

# **SPORTON International Inc.**

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

# **FCC RADIO TEST REPORT**

| Applicant's company    | PEGATRON CORPORATION                                               |
|------------------------|--------------------------------------------------------------------|
| Applicant Address      | 5F., NO. 76, LIGONG ST., BEITOU DISTRICT, TAIPEI CITY 11259 Taiwan |
| FCC ID                 | VUIDPC3848V                                                        |
| Manufacturer's company | MAINTEK COMPUTER                                                   |
| Manufacturer Address   | 233 Jinfeng Rd., Suzhou, Jiangsu, PRC                              |

| Product Name     | Nireless Residential Gateway          |  |  |  |
|------------------|---------------------------------------|--|--|--|
| Brand Name       | technicolor                           |  |  |  |
| Model No.        | DPC3848V / DPC3848VM                  |  |  |  |
| Test Rule        | 47 CFR FCC Part 15 Subpart C § 15.247 |  |  |  |
| Test Freq. Range | 2400 ~ 2483.5MHz                      |  |  |  |
| Received Date    | Mar. 06, 2014                         |  |  |  |
| Final Test Date  | Jul. 19, 2016                         |  |  |  |
| Submission Type  | Class II Change                       |  |  |  |

## Statement

Test result included in this report is for the IEEE 802.11n and IEEE 802.11b/g of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2013, 47 CFR FCC Part 15 Subpart C, KDB558074 D01 v03r05 and KDB 662911 D01 v02r01.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.









# **Table of Contents**

| 1. | VERIF    | FICATION OF COMPLIANCE         | 1         |
|----|----------|--------------------------------|-----------|
| 2. | SUMN     | MARY OF THE TEST RESULT        | 2         |
| 3. | GENE     | ERAL INFORMATION               | 3         |
|    | 3.1.     | Product Details                | 3         |
|    | 3.2.     | Accessories                    | 3         |
|    | 3.3.     | Table for Filed Antenna        | 4         |
|    | 3.4.     | Table for Carrier Frequencies  | 5         |
|    | 3.5.     | Table for Test Modes           | 5         |
|    | 3.6.     | Table for Testing Locations    | 6         |
|    | 3.7.     | Table for Multiple List        | 6         |
|    | 3.8.     | Table for Class II Change      | 6         |
|    | 3.9.     | Table for Supporting Units     | 7         |
|    | 3.10.    | EUT Operation during Test      | 7         |
|    | 3.11.    | Duty Cycle                     | 7         |
|    | 3.12.    | Test Configurations            | 8         |
| 4. | . TEST F | RESULT                         | 9         |
|    | 4.1.     | Radiated Emissions Measurement | 9         |
|    | 4.2.     | Emissions Measurement          | 14        |
|    | 4.3.     | Antenna Requirements           | 22        |
| 5. | LIST C   | OF MEASURING EQUIPMENTS        | 23        |
| 6. | MEAS     | SUREMENT UNCERTAINTY           | 24        |
| Al | PPEND    | DIX A. TEST PHOTOS             | . A1 ~ A2 |



# History of This Test Report

| REPORT NO.    | VERSION | DESCRIPTION             | ISSUED DATE   |
|---------------|---------|-------------------------|---------------|
| FR462770-01AA | Rev. 01 | Initial issue of report | Aug. 15, 2016 |
|               |         |                         |               |
|               |         |                         |               |
|               |         |                         |               |
|               |         |                         |               |
|               |         |                         |               |
|               |         |                         |               |
|               |         |                         |               |
|               |         |                         |               |
|               |         |                         |               |
|               |         |                         |               |
|               |         |                         |               |
|               |         |                         |               |
|               |         |                         |               |

Page No. : ii of ii Issued Date :Aug. 15, 2016



Project No: CB10507298

## 1. VERIFICATION OF COMPLIANCE

Product Name:

Wireless Residential Gateway

Brand Name :

technicolor

Model No. :

DPC3848V / DPC3848VM

Applicant:

PEGATRON CORPORATION

Test Rule Part(s) :

47 CFR FCC Part 15 Subpart C § 15.247

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Mar. 06, 2014 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Sam Chen

SPORTON INTERNATIONAL INC.

Page No. : 1 of 24

Issued Date : Aug. 15, 2016



# 2. SUMMARY OF THE TEST RESULT

| Applied Standard: 47 CFR FCC Part 15 Subpart C |              |                      |          |  |  |
|------------------------------------------------|--------------|----------------------|----------|--|--|
| Part                                           | Rule Section | Description of Test  | Result   |  |  |
| 4.1                                            | 15.247(d)    | Radiated Emissions   | Complies |  |  |
| 4.2                                            | 15.247(d)    | Band Edge Emissions  | Complies |  |  |
| 4.3                                            | 15.203       | Antenna Requirements | Complies |  |  |

Page No. : 2 of 24

Issued Date : Aug. 15, 2016

## 3. GENERAL INFORMATION

## 3.1. Product Details

| Items               | Description                                        |
|---------------------|----------------------------------------------------|
| Product Type        | WLAN (3TX, 3RX)                                    |
| Radio Type          | Intentional Transceiver                            |
| Power Type          | From Internal Power Supply                         |
| Modulation          | IEEE 802.11b: DSSS                                 |
|                     | IEEE 802.11g: OFDM                                 |
|                     | IEEE 802.11n: see the below table                  |
| Data Modulation     | IEEE 802.11b: DSSS (BPSK / QPSK / CCK)             |
|                     | IEEE 802.11g/n: OFDM (BPSK / QPSK / 16QAM / 64QAM) |
| Data Rate (Mbps)    | IEEE 802.11b: DSSS (1/ 2/ 5.5/11)                  |
|                     | IEEE 802.11g: OFDM (6/9/12/18/24/36/48/54)         |
|                     | IEEE 802.11n: see the below table                  |
| Frequency Range     | 2400 ~ 2483.5MHz                                   |
| Channel Number      | 11 for 20MHz bandwidth ; 7 for 40MHz bandwidth     |
| Carrier Frequencies | Please refer to section 3.4                        |
| Antenna             | Please refer to section 3.3                        |

| Items                | Description        |  |  |
|----------------------|--------------------|--|--|
| Beamforming Function | ☐ With beamforming |  |  |

### Antenna and Bandwidth

| Antenna        | Three (TX) |        |  |  |
|----------------|------------|--------|--|--|
| Bandwidth Mode | 20 MHz     | 40 MHz |  |  |
| IEEE 802.11b   | V          | X      |  |  |
| IEEE 802.11g   | V          | X      |  |  |
| IEEE 802.11n   | V          | V      |  |  |

## IEEE 11n Spec.

| Protocol       | Number of<br>Transmit Chains (NTX) | Data Rate / MCS |
|----------------|------------------------------------|-----------------|
| 802.11n (HT20) | 3                                  | MCS 0-23        |
| 802.11n (HT40) | 3                                  | MCS 0-23        |

Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT supports HT20 and HT40.

Note 2: Modulation modes consist of below configuration: HT20/HT40: IEEE 802.11n

## 3.2. Accessories

Power cable\*1, Non-shielded, 1.8m

RJ-45 cable\*1, Non-shielded, 1.2m

Report Format Version: Rev. 01 Page No. : 3 of 24 FCC ID: VUIDPC3848V Issued Date : Aug. 15, 2016

### 3.3. Table for Filed Antenna

For Model Name: DPC3848V

| Ant.  | nt. Brand Model Name P/N Antenna Type | Connector  | Gain (dBi) |              |           |        |      |
|-------|---------------------------------------|------------|------------|--------------|-----------|--------|------|
| AIII. | biaria                                | Wodel Name | P/IN       | Antenna Type | Connector | 2.4GHz | 5GHz |
| 1     | WANSHIH                               | WPB279     | UC3WFI0134 | PCB Antenna  | MHF       | 2.81   | 3.62 |
| 2     | WANSHIH                               | WPB287     | UC3WFI0147 | PCB Antenna  | MHF       | 2.63   | 3.62 |
| 3     | WANSHIH                               | WPB289     | UC3WFI0132 | PCB Antenna  | MHF       | 2.95   | 3.73 |

For Model Name: DPC3848VM

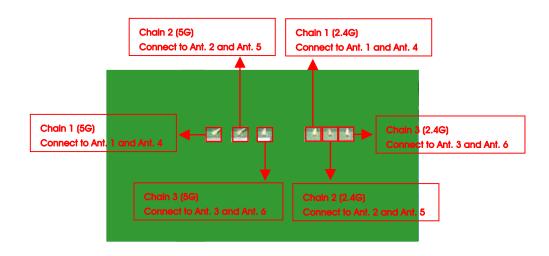
| Ant. Brand Model Name P/N | P/N     | Antenna Type | Connector  | Gain (dBi)   |             |        |      |
|---------------------------|---------|--------------|------------|--------------|-------------|--------|------|
| AIII.                     | biaria  | Wodel Name   | P/IN       | Anienna type | Connector - | 2.4GHz | 5GHz |
| 4                         | WANSHIH | WPB279       | UC3WFI0125 | PCB Antenna  | MHF         | 2.47   | 3.62 |
| 5                         | WANSHIH | WPB287       | UC3WFI0124 | PCB Antenna  | MHF         | 2.26   | 3.62 |
| 6                         | WANSHIH | WPB289       | UC3WFI0123 | PCB Antenna  | MHF         | 2.56   | 3.73 |

### Note:

Ant.  $1\sim$  6 are the same type antennas. Only the higher gain antennas "Ant.  $1\sim$ 3" were tested and recorded in the report.

According to the above antennas, there are three antennas will transit simultaneously (one is Horizontal and the others are Vertical), so array gain only add 10log(2).

## <For 2.4GHz Band>


For IEEE 802.11b/g/n mode (3TX/3RX):

Chain 1, Chain 2 and Chain 3 could transmit/receive simultaneously.

### <For 5GHz Band>

For IEEE 802.11a/n/ac mode (3TX/3RX):

Chain 1, Chain 2 and Chain 3 could transmit/receive simultaneously.



## 3.4. Table for Carrier Frequencies

There are two bandwidth systems.

For 20MHz bandwidth systems, use Channel 1~Channel 11.

For 40MHz bandwidth systems, use Channel 3~Channel 9.

| Frequency Band   | Channel No. | Frequency | Channel No. | Frequency |
|------------------|-------------|-----------|-------------|-----------|
|                  | 1           | 2412 MHz  | 7           | 2442 MHz  |
|                  | 2           | 2417 MHz  | 8           | 2447 MHz  |
| 2400~2483.5MHz   | 3           | 2422 MHz  | 9           | 2452 MHz  |
| 2400~2463.5IVID2 | 4           | 2427 MHz  | 10          | 2457 MHz  |
|                  | 5           | 2432 MHz  | 11          | 2462 MHz  |
|                  | 6           | 2437 MHz  | -           | -         |

### 3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

| Test Items                               | Mode     | Data Rate | Channel | Chain |
|------------------------------------------|----------|-----------|---------|-------|
| Radiated Emissions 1GHz~10 <sup>th</sup> | 11b/CCK  | 1 Mbps    | 6       | 1+2+3 |
| Harmonic                                 | 11n HT40 | MCS0      | 6       | 1+2+3 |
| Band Edge Emissions                      | 11b/CCK  | 1 Mbps    | 6       | 1+2+3 |
|                                          | 11n HT40 | MCS0      | 6       | 1+2+3 |

Note: The EUT can only be used at Y axis position.

The following test modes were performed for all tests:

For Radiated Emission test:

Test Mode 1 : CTX

### For Co-location MPE Test:

The EUT could be applied with 2.4GHz WLAN function and 5GHz WLAN function; therefore Co-location Maximum Permissible Exposure (Please refer to FA462770-01) test is added for simultaneously transmit between 2.4GHz WLAN function and 5GHz WLAN function.

Report Format Version: Rev. 01 Page No. : 5 of 24 FCC ID: VUIDPC3848V Issued Date : Aug. 15, 2016



## 3.6. Table for Testing Locations

| Test Site Location                     |                                                                      |                                                                            |  |  |  |  |  |  |  |
|----------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Address:                               | No.8, L                                                              | No.8, Lane 724, Bo-ai St., Jhubei City, Hsinchu County 302, Taiwan, R.O.C. |  |  |  |  |  |  |  |
| TEL:                                   | 886-3-6                                                              | 886-3-656-9065                                                             |  |  |  |  |  |  |  |
| FAX:                                   | 886-3-6                                                              | 656-9085                                                                   |  |  |  |  |  |  |  |
| Test Site                              | Test Site No. Site Category Location FCC Designation No. IC File No. |                                                                            |  |  |  |  |  |  |  |
| 03CH01-CB SAC Hsin Chu TW0006 IC 4086D |                                                                      |                                                                            |  |  |  |  |  |  |  |

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

## 3.7. Table for Multiple List

The EUT has two model names which are identical to each other in all aspects except for the following table:

| Model Name | MoCA Schematic |
|------------|----------------|
| DPC3848V   | X              |
| DPC3848VM  | V              |

From the table above, model name: DPC3848V was selected as representative model for the test and its data was recorded in this report.

## 3.8. Table for Class II Change

This product is an extension of original one reported under Sporton project number: FR462770AA. Below is the table for the change of the product with respect to the original one.

|    | Modifications                                | Performance Checking                         |  |  |  |  |
|----|----------------------------------------------|----------------------------------------------|--|--|--|--|
| 1. | Changing the applicant address to "5F., NO.  |                                              |  |  |  |  |
|    | 76, LIGONG ST., BEITOU DISTRICT, TAIPEI CITY |                                              |  |  |  |  |
|    | 11259 Taiwan" from "5F., NO. 76, LIGONG ST., | No influence on the test results             |  |  |  |  |
|    | BEITOU DISTRICT, TAIPEI CITY 112 Taiwan".    | No influence on the test results.            |  |  |  |  |
| 2. | Changing the brand name to "technicolor"     |                                              |  |  |  |  |
|    | from "Cisco".                                |                                              |  |  |  |  |
|    |                                              | After evaluating, the worst case is found at |  |  |  |  |
| 3. | Changing 2 4CHz BA to B/N; E26051 DN from    | 802.11b CH6 and 802.11n HT40 CH6, and retest |  |  |  |  |
| ٥. | Changing 2.4GHz PA to P/N: E2605L-RN from    | these channels only.                         |  |  |  |  |
|    | P/N: SE2605L due to changing of              | The test item as below                       |  |  |  |  |
|    | manufacturing process.                       | Radiated Emissions(Above 1 GHz).             |  |  |  |  |
|    |                                              | 2. Band Edge Emissions.                      |  |  |  |  |

Note: For the above test items will be based on original output maximum power to re-test.

 Report Format Version: Rev. 01
 Page No. : 6 of 24

 FCC ID: VUIDPC3848V
 Issued Date : Aug. 15, 2016



# 3.9. Table for Supporting Units

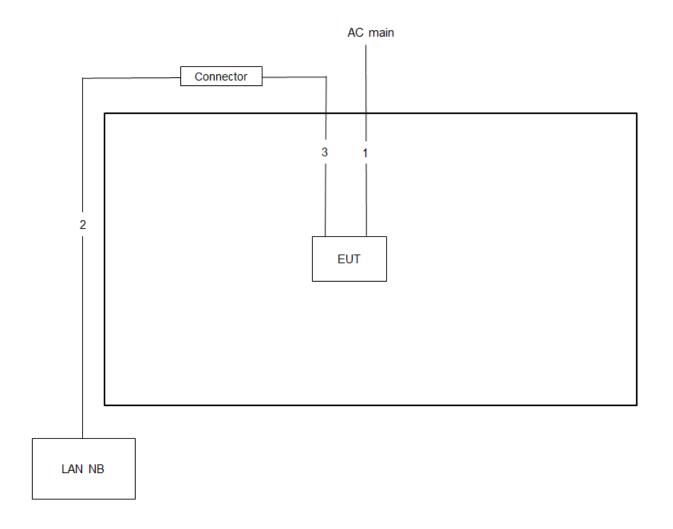
| Support Unit | Brand | Model | FCC ID |  |  |
|--------------|-------|-------|--------|--|--|
| Notebook     | DELL  | E4300 | DoC    |  |  |

# 3.10. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

# 3.11. Duty Cycle

| Mode              | On Time<br>(ms) |       |         | Duty Factor<br>(dB) | 1/T Minimum VBW<br>(kHz) |  |
|-------------------|-----------------|-------|---------|---------------------|--------------------------|--|
| 802.11b           | 1.000           | 1.000 | 100.00% | 0.00                | 0.01                     |  |
| 802.11n MCS0 HT40 | 0.890           | 0.990 | 89.90%  | 0.46                | 1.12                     |  |


Report Format Version: Rev. 01 Pa
FCC ID: VUIDPC3848V Iss





# 3.12. Test Configurations

# 3.12.1. Radiation Emissions Test Configuration



| Item | Connection  | Connection Shielded |      |  |  |
|------|-------------|---------------------|------|--|--|
| 1    | Power cable | No                  | 1.8m |  |  |
| 2    | RJ-45 cable | No                  | 10m  |  |  |
| 3    | RJ-45 cable | No                  | 1.2m |  |  |

Page No. : 8 of 24

Issued Date : Aug. 15, 2016

## 4. TEST RESULT

### 4.1. Radiated Emissions Measurement

## 4.1.1. Limit

30dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

| Frequencies | Field Strength     | Measurement Distance |  |  |
|-------------|--------------------|----------------------|--|--|
| (MHz)       | (micorvolts/meter) | (meters)             |  |  |
| 0.009~0.490 | 2400/F(kHz)        | 300                  |  |  |
| 0.490~1.705 | 24000/F(kHz)       | 30                   |  |  |
| 1.705~30.0  | 30                 | 30                   |  |  |
| 30~88       | 100                | 3                    |  |  |
| 88~216      | 150                | 3                    |  |  |
| 216~960     | 200                | 3                    |  |  |
| Above 960   | 500                | 3                    |  |  |

## 4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

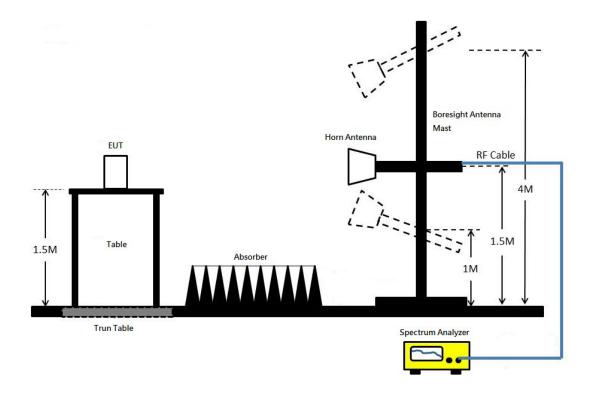
| Spectrum Parameter                          | Setting                  |
|---------------------------------------------|--------------------------|
| Attenuation                                 | Auto                     |
| Start Frequency                             | 1000 MHz                 |
| Stop Frequency                              | 10th carrier harmonic    |
| RBW / VBW (Emission in restricted band)     | 1MHz / 3MHz for Peak,    |
|                                             | 1MHz / 1/T for Average   |
| RBW / VBW (Emission in non-restricted band) | 100kHz / 300kHz for peak |

| Receiver Parameter     | Setting                           |
|------------------------|-----------------------------------|
| Attenuation            | Auto                              |
| Start ~ Stop Frequency | 9kHz~150kHz / RBW 200Hz for QP    |
| Start ~ Stop Frequency | 150kHz~30MHz / RBW 9kHz for QP    |
| Start ~ Stop Frequency | 30MHz~1000MHz / RBW 120kHz for QP |

Report Format Version: Rev. 01 Page No. : 9 of 24 FCC ID: VUIDPC3848V Issued Date : Aug. 15, 2016

#### 4.1.3. Test Procedures

Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 1.5
meter above ground. The phase center of the receiving antenna mounted on the top of a
height-variable antenna tower was placed 1m & 3m far away from the turntable.


- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 m to 4 m) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 1/T VBW for average reading in spectrum analyzer.
- 7. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 8. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 9. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

Report Format Version: Rev. 01 Page No. : 10 of 24 FCC ID: VUIDPC3848V Issued Date : Aug. 15, 2016





## 4.1.4. Test Setup Layout



### 4.1.5. Test Deviation

There is no deviation with the original standard.

## 4.1.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

: 11 of 24 Page No. FCC ID: VUIDPC3848V Issued Date : Aug. 15, 2016

# 4.1.7. Results for Radiated Emissions (1GHz $\sim$ 10<sup>th</sup> Harmonic)

| Temperature   | 24°C          | Humidity                           | 62%                         |  |  |
|---------------|---------------|------------------------------------|-----------------------------|--|--|
| Tost Engineer | Owen Hsu      | Configurations IEEE 802.11b CH 6 / |                             |  |  |
| Test Engineer | Owen asu      | Configurations                     | Chain 1 + Chain 2 + Chain 3 |  |  |
| Test Date     | Jul. 18, 2016 |                                    |                             |  |  |

## Horizontal

|   | Freq    | Level  |        | Over<br>Limit |       |      |       |       | Preamp A/Pos<br>Factor | T/Pos | Remark  | Pol/Phase  |
|---|---------|--------|--------|---------------|-------|------|-------|-------|------------------------|-------|---------|------------|
|   | MHz     | dBuV/m | dBuV/m | dB            | dBuV  | dB   | dB/m  | dB    | cm                     | deg   |         |            |
| 1 | 4874.08 | 49.06  | 54.00  | -4.94         | 42.37 | 7.20 | 31.21 | 31.72 | 146                    | 149   | Average | HORIZONTAL |
| 2 | 4874.16 | 53.40  | 74.00  | -20.60        | 46.71 | 7.20 | 31.21 | 31.72 | 146                    | 149   | Peak    | HORIZONTAL |
| 3 | 7312.76 | 59.12  | 74.00  | -14.88        | 47.35 | 8.81 | 35.99 | 33.03 | 185                    | 291   | Peak    | HORIZONTAL |
| 4 | 7313.00 | 53.39  | 54.00  | -0.61         | 41.62 | 8.81 | 35.99 | 33.03 | 185                    | 291   | Average | HORIZONTAL |

## Vertical

|   | Freq    | Level  |        |        |       |      |       | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|---------|--------|--------|--------|-------|------|-------|------------------|-------|-------|---------|-----------|
|   | MHz     | dBuV/m | dBuV/m | dB     | dBuV  | dB   | dB/m  | dB               | cm    | deg   |         |           |
| 1 | 4874.08 | 54.33  | 74.00  | -19.67 | 47.64 | 7.20 | 31.21 | 31.72            | 297   | 108   | Peak    | VERTICAL  |
| 2 | 4874.16 | 51.00  | 54.00  | -3.00  | 44.31 | 7.20 | 31.21 | 31.72            | 297   | 108   | Average | VERTICAL  |
| 3 | 7312.04 | 42.48  | 54.00  | -11.52 | 30.71 | 8.81 | 35.99 | 33.03            | 253   | 131   | Average | VERTICAL  |
| 4 | 7312.44 | 54.36  | 74.00  | -19.64 | 42.59 | 8.81 | 35.99 | 33.03            | 253   | 131   | Peak    | VERTICAL  |

Report Format Version: Rev. 01 Page No. : 12 of 24 FCC ID: VUIDPC3848V Issued Date : Aug. 15, 2016



| Temperature    | 24°C          | Humidity       | 62%                           |  |  |
|----------------|---------------|----------------|-------------------------------|--|--|
| Test Engineer  | Owen Hsu      | Configurations | IEEE 802.11n MCS0 HT40 CH 6 / |  |  |
| iesi Erigineei | Oweri nsu     | Comigurations  | Chain 1 + Chain 2 + Chain 3   |  |  |
| Test Date      | Jul. 18, 2016 |                |                               |  |  |

#### Horizontal

|   | Freq    | Level  |        |        |       |      |       | Preamp<br>Factor |     | T/Pos | Remark  | Pol/Phase  |
|---|---------|--------|--------|--------|-------|------|-------|------------------|-----|-------|---------|------------|
|   | MHz     | dBuV/m | dBuV/m | dB     | dBuV  | dB   | dB/m  | dB               | cm  | deg   |         |            |
| 1 | 7315.00 | 41.64  | 54.00  | -12.36 | 29.87 | 8.81 | 35.99 | 33.03            | 263 | 57    | Average | HORIZONTAL |
| 2 | 7319.48 | 54.67  | 74.00  | -19.33 | 42.85 | 8.82 | 36.03 | 33.03            | 263 | 57    | Peak    | HORIZONTAL |

### Vertical

|   | Freq    | Level  | Limit<br>Line |        |       |      |       | Preamp<br>Factor |     | T/Pos | Remark  | Pol/Phase |
|---|---------|--------|---------------|--------|-------|------|-------|------------------|-----|-------|---------|-----------|
|   | MHz     | dBuV/m | dBuV/m        | dB     | dBuV  | dB   | dB/m  | dB               | cm  | deg   |         | <u> </u>  |
| 1 | 7322.76 | 54.38  | 74.00         | -19.62 | 42.58 | 8.82 | 36.03 | 33.05            | 256 | 66    | Peak    | VERTICAL  |
| 2 | 7324.44 | 41.41  | 54.00         | -12.59 | 29.61 | 8.82 | 36.03 | 33.05            | 256 | 66    | Average | VERTICAL  |

## Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) =  $20 \log Emission level (uV/m)$ .

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Page No. : 13 of 24 Issued Date : Aug. 15, 2016

### 4.2. Emissions Measurement

### 4.2.1. Limit

30dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

|             | · · · · · · · · · · · · · · · · · · · |                      |
|-------------|---------------------------------------|----------------------|
| Frequencies | Field Strength                        | Measurement Distance |
| (MHz)       | (micorvolts/meter)                    | (meters)             |
| 0.009~0.490 | 2400/F(kHz)                           | 300                  |
| 0.490~1.705 | 24000/F(kHz)                          | 30                   |
| 1.705~30.0  | 30                                    | 30                   |
| 30~88       | 100                                   | 3                    |
| 88~216      | 150                                   | 3                    |
| 216~960     | 200                                   | 3                    |
| Above 960   | 500                                   | 3                    |

## 4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

| Spectrum Parameter                                  | Setting                    |
|-----------------------------------------------------|----------------------------|
| Attenuation                                         | Auto                       |
| Span Frequency                                      | 100 MHz                    |
| RBW / VBW (Emission in restricted band)             | 1MHz / 3MHz for Peak,      |
|                                                     | 1MHz / 1/T for Average     |
| RBW / VBW (30dBc in any 100 kHz bandwidth emission) | 100 kHz / 300 kHz for Peak |

### 4.2.3. Test Procedures

For Radiated band edges Measurement:

The test procedure is the same as section 4.1.3.

For Radiated Out of Band Emission Measurement:

Test was performed in accordance with KDB558074 D01 v03r05 for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 section 11.0 Unwanted Emissions into Non-Restricted Frequency Bands Measurement Procedure.

Report Format Version: Rev. 01 Page No. : 14 of 24 FCC ID: VUIDPC3848V Issued Date : Aug. 15, 2016



## 4.2.4. Test Setup Layout

## For Radiated band edges Measurement:

This test setup layout is the same as that shown in section 4.1.4.

## For Radiated Out of Band Emission Measurement:

This test setup layout is the same as that shown in section 4.1.4.

### 4.2.5. Test Deviation

There is no deviation with the original standard.

## 4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: Rev. 01 Page No. : 15 of 24 FCC ID: VUIDPC3848V Issued Date : Aug. 15, 2016





## 4.2.7. Test Result of Band Edge and Fundamental Emissions

| Temperature   | Temperature 24°C Humid |                | 62%                         |  |  |
|---------------|------------------------|----------------|-----------------------------|--|--|
| Test Engineer | Owen Hsu               | Configurations | IEEE 802.11b CH 6 /         |  |  |
| Test Engineer | Owen had               | Configurations | Chain 1 + Chain 2 + Chain 3 |  |  |
| Test Date     | Jul. 18, 2016          |                |                             |  |  |

## Channel 6

|   |   | Freq    | Level  | Limit<br>Line | Over<br>Limit |       |      |       | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase  |
|---|---|---------|--------|---------------|---------------|-------|------|-------|------------------|-------|-------|---------|------------|
|   |   | MHz     | dBuV/m | dBuV/m        | dB            | dBuV  | dB   | dB/m  | dB               | cm    | deg   |         |            |
| 1 |   | 2389.00 | 61.13  | 74.00         | -12.87        | 29.75 | 4.33 | 27.05 | 0.00             | 260   | 76    | Peak    | HORIZONTAL |
| 2 |   | 2390.00 | 52.97  | 54.00         | -1.03         | 21.59 | 4.33 | 27.05 | 0.00             | 260   | 76    | Average | HORIZONTAL |
| 3 | 0 | 2434.60 | 118.51 |               |               | 86.98 | 4.37 | 27.16 | 0.00             | 260   | 76    | Peak    | HORIZONTAL |
| 4 | 0 | 2435.40 | 115.07 |               |               | 83.54 | 4.37 | 27.16 | 0.00             | 260   | 76    | Average | HORIZONTAL |
| 5 |   | 2483.80 | 52.98  | 54.00         | -1.02         | 21.29 | 4.42 | 27.27 | 0.00             | 260   | 76    | Average | HORIZONTAL |
| 6 |   | 2485.00 | 63.27  | 74.00         | -10.73        | 31.58 | 4.42 | 27.27 | 0.00             | 260   | 76    | Peak    | HORIZONTAL |

Item 3, 4 are the fundamental frequency at 2437 MHz.

Page No. : 16 of 24 Issued Date : Aug. 15, 2016

| Temperature   | <b>24</b> °C  | Humidity       | 62%                           |  |  |
|---------------|---------------|----------------|-------------------------------|--|--|
| Test Engineer | Owen Hsu      | Configurations | IEEE 802.11n MCS0 HT40 CH 6 / |  |  |
| <b>3</b>      |               |                | Chain 1 + Chain 2 + Chain 3   |  |  |
| Test Date     | Jul. 18, 2016 |                |                               |  |  |

### Channel 6

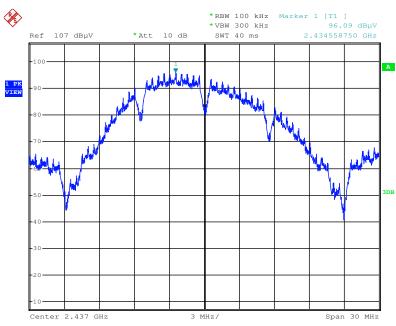
|     | Freq    | Level  | Limit<br>Line | Over<br>Limit | Read<br>Level |      |       | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase  |
|-----|---------|--------|---------------|---------------|---------------|------|-------|------------------|-------|-------|---------|------------|
| -   | MHz     | dBuV/m | dBuV/m        | dB            | dBuV          | dB   | dB/m  | dB               | cm    | deg   |         |            |
| 1   | 2384.80 | 67.87  | 74.00         | -6.13         | 36.49         | 4.33 | 27.05 | 0.00             | 271   | 66    | Peak    | HORIZONTAL |
| 2   | 2390.00 | 53.13  | 54.00         | -0.87         | 21.75         | 4.33 | 27.05 | 0.00             | 271   | 66    | Average | HORIZONTAL |
| 3 0 | 2444.80 | 111.97 |               |               | 80.41         | 4.38 | 27.18 | 0.00             | 271   | 66    | Peak    | HORIZONTAL |
| 4 0 | 2450.80 | 102.42 |               |               | 70.84         | 4.39 | 27.19 | 0.00             | 271   | 66    | Average | HORIZONTAL |
| 5   | 2483.50 | 70.86  | 74.00         | -3.14         | 39.17         | 4.42 | 27.27 | 0.00             | 271   | 66    | Peak    | HORIZONTAL |
| 6   | 2485.00 | 52.41  | 54.00         | -1.59         | 20.72         | 4.42 | 27.27 | 0.00             | 271   | 66    | Average | HORIZONTAL |

Item 3, 4 are the fundamental frequency at 2437 MHz.

### Note:

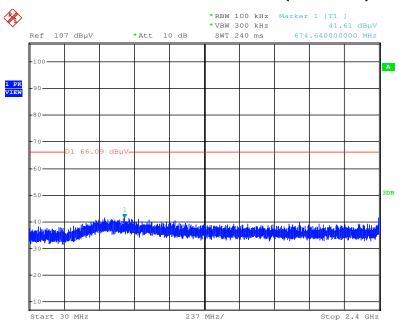
Emission level (dBuV/m) =  $20 \log Emission$  level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.


Page No. : 17 of 24

Issued Date : Aug. 15, 2016



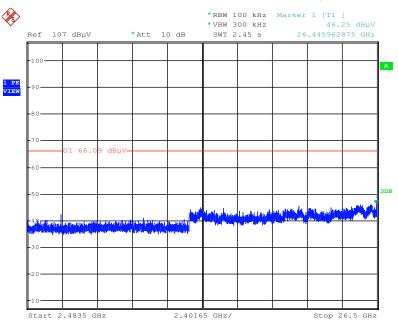



# For Emission not in Restricted Band Plot on Configuration IEEE 802.11b / Reference Level



Date: 18.JUL.2016 18:17:52

## Plot on Configuration IEEE 802.11b / CH 6 / 30MHz~2400MHz (down 30dBc)

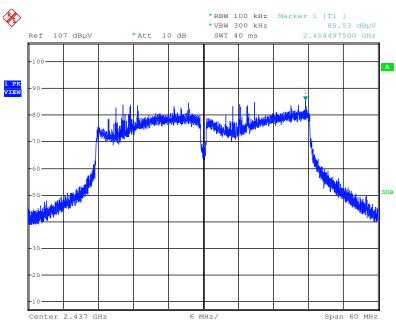



Date: 18.JUL.2016 18:20:25



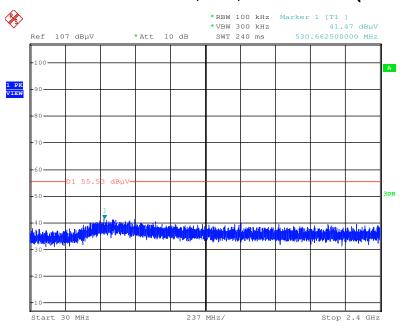


# Plot on Configuration IEEE 802.11b / CH 6 / 2483.5MHz $\sim$ 26500MHz (down 30dBc)




Date: 18.JUL.2016 18:22:06



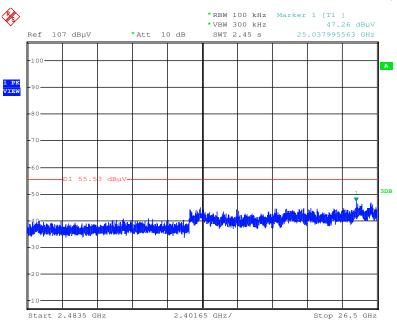



## Plot on Configuration IEEE 802.11n MCS0 HT40 / Reference Level



Date: 18.JUL.2016 19:29:29

## Plot on Configuration IEEE 802.11n MCS0 HT40 / CH 6 / 30MHz~2400MHz (down 30dBc)




Date: 18.JUL.2016 19:38:31





## Plot on Configuration IEEE 802.11n MCS0 HT40 / CH 6 / 2483.5MHz~26500MHz (down 30dBc)



Date: 18.JUL.2016 19:38:12

Issued Date : Aug. 15, 2016



## 4.3. Antenna Requirements

#### 4.3.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

### 4.3.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

Report Format Version: Rev. 01 Page No. : 22 of 24 FCC ID: VUIDPC3848V Issued Date : Aug. 15, 2016



# 5. LIST OF MEASURING EQUIPMENTS

| Instrument        | Manufacturer | Model No.        | Serial No.  | Characteristics | Calibration<br>Date | Remark                   |
|-------------------|--------------|------------------|-------------|-----------------|---------------------|--------------------------|
| Horn Antenna      | EMCO         | 3115             | 00075790    | 750MHz ~ 18GHz  | Oct. 22, 2015       | Radiation<br>(03CH01-CB) |
| Horn Antenna      | Schwarzbeck  | BBHA 9170        | BBHA9170252 | 15GHz ~ 40GHz   | Jul. 21, 2015       | Radiation<br>(03CH01-CB) |
| Pre-Amplifier     | Agilent      | 8449B            | 3008A02310  | 1GHz ~ 26.5GHz  | Jan. 18, 2016       | Radiation<br>(03CH01-CB) |
| Spectrum Analyzer | R&S          | FSP40            | 100056      | 9kHz ~ 40GHz    | Oct. 27, 2015       | Radiation<br>(03CH01-CB) |
| RF Cable-high     | Woken        | High Cable-16    | N/A         | 1 GHz ~ 18 GHz  | Nov. 02, 2015       | Radiation<br>(03CH01-CB) |
| RF Cable-high     | Woken        | High Cable-17    | N/A         | 1 GHz ~ 18 GHz  | Nov. 02, 2015       | Radiation<br>(03CH01-CB) |
| RF Cable-high     | Woken        | High Cable-40G-1 | N/A         | 18GHz ~ 40 GHz  | Nov. 02, 2015       | Radiation<br>(03CH01-CB) |
| RF Cable-high     | Woken        | High Cable-40G-2 | N/A         | 18GHz ~ 40 GHz  | Nov. 02, 2015       | Radiation<br>(03CH01-CB) |
| Test Software     | Audix        | E3               | 6.2009-10-7 | N/A             | N/A                 | Radiation<br>(03CH01-CB) |

Note: Calibration Interval of instruments listed above is one year.

Page No. : 23 of 24 Issued Date : Aug. 15, 2016



# 6. MEASUREMENT UNCERTAINTY

| Test Items                             | Uncertainty | Remark                   |
|----------------------------------------|-------------|--------------------------|
| Radiated Emission (1GHz $\sim$ 18GHz)  | 3.7 dB      | Confidence levels of 95% |
| Radiated Emission (18GHz $\sim$ 40GHz) | 3.5 dB      | Confidence levels of 95% |

Report Format Version: Rev. 01 Page No. : 24 of 24 FCC ID: VUIDPC3848V Issued Date : Aug. 15, 2016