

Customer name: DiFluid

Project Name: DiFluid R2 Extract

Report time: 20220901 V1

Catalogue

- **○** Introduction to Project Commissioning
- **△** Report Version Summary
- **☐** Testing Environment
- Passive test data

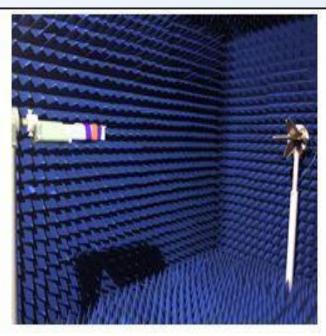
- Prototype test position
- **△** Additional Information

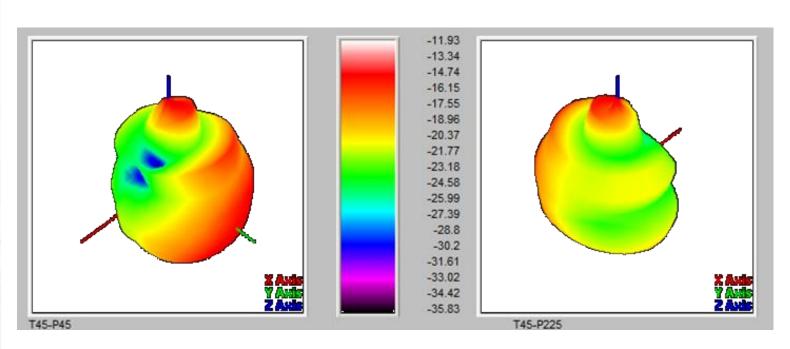
Introduction to Project Commissioning

Plate cut							
	main antenna	frequency band		State of the antenna	Antenna Type	Design area	Match the changes
Antenna profile							
	other antenna	2. 4G	2400-2500MHz				
	Environmental treatment						

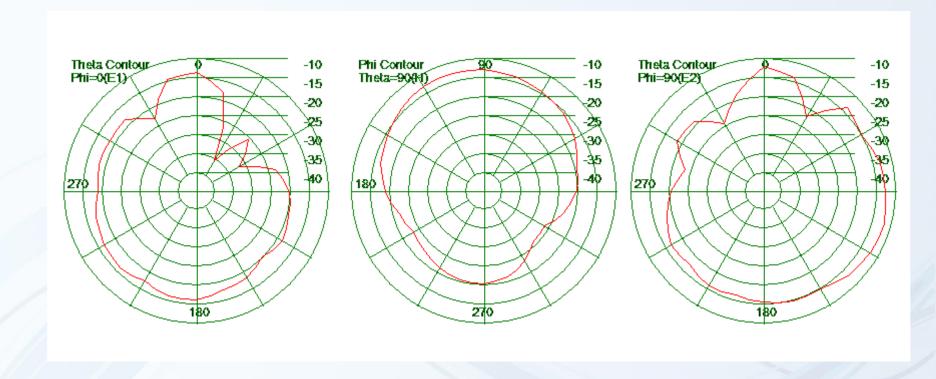
Report Version Summary

Version	Date	Contents summary
V1	20220901	Validation test report


Testing Environment



Passive test data


frequency	Gain(dBi)	Efficient(%)
2400	-11.54	2. 2
2410	-11. 48	2. 3
2420	-11. 49	2. 1
2430	-11.94	1.9
2440	-12. 09	1.8
2450	-11. 93	2. 0
2460	-11. 46	2. 1
2470	-11. 10	2. 2
2480	-10.84	2. 4
2490	-10. 34	2. 6
2500	-10.04	2.8

Radiation Pattern

Radiation Pattern Continued

Additional Information

△ Please carefully confirm whether the matching circuit mentioned in the report is modified, and whether the environmental processing is imported, which will directly affect the antenna performance.

△ The parameters provided in this report are only the parameters provided by the customer to our company for commissioning prototype, and do not represent the final mass production status of your company's final project.

△ If your company has the latest prototype in trial production or with updated status (replacing materials, updating software, changing environmental treatment, etc.), please submit it to our company for verification as soon as possible to confirm whether the antenna performance is affected.

△ If your company needs to send the machine to a third party for retest or to a customer for test, please be sure to send the machine to our company for test confirmation, because the consistency of the motherboard, the consistency of the assembly, the difference of the antenna assembly and other factors may lead to the deviation of the antenna parameters.

