Page: 1 of 30

MS-Word2000

GSM1900 test report for

RA-2

Report Date:	June 12, 2004	
Signatures:		
Tested by:	John 5mlh Marko Turkkila	Testing Engineer
Contents approved:	Tomi Nyberg	Laboratory Manager

Test results are valid for the tested unit only.

This report shall not be reproduced except in full

Page: 2 of 30 MS-Word2000

Identification: T04-048A-EMC

CONTENTS

1	LAE	SORATORY INFORMATION	4
2	CUS	TOMER INFORMATION	4
3	SUN	MMARY OF TEST RESULTS	5
4	EUT 4.1	INFORMATIONEUT description	
5	EUT	TEST SETUPS	7
6	APP	LICABLE STANDARDS	7
7	7.1	DIATED RF OUTPUT POWER Test setup	8
	7.2 7.3	Test method	
	7.3 7.4	EUT operation mode	
	7.5	Results	
8	99%	OCCUPIED BANDWIDTH	12
	8.1	Test setup	
	8.2	EUT operation mode	
	8.3	Results	
	8.4	Screen shots	
9	BAN	ND-EDGE COMPLIANCE	
	9.1	Test setup	
	9.2	EUT operation mode	
	9.3	Limit	
	9.4	Results	
	9.5	Screen shots	19
1(DIATED SPURIOUS EMISSIONS	
	10.1	Test setup	
	10.2	Test method	
	10.3	EUT operation mode	
	10.4	Limit	
	10.5	Regulte	23

Product compliance test EMC-measurements

Identification: T04-048A-EMC

Page: 3 of 30 MS-Word2000

11 FRI	EQUENCY STABILITY, TEMPERATURE VARIATION	25
	Test setup	
11.2	EUT operation mode	
11.3	Limit	
11.4	Test method	
11.5	Results	26
12 FRI	EQUENCY STABILITY, VOLTAGE VARIATION	27
12.1	Test setup	
12.2	EUT operation mode	
12.3	Limit	
12.4	Test method	28
12.5	Results	
13 TES	ST EQUIPMENT	29
	Conducted measurements	
13.2		
14 TES	ST SETUP PHOTOGRAPHS	30

Tel: +358 20 475 2600 Fax: +358 20 475 2719 Email: firstname.surname@ette.com

Page: 4 of 30 MS-Word2000

1 LABORATORY INFORMATION

Test Laboratory	NATLABS OY				
	EMC Laboratory				
	Koneenkatu 12 / K17				
	05830 Hyvinkää				
	FINLAND				
	Tel: +358 20 475 2600				
	Fax: +358 20 475 2719				
	e-mail: firstname.surname@ette.com				
FCC registration					
number:	910391 (January 27, 2003)				
IC file number:	IC 4616 (May 14, 2003)				

2 CUSTOMER INFORMATION

Client	Nokia Corporation					
	Keilalahdentie 2-4					
	02150 Espoo					
	PL 226					
	00045 NOKIA GROUP					
	Tel: 07180 08000					
Contact person:	Juha Tuominen					
	Nokia Corporation / TCC Salo					
	P.O. Box 86 (Joensuunkatu 7C)					
	FIN -24101 SALO					
	FINLAND					
	Tel: +358 7180 08000					
	Fax: +358 7180 44123					
Receipt of EUT:	June 09, 2004					
Testing date:	June 09 – 14, 2004					
Report date:	June 12 2004					

The tests listed in this report have been done to demonstrate compliance with the applicable requirements in FCC rules Part 24 and 2 and IC standard RSS-133.

Page: 5 of 30 MS-Word2000

3 SUMMARY OF TEST RESULTS

Section in CFR 47	Section in	Test	Result	
	RSS-133			
§2.1046 (a)	6.2	Conducted RF output	-	
§24.232 (b)	6.2	Radiated RF output	PASS	
§2.1049 (h)	5.6	99% occupied bandwidth	PASS	
§24.238 (a)	6.3	Block-edge compliance	PASS	
§24.238 (a), §2.1051	6.3	Spurious emissions at antenna		
		terminals	-	
§24.238 (a), §2.1053	6.3	Radiated spurious emissions	PASS	
§24.235, §2.1055	7	Frequency stability, temperature	PASS	
(a)(1)(b)		variation	1 A33	
§24.235, §2.1055	7	Frequency stability, voltage	PASS	
(d)(1)(2)		variation	FASS	

PASS Pass FAIL Fail

X Measured, but there is no applicable performance criteria

- Not done

Email: firstname.surname@ette.com

Tel: +358 20 475 2600

Page: 6 of 30 MS-Word2000

EUT INFORMATION

EMC Laboratory

The EUT and accessories used in the tests are listed below. Later in this report only EUT numbers are used as reference.

	Device	Type	S/N	EUT number
EUT	GSM 1900 Mobile phone	RA-2	004400/41/170551/8	17001
EUI	GSM 1900 Mobile phone	RA-2	004400/41/170555/9	17002
	GSM 1900 Mobile phone	RA-2	004400/41/170561/7	17003
Accessories	Battery	BP-5L	V.12	17004

Notes:

EUT 01003 was equipped with antenna connector for conducted measurements

EUT description 4.1

EUT is a GSM 1900 mobile phone with BT and WLAN functions.

The EUT was not modified during the tests.

Email: firstname.surname@ette.com

Tel: +358 20 475 2600

Product compliance test EMC-measurements

Identification: T04-048A-EMC

Page: 7 of 30

MS-Word2000

5 EUT TEST SETUPS

For each test the EUT was exercised to find out the worst case of operation modes and device configuration.

The test setup photographs are in the document referenced in section 14.

6 APPLICABLE STANDARDS

The tests were performed in guidance of CFR 47 part 24, part 2, ANSI/TIA/EIA-603-A-2001 and RSS-133.

Deviations, modifications or clarifications (if any) to above mentioned documents are written in each section under "Test method" for each test case.

Email: firstname.surname@ette.com

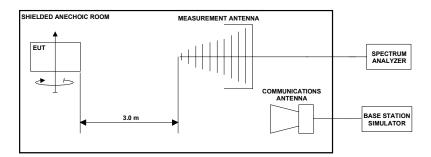
Tel: +358 20 475 2600

EMC-measurements Page: 8 of 30
EMC Laboratory MS-Word2000

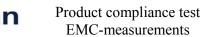
7 RADIATED RF OUTPUT POWER

EUT	17001		
Accessories	17004		
Temp, Humidity,	22 °C	43 RH%	1015 hPa
Air Pressure			
Date of measurement	June 09 - 10, 2004		
FCC rule part	§24.232 (b)		
RSS-133 section	6.2		
Measured by	Marko Turkkila		

7.1 Test setup


The EUT was set on a non-conductive turntable in a semi-anechoic chamber. In the corner of the chamber there was a communications antenna, which was connected to the BS simulator located outside the chamber.

The radiated power from the EUT was measured with an antenna fixed to an antenna tower. Antenna polarization and height can be changed remotely. The turntable is remotely controlled to turn the EUT


The EUT was set at 0.8m height. Measuring antenna was scanned 1-4 m in height.

The measured signal was routed from the measuring antenna to the spectrum analyzer.

The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns.

Picture 1: Test setup for radiated RF output power measurement

EMC-measurements Page: 9 of 30
EMC Laboratory MS-Word2000

7.2 Test method

- Substitution method calibration was made for determining correction factors for horizontal and vertical polarization. In the calibration the EUT was substituted with a signal generator and antenna, which gain over isotropic and dipole radiator was known.
- 2. The maximum power level was searched by moving the turntable, by manipulating the EUT and by changing the measurement antenna polarization and height. The maximum measured level ($P_{\rm EUT}$) was recorded.
- 3. The measured power from EUT was corrected with the correction factor in an automated test system to give the EUT EIRP.

7.3 EUT operation mode

EUT operation mode	TX on, 1 time slot transmission,
	PRBS 2E9-1 modulation
EUT channel	512, 661, 810
EUT TX power level	GSM 0 (30dBm)
	EDGE E2 (+26dBm)

7.4 Limit

EIRP [W]				
FCC	≤ 2			
IC	< 2			

Email: firstname.surname@ette.com

Tel: +358 20 475 2600

Page: 10 of 30 MS-Word2000

7.5 Results

The formula below was used to calculate the EIRP of the EUT.

$$\begin{split} P_{EIRP[W]} = & \frac{10^{(P_{EUT[dBm]} + (P_{Subst_RX[dBm]} - P_{Subst_TX[dBm]} + L_{Cable[dB]} - G_{Substitute_antenna[dBi]}))/10}{1000} \\ = & \frac{10^{(P_{EUT[dBm]} + CF[dB])/10}}{1000} \end{split}$$

where the variables are as follows:

 $P_{\text{EUT [dBm]}}$ Measured power level (from step 2 in 7.2) from the EUT

 $P_{\text{Subst_TX [dBm]}}$ Power (step 1 in 7.2) fed to the substituting antenna

 $P_{\text{Subst RX [dBm]}}$ Power (step 1 in 7.2) received with the spectrum analyzer

 $G_{\text{Substitute antenna [dBi]}}$ Gain of the substitutive antenna over isotropic radiator

 $L_{\text{Cable [dB]}}$ Loss of the cable between signal generator and the substituting

antenna

CF [dB] Correction factor combined from the $P_{Subst_TX [dBm]}$, $P_{Subst_RX [dBm]}$,

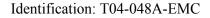
 $G_{\text{Substitute antenna [dBi]}}$ and $L_{\text{Cable [dB]}}$ used in the automated

measurement system (step 3 in 7.2).

In the tables below, the abbreviated column titles are:

EUT H / H2 / V EUT orientation, Horizontal / Horizontal 2 /

Vertical


Pol H / V Measuring antenna polarization, Horizontal / Vertical

Height [m] Measuring antenna height from reference ground in meters

TT [deg] Turn table angle in degrees

Email: firstname.surname@ette.com

Tel: +358 20 475 2600

Page: 11 of 30 MS-Word2000

Table 1: Radiated RF output power measurement results, GSM GMSK. Flip closed.

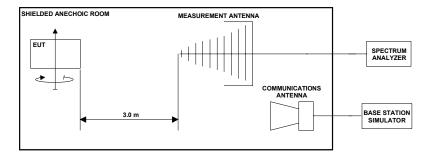
EUT Channel	P _{EUT} [dBm]	CF [dB]	EIRP [dBm]	EIRP [W]	EUT H / V /H2	Pol. H / V	Height [m]	TT [deg]
512	-11.72	43.19	31.47	1.40	Н	Н	1.3	342.0
661	-13.95	44.24	30.29	1.07	H2	V	1.07	80.0
810	-14.75	43.57	28.82	0.76	Н	Н	1.2	64.0

Table 2: Radiated RF output power measurement results, GSM GMSK, flip open.

EUT Channel	P _{EUT} [dBm]	CF [dB]	EIRP [dBm]	EIRP [W]	EUT H/V /H2	Pol. H/V	Height [m]	TT [deg]
512	-13.04	43.19	30.15	1.04	Н	Н	1.3	338.0
661	-15.72	44.24	28.52	0.71	H2	V	1.08	302.0
810	-17.17	44.40	27.23	0.53	Н	V	1.1	205.0

Table 3: Radiated RF output power measurement results, flip closed, GSM EDGE 8 PSK modulation.

	EUT Channel	P _{EUT} [dBm]	CF [dB]	EIRP [dBm]	EIRP [W]	EUT H/V /H2	Pol. H / V	Height [m]	TT [deg]
ĺ	512	-14.85	43.19	28.34	0.68	Н	Н	1.3	342.0
ſ	661	-17.03	44.24	27.21	0.53	H2	V	1.07	80.0
ſ	810	-17.80	43.57	25.77	0.38	Н	Н	1.2	64.0


EMC-measurements Page: 12 of 30
EMC Laboratory MS-Word2000

8 99% OCCUPIED BANDWIDTH

EUT	17001				
Accessories	17004				
Temp, Humidity,	22 °C	43 RH%	1015 hPa		
Air Pressure					
Date of measurement	June 10, 2004				
FCC rule part	§2.1049 (h)				
RSS-133 section	5.6				
Measured by	Marko Turkkila				

8.1 Test setup

The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns.

Picture 2: Test setup for band edge compliance measurement

99% occupied bandwidth measurements were made as radiated measurement similar to radiated power measurement. The worst turntable angle, antenna height and antenna polarisation found in radiated power measurements were used.

Base station simulator was used to set the EUT channel, modulation and power level.

8.2 EUT operation mode

EUT operation mode	TX on, 1 time slot transmission,
EUT channel	512, 661, 810
EUT TX power level	GSM 0 (+30dBm)
_	EDGE E2 (+26dBm)

Page: 13 of 30 MS-Word2000

8.3 Results

The 99% occupied bandwidth was calculated from spectrum analyzer measurements.

The measurement data was read from the analyzer to computer.

Software in computer calculated the total power from the measurement data and defined the frequency band containing 99% of the total power.

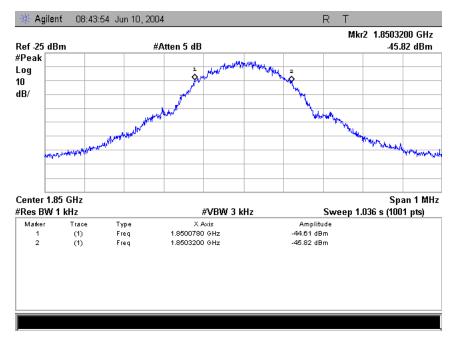
Markers in the spectrum analyzer were then placed between the calculated frequencies to show the calculated 99% power band in the screenshots.

Table 4: 99% occupied bandwidth measurement results, GSM GMSK modulation

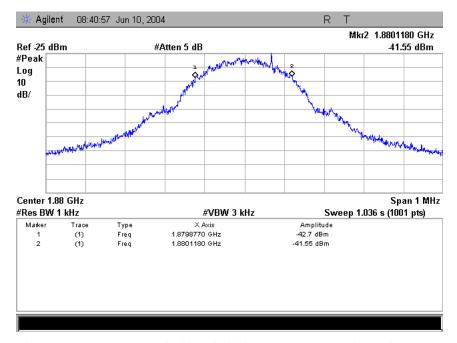
EUT Channel	99% occupied bandwidth [kHz]
512	243
661	242
810	247

Table 5: 99% occupied bandwidth measurement results, GSM EDGE 8 PSK modulation

EUT Channel	99% occupied bandwidth [kHz]
512	239
661	241
810	239

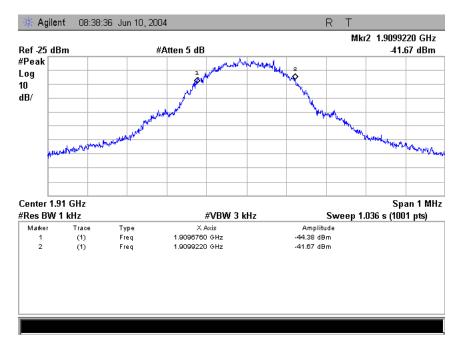

Email: firstname.surname@ette.com

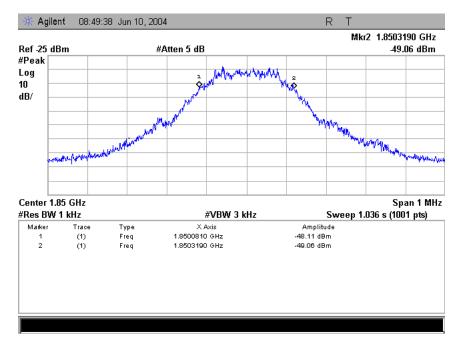
Tel: +358 20 475 2600



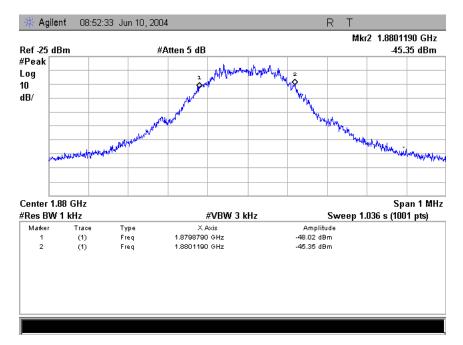
EMC-measurements Page: 14 of 30
EMC Laboratory MS-Word2000

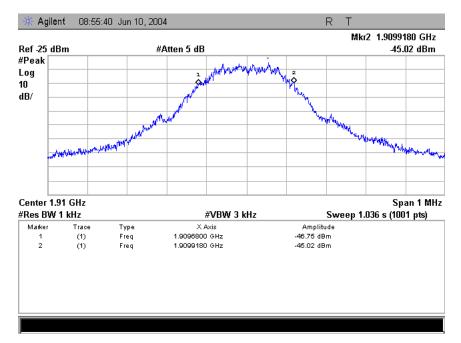
8.4 Screen shots


Picture 3: 99% occupied bandwidth, GSM GMSK, channel 512


Picture 4: 99% occupied bandwidth, GSM GMSK, channel 661

EMC-measurements Page: 15 of 30
EMC Laboratory MS-Word2000

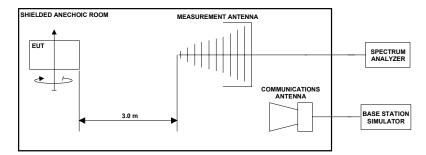

Picture 5: 99% occupied bandwidth, GSM GMSK, channel 810


Picture 6: 99% occupied bandwidth, GSM EDGE 8 PSK, channel 512

EMC-measurements Page: 16 of 30
EMC Laboratory MS-Word2000

Picture 7: 99% occupied bandwidth, GSM EDGE 8 PSK, channel 661

Picture 8: 99% occupied bandwidth, GSM EDGE 8 PSK, channel 810


Page: 17 of 30 MS-Word2000

9 BAND-EDGE COMPLIANCE

EUT	17001				
Accessories	17004				
Temp, Humidity,	22 °C	43 RH%	1015 hPa		
Air Pressure					
Date of measurement	June 10, 2004				
FCC rule part	§24.238 (a)				
RSS-133 section	6.3				
Measured by Marko Turkkila					

9.1 Test setup

The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns.

Picture 9: Test setup for band edge compliance measurement

Band edge power measurements were made as radiated measurement similar to radiated power measurement. The worst turntable angle, antenna height and antenna polarisation found in radiated power measurements were used.

Base station simulator was used to set the EUT channel, modulation and power level.

Power level at the band edge was measured with spectrum analyzer. Measured reading was corrected in the spectrum analyzer by setting correction factor calculated in radiated power measurement section (7.5), as offset.

9.2 EUT operation mode

EUT operation mode	TX on, 1 time slot transmission
EUT channel	Channels listed in section 9.4
EUT TX power level	GSM 0 (+30dBm)
	EDGE E2 (+26dBm)

Test results are valid for the tested unit only.

This report shall not be reproduced except in full

Page: 18 of 30 MS-Word2000

9.3 Limit

EMC Laboratory

Frequency [MHz]	Level [dBm]
<1850	-13
>1910	-13

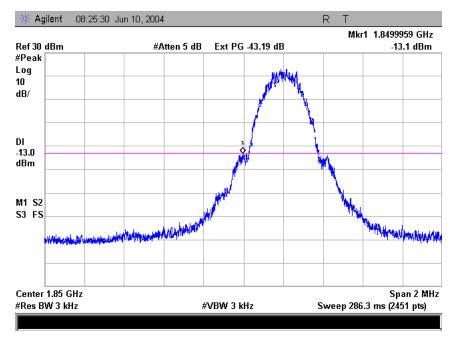
9.4 Results

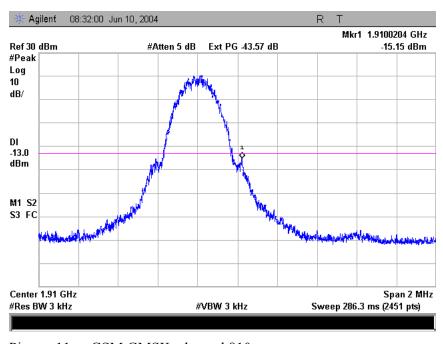
The line in the screen shots is the -13dBm limit line. The results were corrected with "offset" value described in test setup section.

Table 6: Band edge compliance measurement results, GSM GMSK modulation

EUT Channel	Offset [dB]	Band edge power [dBm]	EUT Orient.	Antenna Pol.	Antenn a Height	Turn table Angle
512	43.19	-13.1	Н	Н	1.27	342
810	43.57	-15.15	Н	Н	1.18	64

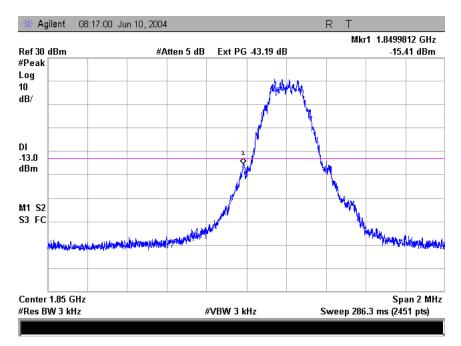
Table 7: Band edge compliance measurement results, GSM EDGE 8 PSK modulation

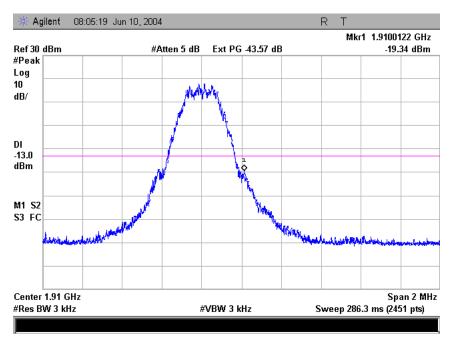

EUT Channel	Offset [dB]	Band edge power [dBm]	EUT Orient.	Antenna Pol.	Antenn a Height	Turn table Angle
512	43.19	-15.41	Н	Н	1.27	342.0
810	43 57	-19 34	Н	Н	1.18	64 0


EMC-measurements Page: 19 of 30 MS-Word2000

9.5 Screen shots

EMC Laboratory


Picture 10: GSM GMSK, channel 512


Picture 11: GSM GMSK, channel 810

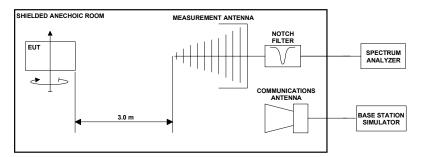
Page: 20 of 30 MS-Word2000

Picture 12: GSM EDGE 8 PSK, channel 512

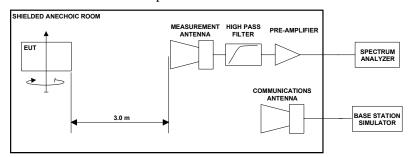
Picture 13: GSM EDGE 8 PSK, channel 810

Page: 21 of 30 MS-Word2000

10 RADIATED SPURIOUS EMISSIONS


EUT	17002				
Accessories	17004				
Temp, Humidity,	22 °C	45 RH%	1013 hPa		
Air Pressure					
Date of measurement	June 10 - 11, 2004				
FCC rule part	§24.238 (a), §2.1053				
RSS-133 section	6.3				
Measured by	Marko Turkkila, Tu	omo Hahl			

10.1 Test setup


Band reject and high pass filters was used to prevent overloading the spectrum analyzer and preamplifier.

The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns.

The test was done using an automated test system, where the measurement equipment was controlled by a computer.

Picture 14: Test setup for radiated spurious emissions measurement on below 3 GHz frequencies

Picture 15: Test setup for radiated spurious emissions measurement on 3 GHz and above frequencies

Product compliance test EMC-measurements

Identification: T04-048A-EMC

Page: 22 of 30 MS-Word2000

10.2 Test method

- 1. The emissions were searched and maximized by moving the turntable, changing the measuring antenna polarization and height and manipulating the EUT.
- 2. Levels of suspicious signals and levels of EUT transmitter harmonics were recorded.
- 3. The recorded levels were corrected in the automated test system with the correction factor given by a substitution calibration made before the measurements. The calibration is made separately for vertical and horizontal polarization and the system uses different correction factors depending on the measuring antenna polarization.
- 4. The corrected values, giving the EUT radiated spurious emission levels as e.i.r.p, are reported.

10.3 EUT operation mode

EUT operation mode	TX on, 1 time slot transmission,
EUT channel	661
EUT TX power level	GSM 0 (+30dBm)
	EDGE E2 (+26dBm)

10.4 Limit

Frequency [MHz]	Level [dBm]
30 - 19100	-13

Email: firstname.surname@ette.com

Tel: +358 20 475 2600

Product compliance test EMC-measurements

Identification: T04-048A-EMC

Page: 23 of 30 MS-Word2000

EMC Laboratory

10.5 Results

The formula below was used to calculate the EIRP of the spurious emissions.

$$\begin{split} P_{\textit{Emission}[\textit{dBm}]} &= P_{\textit{Measured}[\textit{dBm}]} + \left(P_{\textit{SubstRX}[\textit{dBm}]} - P_{\textit{SubstTX}[\textit{dBm}]} + L_{\textit{Cable}[\textit{dB}]} - G_{\textit{Antenna}[\textit{dBi}]}\right) \\ &= P_{\textit{Measured}[\textit{dBm}]} + CF_{[\textit{dB}]} \end{split}$$

where the variables are as follows:

P_{Measured [dBm]} Measured emission level (from step 2 in 10.2)

P_{Subst TX [dBm]} Signal generator power (from step 4 in 10.2) fed to the

substituting antenna

 $P_{Subst\ RX\ [dBm]}$ Measured power (from step 4 in 10.2) in the substitution

calibration

 $L_{Cable [dB]}$ Loss of the cable between antenna and signal generator (from

step 4 in 10.2)

Gain of the substitutive antenna over isotropic radiator

 $CF_{[dB]}$ Correction factor combined from the $P_{Subst_TX\,[dBm]}$, $L_{Cable\,[dB]}$ and

G_{Antenna [dBi]} used in the automated test software

Measurement system noise level was least 15 dB below the spurious emission limit. Only levels of suspicious signals and transmitter harmonic frequencies, which were above the measurement system noise, are reported.

In the tables below, the abbreviated column titles are:

f [MHz] Measured frequency EUT V EUT orientation, Vertical

Pol H / V Measuring antenna polarization, Horizontal / Vertical Height [m] Measuring antenna height from reference ground in meters

TT [deg] Turn table angle in degrees

Page: 24 of 30 MS-Word2000

GSM GMSK modulation

Table 8: Radiated spurious emission levels, GSM GMSK, Channel 661, Flip closed

f [MHz]	P _{Measured} [dBm]	CF [dB]	P _{Emission} [dBm]	EUT V	Pol. H/V	Height [m]	TT [deg]
3760	-52.3	-1.71	-54.01	V	V	1.3	257
5640	-48.88	4.1	-44.78	V	V	1	176
7520	-50.47	9.1	-41.37	V	V	1.7	100
9400	-52.61	9.36	-43.25	V	V	1.8	170

Table 9: Radiated spurious emission levels, GSM GMSK, Channel 661 Flip open

f [MHz]	P _{Measured} [dBm]	CF [dB]	P _{Emission} [dBm]	EUT V	Pol. H/V	Height [m]	TT [deg]
3760	-52.71	-1.71	-54.42	V	V	1.3	189
5640	-48.56	4.1	-44.46	V	V	1	159
7520	-50.24	9.1	-41.14	V	V	1.6	100
9400	-51.23	9.36	-41.87	V	V	1.8	155

Table 10: Radiated spurious emission levels, GSM EDGE 8 PSK, Channel 661, Flip closed

f	P _{Measured}	CF	P _{Emission}	EUT	Pol.	Height	TT
[MHz]	[dBm]	[dB]	[dBm]	V	H/V	[m]	[deg]
3760	-58.19	-1.71	-59.9	V	V	1.5	237
5640	-51.48	4.31	-47.17	V	Н	1.2	181
7520	-51.78	9.1	-42.68	V	V	1.9	100
9400	-53.86	10.9	-42.96	V	Н	1	263

Page: 25 of 30


EMC Laboratory MS-Word2000

11 FREQUENCY STABILITY, TEMPERATURE VARIATION

EUT	17003		
Accessories	17004		
Temp, Humidity,	- °C	- RH%	- hPa
Air Pressure			
Date of measurement	June 10, 2004		
FCC rule part	§24.235, §2.1055 (a)(1)(b)	
RSS-133 section	7		
Measured by	Kimmo Aarnio	_	

11.1 Test setup

The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns.

11.2 EUT operation mode

EUT operation mode	TX on, 1 time slot transmission, PRBS 2E9-1 modulation
EUT channel	661
EUT TX power level	GSM 0 (+30dBm)

11.3 Limit

Frequency deviation [ppm]	
± 2.5	

Page: 26 of 30 MS-Word2000

11.4 Test method

- 1. The climate chamber temperature was set to the maximum value and the temperature was allowed to stabilize
- 2. The EUT was placed in the chamber power off
- 3. The EUT temperature was allowed to stabilize for 45 minutes
- 4. The EUT was turned on and set to transmit
- 5. The maximum of transmit frequency error during one minute period was measured from BS simulator
- 6. The steps 3 5 were repeated for each temperature

11.5 Results

Table 11: Frequency stability over temperature measurement results

Temperature [°C]	Deviation [Hz]	Deviation [ppm]
-30	***	***
-20	31	0.016
-10	33	0.018
0	20	0.011
10	30	0.016
20	23	0.012
30	22	0.012
40	32	0.017
50	23	0.012

^{***} The phone doesn't start.

EMC-measurements Page: 27 of 30
EMC Laboratory MS-Word2000

12 FREQUENCY STABILITY, VOLTAGE VARIATION

EUT	17003		
Accessories	17004		
Temp, Humidity,	22 °C	48 RH%	1006hPa
Air Pressure			
Date of measurement	June 12, 2004		
FCC rule part	§24.235, §2.1055 (d	1)(1)(2)	
RSS-133 section	7		
Measured by	Marko Turkkila		

12.1 Test setup

The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns.

Picture 16: Test setup for frequency deviation over voltage variation measurement

12.2 EUT operation mode

EUT operation mode	TX on, 1 time slot transmission, PRBS 2E9-1 modulation
EUT channel	661
EUT TX power level	GSM 0 (+30dBm)

12.3 Limit

Frequency deviation [ppm]	
± 2.5	

Page: 28 of 30 MS-Word2000

12.4 Test method

The EUT battery was replaced with an adjustable power supply. The frequency stability was measured at nominal voltage and at the battery cut-off point.

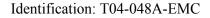

12.5 Results

Table 12: Frequency stability over voltage variation measurement results

Level	Voltage [V]	Deviation [Hz]	Deviation [ppm]
Nominal	3.7	13	0,007
Battery cut-off point	3.4	27	0,014

Email: firstname.surname@ette.com

Tel: +358 20 475 2600

Page: 29 of 30 MS-Word2000

13 TEST EQUIPMENT

All testing and measurement equipment has been calibrated once a year, except the antennas which are calibrated every two years.

13.1 Conducted measurements

Equipment	Manufacturer	Model
Spectrum Analyzer	Agilent	E7405A
GSM Base station	Anritsu	MT8820A
simulator		
Signal Generator	Rohde & Schwarz	SMR27
Attenuator 3 dB	Narda	779-3
Power splitter	Mini Circuits	ZFSC-2-4
Power splitter	Narda	4426-2
Temperature	Finero	LK 540
chamber		
DC power supply	Delta Elektronika	SM 120-13
Multimeter	Fluke	179

13.2 Radiated measurements

Equipment	Manufacturer	Model
Spectrum Analyzer	Agilent	E7405A
GSM Base station	Anritsu	MT8820A
simulator		
Antenna	Chase	CBL 6140
Antenna	Schwarzbeck	BBHA 9120D
Antenna	Chase	CBL 6141
Antenna	EMCO	3115
Signal Generator	Rohde & Schwarz	SMR27
Tunable notch filter	Wainwright Instruments	WRCD 1700/2000-0.2/40-
		10EEK
Tunable notch filter	Wainwright Instruments	WRCT 800/960-0.2/40-
		8EEK
High pass filter	Wainwright Instruments	WHK3/18GST
High pass filter	Wainwright Instruments	WHK 2.1/18GST
Band Reject filter	Wainwright instruments	WRCT2400/2483-45/10EE
Pre-amplifier	JCA	118-400
Pre-amplifier	Agilent	87405B
Turn table /	EMCO	2090
antenna mast		
controller		
Antenna mast	EMCO	2075-2

Product compliance test EMC-measurements

Identification: T04-048A-EMC

Page: 30 of 30

MS-Word2000

14 TEST SETUP PHOTOGRAPHS

Test setup photographs can be found in a separate document

T04-048A-EMC_PHOTOS.doc

Email: firstname.surname@ette.com

Tel: +358 20 475 2600