APPENDIX C CALIBRATION CERTIFICATES

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn

http://www.caict.ac.cn BACL Client

Report No.: 2401V58287E-SA

Certificate No: J23Z60359

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN: 7382

Calibration Procedure(s)

FF-Z11-004-02

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

September 27, 2023

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.) Scheduled	Calibration
Power Meter NRP2	101919	12-Jun-23(CTTL, No.J23X05435)	Jun-24
Power sensor NRP-Z91	101547	12-Jun-23(CTTL, No.J23X05435)	Jun-24
Power sensor NRP-Z91	101548	12-Jun-23(CTTL, No.J23X05435)	Jun-24
Reference 10dBAttenuator	18N50W-10dl	B 19-Jan-23(CTTL, No.J23X00212)	Jan-25
Reference 20dBAttenuator	18N50W-20dl	B 19-Jan-23(CTTL, No.J23X00211)	Jan-25
Reference Probe EX3DV4	SN 3846	31-May-23(SPEAG, No.EX-3846_May23)	May-24
DAE4	SN 1555	24-Aug-23(SPEAG, No.DAE4-1555_Aug23)	Aug-24
DAE4	SN 549	24-Jan-23(SPEAG, No.DAE4-549_Jan23)	Jan-24
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGenerator MG3700A	6201052605	12-Jun-23(CTTL, No.J23X05434)	Jun-24
Network Analyzer E5071C	MY46110673	10-Jan-23(CTTL, No.J23X00104)	Jan-24
Reference 10dBAttenuator	BT0520	11-May-23(CTTL, No.J23X04061)	May-25
Reference 20dBAttenuator	BT0267	11-May-23(CTTL, No.J23X04062)	May-25
OCP DAK-3.5	SN 1040	18-Jan-23(SPEAG, No.OCP-DAK3.5-1040_Jar	n23) Jan-24

Name Function Calibrated by:

Yu Zongying SAR Test Engineer

Reviewed by:

Lin Hao SAR Test Engineer

Approved by:

Qi Dianyuan SAR Project Leader

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: J23Z60359

Page 1 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Glossary:
TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

 θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
 data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No:J23Z60359

Page 2 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7382

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)²)A	0.42	0.42	0.47	±10.0%
DCP(mV) ^B	100.8	101.0	103.5	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (<i>k</i> =2)
0 CW	Х	0.0	0.0	1.0	0.00	160.9	±2.0%	
		Υ	0.0	0.0	1.0		159.5	
		Z	0.0	0.0	1.0		178.1	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 4).

B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7382

Calibration Parameter Determined in Head Tissue Simulating Media

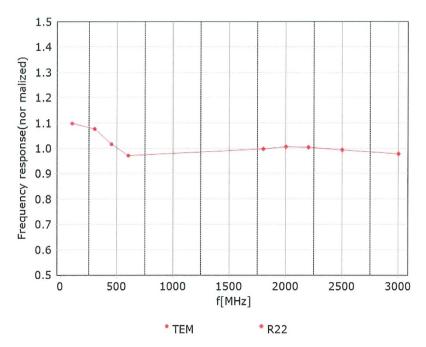
f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (<i>k</i> =2)
750	41.9	0.89	10.65	10.65	10.65	0.17	1.24	±12.7%
900	41.5	0.97	10.19	10.19	10.19	0.20	1.15	±12.7%
1750	40.1	1.37	8.60	8.60	8.60	0.26	0.97	±12.7%
1900	40.0	1.40	8.30	8.30	8.30	0.25	1.01	±12.7%
2300	39.5	1.67	8.16	8.16	8.16	0.60	0.68	±12.7%
2450	39.2	1.80	7.89	7.89	7.89	0.45	0.86	±12.7%
2600	39.0	1.96	7.65	7.65	7.65	0.53	0.77	±12.7%
3300	38.2	2.71	7.39	7.39	7.39	0.49	0.86	±13.9%
3500	37.9	2.91	7.24	7.24	7.24	0.41	1.03	±13.9%
3700	37.7	3.12	7.10	7.10	7.10	0.43	1.03	±13.9%
3900	37.5	3.32	6.98	6.98	6.98	0.40	1.25	±13.9%
5250	35.9	4.71	5.62	5.62	5.62	0.50	1.25	±13.9%
5500	35.6	4.96	5.10	5.10	5.10	0.40	1.50	±13.9%
5750	35.4	5.22	5.08	5.08	5.08	0.40	1.52	±13.9%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No:J23Z60359

Page 4 of 9

F At frequency up to 6 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


 $^{^{}G}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

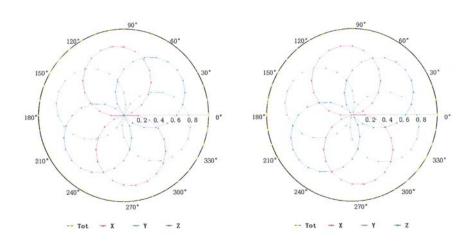
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

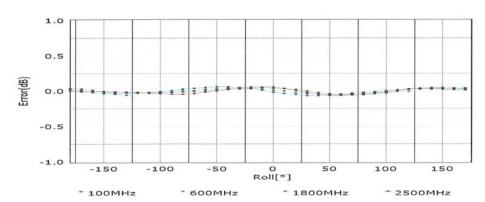
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No:J23Z60359

Page 5 of 9




Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

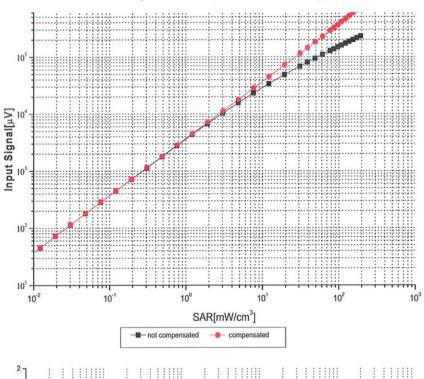
Receiving Pattern (Φ), θ=0°

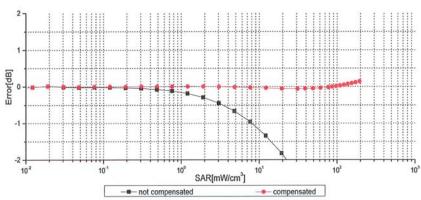
f=600 MHz, TEM

f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2)

Certificate No:J23Z60359


Page 6 of 9



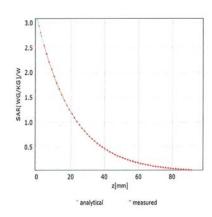
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

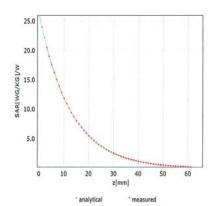
Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ±0.9% (k=2)

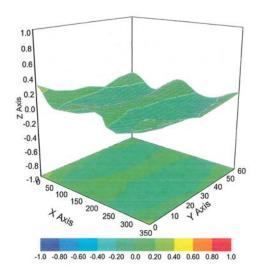
Certificate No:J23Z60359

Page 7 of 9




Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Conversion Factor Assessment


f=750 MHz,WGLS R9(H_convF)

f=1750 MHz,WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)

Certificate No:J23Z60359

Page 8 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7382

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	65.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No:J23Z60359

Page 9 of 9

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Report No.: 2401V58287E-SA

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client BACL USA

Sunnyvale, USA

Certificate No.

D750V3-1229_Mar23

CALIBRATION CERTIFICATE

Object

D750V3 - SN:1229

Calibration procedure(s)

QA CAL-05.v12

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date:

Calibrated by:

Certificate No: D750V3-1229_Mar23

March 24, 2023

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
Power sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23
Reference 20 dB Attenuator	SN: BH9394 (20k)	04-Apr-22 (No. 217-03527)	Apr-23
Type-N mismatch combination	SN: 310982 / 06327	04-Apr-22 (No. 217-03528)	Apr-23
Reference Probe EX3DV4	SN: 7349	10-Jan-23 (No. EX3-7349_Jan23)	Jan-24
DAE4	SN: 601	19-Dec-22 (No. DAE4-601_Dec22)	Dec-23
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: G839512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24

Laboratory Technician

Approved by: Sven Kühn Technical Manager

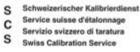
Michael Weber

Signature

56

Issued: March 24, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.


Page 1 of 6

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accreditation No.: SCS 0108

Report No.: 2401V58287E-SA

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D750V3-1229_Mar23

Page 2 of 6

Measurement Conditions

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Report No.: 2401V58287E-SA

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.0 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.13 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.41 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.46 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.3 Ω - 1.0 jΩ
Return Loss	- 29.5 dB

Report No.: 2401V58287E-SA

General Antenna Parameters and Design

Electrical Delay (one direction)	1.033 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

_		THE RESERVE AND ADDRESS OF THE PARTY OF THE	
١,	Manufactured by		SPEAG

DASY5 Validation Report for Head TSL

Date: 24.03.2023

Report No.: 2401V58287E-SA

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1229

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.9 \text{ S/m}$; $\varepsilon_r = 41$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

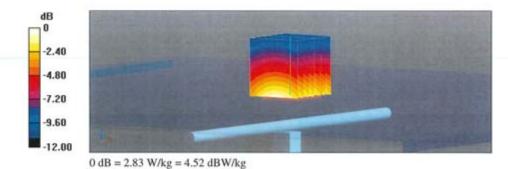
DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.11, 10.11, 10.11) @ 750 MHz; Calibrated: 10.01.2023
- · Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

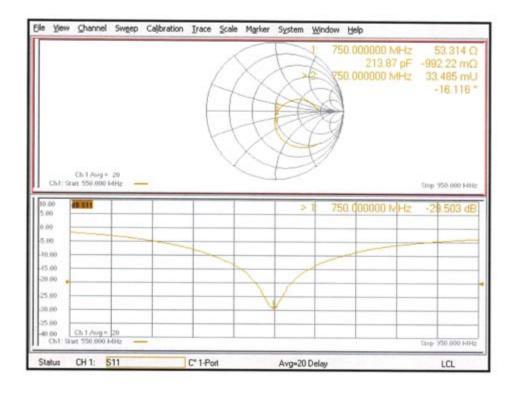
Reference Value = 59.57 V/m; Power Drift = -0.09 dB


Peak SAR (extrapolated) = 3.20 W/kg

SAR(1 g) = 2.13 W/kg; SAR(10 g) = 1.38 W/kg

Smallest distance from peaks to all points 3 dB below = 17 mm

Ratio of SAR at M2 to SAR at M1 = 66.2%


Maximum value of SAR (measured) = 2.83 W/kg

Certificate No: D750V3-1229_Mar23

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: D750V3-1229_Mar23

Page 6 of 6

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Report No.: 2401V58287E-SA

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client BACL

Sunnyvale USA

Certificate No. D1750V2-1199_Mar23

CALIBRATION CERTIFICATE D1750V2 - SN:1199 Calibration procedure(s) QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: March 27, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 04-Apr-22 (No. 217-03525/03524) Apr-23 Power sensor NRP-Z91 SN: 103244 04-Apr-22 (No. 217-03524) Apr-23 Power sensor NRP-Z91 SN: 103245 04-Apr-22 (No. 217-03525) Apr-23 Reference 20 dB Attenuator SN: BH9394 (20k) 04-Apr-22 (No. 217-03527) Apr-23 Type-N mismatch combination Apr-23 Reference Probe EX3DV4 SN: 7349 10-Jan-23 (No. EX3-7349 Jan23) Jan-24 DAE4 SN: 601 19-Dec-22 (No. DAE4-601_Dec22) Dec-23 Secondary Standards ID# Check Date (in house) Scheduled Check Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Oct-22) In house check: Oct-24 Power sensor HP 8481A 07-Oct-15 (in house check Oct-22) SN: US37292783 In house check: Oct-24 Power sensor HP 8481A 07-Oct-15 (in house check Oct-22) SN: MY41093315 In house check: Oct-24 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct-24 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: Oct-24 Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Sven Kühn Technical Manager Issued: March 27, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1750V2-1199_Mar23

Page 1 of 6

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Report No.: 2401V58287E-SA

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1750V2-1199_Mar23

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Report No.: 2401V58287E-SA

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.8 ± 6 %	1.33 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	8.89 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.69 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	18.9 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	46.9 Ω + 3.8 jΩ
Return Loss	- 26.0 dB

Report No.: 2401V58287E-SA

General Antenna Parameters and Design

Electrical Delay (one direction)	1.211 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 27.03.2023

Report No.: 2401V58287E-SA

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1199

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.33$ S/m; $\epsilon_r = 38.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

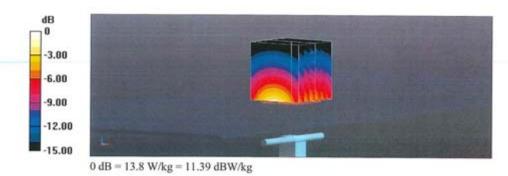
DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.67, 8.67, 8.67) @ 1750 MHz; Calibrated: 10.01.2023
- · Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

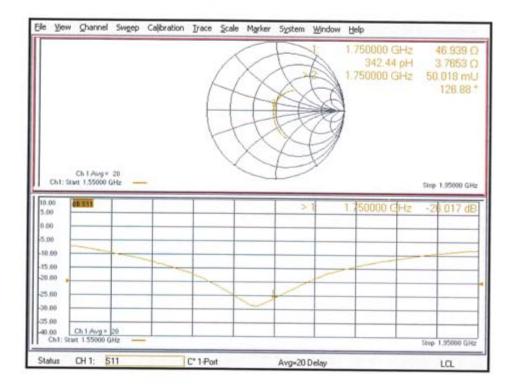
Reference Value = 104.8 V/m; Power Drift = 0.05 dB


Peak SAR (extrapolated) = 16.3 W/kg

SAR(1 g) = 8.89 W/kg; SAR(10 g) = 4.69 W/kg

Smallest distance from peaks to all points 3 dB below = 10 mm

Ratio of SAR at M2 to SAR at M1 = 54.5%


Maximum value of SAR (measured) = 13.8 W/kg

Certificate No: D1750V2-1199_Mar23

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: D1750V2-1199_Mar23

Page 6 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Client

BACL

Certificate No: 2

Z23-60084

CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 5d231

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

February 17, 2023

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106276	10-May-22 (CTTL, No.J22X03103)	May-23
Power sensor NRP6A	101369	10-May-22 (CTTL, No.J22X03103)	May-23
Reference Probe EX3DV4	SN 7464	19-Jan-23 (CTTL-SPEAG,No.Z22-60565)	Jan-24
DAE4	SN 1556	11-Jan-23(CTTL-SPEAG,No.Z23-60034)	Jan-24
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49070393	17-May-23 (CTTL, No.J22X03157)	May-24
NetworkAnalyzer E5071C	MY46110673	10-Jan-23 (CTTL, No. J23X00104)	Jan-24

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	是直
Reviewed by:	Lin Hao	SAR Test Engineer	林粉
Approved by:	Qi Dianyuan	SAR Project Leader	2002

Issued: February 24, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z23-60084

Page 1 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power, No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z23-60084

Page 2 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 http://www.caict.ac.cn E-mail: cttl@chinattl.com

Measurement Conditions DASY system configuration, as

DASY Version	DASY52	52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ±1 MHz	

Head TSL parameters

and calculations were applied

AND THE PARTY OF T	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 ℃	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ±0.2) °C	39.0 ±6 %	1.39 mho/m ±6 %
Head TSL temperature change during test	<1.0 °C	_	

SAR result with Head TSL

Condition		
250 mW input power	10.0 W/kg	
normalized to 1W	39.9 W/kg ±18.8 % (k=2	
Condition		
250 mW input power	5.21 W/kg	
normalized to 1W	20.8 W/kg ±18.7 % (k=2)	
	250 mW input power normalized to 1W Condition 250 mW input power	

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.3Ω+ 4.99jΩ		
Return Loss	- 26.1dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.105 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: Z23-60084

Page 4 of 6

Date: 2023-02-17

Report No.: 2401V58287E-SA

Add: No.52 HunYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 B-mail: ettl@chinattl.com http://www.caict.ac.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d231

Communication System: UID 0, CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.393$ S/m; $\epsilon_r = 38.96$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

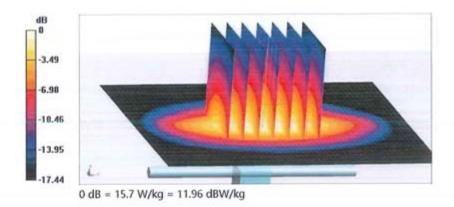
DASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(8.13, 8.13, 8.13) @ 1900 MHz; Calibrated: 2023-01-19
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2023-01-11
- Phantom: MFP V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 100.8 V/m; Power Drift = -0.04 dB


Peak SAR (extrapolated) = 18.9 W/kg

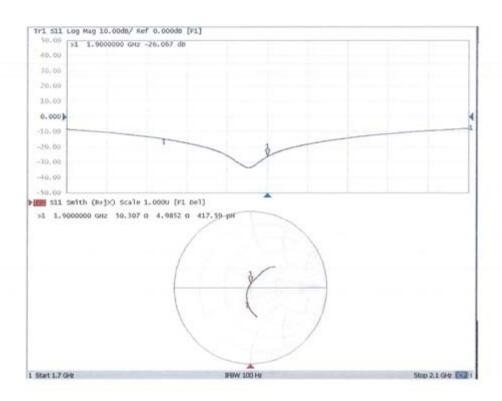
SAR(1 g) = 10 W/kg; SAR(10 g) = 5.21 W/kg

Smallest distance from peaks to all points 3 dB below = 10 mm

Ratio of SAR at M2 to SAR at M1 = 53.6%

Maximum value of SAR (measured) = 15.7 W/kg

Certificate No: Z23-60084


Page 5 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattLcom http://www.caict.ac.cn

Impedance Measurement Plot for Head TSL

Certificate No: Z23-60084

Page 6 of 6

APPENDIX D RETURN LOSS&IMPEDANCE MEASUREMENT

Report No.: 2401V58287E-SA

Equipment Details:

Description: Dipole
Manufacturer: Speag
Model Number: D750V3
Serial Number: 1229

Calibration Date: 2024/03/26 Calibrated By: Bob Lu

Signature:

Bob Lu

All Calibration have been conducted in the closed laboratory facility: Lab Temperature 18°C-25°C and humidity < 70%

The calibration methods and procedures used were as detailed in:

KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"

- 1. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 2. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

Calibrated Equipment:

Equipment	pment Model		Calibration Date	Calibration Due Date
Simulated Tissue Liquid Head	HBBL600-10000V6	2200808-2	Each Time	
SAM Twin Phantom	SAM-Twin V8.0	1962	NCR	NCR
Network Analyzer	E5071C	SER MY46519680	2023/06/08	2024/06/07
Network Analyzer Calibration Kit	50 Ω	51026	NCR	NCR

Test Data:

Frequency (MHz)	Simulated Liquid	Parameter	Measured Value	Target Value	Deviation	Reference Range	Results
		Return Loss	27.796 dB	29.503 dB	-5.786%	±20%; ≥20dB	Pass
750	Head	Real Impedance	49.557 Ω	53.314 Ω	3.757 Ω	≤ 5 Ω	Pass
		Imaginary Impedance	-5.432 Ω	-0.992 Ω	4.44 Ω	≤5 Ω	Pass

Note: Return Loss Deviation = (Measured-Target)/Target×100%

Dipole, 750MHz, 1229

Report No.: 2401V58287E-SA

Equipment Details:

Description: Dipole
Manufacturer: Speag
Model Number: D1750V2
Serial Number: 1199

Calibration Date: 2024/03/26 Calibrated By: Bob Lu

Signature: Bob Lu

All Calibration have been conducted in the closed laboratory facility: Lab Temperature 18℃-25℃ and humidity < 70%

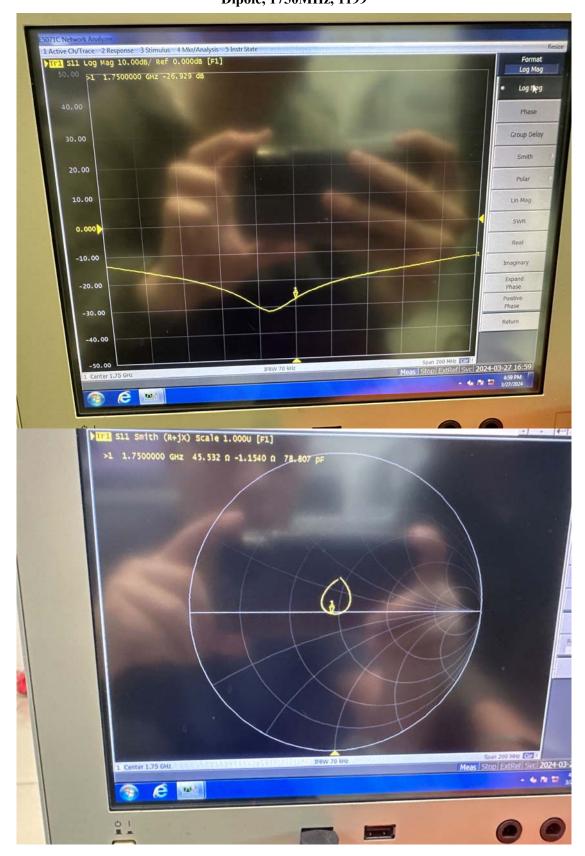
Report No.: 2401V58287E-SA

The calibration methods and procedures used were as detailed in:

KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"

- 1. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 2. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

Calibrated Equipment:


zunstuteu Edulpment.							
Equipment	Model	S/N	Calibration Date	Calibration Due Date			
Simulated Tissue Liquid Head	HBBL600-10000V6	2200808-2	Each Time				
SAM Twin Phantom	SAM-Twin V8.0	1962	NCR	NCR			
Network Analyzer	E5071C	SER MY46519680	2023/06/08	2024/06/07			
Network Analyzer Calibration Kit	50 Ω	51026	NCR	NCR			

Test Data:

Frequency (MHz)	Simulated Liquid	Parameter	Measured Value	Target Value	Deviation	Reference Range	Results
		Return Loss	26.929 dB	26.017 dB	3.505%	±20%; ≥20dB	Pass
1750	1750 Head	Real Impedance	45.532 Ω	46.939 Ω	1.407 Ω	≤ 5 Ω	Pass
		Imaginary Impedance -1.154Ω 3.765 Ω	3.765 Ω	4.919 Ω	≤5 Ω	Pass	

Note: Return Loss Deviation = (Measured-Target)/Target×100%

Dipole, 1750MHz, 1199

Equipment Details:

Description:

Manufacturer:
Speag

Model Number:
D1900V2
Serial Number:
5d231
Calibration Date:
Calibrated By:
Bob Lu

Canorated by.

Signature: Bob Lu

All Calibration have been conducted in the closed laboratory facility: Lab Temperature 18°C-25°C and humidity < 70%

Report No.: 2401V58287E-SA

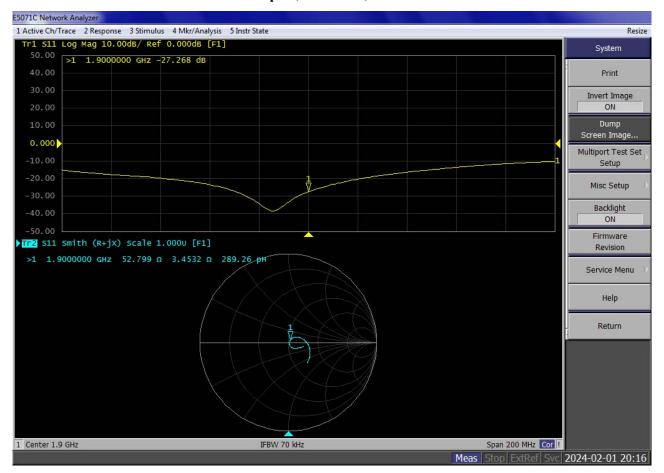
The calibration methods and procedures used were as detailed in:

KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"

- 1. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 2. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

Calibrated Equipment:

zunstuteu Equipment.						
Equipment	Equipment Model		Calibration Date	Calibration Due Date		
Simulated Tissue Liquid Head	HBBL600-10000V6	2200808-2	Each Time			
SAM Twin Phantom	SAM-Twin V8.0	1962	NCR	NCR		
Network Analyzer	E5071C	SER MY46519680	2023/06/08	2024/06/07		
Network Analyzer Calibration Kit	50 Ω	51026	NCR	NCR		


Test Data:

Frequency (MHz)	Simulated Liquid	Parameter	Measured Value	Target Value	Deviation	Reference Range	Results
		Return Loss	27.268 dB	26.067 dB	4.607 %	±20%; ≥20dB	Pass
1900	1900 Head	Real Impedance	52.799 Ω	50.307 Ω	2.492 Ω	≤ 5 Ω	Pass
		Imaginary Impedance	3.453 Ω	4.985 Ω	-1.532 Ω	≤ 5 Ω	Pass

Note: Return Loss Deviation = (Measured-Target)/Target×100%

Dipole, 1900MHz, 5d231

Report No.: 2401V58287E-SA

