

Global United Technology Services Co., Ltd.

Report No.: GTS201807000146F06

FCC Report (NFC)

Applicant: Juniper Systems, Inc.

1132 W 1700 N, Logan Utahc 84321, United States **Address of Applicant:**

Manufacturer: Juniper Systems, Inc.

1132 W 1700 N, Logan Utahc 84321, United States Address of

Manufacturer:

Equipment Under Test (EUT)

Product Name: AGM X2 4G LTE Cellular Phone and Data Collector

AGM X2 Cedar CP3 Model No.:

Trade Mark: Cedar CP3

FCC ID: VSFCP3

FCC CFR Title 47 Part 15 Subpart C Section 15.225 **Applicable standards:**

Date of sample receipt: July 12, 2018

Date of Test: July 13, 2018-August 16, 2018

Date of report issued: August 17, 2018

Test Result: PASS *

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	August 17, 2018	Original

Prepared By:	Bill. Yvan	Date:	August 17, 2018
	Project Engineer		
Check By:	Andy wa	Date:	August 17, 2018
	Reviewer		

3 Contents

			Page
1	CO	VER PAGE	1
2	VEI	RSION	2
•			
3	CO	NTENTS	ა
4	TES	ST SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	4
5	GE	NERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST MODE	
	5.3	DESCRIPTION OF SUPPORT UNITS	6
	5.4	TEST FACILITY	
	5.5	TEST LOCATION	6
6	TES	ST INSTRUMENTS LIST	7
7	TES	ST RESULTS AND MEASUREMENT DATA	9
	7.1	ANTENNA REQUIREMENT:	9
	7.2	CONDUCTED EMISSIONS	
	7.3	FIELD STRENGTH OF FUNDAMENTAL EMISSIONS AND MASK MEASUREMENT	
	7.4	RADIATED EMISSION	
	7.5	20DB EMISSION BANDWIDTH	
	7.6	FREQUENCY STABILITY MEASUREMENT	21
8	TES	ST SETUP PHOTO	23
9	EU.	T CONSTRUCTIONAL DETAILS	24

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	Pass
Field Strength of Fundamental Emissions and Mask Measurement	15.225(a)(b)(c)	Pass
Radiated Emission	15.225(d)&15.209	Pass
20dB Emission Bandwidth	15.225&15.215	Pass
Frequency Stability Measurement	15.225(e)	Pass

Remark:

Pass: The EUT complies with the essential requirements in the standard.

4.1 Measurement Uncertainty

Took Itom	Francis Dange	Management III and the inter	Natas		
Test Item	Frequency Range	Measurement Uncertainty	Notes		
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)		
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)		
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)		
AC Power Line Conducted Emission 0.15MHz ~ 30MHz ± 3.45dB (1)					
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.		

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5 General Information

5.1 General Description of EUT

Product Name:	AGM X2 4G LTE Cellular Phone and Data Collector
Model No.:	AGM X2 Cedar CP3
Serial No.:	477cc6f
Test sample(s) ID:	GTS201807000146-1
Sample(s) Status	Engineered sample
Hardware version:	LA862T_MB_V1.00
Software version:	L1372.6.01.03.EU00
Operation Frequency:	13.56MHz
Channel Number:	1
Modulation:	ASK
Antenna type:	PIFA antenna
Antenna gain:	-0.5dBi(Max)
Power supply:	Adapter: Model:ES019-U120150XYF Input: AC100-240V, 50/60Hz, 0.6A Output: DC 5V, 2A or DC 9.0V, 2A or DC 12V, 1.5A
	(Note: DC 5V, 2A/ DC 9V,2A/ DC 12V,1.5A has a test, The test report reflects only DC 5V, 2A worst test data.) Battery: DC 3.8V, 6000mAh, 22.8Wh

5.2 Test mode

Transmitter mode	Keep the EUT in continuously transmitting.

Pre-test mode.

GTS has verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows:

Axis	X	Y	Z
Field Strength(dBuV/m)	56.82	57.39	57.11

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup": Y axis (see the test setup photo)

5.3 Description of Support Units

None.

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383, January 08, 2018.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

6 Test Instruments list

Rad	Radiated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 27 2018	June. 26 2019
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 27 2018	June. 26 2019
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 27 2018	June. 26 2019
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 27 2018	June. 26 2019
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 27 2018	June. 26 2019
9	Coaxial Cable	GTS	N/A	GTS211	June. 27 2018	June. 26 2019
10	Coaxial cable	GTS	N/A	GTS210	June. 27 2018	June. 26 2019
11	Coaxial Cable	GTS	N/A	GTS212	June. 27 2018	June. 26 2019
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 27 2018	June. 26 2019
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 27 2018	June. 26 2019
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 27 2018	June. 26 2019
15	Band filter	Amindeon	82346	GTS219	June. 27 2018	June. 26 2019
16	Power Meter	Anritsu	ML2495A	GTS540	June. 27 2018	June. 26 2019
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 27 2018	June. 26 2019
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 27 2018	June. 26 2019
19	Splitter	Agilent	11636B	GTS237	June. 27 2018	June. 26 2019
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 27 2018	June. 26 2019

Cond	Conducted Emission					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May.15 2019
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 27 2018	June. 26 2019
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 27 2018	June. 26 2019
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
7	Thermo meter	KTJ	TA328	GTS233	June. 27 2018	June. 26 2019
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 27 2018	June. 26 2019

Gene	General used equipment:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1 1 1 -	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 27 2018	June. 26 2019
2	Barometer	ChangChun	DYM3	GTS255	June. 27 2018	June. 26 2019

7 Test results and Measurement Data

7.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The NFC antenna is PIFA antenna, the best case gain of the antenna is -0.5dBi

Xixiang Road, Baoan District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto			
Limit:	Frequency range (MHz)	Limit (c	lBuV)		
	, , ,	Quasi-peak	Average		
	0.15-0.5 0.5-5	66 to 56*	56 to 46*		
	5-30	56 60	46 50		
	* Decreases with the logarithm		30		
Test setup:	Reference Plane				
Test procedure:	AUX Equipment Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m				
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test voltage:	AC120V 60Hz				
Test results:	Pass				

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Measurement data:

Mode:Transmitting modeTest by:BillTemp./Hum.(%H):26 ℃/56%RHProbe:Line

Freq MHz	Reading level dBuV	LISN/ISN factor dB/m	Cable loss dB	Level dBuV	Limit level dBuV	Over limit dB	Remark
0.15	52.04	0.40	0.07	52.51	65.91	-13.40	QP
0.15	36.80	0.40	0.07	37.27	55.91	-18.64	Average
0.22	46.72	0.40	0.11	47.23	62.70	-15.47	QP
0.22	31.94	0.40	0.11	32.45	52.70	-20.25	Average
0.48	42.76	0.32	0.11	43.19	56.41	-13.22	QP
0.48	29.60	0.32	0.11	30.03	46.41	-16.38	Average
0.59	45.29	0.29	0.12	45.70	56.00	-10.30	QP
0.59	31.70	0.29	0.12	32.11	46.00	-13.89	Äverage
1.14	36.69	0.20	0.15	37.04	56.00	-18.96	QP
1.14	22.79	0.20	0.15	23.14	46.00	-22.86	Äverage
1.60	36.42	0.20	0.17	36.79	56.00	-19.21	QP
1.60	23.15	0.20	0.17	23.52	46.00	-22.48	Äverage

Mode: Temp./Hum.(%H):	Transmitting mode 26℃/56%RH		Test by: Probe:	Bill Neutral
80 Level (dBuV)				
70				
60				
50 NAVIEN	-5			
40 ₂	m Jant	and the standard of	1.44	Millauns
30		approver from the second state of the second state of the second	WINDS AND THE WAR	Market Ma
20	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	and the same		
10				
0				
-10 <mark>0.150.2</mark>		1 2		40
0.150.2	0.5	1 2 Frequency (MHz	5	10 20 30
- 1e		able Lim loss Level le dB dBuV dB	vel limit R	emark
0.15 34 0.22 43 0.22 28 0.49 44 0.49 35 0.61 41 0.61 28 0.91 32 0.91 31	4.90 0.40 0 3.26 0.40 0 8.08 0.40 0 4.42 0.32 0 5.13 0.32 0 1.21 0.28 0 8.81 0.28 0 2.74 0.21 0 1.14 0.21 0 2.12 0.20 0	.07 53.26 6507 35.37 5511 43.77 6211 28.59 5211 44.85 5611 35.56 4612 41.61 5612 29.21 4612 29.21 4614 33.09 5614 21.49 4617 32.49 5617 32.49 56.	74 -20.37 70 -18.93 70 -24.11 19 -11.34 19 -10.63 00 -14.39 00 -16.79 00 -22.91 00 -24.51 00 -23.51	QP Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

7.3 Field Strength of Fundamental Emissions and Mask Measurement

7.3 Field Strength of Fun Test Requirement:	Š							
Test Method:	ANSI C63.10:2013							
Test site:	Measurement Distance: 3m							
Receiver setup:		RBW=9KHz, VBW=30KHz, Sweep time=Auto						
limit:	Frequency (MHz)	Field Strength (microvolts/meter) at 30m	Field Strength (dBuV/m) at 3m					
	1.705~13.110	30	69.5					
	13.110~13.410	106	80.5					
	13.410~13.553	334	90.5					
	13.553~13.567	15848	124.0					
	13.567~13.710	334	90.5					
	13.710~14.010	106	80.5					
	14.010~30.000	30	69.5					
	Tum Table EUT < 1m > 4 Test Antenna Receiver Preamplifier							
Test Procedure:	the top of the turntab the loop receiving an meters far away from 2. Power on the EUT, the determine the position 3. The height of the receive ground to find the man and the man and the man and the measurement field stocomplete pulse train, train does not exceed transmitter operates the pulse train exceed the measurement field stocomplete pulse train and the measurement field stocomplete pulse train, train does not exceed transmitter operates the pulse train exceed the first form the	ccording to ANSI C63.4. The le 0.8 meter above ground. Itenna mounted antenna town the turntable. The turntable was rotated by on of the highest radiation. The teiving antenna was fixed at aximum emissions field streaming and pulsed operations and pulsed operations. The document of the highest are expressions and pulsed operations and pulsed operations and pulsed operations. As an alternation of longer than 0.1 seconds and 0.1 seconds and 0.1 seconds and old seconds, the measuathe average absolute voltages.	The phase center of wer was placed 3 360 degrees to t one meter above ength. measure QP reading. ed in terms of the ration is employed, the l by averaging over one s, as long as the pulse eative (provided the s) or in cases where used field strength shall					

	interval during which the field strength is at its maximum value.
	6. Compliance with the spectrum mask is tested using a spectrum analyzer with RB set to a 1KHz for the band 13.553~13.567MHz.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement data:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Remark
13.56	32.18	24.70	0.51	57.39	124.00	-66.61	QP

Xixiang Road, Baoan District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.4 Radiated Emission

7.4 Nadiated Elliission								
Test Requirement:	FCC Part15 C	FCC Part15 C Section 15.225(d) and 15.209						
Test Method:	ANSI C63.10: 2013							
Test Frequency Range:	9KHz to 1000M	9KHz to 1000MHz						
Test site:	Measurement [Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
	9kHz- 150kHz	Quasi-peak	200Hz	300Hz	Quasi-peak Value			
	150kHz- 30MHz	Quasi-peak	9kHz	10kHz	Quasi-peak Value			
	30MHz- 1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value			
Limit:			-		s specified in Section n in Table per Section			
	Frequenc	y (MHz)	Field strength (micorvolts/meter)		Measurement distance (meters)			
	0.009~0	0.490	2400/F(KHz)		300			
	0.490~1	0.490~1.705		(KHz)	30			
	1.705	~30	30		30			
	30~8	38	100		3			
	88~2	16	150		3			
	216~9	960	200 500		3			
	960~1	000			3			
Test setup:	Below 30MHz Turn To < 80cm	able+ EUT+	< 3m >		ica+			
	Above 30MHz							

Report No.: GTS201807000146F06 < 3m > Test Antenna < 1m 4m > EUT Tum Table Receiver-Preamplifier. Test Procedure: Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8meter above ground. The phase center of the loop receiving antenna mounted antenna tower was placed 3 meters far away from the turntable. Power on the EUT, the turntable was rotated by 360 degrees to determine the position of the highest radiation. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization. For each suspected emissions, the antenna tower was scan (from 1M to 4M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading. Set the test-receiver system to Peak or CISPR quasi-peak detect 5. function with specified bandwidth under maximum hold mode. When the radiated emissions limits are expressed in terms of the average value of the emissions and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. 7. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Test voltage: AC120V 60Hz Test results: **Pass**

Measurement data:

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o), the test result no need to reported.

Mode:Transmitting modeTest by:BillTemp./Hum.(%H):26℃/56%RHPolarziation:Horizontal

Mode: **Transmitting mode** Test by: Bill Vertical Temp./Hum.(%H): 26℃/56%RH Polarziation:

7.5 20dB Emission Bandwidth

Test Requirement:	FCC Part15 C Section 15.225 and 15.215				
Test Method:	ANSI C63.10:2013				
Limit:	N/A				
Test Procedure:	 According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. Set the EUT to proper test channel. Max hold the radiated emissions, mark the peak power frequency point and the -20dB upper and lower frequency points. Read 20dB bandwidth. 				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Measurement Data

Test frequency (MHz)	20dB bandwidth (KHz)	Result
13.56	3.243	Pass

Test plot as follows:

7.6 Frequency Stability Measurement

Test Requirement:	FCC Part15 C Section 15.225 (e)						
Test Method:	ANSI C63.10: 2013						
Receiver setup:	RBW=1KHz, VBW=1KHz, Sweep time=Auto						
Limit:	The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency						
	over a temperature variation of –20 degrees to +50 degrees C at normal supply voltage,						
	for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.						
	For battery operated equipment, the equipment tests shall be performed using a new battery.						
Test setup:							
	Spectrum Analyzer OVEN						
Test Procedure:	The transmitter output (antenna port) was connected to the spectrum analyzer.						
	EUT have transmitted absence of modulation signal and fixed channelize						
	Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.						
	4. Set RBW=1KHz, VBW=1KHz with peak detector and maxhold settings.						
	5. fc is declaring of channel frequency. Then the frequency error formula is (fc-f)/fc $\times 10^6$ ppm and the limit is less than ± 100 ppm.						
	6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value						
	7. Extreme temperature rule is -20°C ~50°C						
Test Instruments:	Refer to section 6.0 for details						
Toot made:	B ()						
Test mode:	Refer to section 5.2 for details						

Measurement data:

Reference Frequency: 13.56MHz								
Dower aupplied (\/de)	T(°C)	Frequer	ncy error	I instit	Result			
Power supplied (Vdc)	Temperature (℃)	Hz	%	Limit				
	-20	79	0.00058%		Pass			
	-10	74	0.00055%	+/- 0.01%				
	0	83	0.00061%					
	10	89	0.00066%					
3.80	20	75	0.00055%					
	30	68	0.00050%					
	40	85	0.00063%					
	50	62	0.00046%					

Reference Frequency: 13.56MHz								
Temperature (°C)	Power supplied (\/ds)	Freque	ncy error	- Limit	Result			
remperature (C)	Power supplied (Vdc)	Hz	ppm					
20	4.37	73	0.00054%	+/- 0.01%	Pass			
	3.80	77	0.00057%					
	3.23	79	0.00058%					

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

Reference to the test report No.: GTS201807000146F01

----- End -----