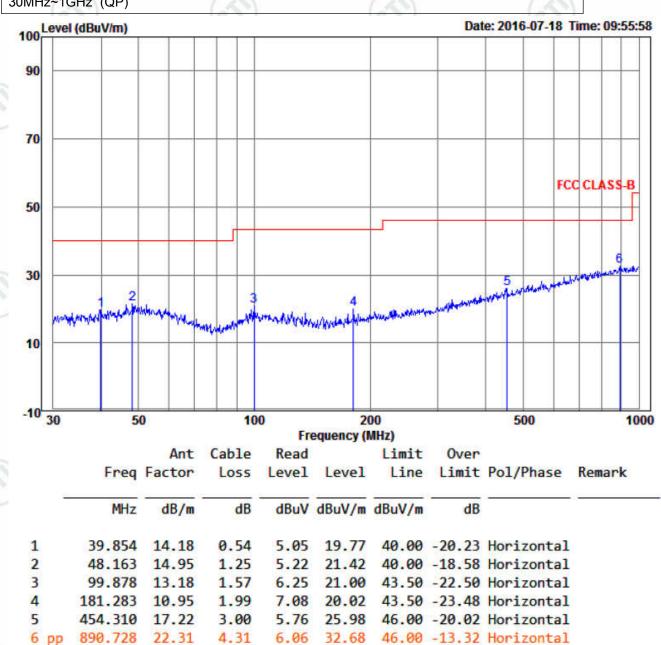
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

Limit:

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	- ,	- OS	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

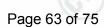


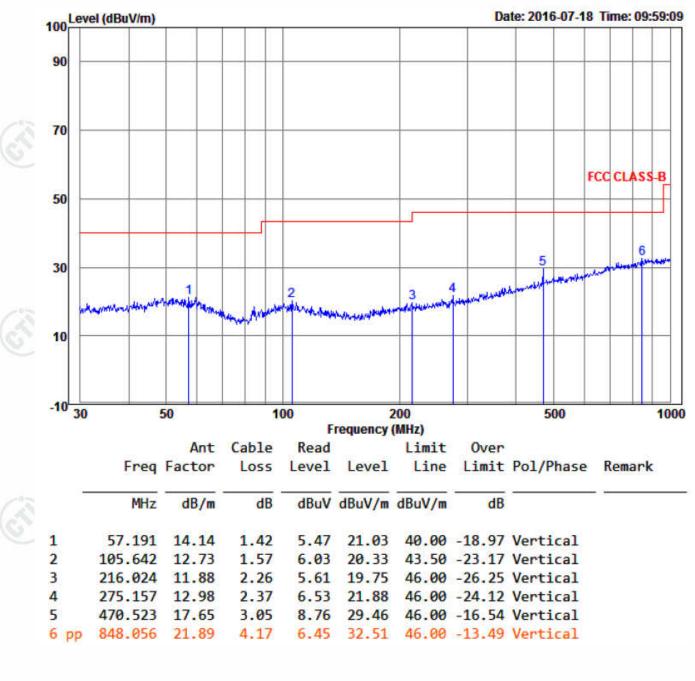
Page 62 of 75

Radiated Spurious Emissions test Data:

Radiated Emission below 1GHz

30MHz~1GHz (QP)





Page 64 of 75

Transmitter Emission above 1GHz

Worse case	mode:	GFSK(1-DH5)	Test	hannel:	Lowest			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1350.362	30.57	2.68	34.81	44.21	42.65	74	-31.35	Pass	Horizontal
1832.785	31.45	3.11	34.41	44.20	44.35	74	-29.65	Pass	Horizontal
3690.853	33.02	5.49	34.57	43.23	47.17	74	-26.83	Pass	Horizontal
4804.000	34.69	5.11	34.35	42.41	47.86	74	-26.14	Pass	Horizontal
7206.000	36.42	6.66	34.90	41.04	49.22	74	-24.78	Pass	Horizontal
9608.000	37.88	7.73	35.08	40.14	50.67	74	-23.33	Pass	Horizontal
1273.572	30.40	2.60	34.89	44.60	42.71	74	-31.29	Pass	Vertical
1786.719	31.37	3.07	34.45	42.84	42.83	74	-31.17	Pass	Vertical
3274.672	33.36	5.57	34.53	43.87	48.27	74	-25.73	Pass	Vertical
4804.000	34.69	5.11	34.35	41.79	47.24	74	-26.76	Pass	Vertical
7206.000	36.42	6.66	34.90	42.06	50.24	74	-23.76	Pass	Vertical
9608.000	37.88	7.73	35.08	39.50	50.03	74	-23.97	Pass	Vertical

Worse case	mode:	GFSK(1-DH5)	Test	channel:	Middle			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1235.257	30.31	2.56	34.93	45.37	43.31	74	-30.69	Pass	Horizontal
1642.761	31.13	2.95	34.56	44.38	43.90	74	-30.10	Pass	Horizontal
3738.129	32.99	5.48	34.58	44.55	48.44	74	-25.56	Pass	Horizontal
4882.000	34.85	5.08	34.33	43.59	49.19	74	-24.81	Pass	Horizontal
7323.000	36.43	6.77	34.90	42.11	50.41	74	-23.59	Pass	Horizontal
9764.000	38.05	7.60	35.05	40.13	50.73	74	-23.27	Pass	Horizontal
1296.469	30.45	2.62	34.86	45.75	43.96	74	-30.04	Pass	Vertical
1894.450	31.54	3.15	34.37	43.06	43.38	74	-30.62	Pass	Vertical
3498.735	33.17	5.52	34.55	43.42	47.56	74	-26.44	Pass	Vertical
4882.000	34.85	5.08	34.33	42.15	47.75	74	-26.25	Pass	Vertical
7323.000	36.43	6.77	34.90	41.22	49.52	74	-24.48	Pass	Vertical
9764.000	38.05	7.60	35.05	39.61	50.21	74	-23.79	Pass	Vertical

Report No.: EED32I00185902 Page 65 of 75

Worse case	mode:	GFSK(1-DH5)	Test ch	nannel:	Highest			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1213.441	30.26	2.53	34.95	43.58	41.42	74	-32.58	Pass	Horizontal
2003.569	31.71	3.24	34.30	44.00	44.65	74	-29.35	Pass	Horizontal
3498.735	33.17	5.52	34.55	43.14	47.28	74	-26.72	Pass	Horizontal
4960.000	35.02	5.05	34.31	41.42	47.18	74	-26.82	Pass	Horizontal
7440.000	36.45	6.88	34.90	40.93	49.36	74	-24.64	Pass	Horizontal
9920.000	38.22	7.47	35.02	39.47	50.14	74	-23.86	Pass	Horizontal
1283.335	30.42	2.61	34.88	43.35	41.50	74	-32.50	Pass	Vertical
1773.127	31.35	3.06	34.46	42.97	42.92	74	-31.08	Pass	Vertical
3616.451	33.08	5.50	34.56	44.05	48.07	74	-25.93	Pass	Vertical
4960.000	35.02	5.05	34.31	42.99	48.75	74	-25.25	Pass	Vertical
7440.000	36.45	6.88	34.90	40.93	49.36	74	-24.64	Pass	Vertical
9920.000	38.22	7.47	35.02	40.02	50.69	74	-23.31	Pass	Vertical

	Worse case	mode:	π/4DQI	PSK(2-DH5) Test c	Test channel:				
	Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
	1286.606	30.43	2.61	34.87	43.69	41.86	74	-32.14	Pass	Horizontal
	1973.201	31.66	3.21	34.32	44.42	44.97	74	-29.03	Pass	Horizontal
	3525.555	33.15	5.52	34.56	43.67	47.78	74	-26.22	Pass	Horizontal
8	4804.000	34.69	5.11	34.35	42.61	48.06	74	-25.94	Pass	Horizontal
9	7206.000	36.42	6.66	34.90	41.28	49.46	74	-24.54	Pass	Horizontal
	9608.000	37.88	7.73	35.08	39.35	49.88	74	-24.12	Pass	Horizontal
	1238.405	30.32	2.56	34.92	47.49	45.45	74	-28.55	Pass	Vertical
	1823.477	31.43	3.10	34.42	43.29	43.40	74	-30.60	Pass	Vertical
	3498.735	33.17	5.52	34.55	43.24	47.38	74	-26.62	Pass	Vertical
	4804.000	34.69	5.11	34.35	42.82	48.27	74	-25.73	Pass	Vertical
	7206.000	36.42	6.66	34.90	41.14	49.32	74	-24.68	Pass	Vertical
	9608.000	37.88	7.73	35.08	40.27	50.80	74	-23.20	Pass	Vertical

Report No.: EED32I00185902 Page 66 of 75

Worse case	mode:	π/4DQI	PSK(2-DH5) Test c	Test channel:		Middle		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1228.984	30.29	2.55	34.93	43.88	41.79	74	-32.21	Pass	Horizontal
1899.278	31.55	3.16	34.37	43.34	43.68	74	-30.32	Pass	Horizontal
3367.661	33.28	5.55	34.54	43.45	47.74	74	-26.26	Pass	Horizontal
4884.000	34.86	5.08	34.33	43.57	49.18	74	-24.82	Pass	Horizontal
7323.000	36.43	6.77	34.90	41.48	49.78	74	-24.22	Pass	Horizontal
9764.000	38.05	7.60	35.05	39.46	50.06	74	-23.94	Pass	Horizontal
1167.982	30.15	2.48	35.00	45.00	42.63	74	-31.37	Pass	Vertical
1856.261	31.48	3.13	34.40	44.36	44.57	74	-29.43	Pass	Vertical
3480.968	33.19	5.53	34.55	43.30	47.47	74	-26.53	Pass	Vertical
4882.000	34.85	5.08	34.33	41.90	47.50	74	-26.50	Pass	Vertical
7323.000	36.43	6.77	34.90	42.16	50.46	74	-23.54	Pass	Vertical
9764.000	38.05	7.60	35.05	39.41	50.01	74	-23.99	Pass	Vertical

Worse case	mode:	π/4DQPSK(2-DH5) Tes			hannel:	Highest			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1219.635	30.27	2.54	34.94	46.03	43.90	74	-30.10	Pass	Horizontal
1777.646	31.36	3.07	34.45	44.50	44.48	74	-29.52	Pass	Horizontal
3359.099	33.29	5.55	34.54	43.30	47.60	74	-26.40	Pass	Horizontal
4960.000	35.02	5.05	34.31	41.09	46.85	74	-27.15	Pass	Horizontal
7440.000	36.45	6.88	34.90	40.95	49.38	74	-24.62	Pass	Horizontal
9920.000	38.22	7.47	35.02	40.01	50.68	74	-23.32	Pass	Horizontal
1198.095	30.22	2.51	34.97	48.01	45.77	74	-28.23	Pass	Vertical
1889.633	31.54	3.15	34.37	43.20	43.52	74	-30.48	Pass	Vertical
3662.775	33.04	5.50	34.57	42.52	46.49	74	-27.51	Pass	Vertical
4960.000	35.02	5.05	34.31	40.83	46.59	74	-27.41	Pass	Vertical
7440.000	36.45	6.88	34.90	40.86	49.29	74	-24.71	Pass	Vertical
9920.000	38.22	7.47	35.02	40.14	50.81	74	-23.19	Pass	Vertical

Page 67 of 75 Report No.: EED32I00185902

Worse case mode:		8DPSK(3-DH5)		Test ch	Test channel:				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1402.920	30.68	2.73	34.76	44.25	42.90	74	-31.10	Pass	Horizontal
1884.829	31.53	3.15	34.38	44.72	45.02	74	-28.98	Pass	Horizontal
3410.797	33.24	5.54	34.54	43.62	47.86	74	-26.14	Pass	Horizontal
4804.000	34.69	5.11	34.35	44.40	49.85	74	-24.15	Pass	Horizontal
7206.000	36.42	6.66	34.90	41.64	49.82	74	-24.18	Pass	Horizontal
9608.000	37.88	7.73	35.08	38.85	49.38	74	-24.62	Pass	Horizontal
1276.818	30.41	2.60	34.88	47.12	45.25	74	-28.75	Pass	Vertical
1746.251	31.31	3.04	34.48	46.49	46.36	74	-27.64	Pass	Vertical
3135.986	33.48	5.59	34.52	45.46	50.01	74	-23.99	Pass	Vertical
4804.000	34.69	5.11	34.35	42.03	47.48	74	-26.52	Pass	Vertical
7206.000	36.42	6.66	34.90	42.60	50.78	74	-23.22	Pass	Vertical
9608.000	37.88	7.73	35.08	39.13	49.66	74	-24.34	Pass	Vertical

Worse case	mode:	8DPSK(3-DH5)		Test ch	Test channel:		Middle		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1222.743	30.28	2.54	34.94	46.91	44.79	74	-29.21	Pass	Horizontal
1823.477	31.43	3.10	34.42	42.58	42.69	74	-31.31	Pass	Horizontal
3943.392	32.84	5.45	34.60	42.61	46.30	74	-27.70	Pass	Horizontal
4882.000	34.85	5.08	34.33	44.37	49.97	74	-24.03	Pass	Horizontal
7323.000	36.43	6.77	34.90	41.35	49.65	74	-24.35	Pass	Horizontal
9764.000	38.05	7.60	35.05	40.08	50.68	74	-23.32	Pass	Horizontal
1247.899	30.34	2.57	34.91	49.36	47.36	74	-26.64	Pass	Vertical
1880.038	31.52	3.14	34.38	43.00	43.28	74	-30.72	Pass	Vertical
3454.486	33.21	5.53	34.55	42.79	46.98	74	-27.02	Pass	Vertical
4882.000	34.85	5.08	34.33	42.95	48.55	74	-25.45	Pass	Vertical
7323.000	36.43	6.77	34.90	41.74	50.04	74	-23.96	Pass	Vertical
9764.000	38.05	7.60	35.05	39.98	50.58	74	-23.42	Pass	Vertical

Report No.: EED32I00185902 Page 68 of 75

Worse case mode:		8DPSK(3-DH5)		Test ch	Test channel:		Highest		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1402.920	30.68	2.73	34.76	45.86	44.51	74	-29.49	Pass	Horizontal
1958.189	31.64	3.20	34.33	44.16	44.67	74	-29.33	Pass	Horizontal
3463.291	33.20	5.53	34.55	43.63	47.81	74	-26.19	Pass	Horizontal
4960.000	35.02	5.05	34.31	42.59	48.35	74	-25.65	Pass	Horizontal
7440.000	36.45	6.88	34.90	41.29	49.72	74	-24.28	Pass	Horizontal
9920.000	38.22	7.47	35.02	39.26	49.93	74	-24.07	Pass	Horizontal
1198.095	30.22	2.51	34.97	50.16	47.92	74	-26.08	Pass	Vertical
1818.842	31.43	3.10	34.42	43.04	43.15	74	-30.85	Pass	Vertical
3419.491	33.24	5.54	34.55	42.91	47.14	74	-26.86	Pass	Vertical
4960.000	35.02	5.05	34.31	41.19	46.95	74	-27.05	Pass	Vertical
7440.000	36.45	6.88	34.90	41.78	50.21	74	-23.79	Pass	Vertical
9920.000	38.22	7.47	35.02	39.86	50.53	74	-23.47	Pass	Vertical

Note:

- 1) Through Pre-scan transmitting mode with all kind of modulation and all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

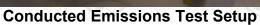
Page 69 of 75

PHOTOGRAPHS OF TEST SETUP

Test mode No.: RG310

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)



Page 70 of 75

Page 71 of 75 Report No.: EED32I00185902

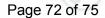
PHOTOGRAPHS OF EUT Constructional Details

Test mode No.: RG310

View of Product-1

View of Product-2

View of Product-3


View of Product-4

View of Product-5

View of Product-7

View of Product-8

View of Product-9

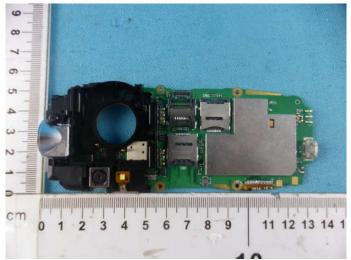
View of Product-10

View of Product-11

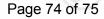
View of Product-12

View of Product-13

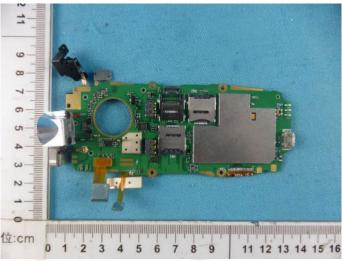
View of Product-14

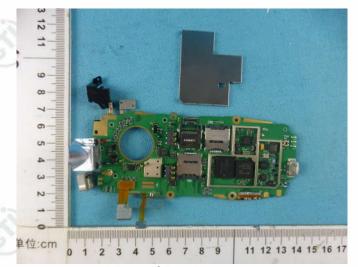

View of Product-15

View of Product-16

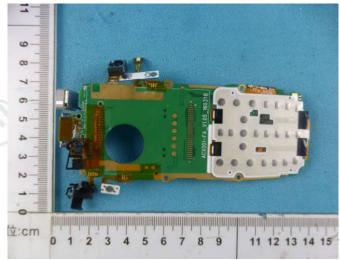


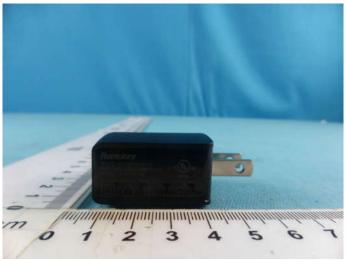
View of Product-17


View of Product-18



View of Product-19

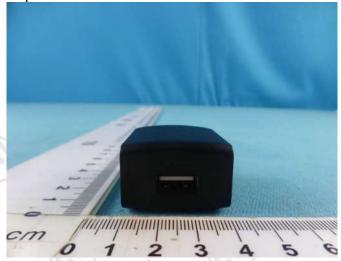

View of Product-20

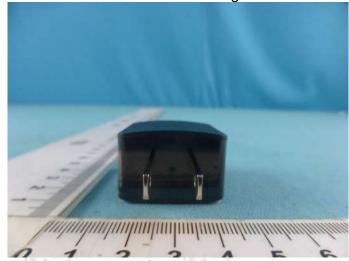

View of Product-21

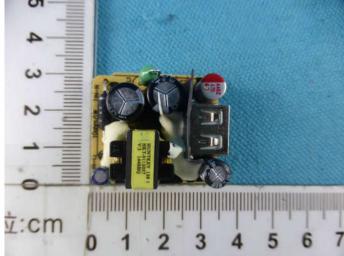
View of Product-22

View of Product-23

View of Product-24






View of Product-25


View of Product-26

View of Product-27

View of Product-28

View of Product-29

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.