FCC TEST REPORT

FCC ID: 2A5WY-A5133

Report No. : SSP24110305-2E

Applicant: Dongguan Nuomi Innovation Technology Co., Ltd.

Product Name: under cabinet light

Model Name : A5133

Test Standard: FCC Part 15.249

Date of Issue : 2024-12-04

Shenzhen CCUT Quality Technology Co., Ltd.

1F, Building 35, Changxing Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China; (Tel.:+86-755-23406590 website: www.ccuttest.com)

This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd.

FCC Test Report Page 1 of 25

APPROVE

Test Report Basic Information

Applicant...... Dongguan Nuomi Innovation Technology Co., Ltd.

Room 301, Building 3, No. 8, Shajingkeng Road, Liaobu Town, Dongguan City,

Address of Applicant...... Guangdong Province, China

Manufacturer...... Dongguan Nuomi Innovation Technology Co., Ltd.

Room 301, Building 3, No. 8, Shajingkeng Road, Liaobu Town, Dongguan City,

Address of Manufacturer.....: Guangdong Province, China

Product Name..... under cabinet light

Brand Name..... LYRIDZ

Main Model..... A5133

Series Models..... -

FCC Part 15 Subpart C

ANSI C63.4-2014

Test Standard...... ANSI C63.10-2013

Test Result..... PASS

Tested By (Coke Huang)

Reviewed By...... Lieber Ouyang (Lieber Ouyang)

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd.. All test data presented in this test report is only applicable to presented test sample.

FCC Test Report Page 2 of 25

CONTENTS

1. General Information	5
1.1 Product Information	5
1.2 Test Setup Information	6
1.3 Compliance Standards	
1.4 Test Facilities	
1.5 List of Measurement Instruments	
1.6 Measurement Uncertainty	9
2. Summary of Test Results	10
3. Antenna Requirement	11
3.1 Standard and Limit	11
3.2 Test Result	
4. Conducted Emissions	12
4.1 Standard and Limit	12
4.2 Test Procedure	12
4.3 Test Data and Results	13
5. Radiated Emissions	16
5.1 Standard and Limit	16
5.2 Test Procedure	16
5.3 Test Data and Results	18
6. Band-edge Emissions	22
6.1 Standard and Limit	22
6.2 Test Procedure	
6.3 Test Data and Results	22
7. Occupied Bandwidth	24
7.1 Standard and Limit	24
7.2 Test Procedure	
7.3 Test Data and Results	24

Report No: SSP24110305-2E

Revision	Issue Date	Description	Revised By
V1.0	2024-12-04	Initial Release	Lahm Peng

FCC Test Report Page 4 of 25

1. General Information

1.1 Product Information

Product Name:	under cabinet light	
Trade Name:	LYRIDZ	
Main Model:	A5133	
Series Models:	-	
Rated Voltage:	DC 3.7V by battery, USB 5V Charging	
Power Adapter:	-	
Battery:	DC 3.7V, 5000mAh	
Test Sample No:	SSP24110305-1	
Hardware Version:	V0.1	
Software Version:	V1.0	
Note 1: The test data is gathered from a production sample, provided by the manufacturer.		

Report No: SSP24110305-2E

Wireless Specification	
Wireless Standard:	5.8GHz RF
Operating Frequency:	5817MHz
Max. Field Strength:	98.73dBuV/m
Quantity of Channel:	40
Channel Separation:	2MHz
Modulation:	GFSK
Antenna Gain:	-2.6dBi
Type of Antenna:	PCB Antenna
Type of Device:	☐ Portable Device ☐ Mobile Device ☐ Modular Device

FCC Test Report Page 5 of 25

1.2 Test Setup Information

List of Test Modes					
Test Mode	De	Description Remark			
TM1	Tra	nsmitting		5817MH	Z
TM2		-		-	
TM3		-		-	
List and Detai	List and Details of Auxiliary Cable				
Descrip	ption	Length (cm)		Shielded/Unshielded	With/Without Ferrite
-	-			-	-
-		-		-	-
List and Detai	ls of Auxiliary	/ Equipment			
Descrip	ption Manufacturer		r	Model	Serial Number
adap	adapter HUAWEI		HW-110600C02	JL28L4P2D06114	
-			-	-	-

Report No: SSP24110305-2E

List of Chann	iels						
No. of	Frequency	No. of	Frequency	No. of	Frequency	No. of	Frequency
Channel	(MHz)	Channel	(MHz)	Channel	(MHz)	Channel	(MHz)
01	5817	-	-	-	-	-	-

FCC Test Report Page 6 of 25

1.3 Compliance Standards

Compliance Standards			
DOC D 145 C L 1 C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,		
FCC Part 15 Subpart C	Intentional Radiators		
All measurements contained in this	s report were conducted with all above standards		
According to standards for test	methodology		
FCC Post 15 Colorest C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,		
FCC Part 15 Subpart C	Intentional Radiators		
	American National Standard for Methods of Measurement of Radio-Noise Emissions		
ANSI C63.4-2014	from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40		
	GHz.		
ANCI ((2) 10 2012	American National Standard of Procedures for Compliance Testing of Unlicensed		
ANSI C63.10-2013	Wireless Devices		
Maintenance of compliance is the responsibility of the manufacturer or applicant. Any modification of the product, which			
result is lowering the emission, should be checked to ensure compliance has been maintained.			

Report No: SSP24110305-2E

1.4 Test Facilities

	Shenzhen CCUT Quality Technology Co., Ltd.
Laboratory Name:	1F, Building 35, Changxing Technology Industrial Park, Yutang Street,
	Guangming District, Shenzhen, Guangdong, China
CNAS Laboratory No.:	L18863
A2LA Certificate No.:	6893.01
FCC Registration No:	583813
ISED Registration No.:	CN0164
All magginement facilities uses	to collect the management data are legated at 1E Building 25 Changeing

All measurement facilities used to collect the measurement data are located at 1F, Building 35, Changxing Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China.

FCC Test Report Page 7 of 25

1.5 List of Measurement Instruments

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Conducted Emissions					
AMN	ROHDE&SCHWARZ	ENV216	101097	2024-08-07	2025-08-06
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100242	2024-08-07	2025-08-06
Test Cable	N/A	Cable 5	N/A	2024-08-07	2025-08-06
EMI Test Software	FARA	EZ-EMC	EMEC-3A1+	N/A	N/A
		Radiated Emission	ıs		
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100154	2024-08-07	2025-08-06
Spectrum Analyzer	KEYSIGHT	N9020A	MY48030972	2024-08-07	2025-08-06
Spectrum Analyzer	ROHDE&SCHWARZ	FSV40-N	101692	2024-08-07	2025-08-06
Amplifier	SCHWARZBECK	BBV 9743B	00251	2024-08-07	2025-08-06
Amplifier	HUABO	YXL0518-2.5-45		2024-08-07	2025-08-06
Amplifier	COM-MW	DLAN-18G-4G-02	10229104	2024-08-07	2025-08-06
Loop Antenna	DAZE	ZN30900C	21104	2024-08-03	2025-08-02
Broadband Antenna	SCHWARZBECK	VULB 9168	01320	2024-08-03	2025-08-02
Horn Antenna	SCHWARZBECK	BBHA 9120D	02553	2024-08-03	2025-08-02
Horn Antenna	COM-MW	ZLB7-18-40G-950	12221225	2024-08-03	2025-08-02
Attenuator	QUANJUDA	6dB	220731	2024-08-07	2025-08-06
Test Cable	N/A	Cable 1	N/A	2024-08-07	2025-08-06
Test Cable	N/A	Cable 2	N/A	2024-08-07	2025-08-06
Test Cable	N/A	Cable 3	N/A	2024-08-07	2025-08-06
Test Cable	N/A	Cable 4	N/A	2024-08-07	2025-08-06
Test Cable	N/A	Cable 8	N/A	2024-08-07	2025-08-06
Test Cable	N/A	Cable 9	N/A	2024-08-07	2025-08-06
EMI Test Software	FARA	EZ-EMC	FA-03A2 RE+	N/A	N/A
Conducted RF Testing					
RF Test System	MWRFTest	MW100-RFCB	220418SQS-37	2024-08-07	2025-08-06
Spectrum Analyzer	KEYSIGHT	N9020A	ATO-90521	2024-08-07	2025-08-06
RF Test Software	MWRFTest	MTS 8310	N/A	N/A	N/A
Laptop	Lenovo	ThlnkPad E15 Gen 3	SPPOZ22485	N/A	N/A

Report No: SSP24110305-2E

FCC Test Report Page 8 of 25

1.6 Measurement Uncertainty

Test Item	Conditions	Uncertainty
Conducted Emissions	9kHz ~ 30MHz	±1.64 dB
Radiated Emissions	9kHz ~ 30MHz	±2.88 dB
	30MHz ∼ 1GHz	±3.32 dB
	1GHz ~ 18GHz	±3.50 dB
	18GHz ~ 40GHz	±3.66 dB
Occupied Bandwidth	9kHz ~ 26GHz	±4.0 %

Report No: SSP24110305-2E

FCC Test Report Page 9 of 25

2. Summary of Test Results

FCC Rule	Description of Test Item	Result
FCC Part 15.203	Antenna Requirement	Passed
FCC Part 15.207	Conducted Emissions	Passed
FCC Part 15.209, 15.249(a)&(d)	Radiated Emissions	Passed
FCC Part 15.249(d)	Band-edge Emissions	Passed
FCC Part 15.215(c)	Occupied Bandwidth	Passed

Report No: SSP24110305-2E

Passed: The EUT complies with the essential requirements in the standard

Failed: The EUT does not comply with the essential requirements in the standard

N/A: Not applicable

FCC Test Report Page 10 of 25

3. Antenna Requirement

3.1 Standard and Limit

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Report No: SSP24110305-2E

3.2 Test Result

This product has an PCB antenna, fulfill the requirement of this section.

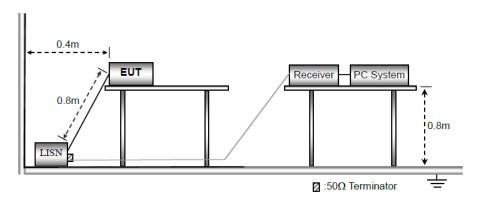
FCC Test Report Page 11 of 25

4. Conducted Emissions

4.1 Standard and Limit

According to the rule FCC Part 15.207, Conducted emissions limit, the limit for a wireless device as below:

Frequency of Emission	Conducted emissions (dBuV)		
(MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56	56 to 46	
0.5-5	56	46	
5-30	60	50	


Report No: SSP24110305-2E

Note 1: Decreases with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz

Note 2: The lower limit applies at the band edges

4.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.2.

Test Setup Block Diagram

- a) The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.
- b) The following is the setting of the receiver

Attenuation: 10dB

Start Frequency: 0.15MHz Stop Frequency: 30MHz IF Bandwidth: 9kHz

c) The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

FCC Test Report Page 12 of 25

d) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Report No: SSP24110305-2E

- e) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- f) LISN is at least 80 cm from nearest part of EUT chassis.
- g) For the actual test configuration, please refer to the related Item photographs of the test setup.

4.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

FCC Test Report Page 13 of 25

Test F	Plots a	nd Data	of Co	ndu	cted	En	niss	ior	ıs															
Teste	sted Mode: TM1																							
Test \	st Voltage: AC 120V/60Hz																							
Test F	t Power Line: Neutral																							
Rema	Remark:																							
90.0	dBu	v		1																				
]
80						+	+											+						-
70						_																		-
																	FC	C Pa	et 15 (CE-CI	ass B	QP		
60				-		_	+																	1
50	Λ	la						3									FQ	C Pa	e15 (ass B 11	_AVe		1
40	/ V /	11/20/4				-	4	Ĭ.										_	q	. Market	ANN.			-
30	\ _/\ <i>\</i>	רי עיען אוו	44.01	WW	M	₩	M		Market Market	ouwill	lateralli	Ž,	lib.a	7	HAMAN N	win	al and	MALIFA	WWW.	H ^{arr}	>	MANA	ı.	
30	V^{\vee}	7 (NAM	ww	J. Mr.	ia.		uda	¥,		HIM THIS	THE PERSON	TIME	N .	Y		-4					12		THE WAY	1
20		-		YYVYW	MAN	MIN	,24 <u>17</u> 14	ANTIN	Marallandy	Late And the	Whenda	ign ¹ "	ر داران	8				. 4.	A David	WALL	ALL PARTY	h _{illett}		peak
10						4	+	H			1 1	n squi yi	WYY	William	Menoral	MAIN.	Myraid	ulnak	1781				murdy	AVG
0																								
-10																								
	150			0.	500			Н		(MHz)	_		5	5.000				Ш				30.0	00
				-11				_		1.5	-:-													
No.		quency MHz)		iding BuV)		act (dB			Level dBuV)	Lin (dB		ivia (d	rgin B)	Detect	or P	/F	R	em	ark					
1 *	0	.2040	43	.11	!	9.22	2		52.33	63.	45	-11	.12	QP	F	5								
2		.2040		.08	_	9.22		-	42.30	53.		-	.15	AVG	_	>								
3		.9015		.30		9.37		-	44.67	56.		-11		QP	_	2								
5		.9015 .5350		.72 .53		9.37 9.48		_	25.09 34.01	46. 56.		-20 -21	.91	AVG QP	_))								
6	_	.5350	_	83	_	9.48		-	17.31	46.		-	.69	AVG		5								
7		.2360		.36		9.54		-	32.90	56.		-	.10	QP	_	5								$\neg \neg$
8		.2360		48		9.54		\vdash	17.02	46.		_	.98	AVG		>								
9		0.3695		.88	_	9.56		-	35.44	60.		-	.56	QP	_	2								
10		0.3695		59		9.56		-	14.15	50.		_	.85	AVG	_	2								
11		5.0720 5.0720		.17 .97		9.53 9.53		-	43.70 25.50	60. 50.		-	.30	QP AVG))								
_ '-				.01					_0.00				.00											

FCC Test Report Page 14 of 25

Test P	Plots and Data o	of Conduct	ted Emissi	ons								
Teste	ested Mode: TM1											
Test V	oltage:	AC 1	AC 120V/60Hz									
Test P	Test Power Line: Live											
Rema	rk:											
90.0	dBuV	l .										
80												
70												
60									FCC Part15 CE-Class B_	QP		
	3								FCC Pait15 CE-Class B	AVe		
50			<u> </u>						Teo atto ez ciaso b			
40		ANAL .	X	<u>. </u>	7				11 X			
30		~~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Mahahahahaha		ladelli kiira	9	Maria de la constitución de la c	Market Market Company	MANAGE		
	TA ALAMANAM	MYLMA	رواند. دراند المدر المدر	Mandandon	ullallinings	ahalahana	11/1 1	بأد انتقال	. In the Assessment Manhach Manager at the training	peak		
20		98008	0.000	Transfer of the	Mark Mark Mark Mark	www.lank.an	nhan Marillan	والمرابية	while the standard mount of	. when the		
10						kulukhtan	1,44	ritalih.	house helength the following a section of	AVG		
0												
-10												
0.1	150	0.5	00		(MHz)		5.0	00		30.000		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark			
1	0.1544	43.73	9.41	53.14	65.76	-12.62	QP	Р				
2	0.1544	26.54	9.41	35.95	55.76	-19.81	AVG	Р				
3 *	0.1995 0.1995	43.41 28.68	9.39 9.39	52.80 38.07	63.63 53.63	-10.83 -15.56	QP AVG	P				
5	0.1995	32.30	9.59	41.89	56.00	-14.11	QP	Р				
6	0.8340	15.27	9.59	24.86	46.00	-21.14	AVG	Р				
7	2.2065	24.60	9.66	34.26	56.00	-21.74	QP	Р				
8	2.2065	7.47	9.66	17.13	46.00	-28.87	AVG	Р				
9	4.7714	23.66	9.75	33.41	56.00	-22.59	QP	Р				
10	4.7714 9.9644	6.20 25.22	9.75 9.76	15.95 34.98	46.00 60.00	-30.05 -25.02	AVG QP	P				
12	9.9644	2.30	9.76	12.06	50.00	-37.94	AVG	Р				
									I			

FCC Test Report Page 15 of 25

5. Radiated Emissions

5.1 Standard and Limit

According to §15.249(a), the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

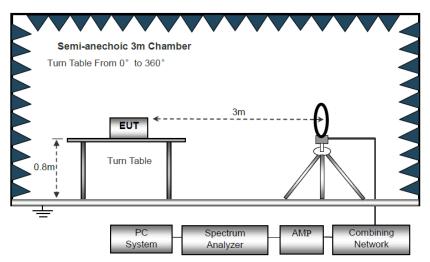
Report No: SSP24110305-2E

Eundomontal fraguency	Field strength of fundamental	Field strength of Harmonics		
Fundamental frequency	(milli-volts/meter)	(micro-volts/meter)		
902-928 MHz	50	500		
2400-2483.5 MHz	50	500		
5725-5875 MHz	50	500		
24.0-24.25 GHz	250	2500		

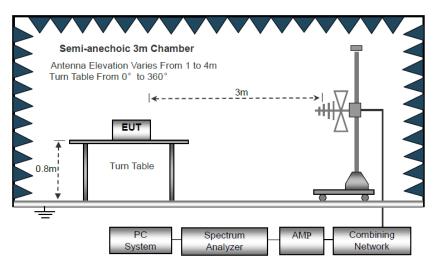
According to §15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

According to the rule FCC Part 15.209, Radiated emission limit for a wireless device as below:

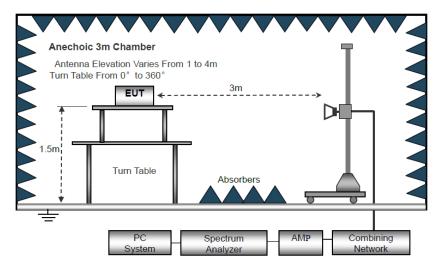
Engage are of emission (MHz)	Radiated emissions (3m)						
Frequency of emission (MHz)	Quasi-peak (dBuV/m)						
30-88	40						
88-216	43.5						
216-960	46						
Above 960	54						
Note: The more stringent limit applies at transition frequencies.							


The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

Note: Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.


5.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6.


FCC Test Report Page 16 of 25

Block Diagram of Radiated Emission Below 30MHz

Block Diagram of Radiated Emission From 30MHz to 1GHz

Block Diagram of Radiated Emission Above 1GHz

FCC Test Report Page 17 of 25

a) The EUT is placed on a turntable, which is 0.8m above ground plane for test frequency range blew 1GHz, and 1.5m above ground plane for test frequency range above 1GHz.

Report No: SSP24110305-2E

- b) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- c) Use the following spectrum analyzer settings:

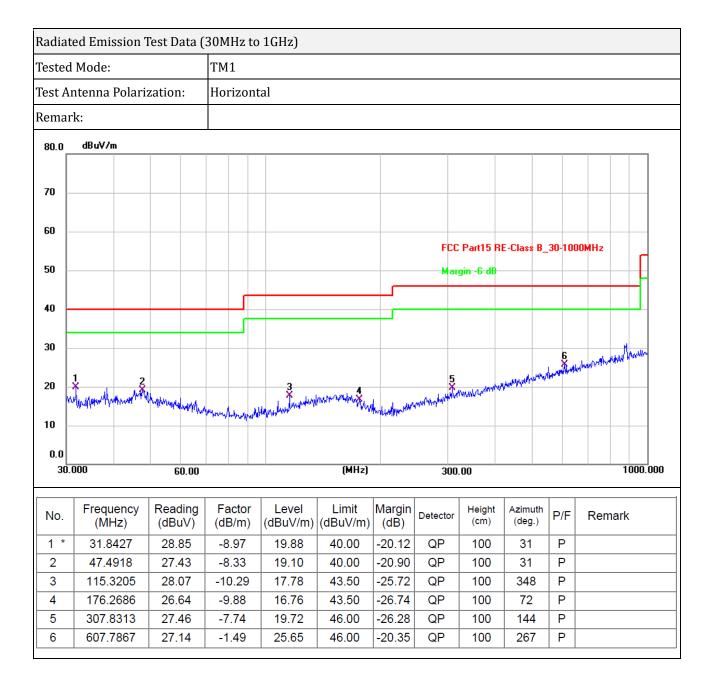
Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, 10kHz for f < 30MHz

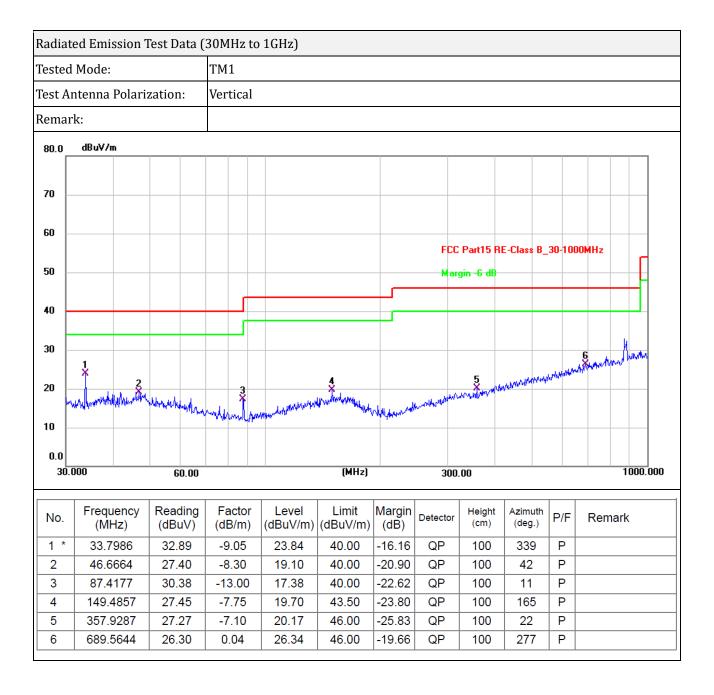
VBW ≥ RBW, Sweep = auto

Detector function = peak

Trace = max hold


- d) Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- e) The peak level, once corrected, must comply with the limit specified in Section 15.209. Set the RBW = 1MHz, VBW = 10Hz, Detector = PK for AV value, while maintaining all of the other instrument settings.
- f) For the actual test configuration, please refer to the related item EUT test photos.

5.3 Test Data and Results


All of the modes have been tested, the EUT complied with the FCC Part 15.249 standard limit for a wireless device, and with the worst case 2418MHz as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

FCC Test Report Page 18 of 25

FCC Test Report Page 19 of 25

FCC Test Report Page 20 of 25

Report No: SSP24110305-2E

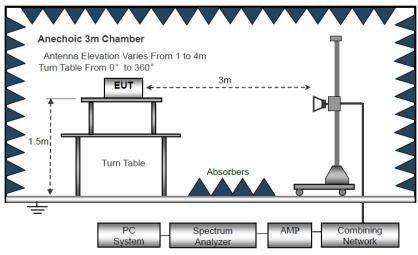
Note 1: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Note 2: Testing is carried out with frequency rang 9kHz to the tenth harmonics. The measurements greater than 20dB below the limit from 9kHz to 30MHz.

Note 3: Other emissions are attenuated 20dB below the limits from 9kHz to 30MHz, so it does not recorded report, 18GHz-26GHz not recorded for no spurious point have a margin of less than 6 dB with respect to the limits.

FCC Test Report Page 21 of 25

6. Band-edge Emissions


6.1 Standard and Limit

According to §15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

Report No: SSP24110305-2E

6.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6 and section 6.10.

Test Setup Block Diagram

As the radiated emissions testing, set the Lowest and Highest Transmitting Channel, observed the outside band of 2310MHz to 2400MHz and 2483.5MHz to 2500MHz, than mark the higher-level emission for comparing with the FCC rules.

6.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.249 standard limit, and with the worst case as below:

FCC Test Report Page 22 of 25

Test Mode	Frequency	Limit	Result	
rest Mode	MHz	MHz dBuV/dBc		
	2310.00	<54 dBuV	Pass	
Lowest	2390.00	<54 dBuV	Pass	
	2400.00	<54 dBuV	Pass	
Highort	2483.50	<54 dBuV	Pass	
Highest	2500.00	<54 dBuV	Pass	

Radiated Emission Test Data (Band edge emissions)									
Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector		
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV		
	Lowest Channel (5817MHz)								
5460	66.87	-12.39	54.48	74	-19.52	Н	PK		
5460	49.75	-12.39	37.36	54	-16.64	Н	AV		
5725	67.28	-11.52	55.76	74	-18.24	Н	PK		
5725	50.59	-11.52	39.07	54	-14.93	Н	AV		
5875	71.64	-10.95	60.69	74	-13.31	Н	PK		
5875	52.71	-10.95	41.76	54	-12.24	Н	AV		
			Highest Chann	nel (5817MHz)					
5460	71.91	-12.39	59.52	74	-14.48	Н	PK		
5460	54.41	-12.39	42.02	54	-11.98	Н	AV		
5725	66.04	-11.52	54.52	74	-19.48	Н	PK		
5725	51.12	-11.52	39.6	54	-14.4	Н	AV		
5875	68.44	-10.95	57.49	74	-16.51	V	PK		
5875	53.84	-10.95	42.89	54	-11.11	V	AV		

Remark: Level = Reading + Factor, Margin = Level - Limit

FCC Test Report Page 23 of 25

7. Occupied Bandwidth

7.1 Standard and Limit

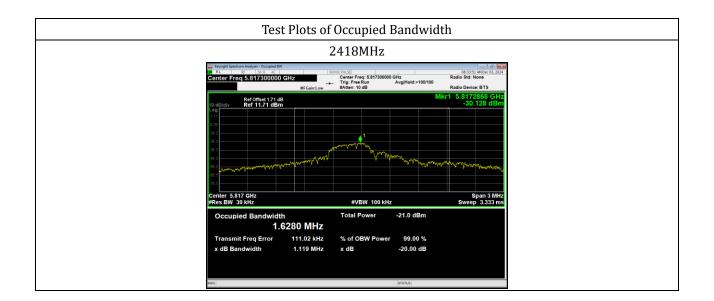
According to 15.215 (c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

Report No: SSP24110305-2E

7.2 Test Procedure

According to the ANSI 63.10-2013, section 6.9, the emission bandwidth test method as follows.

- 1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.
- 2) Set the spectrum analyzer to any one measured frequency within its operating range.
- 3) Set RBW = 30kHz, VBW = 100kHz, Sweep = Auto.
- 4) Set a reference level on the measuring instrument equal to the highest peak value.
- 5) Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- 6) Repeat the above procedures until all frequencies measured were complete.


All the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission, use the marker-delta function to measure and record the 20dB down and 99% bandwidth of the emission.

7.3 Test Data and Results

Test Channel	Test Frequency	20dB Bandwidth (MHz)	99% Bandwidth (MHz)		
Lowest Channel	5817MHz	1.119	1.628		

FCC Test Report Page 24 of 25

***** END OF REPORT *****

FCC Test Report Page 25 of 25