

Intentional Radiator Test Report

For the

Globalstar, Inc.

RM200M

Tested under

The FCC Rules contained in Title 47 of the CFR, Part 25 and ISED RSS-170 Issue 4 for

Satellite Communications

June 17, 2024

Prepared for:

Globalstar, Inc.

1351 Holiday Square Blvd.

Covington, LA 70433

Prepared By:

H.B. Compliance Solutions

5005 S. Ash Avenue, Suite # A-10

Tempe, Arizona 85282

Reviewed By:

Hoosamuddin Bandukwala

Cert # ATL-0062-E

Engineering Statement: The measurements shown in this report were made in accordance with the procedure indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurement made, the equipment tested is capable of operation in accordance with the requirements of Part 25 of the FCC Rules under normal use and maintenance. All results contained herein relate only to the sample tested.

Report Status Sheet

Revision #	Report Date	Reason for Revision
Ø	June 17, 2024	Initial Issue
1	August 2, 2024	Occupied BW Plot updated.

Table of Contents

EXECU	TIVE SUMMARY	4
1.	Testing Summary	4
EQUIPI	MENT CONFIGURATION	5
1.	Overview	5
2.	Test Facility	6
3.	Description of Test Sample	7
4.	Equipment Configuration	7
5.	Support Equipment	7
6.	Ports and Cabling Information	8
7.	Method of Monitoring EUT Operation	8
8.	Mode of Operation	8
9.	Modifications	8
10.	Disposition of EUT	8
Criteria	a for Intentional Radiators	9
1.	RF Power Output	9
2.	Occupied Bandwidth	10
3.	Unwanted Emissions at Antenna Terminals	12
4.	Radiated Spurious Emissions	20
5.	Protection of Aeronautical Radio Navigation Satellite Service	23
6.	Frequency Stability vs Temperature	29
7.	Frequency Stability vs Voltage	31
Test Ec	juipment	33
8.	Measurement Uncertainty	34

EXECUTIVE SUMMARY

1. Testing Summary

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 25. All tests were conducted using measurement procedure from ANSI C63.26-2015, RSS-GEN Issue 5 and RSS-170 Issue 4 as appropriate.

Test Name	Test Method / FCC	ISED Standard	Result	Comments
	Standard			
RF Output Power	§2.1046; §25.204	RSS-170 (5.5)	Pass	
Occupied Bandwidth	§2.1049	RSS-Gen (6.7)	Pass	
Unwanted Emissions	§2.1051; §25.202(f)	RSS-170 (5.8) &	Pass	
at Antenna		RSS-Gen (7.4)		
Terminals				
Radiated Spurious	§2.1053; §25.202(f)	RSS-170 (5.8)	Pass	
Emissions				
Protection of	§25.216(c)(f)(g)(i)(j)	RSS-170 (5.9.1 &	Pass	
Aeronautical Radio		5.10)		
Navigation Satellite				
Service				
Frequency Stability	§2.1055(a)(1);	RSS-170 (5.3)	Pass	
over Temperature	§25.202(d)			
Variations				
Frequency Stability	§2.1055(d);	RSS-170 (5.3)	Pass	
over Voltage	§25.202(d)			
Variations				

EQUIPMENT CONFIGURATION

1. Overview

H.B Compliance Solutions was contracted by Globalstar to perform testing on the RM200M under the purchase number 106746.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the Globalstar, RM200M.

The tests were based on FCC Part 25 Rules. The tests described in this document were formal tests as described with the objective of the testing was to evaluate compliance of the Equipment Under Test (EUT) to the requirements of the aforementioned specifications. Globalstar should retain a copy of this document and it should be kept on file for at least five years after the manufacturing of the EUT has been permanently discontinued. The results obtained relate only to the item(s) tested.

Product Name:	RM200M	
Model(s) Tested:	RM200M	
FCC ID:	L2V-RX200M	
IC ID:	3989A-RX200M	
Supply Voltage Input:	Primary Power: 5.0 VDC	
Frequency Range:	1611.25MHz to 1618.75MHz	
No. of Channels:	Four Channel	
Necessary Bandwidth	N/A	
Type(s) of Modulation:	BPSK	
Range of Operation Power:	0.6095W (EIRP)	
Voltage into final Transistor	3.3V	
Current into final Transistor	500mA	
Emission Designator:	2M00G1D	
Channel Spacing(s)	2.5MHz	
Test Item:	Pre-Production	
Type of Equipment:	Satellite/Earth Stations	
Antenna:	3.77dBi Ceramic Patch Antenna	
Environmental Test Conditions:	Temperature: 15-35°C	
	Humidity: 30-60%	
	Barometric Pressure: 860-1060 mbar	
Modification to the EUT:	None	
Evaluated By:	Staff at H.B. Compliance Solutions	
Test Date(s):	06/03/2024 to 06/12/2024	
Firmware Version Number (FVIN):	0.2.6	

HBCS Report # EMC_24004

All testing was performed at H.B. Compliance Solutions. This facility is located at 5005 S. Ash Avenue, Suite # A-10, Tempe AZ-85282. All equipment used in making physical determination is accurate and bears recent traceability to the National Institute of Standards and Technology.

Radiated Emissions measurements from 30MHz to 1GHz were performed in a GTEM chamber (equivalent to an Open Area Test Site). Radiated Emissions Above 1GHz were performed on an Open Area Test Site (OATS). In accordance with §2.948(a)(3), a complete site description is contained at H.B. Compliance Solutions.

Test facility H.B. Compliance Solutions is an ANAB accredited test site. The ANAB certificate number is L2458. The scope of accreditation can be found on ANAB website <u>www.anab.org</u>

FCC Registered Number: 738876

ISED Test Site Registration number: 9481A

3. Description of Test Sample

The Globalstar RM200M is a Satellite IoT transceiver module designed to send and receive small packets of user defined data to a network of low earth orbiting (LEO) satellites using the Globalstar commercial IoT network. The data is either received from or forwarded to a user defined network interface that may be in the form of an FTP host, HTTPS host or HTTP host where the user has supplied or will interpret the data for further processing.

The RM200M is designed to be integrated into an integrator's custom carrier board design.

The RM200M consists of the Nordic NRF52840, QSPI Memory, GPS, accelerometer, GCT DSP GDM7243i, GMT PMIC, Quad Flash, OCTA RAM, power controls, and RF Components. There are no onboard antennas. The Nordic and GCT DSP GDM7243i are shielded for modular certification. The RM200M has gold "fingers" around the perimeter of the PCB so that it can be SMT-installed onto a carrier board or another custom PCB.

4. Equipment Configuration

Ref. ID	Name / Description	Model Number	Serial Number
# 1	Globalstar RM200M (Sample #1 For	RM200M	-
	Conducted Testing)		
# 2	Globalstar RM200M (Sample #2 For	RM200M	-
	Radiated Testing)		

Table 1. Equipment Configuration

5. Support Equipment

All support equipment supplied is listed in the following Support Equipment List.

Ref ID	Name / Description	Manufacturer	Model #	Serial #
# 3	Laptop Computer	Acer	Swift SF314	-
# 4	USB to TTL Dongle	DSD Tech	SH-U07A	-

Table 2. Support Equipment

6. Ports and Cabling Information

Ref ID	Port name on	Cable	Qty.	Length (m)	Shielded?	Termination Box
	the EUT	Description			(Y/N)	ID & Port ID
# 5	Power	2 wire	1	0.15	N	DC Power Supply
# 6	Modem UART	3 wire	1	0.2	N	# 4

Table 3. Ports and Cabling Information

7. Method of Monitoring EUT Operation

A test receiver will be used to monitor the data transmission from the EUT.

8. Mode of Operation

The EUT will be configured to transmit at maximum power level. Test mode was provided using a UART interface through a TTL to serial port connection to a laptop computer to set the frequency, power level and change the device from CW to Modulation mode. These settings were created for testing purposes only.

9. Modifications

9.1 Modifications to EUT

No modifications were made to the EUT

9.2 Modifications to Test Standard

No Modifications were made to the test standard.

10. Disposition of EUT

The test sample including all support equipment submitted to H.B Compliance Solutions for testing will be returned to Globalstar upon completion of testing & certification.

Criteria for Intentional Radiators

1. RF Power Output

Test Requirement(s):	§2.1046, §25.204 and RSS-170 §5.5	Test Engineer(s):	Sean E.
Test Results:	Pass	Test Date(s):	June 05, 2024

Test Procedures:As required by 47 CFR §2.1046 and RSS-170 §5.5, RF Power output
measurements were made at the RF output terminals of the EUT.

Customer provided a test mode internal to the EUT to control the RF modulation, and frequency channel. The EUT was connected through an attenuator to a Power Sensor capable of making power measurements. Measurements were made at the low and high channels of the entire frequency band.

Test Setup:

Figure 1. Output RF power Test Setup

Test Results:

Frequency (MHz)	Channel	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm)	FCC Specification Limit (dBW)
1611.25	Lowest	24.08	3.77	27.85	40
1618.75	Highest	23.46	3.77	27.23	40

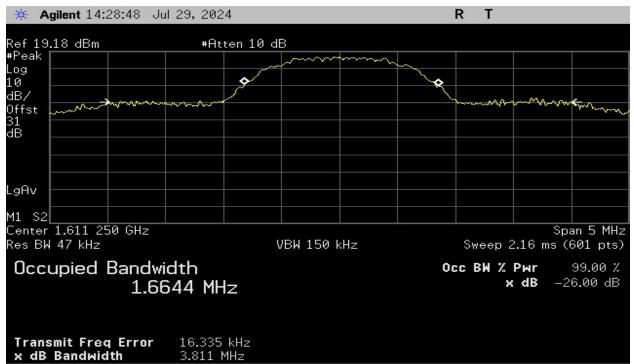
Table 4. RF Power Output, Test Results

2. Occupied Bandwidth

Test	§2.1049, RSS-Gen §6.7	Test Engineer(s):	Sean E.
Requirement(s):			
Test Results:	Pass	Test Date(s):	June 03, 2024

Test Procedure:As required by 47 CFR §2.1049 and RSS-Gen §6.7, occupied bandwidth
measurements were made at the output terminals of the EUT.

Customer provided a test mode internal to the EUT to control the RF modulation, and frequency channel. The EUT was connected through an attenuator to a Spectrum Analyzer. The measured highest peak power was set relative to zero dB reference. The RBW of the Spectrum Analyzer was set to at least 1% of the channel bandwidth and video bandwidth was set to 3 times the resolution bandwidth. Measurements were carried out at the low and high channels of the TX band.


The following pages show measurements of Occupied Bandwidth plots:

Test Setup:

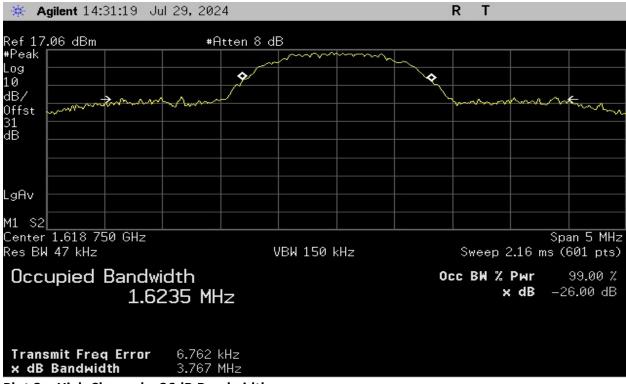


Figure 2: Occupied Bandwidth Test Setup

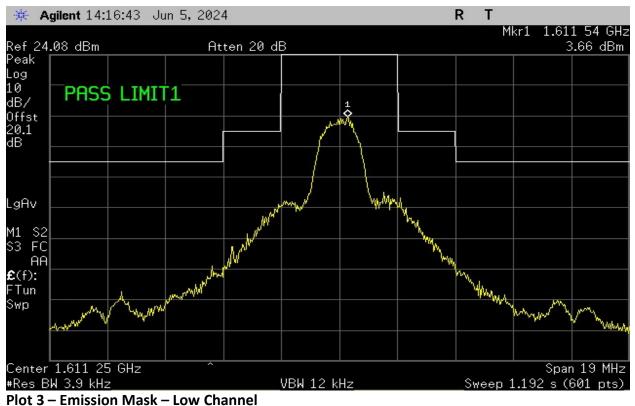
3. Unwanted Emissions at Antenna Terminals

Test	§2.1051, §25.202(f),	Test Engineer(s):	Sean E.
Requirement(s):	RSS-170 §5.8, and RSS-		
	Gen §7.4		
Test Results:	Pass	Test Date(s):	June 04 – June 12,
			2024

Test Procedures:As required by 47 CFR §25.202(f), RSS-170 §5.8, and RSS-Gen §7.4,
unwanted emissions at antenna terminal measurements were
made at the RF output antenna terminal of the EUT.

Customer provided a test mode internal to the EUT to control the RF modulation, and frequency channel. The EUT was connected through an attenuator to a Spectrum Analyzer to verify the DUT met the requirements as specified in §25.202(f). Measurements were made at the lowest and highest frequency of the transmit band.

Frequency removed from channel center by	Minimum signal reduction
0 to 50%	In Channel
50 to 100%	-25dBc
100 to 250%	-35dBc
More than 250%	-13dBm


Table 5 – Test Limit per section 25.202(f)

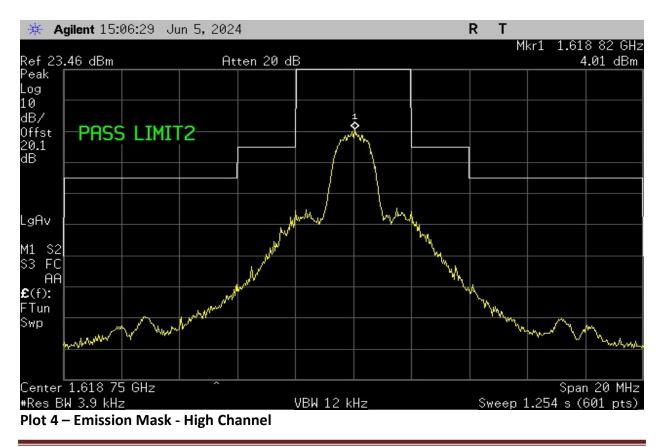
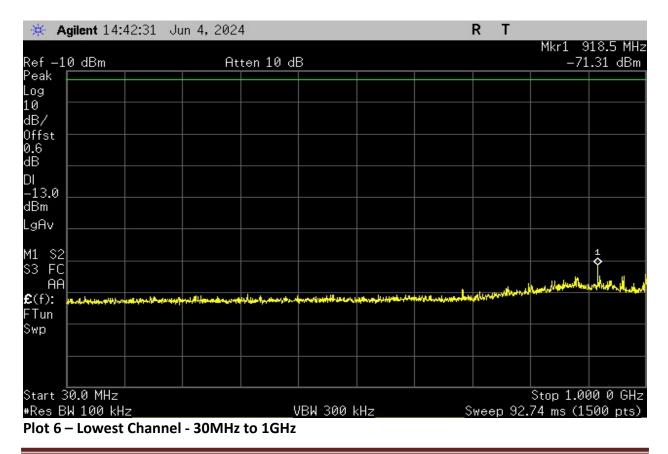
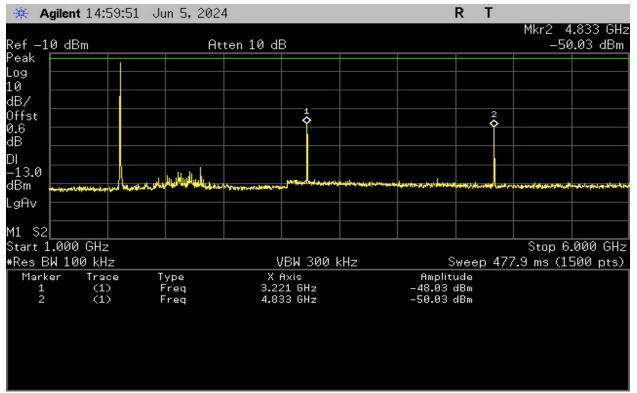

Test Setup:

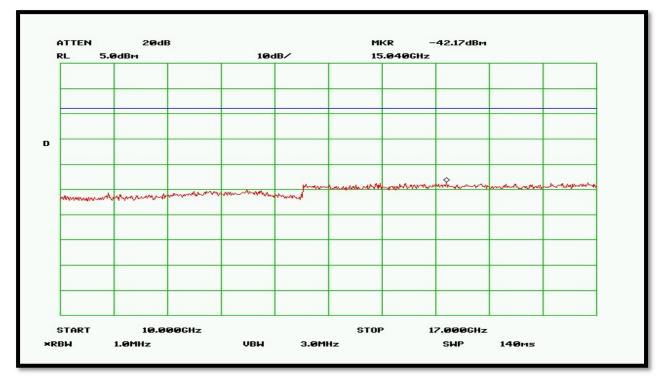
Figure 3: Spurious Emission at Antenna Terminal Test setup

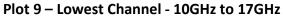


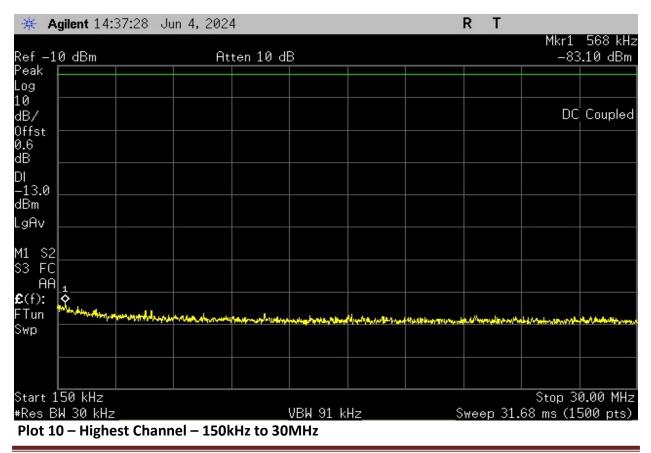


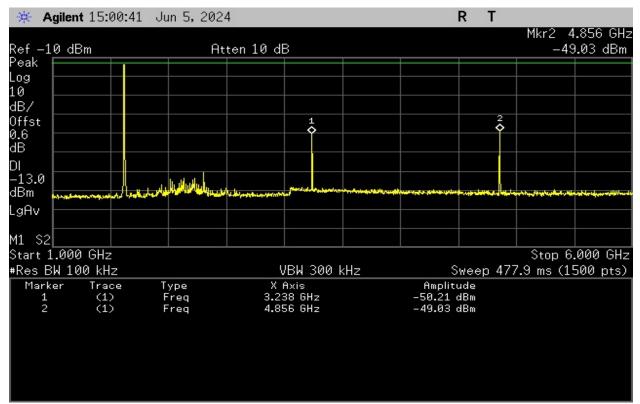
Atten 10 dE	3					608 kH .87 dBn Couple
					DC	Couple
					DC	Couple
					DC	Couple
					8	
the state of the section of the sect	the and the second	and the state of the state	the product large of	water the back of the	water martine lat	a la parte station for
					Stop 30	0.00 MH
	VRW 91_k	Hz	S	ween 31		
				VBW 91 kHzS	VBW 91 kHzSweep 31.	Stop 30

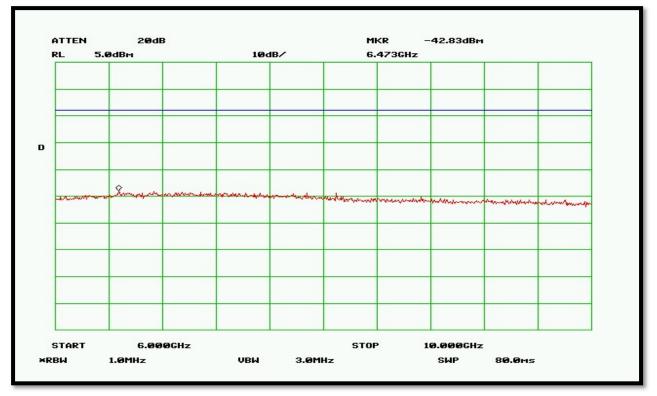
Plot 5 – Lowest Channel - 150kHz to 30MHz



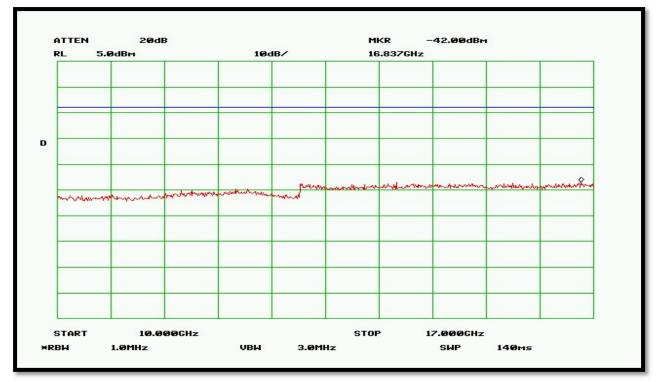




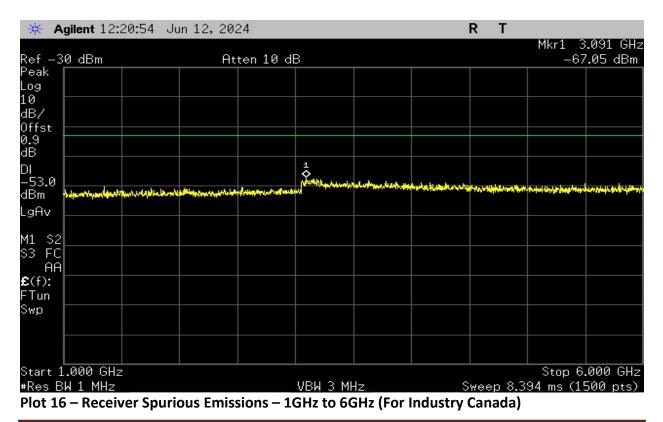



				Mkr1 933.3 M
∍f —10 dBm	Atten	10 dB		-71.32 dB
ak 🔤 🔤				
g				
37				
fst				
fst 6 3				
)				
.3.0				
5.0				
Av				
. s2				1
FC				
AA				المرالة بقاليه المحمد والمرا
	ate and a second second second second	ويسترق والانتجاب والمروا ويتبرج والمروا	to any the thick of the law of the state of the state	enderstanderstandlichen de Sanstand
un				
p				
				Curra 1 000 0 Cl
art 30.0 MHz es BW 100 kHz		VBW 300 kHz		Stop 1.000 0 Gl 5 92.74 ms (1500 pt;

Plot 11 - Highest Channel – 30MHz to 1GHz



Plot 13 - Highest Channel - 6GHz to 10GHz



	<u>i</u> 360				Mkr1 616.3 M
∍f -30 dBm	Atten	10 dB	98.		-80.31 dB
eak 👘 👘					
g 🛛					
3Z					
fst 🚽 🚽					
9					
57.0					
3m					
Av					
million marging al with a fill of the	والمصيبة والمعتبة والمراجع الموجوعية المحصر والمحار والمحار	مر و المراجع الم المراجع الم المراجع ا	a prove the state of the second	weder bertaus spaces distantly	والمرجب والمراجع والمحاجم والمحاج والمحاجر والمحاجر والمحاجر والمحاجر والمحاجر والمحاجر والمحاجر والمحاجر والمح
\$2					
FC					
AA					
f):					
un					
p					
art 30.0 MHz					Stop 1.000 0 G

Plot 15 – Receiver Spurious Emissions – 30MHz to 1GHz (For Industry Canada)

4. Radiated Spurious Emissions

Test	§2.1053, §25.202(f)	Test Engineer(s):	Sean E.
Requirement(s):	and RSS-170 §5.8		
Test Results:	Pass	Test Date(s):	June 06, 2024

Test Procedures: As required by 47 CFR 2.1053 and RSS-170 §5.8, field strength of radiated spurious measurements were made in accordance with the procedures of the ANSI C63.26-2015.

The EUT was placed on a non-reflective table inside a 3-meter open area test site. The EUT was set on continuous transmit.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3 orthogonal axes. The frequency range up to the 10th harmonic was investigated.

To get a maximum emission level from the EUT, the EUT was rotated throughout the X-axis, Y-axis and Z-axis. Worst case is X-axis

Test Setup:

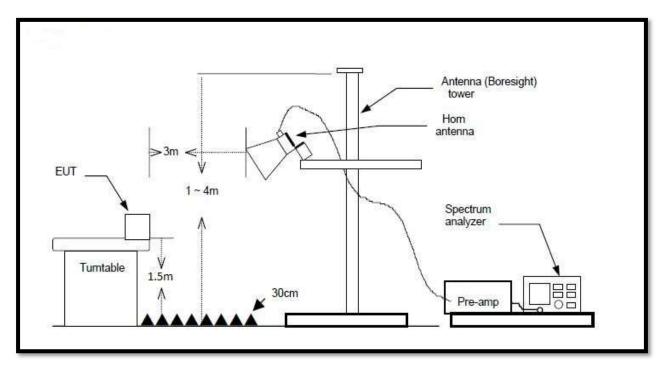


Figure 4 – Radiated Spurious Emissions

Test Results:

Frequency (MHz)	Measured Amplitude (dBuV/m)	Equivalent Radiated Power (dBm)	Antenna Polarity (V/H)	Spurious Limit (dBm)	Margin	Comment
1611.25	121.27	26.07	Horizontal	-	-	Fundamental
3222.5	47.90	-47.30	Horizontal	-13	-34.3	
4833.75	54.49	-40.71	Horizontal	-13	-27.71	

Table 6 - Spurious Radiated Emission Data – Low Band

Frequency (MHz)	Measured Amplitude (dBuV/m)	Equivalent Radiated Power (dBm)	Antenna Polarity (V/H)	Spurious Limit (dBm)	Margin (dB)	Comment
1616.25	121.75	26.55	Horizontal	-	-	Fundamental
3232.5	48.36	-46.84	Horizontal	-13	-33.84	
4848.75	54.36	-40.84	Horizontal	-13	-27.84	

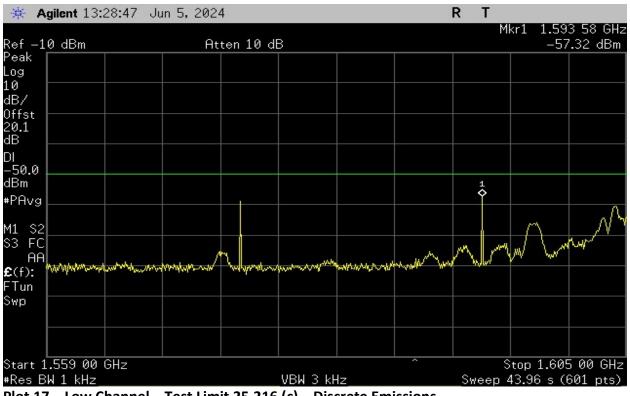
Table 7 - Spurious Radiated Emission Data – Mid Band

Frequency (MHz)	Measured Amplitude (dBuV/m)	Equivalent Radiated Power (dBm)	Antenna Polarity (V/H)	Spurious Limit (dBm)	Margin (dB)	Comment
1618.75	120.86	25.66	Horizontal	-	-	Fundamental
3237.5	47.92	-47.29	Horizontal	-13	-34.29	
4856.25	53.65	-41.55	Horizontal	-13	-28.55	

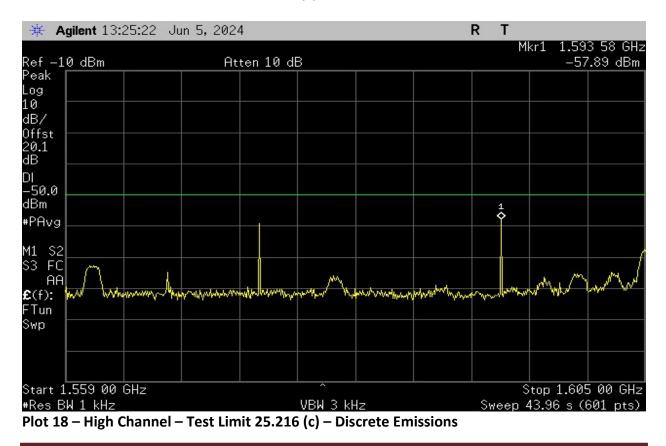
Table 8 – Spurious Radiated Emission Data – High Band

NOTE: There were no detectable emissions above the 3rd harmonic. Measurement was made at the 10th harmonic.

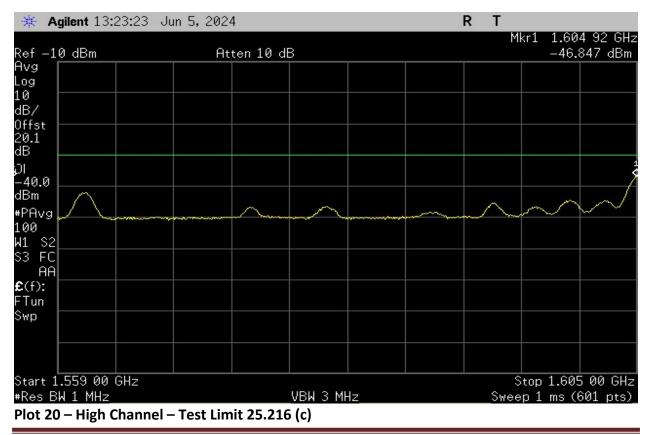
5. Protection of Aeronautical Radio Navigation Satellite Service

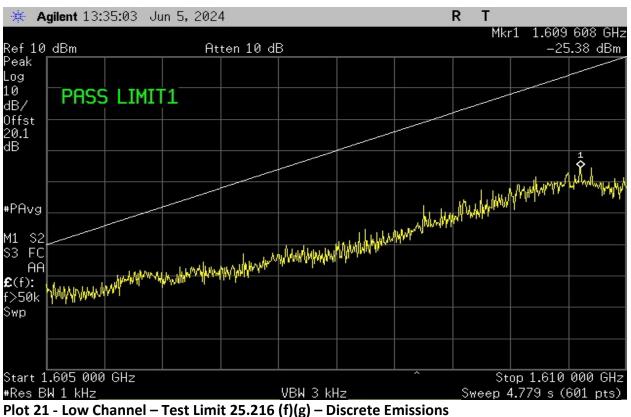

Test	§25.216 and RSS-170	Test Engineer(s):	Sean E.
Requirement(s):	§5.9.1 & §5.10		
Test Results:	Pass	Test Date(s):	June 04 – June 05,
			2024

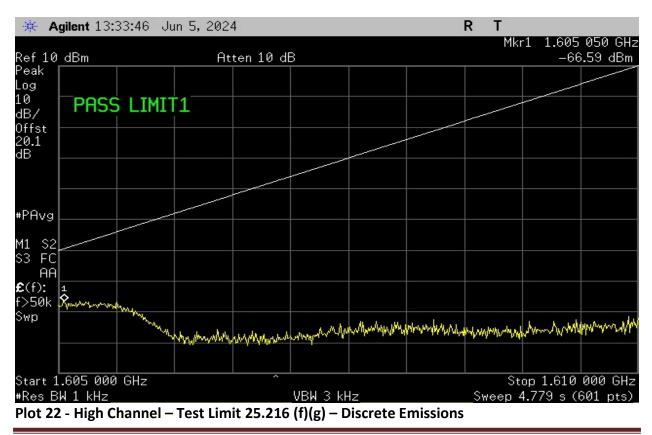
Test Procedures:As required by 47 CFR §25.216(h) and RSS-170 §5.9.1 & §5.10,
measurement were made at the RF output antenna terminal of the EUT.


Customer provided a test mode internal to the EUT to control the RF modulation, and frequency channel. The EUT was connected through an attenuator to a Spectrum analyzer to verify the EUT met the requirements as specified in in §25.202(f). Measurements were made at the lowest and highest frequency of the transmit band

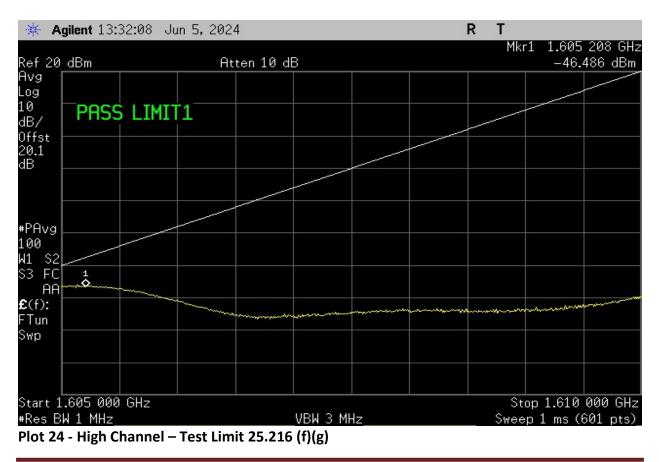
§ 25.216	RSS-170	Description	Result	Comments
Section	Section			
§25.216 (c)	§5.9.1	Limits for MES Protect	Pass	See Plot #
		Radionavigation-Satellite Service		17 - 20
§25.216 (f)	§5.9.1	Limits for MES Protect	Pass	See Plot #
(g)		Radionavigation-Satellite Service		21 - 24
§25.216 (i)	§5.10	Limits for MES e.i.r.p density of	Pass	See Plot #
		carrier-off		25







🔆 Agilent 13:22:36	Jun 5, 2024		R	Т	
Ref -10 dBm	Atten 10 dB				604 00 GHz 1.274 dBm
Avg Log					
10					
dB/ Offst					
20.1 dB					1
ab Di					Å
-40.0 dBm				$\rightarrow \rightarrow$	and
#PAvg			\sim		
100 W1 S2					
S3 FC					
AA £ (f):					
FTun			a .		
Swp					
Start 1.559 00 GHz				Stop 1.6	05 00 GHz
#Res BW 1 MHz	VBW	3 MHz		Sweep 1 ms	
Plot 19 – Low Channe	l – Test Limit 25.216 (c)				



Plot 23 - Low Channel – Test Limit 25.216 (f)(g)

🔆 Agilent 13:58:1	16 Jun 4, 2024		RT	
Ref —10 dBm	Atten 10 d	IB	Mkr1	. 1.594 65 GHz -63.122 dBm
Avg Log				
10 dB/				
Offst 20.1 dB				
DI				
-50.0 dBm "DOur				
#PAvg 100				
W1 S2 S3 FC AA				
£(f): FTun				
Swp				
Start 1.559 00 GHz	2		Stop	o 1.605 00 GHz
#Res BW 1 MHz	· · · ·	_VBW 3 MHz	Sweep :	1 ms (601 pts)_

Plot 25 - Carrier-off state emissions

6. Frequency Stability vs Temperature

Test	§2.1055 and RSS-170	Test Engineer(s):	Sean E.
Requirement(s):	§5.3		
Test Results:	Pass	Test Date(s):	June 10, 2024

Test Procedures:As required by 47 CFR §2.0155 and RSS-170 §5.3, Frequency Stability
measurements were made at the RF antenna output terminals of the
EUT.

The EUT was placed in an Environmental Chamber with all the support equipment outside the chamber. The EUT was set to transmit a modulated carrier. The reference frequency at 20°C was observed and noted down. The frequency drift was investigated for every 10°C increment until the unit was stabilized then recorded the reading in tabular format with the temperature range of -30°C to 50°C.

Test Setup:

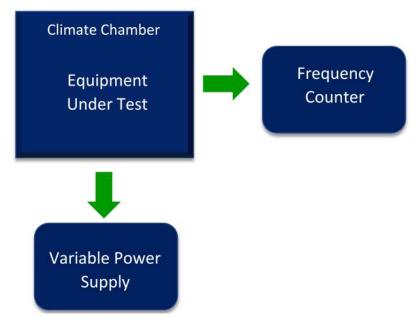


Figure 5 – Frequency Stability Test Setup



Test Results:

Temperature	Measured Upper		Lower	
centigrade	Frequency	Margin	Margin	
	(MHz)	(MHz)	(MHz)	
-30	1616.24776	-0.01840	0.01393	
-20	1616.24820	-0.01796	0.01437	
-10	1616.24810	-0.01806	0.01427	
0	1616.24809	-0.01807	0.01426	
10	1616.24834	-0.01782	0.01451	
20	1616.24836	-0.01780	0.01452	
30	1616.24814	-0.01802	0.01431	
40	1616.24806	-0.01810	0.01422	
50	1616.24812	-0.01804	0.01428	

Table 9 – Temperature vs Frequency Test Result

7. Frequency Stability vs Voltage

Test	§2.1055 and RSS-170	Test Engineer(s):	Sean E.
Requirement(s):	§5.3		
Test Results:	Pass	Test Date(s):	June 10, 2024

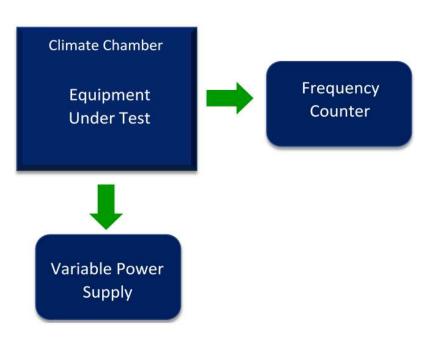
Test Procedures: As required by 47 CFR §2.0155 and RSS-170 §5.3, Frequency Stability measurements were made at the RF antenna output terminals of the EUT.

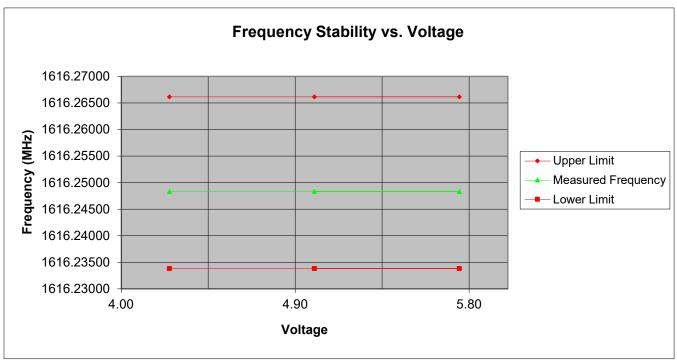
The EUT was connected to a variable DC source. The frequency was measured at both the nominal 5.0 Vdc of the EUT and at the extreme $\pm 15\%$ of nominal which is 85% level or 4.25Vdc and at the 115% level or 5.75Vdc

With the voltage set to a measurement point, the transmitted signal was captured by the spectrum analyzer and the frequency value determined. The frequencies are compared to the tuned frequency. All data for these measurements are found in table 10.

Reference Frequency: 1616.25 at 5.0VdC at 20°C

Test Setup:




Figure 6 – Frequency Stability Test Setup

Test Results:

Input Voltage (Vdc)	Measured Frequency (MHz)	Upper Margin (MHz)	Lower Margin (MHz)
5.0	1616.24836	-0.01780	0.01452
4.25	1616.24835	-0.01782	0.01451
5.75	1616.24835	-0.01781	0.01451

 Table 10. Temperature vs. Voltage Test Result

Plot 27 – Temperature vs Voltage

Test Equipment

Equipment	Manufacturer	Model	Serial #	Last Cal	Cal Due
				Date	Date
Spectrum Analyzer	Agilent	E4443A	US41420164	Jun-01-23	Jul-01-24
Spectrum Analyzer	Hewlett	8563E	3821A09316	May-08-24	May-08-25
	Packard				
Attenuator 20dB	Weinschel	41-20-12	86332	Verified	
Horn Antenna	Com-Power	AHA-118	071150	Jan-09-23	Jan-09-25
Digital Multimeter	Fluke	77	72550270	May-08-24	May-08-25
Power Supply	Hewlett	Lambda	LA2-AA20-	NCR	None
	Packard		143 3535		
Temperature	TestEquity	1027C	17953	Aug-16-23	Aug-16-24
Chamber					
Frequency Counter	Agilent	53181A	MY40004981	May-01-23	May-01-25
EMI Test Receiver	Rohde &	ESMI26	840607/005	Nov-15-23	Nov-15-24
	Schwarz				

Table 11 – Test Equipment List

*Statement of Traceability: Test equipment is maintained and calibrated on a regular basis. All calibrations have been performed by a 17025 accredited test facility, traceable to National Institute of Standards and Technology (NIST)

8. Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. These measurements figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2. Instrumentation measurement uncertainty has **not** been taken into account to determine compliance.

The following measurement uncertainty values have been calculated as show in the table below:

Measured Parameter	Measurement Unit	Frequency Range	Expanded Uncertainty
Conducted Emissions (AC Power)	dBuV or dBuA	150kHz – 30MHz	± 4.3dB
Radiated Emissions below 1GHz	dBuV/m	30 – 1000MHz	± 5.6dB
Radiated Emissions above 1GHz	dBuV/m	1 – 26.5GHz	± 4.1dB

The reported expanded uncertainty has been estimated at a 95% confidence level (k=2)

END OF TEST REPORT