

Test report No. Page

No. : 11210169H-A : 1 of 19

Issued date FCC ID

: May 10, 2016 : CWTWB1G0125

RADIO TEST REPORT

Test Report No.: 11210169H-A

Applicant

: ALPS ELECTRIC CO., LTD.

Type of Equipment

TRANSMITTER, ELECTRICAL KEY

Model No.

: TWB1G0125

Test regulation

FCC Part 15 Subpart C: 2015

FCC ID

: **CWTWB1G0125**

Test Result

: Complied

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.
- 6. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)

Date of test:

April 18, 2016

Representative test engineer:

Ken Fujita

Engineer

Consumer Technology Division

Approved by:

Takashi Nakazawa

Leader

Consumer Technology Division

NVLAP LAB CODE: 200572-0

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://japan.ul.com/resources/emc accredited/

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone

: +81 596 24 8999

Facsimile

: +81 596 24 8124

Test report No. : 11210169H-A
Page : 2 of 19
Issued date : May 10, 2016
FCC ID : CWTWB1G0125

REVISION HISTORY

Original Test Report No.: 11210169H-A

Revision	Test report No.	Date	Page revised	Contents
- (Original)	11210169H-A	May 10, 2016	-	-

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11210169H-A
Page : 3 of 19
Issued date : May 10, 2016
FCC ID : CWTWB1G0125

CONTENTS PAGE SECTION 2: Equipment under test (E.U.T.) 4 SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious Emission) 9 APPENDIX 1: Test data ······ 11

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11210169H-A Test report No. Page : 4 of 19 **Issued date** : May 10, 2016 FCC ID : CWTWB1G0125

SECTION 1: Customer information

Company Name ALPS ELECTRIC CO., LTD.

Address 6-3-36, Nakazato, Furukawa, Osaki-city, Miyagi-pref., JAPAN

989-6181

+81-229-23-5111 Telephone Number Facsimile Number +81-229-23-5129 Contact Person Yasuhiro Yabe

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment TRANSMITTER, ELECTRICAL KEY

Model No. TWB1G0125 Serial No. Refer to Clause 4.2

Rating DC 3.0V Receipt Date of Sample April 11, 2016

Country of Mass-production China

Engineering prototype Condition of EUT

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT No Modification by the test lab

2.2 **Product Description**

Model No: TWB1G0125 (referred to as the EUT in this report) is the TRANSMITTER, ELECTRICAL KEY.

General Specification

Clock frequency(ies) in the system 13.08148 MHz (Crystal), 2MHz (CPU)

Radio Specification

Radio Type Transceiver Frequency of Operation 433.92 MHz Modulation **FSK**

Antenna type Internal Antenna Method of Frequency Generation Crystal + PLL IC Operating temperature range -20 to +60 deg. C

Radio Type Receiver Frequency of Operation 125 kHz

The differences of these types are as follows;

The number of components

Top cover (Plastic) and Number of knob switches (Plastic).

They are completely identical in radio characteristics.

Therefore the test was performed with the representative 4 switches type which was the worst one.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Model No.: TWB1G0125 has variation types (2 switches, 3 switches, 4 switches, and 5 switches).

Test report No. : 11210169H-A
Page : 5 of 19
Issued date : May 10, 2016
FCC ID : CWTWB1G0125

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C: 2015, final revised on November 23, 2015

*Some parts are effective on and after December 17, 2015 or December 23, 2015.

The revision does not affect the test specification applied to the EUT.

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.231 Periodic operation in the band 40.66 - 40.70MHz

and above 70MHz

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted emission	FCC: ANSI C63.10:2013 6 Standard test methods	FCC: Section 15.207	-N/A	N/A *1)	
Conducted Chinssion	IC: RSS-Gen 8.8	IC: RSS-Gen 8.8	14/11	14/11 1)	
	FCC: ANSI C63.10:2013	FCC: Section			
Automatically Deactivate	6 Standard test methods	15.231(a)(1)	N/A	Complied	Radiated
-	IC: -	IC: RSS-210 A1.1.1			
Electric Field Strength	FCC: ANSI C63.10:2013 6 Standard test methods	FCC: Section 15.231(b)	4.8 dB 433.920 MHz Horizontal	Complied	Radiated
of Fundamental Emission	IC: RSS-Gen 6.12	IC: RSS-210 A1.1.2	PK with Duty factor	P	
Electric Field Strength	FCC: ANSI C63.10:2013 6 Standard test methods	FCC: Section 15.205 Section 15.209 Section 15.231(b)	2.2 dB 3905.280 MHz -Horizontal	Complied	Dodieted
of Spurious Emission	IC: RSS-Gen 6.13	IC: RSS-210 A1.1.2, 2.5.1 RSS-Gen 8.9	PK with Duty factor	Compiled	Radiated
-20dB Bandwidth	FCC: ANSI C63.10:2013 6 Standard test methods	FCC: Section 15.231(c)	N/A	Complied	Radiated
	IC: -	IC: Reference data			

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

*1) The test is not applicable since the EUT does not have AC Mains.

FCC Part 15.31 (e)

This test was performed with the New Battery (DC 3.0 V) during the tests. Therefore, the EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} The EUT complies with FCC Part 15 Subpart B: 2015, final revised on June 12, 2015 and effective July 13, 2015

Test report No. : 11210169H-A
Page : 6 of 19
Issued date : May 10, 2016
FCC ID : CWTWB1G0125

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99 % Occupied Bandwidth	IC: RSS-Gen 6.6	IC: RSS-210 A1.1.3	N/A	Complied	Radiated

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2.

Test distance	Radiated emission (<u>+</u> dB)
	9 kHz - 30 MHz
3m	3.8 dB
10m	3.7 dB

^{*}Measurement distance

	Radiated emission (Below 1GHz)					
Polarity	(3 m*)(<u>+</u> dB)	(10 m*)(<u>+</u> dB)			
1 oral ity	30 – 200 MHz	200 – 1000MHz	30 – 200 MHz	200 – 1000MHz		
Horizontal	4.9 dB	5.2 dB	4.9 dB	5.0 dB		
Vertical	4.6 dB	5.9 dB	5.0 dB	5.0 dB		

Radiated emission						
$(3 \text{ m}^*)(\underline{+}dB)$		$(1 \text{ m*})(\underline{+}\text{dB})$	$(0.5 \text{ m*})(\underline{+}dB)$	$(10 \text{ m*})(\underline{+}dB)$		
1 – 6GHz	6 – 18GHz	10 – 26.5 GHz	26.5 – 40GHz	1 -18 GHz		
5.0 dB	5.2 dB	5.1 dB	5.0 dB	5.2 dB		

^{*} Measurement distance

Radiated emission test(3 m)

The data listed in this report meets the limits unless the uncertainty is taken into consideration.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11210169H-A
Page : 7 of 19
Issued date : May 10, 2016
FCC ID : CWTWB1G0125

3.5 Test Location

UL Japan, Inc. Ise EMC Lab. *NVLAP Lab. code: 200572-0 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999 Facsimile: +81 596 24 8124

	IC Registration Number	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms
No.1 semi-anechoic chamber	2973C-1	19.2 x 11.2 x 7.7m	7.0 x 6.0m	No.1 Power source room
No.2 semi-anechoic chamber	2973C-2	7.5 x 5.8 x 5.2m	4.0 x 4.0m	-
No.3 semi-anechoic chamber	2973C-3	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.3 Preparation room
No.3 shielded room	-	4.0 x 6.0 x 2.7m	N/A	-
No.4 semi-anechoic chamber	2973C-4	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.4 Preparation room
No.4 shielded room	-	4.0 x 6.0 x 2.7m	N/A	-
No.5 semi-anechoic chamber	-	6.0 x 6.0 x 3.9m	6.0 x 6.0m	-
No.6 shielded room	-	4.0 x 4.5 x 2.7m	4.0 x 4.5 m	-
No.6 measurement room	-	4.75 x 5.4 x 3.0m	4.75 x 4.15 m	-
No.7 shielded room	-	4.7 x 7.5 x 2.7m	4.7 x 7.5m	-
No.8 measurement room	-	3.1 x 5.0 x 2.7m	N/A	-
No.9 measurement room	-	8.0 x 4.6 x 2.8m	2.4 x 2.4m	-
No.11 measurement room	-	6.2 x 4.7 x 3.0m	4.8 x 4.6m	-

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up.

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 11210169H-A

 Page
 : 8 of 19

 Issued date
 : May 10, 2016

 FCC ID
 : CWTWB1G0125

SECTION 4: Operation of E.U.T. during testing

4.1 Operating Modes

Test Item*	Mode			
Automatically Deactivate	Normal use mode			
Duty Cycle				
Electric Field Strength of Fundamental Emission	Continuous Transmitting mode (Tx)			
Electric Field Strength of Spurious Emission				
-20dB & 99% Occupied Bandwidth				
* The system was configured in typical fashion (as a customer would normally use it) for testing.				

4.2 Configuration and peripherals

A

Description of EUT

No	o. Item	Model number	Serial number	Manufacturer	Remarks
Α	TRANSMITTER,	TWB1G0125	16040803 *1)	ALPS ELECTRIC CO.,	EUT
	ELECTRICAL KEY		16040807 *2)	LTD.	

^{*1)} Used for Continuous Transmitting mode

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Test data was taken under worse case conditions.

^{*2)} Used for Normal use mode

Test report No. : 11210169H-A
Page : 9 of 19
Issued date : May 10, 2016
FCC ID : CWTWB1G0125

<u>SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious Emission)</u>

Test Procedure and conditions

[For below 1GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

Test was made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna was varied in height above the conducting ground plane to obtain the maximum signal strength. Photographs of the set up are shown in Appendix 3.

$[Transmitting\ mode]$

(Below 30 MHz)

The noise level was checked by moving a search-coil (Loop Antenna) close to the EUT.

(Above 30 MHz)

The Radiated Electric Field Strength has been measured on Semi anechoic chamber with a ground plane and at a distance of 3 m.

The measuring antenna height was varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization.

The radiated emission measurements were made with the following detector function of the test receiver / spectrum analyzer.

Test Antennas are used as below;

Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn

	From 9 kHz to 90 kHz and From 110 kHz to 150 kHz	From 90 kHz to 110 kHz	From 150 kHz to 490 kHz	From 490 kHz to 30 MHz	From 30 MHz to 1 GHz	Above 1 GHz
Detector Type	Peak	Peak	Peak	Peak	Peak and Peak with	Peak and Peak with
					Duty factor	Duty factor
IF	200 Hz	200 Hz	9.1 kHz	9.1 kHz	120 kHz	PK: S/A: RBW 1 MHz,
Bandwidth						VBW: 3 MHz

⁻ The carrier level (or, noise levels) was (or were) measured at each position of all three axes X, Y and Z, and the position that has the maximum noise was determined.

Noise levels of all the frequencies were measured at the position.

This EUT has two modes which mechanical key is inserted or not. The worst case was confirmed with and without mechanical key, as a result, the test without mechanical key was the worst case. Therefore the test without mechanical key was performed only.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The result is rounded off to the second decimal place, so some differences might be observed.

Test report No. : 11210169H-A
Page : 10 of 19
Issued date : May 10, 2016
FCC ID : CWTWB1G0125

Measurement range : 9 kHz - 4.4 GHz Test data : APPENDIX

Test result : Pass

SECTION 6: Automatically deactivate

Test Procedure

The measurement was performed with Electric field strength using a spectrum analyzer.

Test data : APPENDIX

Test result : Pass

SECTION 7: -20 dB and 99 % Occupied Bandwidth

Test Procedure

The test was measured with a spectrum analyzer using a test fixture.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used			
20 dB Bandwidth	300 kHz	3 kHz	9.1 kHz	Auto	Peak	Max Hold	Spectrum Analyzer			
99 % Occupied	Enough width to display	1 to 5 %	Three times	Auto	Peak *1)	Max Hold	Spectrum Analyzer			
Bandwidth	emission skirts	of OBW	of RBW		·	*1)				
±1\ T1	4 C 1 4 D 1	14 4 M T	*1) TI							

^{*1)} The measurement was performed with Peak detector, Max Hold since the duty cycle was not 100 %. Peak hold was applied as Worst-case measurement.

Teak note was applied as worst-ease measurement.

Test data : APPENDIX

Test result : Pass

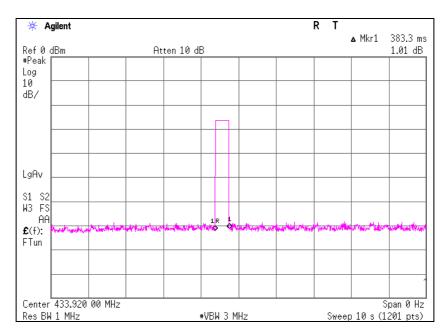
UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11210169H-A
Page : 11 of 19
Issued date : May 10, 2016
FCC ID : CWTWB1G0125

APPENDIX 1: Test data

Automatically deactivate


Test place Ise EMC Lab. No.4 Semi Anechoic Chamber

Report No. 11210169H Date April 18, 2016 Temperature / Humidity 23 deg. C / 41 % RH

Engineer Ken Fujita

Mode Normal use mode 433.92 MHz

Time of	Limit	Result
Transmitting		
[sec]	[sec]	
0.3833	5.00	Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11210169H-A Test report No. Page : 12 of 19 **Issued date** : May 10, 2016 FCC ID : CWTWB1G0125

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)

Test place Ise EMC Lab. No.4 and No.1 Semi Anechoic Chamber

Report No. 11210169H

Date April 18, 2016 April 18, 2016 Temperature / Humidity 23 deg. C / 41 % RH 23 deg. C / 45 % RH Engineer Ken Fujita Tomohisa Nakagawa (Below 1 GHz) (Above 1 GHz)

Mode Continuous Transmitting mode 433.92 MHz

PK

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	Inside or Outside
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	of Restricted Bands
433.920	PK	81.0	78.8	16.3	10.8	32.1	-	76.0	73.8	100.8	24.8	27.0	Carrier
867.840	PK	36.7	33.8	21.5	13.2	31.3	-	40.1	37.2	80.8	40.7	43.6	Outside
1301.760	PK	47.3	47.3	24.7	4.5	36.5	-	40.0	40.0	73.9	33.9	33.9	Inside
1735.680	PK	49.7	48.3	25.9	4.8	36.2	-	44.2	42.8	80.8	36.6	38.0	Outside
2169.600	PK	47.9	47.3	26.7	5.1	36.2	-	43.5	42.9	80.8	37.3	37.9	Outside
2603.520	PK	48.3	47.4	27.2	5.3	36.3	-	44.5	43.6	80.8	36.3	37.2	Outside
3037.440	PK	48.8	49.1	28.4	5.5	36.2	-	46.5	46.8	80.8	34.3	34.0	Outside
3471.360	PK	47.2	47.4	29.4	5.8	36.0	-	46.4	46.6	80.8	34.4	34.2	Outside
3905.280	PK	51.3	49.7	30.1	6.0	35.7	-	51.7	50.1	73.9	22.2	23.8	Inside
4339.200	PK	47.4	46.7	31.0	6.2	35.6	-	49.0	48.3	73.9	24.9	25.6	Inside

PK with Duty factor

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Margin		Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[dB]		
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	
433.920	PK	81.0	78.8	16.3	10.8	32.1	0.0	76.0	73.8	80.8	4.8	7.0	Carrier
867.840	PK	36.7	33.8	21.5	13.2	31.3	0.0	40.1	37.2	60.8	20.7	23.6	Outside
1301.760	PK	47.3	47.3	24.7	4.5	36.5	0.0	40.0	40.0	53.9	13.9	13.9	Inside
1735.680	PK	49.7	48.3	25.9	4.8	36.2	0.0	44.2	42.8	60.8	16.6	18.0	Outside
2169.600	PK	47.9	47.3	26.7	5.1	36.2	0.0	43.5	42.9	60.8	17.3	17.9	Outside
2603.520	PK	48.3	47.4	27.2	5.3	36.3	0.0	44.5	43.6	60.8	16.3	17.2	Outside
3037.440	PK	48.8	49.1	28.4	5.5	36.2	0.0	46.5	46.8	60.8	14.3	14.0	Outside
3471.360	PK	47.2	47.4	29.4	5.8	36.0	0.0	46.4	46.6	60.8	14.4	14.2	Outside
3905.280	PK	51.3	49.7	30.1	6.0	35.7	0.0	51.7	50.1	53.9	2.2	3.8	Inside
4339.200	PK	47.4	46.7	31.0	6.2	35.6	0.0	49.0	48.3	53.9	4.9	5.6	Inside

Sample calculation:

Result of PK = Reading + Ant Factor + Loss (Cable + Attenuator + Distance factor) - Gain (Amplifier)

Result of PK with Duty factor = Reading + Ant Factor + Loss (Cable + Attenuator + Distance factor) - Gain (Amplifier) + Duty factor (Refer to Duty factor data sheet)

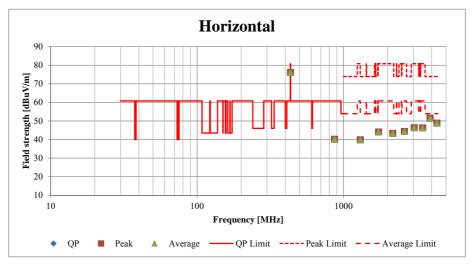
For above 1GHz: Distance Factor: $20 \times \log (4.0 \text{ m/}3.0 \text{ m}) = 2.50 \text{ dB}$

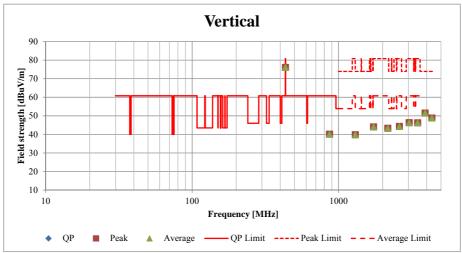
*Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11210169H-A
Page : 13 of 19
Issued date : May 10, 2016
FCC ID : CWTWB1G0125


Radiated Spurious Emission (Plot data, Worst case)


Test place Ise EMC Lab. No.4 and No.1 Semi Anechoic Chamber

Report No. 11210169H

Date April 18, 2016 April 18, 2016
Temperature / Humidity 23 deg. C / 41 % RH Engineer Ken Fujita April 18, 2016
23 deg. C / 45 % RH Tomohisa Nakagawa

(Below 1 GHz) (Above 1 GHz)
Mode Continuous Transmitting mode 433.92 MHz

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

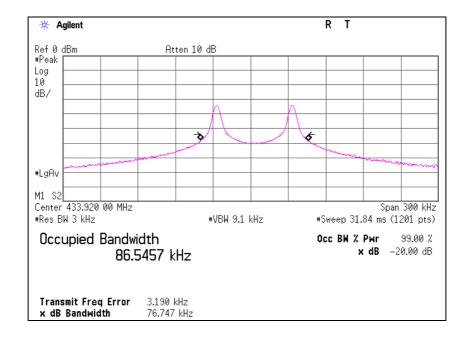
Test report No. : 11210169H-A
Page : 14 of 19
Issued date : May 10, 2016
FCC ID : CWTWB1G0125

-20dB and 99% Occupied Bandwidth

Test place Ise EMC Lab. No.4 Semi Anechoic Chamber

Report No. 11210169H Date 04/17/2016

Temperature/ Humidity 23 deg. C / 41 % RH


Engineer Ken Fujita

Mode Continuous Transmitting mode 433.92 MHz

Bandwidth Limit : Fundamental Frequency 433.92 MHz x 0.25% = 1084.80 kHz * The above limit was calculated from more stringent nominal frequency.

-20dB Bandwidth [kHz]	Bandwidth Limit [kHz]	Result
76.747	1084.80	Pass

99% Occupied Bandwidth	Bandwidth Limit	Result
[kHz]	[kHz]	
86.546	1084.80	Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 11210169H-A

 Page
 : 15 of 19

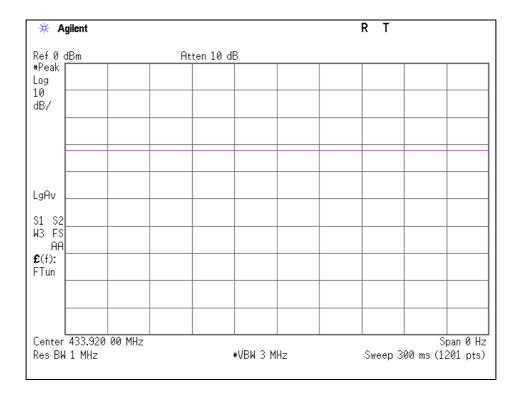
 Issued date
 : May 10, 2016

 FCC ID
 : CWTWB1G0125

Duty Cycle

Test place Ise EMC Lab. No.4 Semi Anechoic Chamber

Report No. 11210169H Date 04/17/2016


Temperature/ Humidity 23 deg. C / 41 % RH

Engineer Ken Fujita

Mode Normal use mode 433.92 MHz

ON time	Cycle	Duty	Duty		
[ms]	[ms]	(On time/Cycle)	[dB]		
300.000	300.00	1.0000	0.00		

^{*} Duty = 20log10(ON time/Cycle)

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11210169H-A
Page : 16 of 19
Issued date : May 10, 2016
FCC ID : CWTWB1G0125

APPENDIX 2: Test Instruments

EMI test equipment

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MAEC-04	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	RE	2015/10/02 * 12
MOS-15	Thermo-Hygrometer	Custom	CTH-180	1501	RE	2016/01/21 * 12
MJM-26	Measure	KOMELON	KMC-36	-	RE	-
COTS-MEMI	EMI measurement program	TSJ	TEPTO-DV	-	RE	-
MTR-10	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	RE	2016/01/29 * 12
MBA-05	Biconical Antenna	Schwarzbeck	BBA9106	1302	RE	2015/11/02 * 12
MLA-23	Logperiodic Antenna(200-1000MHz)	Schwarzbeck	VUSLP9111B	911B-192	RE	2016/01/30 * 12
MCC-50	Coaxial Cable	UL Japan	-	-	RE	2015/06/19 * 12
MAT-68	Attenuator	Anritsu	MP721B	6200961025	RE	2015/11/12 * 12
MPA-14	Pre Amplifier	SONOMA INSTRUMENT	310	260833	RE	2016/03/18 * 12
MMM-10	DIGITAL HITESTER	Hioki	3805	051201148	RE	2016/01/18 * 12
MSA-04	Spectrum Analyzer	Agilent	E4448A	US44300523	RE	2015/11/06 * 12
MAEC-01	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 10m	DA-06881	RE	2015/09/19 * 12
MOS-27	Thermo-Hygrometer	CUSTOM	CTH-201	A08Q26	RE	2016/01/21 * 12
MJM-25	Measure	KOMELON	KMC-36	-	RE	-
MHA-05	Horn Antenna 1-18GHz	Schwarzbeck	BBHA9120D	253	RE	2015/05/18 * 12
MPA-01	Pre Amplifier	Agilent	8449B	3008A01671	RE	2016/02/26 * 12
MCC-165	Microwave Cable	Junkosha	MWX221	1203S213(1m) / 1311S166(5m)	RE	2015/11/10 * 12
MMM-03	Digital Tester	Fluke	FLUKE 26-3	78030621	RE	2015/08/19 * 12
MRENT-127	Spectrum Analyzer	KEYSIGHT	N9030A	US51350215	RE	2015/11/02 * 12
MLPA-07	Loop Antenna	UL Japan	-	-	RE	Pre Check

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item:

RE: Radiated emission, 99 % Occupied Bandwidth, -20 dB bandwidth, Automatically deactivate and Duty cycle tests

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN