Calibration Laboratory of Schmid & Partner Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client SRTC-BJ (Auden) Certificate No: D4200V2-1013_Nov19 | Object | D4200V2 - SN:1013 | | | | |---|---|--|---|--| | Calibration procedure(s) | QA CAL-22.v4 Calibration Procedure for SAR Validation Sources between 3-6 GHz | | | | | Calibration date: | November 12, 20 | 019 | | | | The measurements and the uncert | aintles with confidence p | ional standards, which realize the physical un
robability are given on the following pages an
ry facility: environment temperature (22 \pm 3)°(| d are part of the certificate. | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | | Power meter NRP | SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | | Power sensor NRP-Z91 | SN: 103244 | 03-Apr-19 (No. 217-02892) | Apr-20 | | | | | | | | | | SN: 103245 | 03-Apr-19 (No. 217-02893) | Apr-20 | | | Power sensor NRP-Z91 | SN: 103245
SN: 5058 (20k) | 03-Apr-19 (No. 217-02893)
04-Apr-19 (No. 217-02894) | Apr-20
Apr-20 | | | Power sensor NRP-Z91
Reference 20 dB Attenuator | | 마리 가지 않는데 이번 전 가게 되었다. 그리고 아무리 가장 그리고 있습니다. | | | | Power sensor NRP-Z91
Reference 20 dB Attenuator
Type-N mismatch combination | SN: 5058 (20k) | 04-Apr-19 (No. 217-02894) | Apr-20 | | | Power sensor NRP-Z91
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe EX3DV4 | SN: 5058 (20k)
SN: 5047.2 / 06327 | 04-Apr-19 (No. 217-02894)
04-Apr-19 (No. 217-02895) | Apr-20
Apr-20 | | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 3503
SN: 601 | 04-Apr-19 (No. 217-02894)
04-Apr-19 (No. 217-02895)
25-Mar-19 (No. EX3-3503_Mar19)
30-Apr-19 (No. DAE4-601_Apr19) | Apr-20
Apr-20
Mar-20 | | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 3503 | 04-Apr-19 (No. 217-02894)
04-Apr-19 (No. 217-02895)
25-Mar-19 (No. EX3-3503_Mar19)
30-Apr-19 (No. DAE4-601_Apr19)
Check Date (in house) | Apr-20
Apr-20
Mar-20
Apr-20 | | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 3503
SN: 601 | 04-Apr-19 (No. 217-02894)
04-Apr-19 (No. 217-02895)
25-Mar-19 (No. EX3-3503_Mar19)
30-Apr-19 (No. DAE4-601_Apr19) | Apr-20
Apr-20
Mar-20
Apr-20
Scheduled Check | | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475 | 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 25-Mar-19 (No. EX3-3503_Mar19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) | Apr-20 Apr-20 Mar-20 Apr-20 Scheduled Check In house check: Oct-20 | | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A | SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783 | 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 25-Mar-19 (No. EX3-3503_Mar19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (in house) 30-Oct-14 (in house check Feb-19) | Apr-20 Apr-20 Mar-20 Apr-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 | | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317 | 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 25-Mar-19 (No. EX3-3503_Mar19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) | Apr-20 Apr-20 Mar-20 Apr-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477 | 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 25-Mar-19 (No. EX3-3503_Mar19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) | Apr-20 Apr-20 Mar-20 Apr-20 Scheduled Check In house check: Oct-20 | | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name | 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 25-Mar-19 (No. EX3-3503_Mar19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) | Apr-20 Apr-20 Mar-20 Apr-20 Scheduled Check In house check: Oct-20 | | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477 | 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 25-Mar-19 (No. EX3-3503_Mar19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) | Apr-20 Apr-20 Mar-20 Apr-20 Scheduled Check In house check: Oct-20 | | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by: | SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292763 SN: MY41092317 SN: 100972 SN: US41080477 Name Jeton Kastrati | 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 25-Mar-19 (No. EX3-3503_Mar19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) Function Laboratory Technician | Apr-20 Apr-20 Mar-20 Apr-20 Scheduled Check In house check: Oct-20 | | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name | 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 25-Mar-19 (No. EX3-3503_Mar19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) | Apr-20 Apr-20 Mar-20 Apr-20 Scheduled Check In house check: Oct-20 | | ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service sulsse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or
not measured ### Calibration is Performed According to the Following Standards: - IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - EC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D4200V2-1013_Nov19 Page 2 of 6 Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.3 | |------------------------------|------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 4300 MHz ± 1 MHz | | # Head TSL parameters at 4300 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.0 | 3.73 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.1 ± 6 % | 3.57 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 4300 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.80 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 67.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.32 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.1 W/kg ± 19.5 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL at 4300 MHz | Impedance, transformed to feed point | 52.1 Ω - 1.6 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 31.7 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.112 ns | |----------------------------------|----------| | | 11112110 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| ### **DASY5 Validation Report for Head TSL** Date: 12.11.2019 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 4200 MHz; Type: D4200V2; Serial: D4200V2 - SN:1013 Communication System: UID 0 - CW; Frequency: 4200 MHz, Frequency: 4300 MHz Medium parameters used: f = 4300 MHz; $\sigma = 3.57$ S/m; $\epsilon_r = 36.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(6.75, 6.75, 6.75) @ 4300 MHz; Calibrated: 25.03.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - · Electronics: DAE4 Sn601; Calibrated: 30.04.2019 - · Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) ## Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=4300MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.49 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 19.8 W/kg ## SAR(1 g) = 6.8 W/kg; SAR(10 g) = 2.32 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 73.8% Maximum value of SAR (measured) = 13.6 W/kg 0 dB = 13.6 W/kg = 11.34 dBW/kg ### Impedance Measurement Plot for Head TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Accreditation No.: SCS 0108 S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client SRTC-BJ (Auden) Certificate No: D4600V2-1033 Nov19 ### CALIBRATION CERTIFICATE Object D4600V2 - SN:1033 Calibration procedure(s) QA CAL-22.v4 Calibration Procedure for SAR Validation Sources between 3-6 GHz Calibration date: November 12, 2019 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 03-Apr-19 (No. 217-02892/02893) Apr-20 Power sensor NRP-Z91 SN: 103244 03-Apr-19 (No. 217-02892) Apr-20 Power sensor NRP-Z91 SN: 103245 03-Apr-19 (No. 217-02893) Apr-20 Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-19 (No. 217-02894) Apr-20 Type-N mismatch combination SN: 5047.2 / 06327 04-Apr-19 (No. 217-02895) Apr-20 Reference Probe EX3DV4 SN: 3503 25-Mar-19 (No. EX3-3503_Mar19) Mar-20 SN: 601 DAE4 30-Apr-19 (No. DAE4-601_Apr19) Apr-20 Secondary Standards Check Date (in house) Scheduled Check Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Feb-19) In house check: Oct-20 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-18) In house check: Oct-20 Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-18) In house check: Oct-20 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-18) In house check: Oct-20 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-19) In house check: Oct-20 Function Calibrated by: Leif Klysner Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: November 12, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in
close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### Measurement Conditions | DASY Version | DASY5 | V52.10.3 | |------------------------------|--------------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 4500 MHz ± 1 MHz
4700 MHz ± 1 MHz | | # Head TSL parameters at 4500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.7 | 4.04 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.8 ± 6 % | 3.76 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 4500 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.93 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 69.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.6 W/kg ± 19.5 % (k=2) | ### Head TSL parameters at 4700 MHz | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.6 | 4.14 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.6 ± 6 % | 3.95 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 4700 MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.83 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 68.0 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.22 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.0 W/kg ± 19.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL at 4500 MHz | Impedance, transformed to feed point | 46.4 Ω - 4.5 Ω | | |--------------------------------------|-----------------|--| | Return Loss | - 24.5 dB | | ### Antenna Parameters with Head TSL at 4700 MHz | Impedance, transformed to feed point | 55.9 Ω - 3.2 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.0 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.108 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| ### **DASY5 Validation Report for Head TSL** Date: 12.11.2019 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 4600 MHz; Type: D4600V2; Serial: D4600V2 - SN:1033 Communication System: UID 0 - CW; Frequency: 4500 MHz, Frequency: 4700 MHz Medium parameters used: f = 4500 MHz; σ = 3.76 S/m; ϵ_r = 35.8; ρ = 1000 kg/m³ , Medium parameters used: f = 4700 MHz; σ = 3.95 S/m; ϵ_r = 35.6; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(6.55, 6.55, 6.55) @ 4500 MHz, ConvF(6.25, 6.25, 6.25) @ 4700 MHz; Calibrated: 25.03.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 30.04.2019 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) ### Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm 4500/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.61 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 20.0 W/kg SAR(1 g) = 6.93 W/kg; SAR(10 g) = 2.28 W/kg Smallest distance from peaks to all points 3 dB below = 7.9 mm Ratio of SAR at M2 to SAR at M1 = 73.9% Maximum value of SAR (measured) = 14.0 W/kg ### Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm 4700/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.53 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 20.7 W/kg SAR(1 g) = 6.83 W/kg; SAR(10 g) = 2.22 W/kg Smallest distance from peaks to all points 3 dB below = 7.9 mm Ratio of SAR at M2 to SAR at M1 = 72.5% Maximum value of SAR (measured) = 14.2 W/kg 0 dB = 14.0 W/kg = 11.46 dBW/kg # Impedance Measurement Plot for Head TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S wiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client SRTC-BJ (Auden) Certificate No: D4900V2-1025 Nov19 | | FED THE STATE OF T | | | |--
--|--|--| | Object | D4900V2 - SN:1 | 025 | | | Calibration procedure(s) | QA CAL-22.v4
Calibration Proce | edure for SAR Validation Sources | s between 3-6 GHz | | Calibration date: | November 12, 20 | 019 | | | The measurements and the uncert | tainties with confidence particles with confidence particles. | tional standards, which realize the physical un
probability are given on the following pages ar
ony facility: environment temperature $(22 \pm 3)^{\circ}$ | nd are part of the certificate. | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | | | | | | ower meter NRP | SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | ower sensor NRP-Z91 | SN: 103244 | 03-Apr-19 (No. 217-02892) | Apr-20
Apr-20 | | ower sensor NRP-Z91
ower sensor NRP-Z91 | SN: 103244
SN: 103245 | 03-Apr-19 (No. 217-02892)
03-Apr-19 (No. 217-02893) | | | ower sensor NRP-Z91
lower sensor NRP-Z91
leference 20 dB Attenuator | SN: 103244
SN: 103245
SN: 5058 (20k) | 03-Apr-19 (No. 217-02892)
03-Apr-19 (No. 217-02893)
04-Apr-19 (No. 217-02894) | Apr-20 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327 | 03-Apr-19 (No. 217-02892)
03-Apr-19 (No. 217-02893)
04-Apr-19 (No. 217-02894)
04-Apr-19 (No. 217-02895) | Apr-20
Apr-20
Apr-20
Apr-20 | | ower sensor NRP-Z91 fower sensor NRP-Z91 deference 20 dB Attenuator ype-N mismatch combination deference Probe EX3DV4 | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 3503 | 03-Apr-19 (No. 217-02892)
03-Apr-19 (No. 217-02893)
04-Apr-19 (No. 217-02894)
04-Apr-19 (No. 217-02895)
25-Mar-19 (No. EX3-3503_Mar19) | Apr-20
Apr-20
Apr-20
Apr-20
Mar-20 | | ower sensor NRP-Z91 fower sensor NRP-Z91 deference 20 dB Attenuator ype-N mismatch combination deference Probe EX3DV4 | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327 | 03-Apr-19 (No. 217-02892)
03-Apr-19 (No. 217-02893)
04-Apr-19 (No. 217-02894)
04-Apr-19 (No. 217-02895) | Apr-20
Apr-20
Apr-20
Apr-20 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference 20 mismatch combination Reference Probe EX3DV4 RASA | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 3503
SN: 601 | 03-Apr-19 (No. 217-02892)
03-Apr-19 (No. 217-02893)
04-Apr-19 (No. 217-02894)
04-Apr-19 (No. 217-02895)
25-Mar-19 (No. EX3-3503_Mar19)
30-Apr-19 (No. DAE4-601_Apr19)
Check Date (in house) | Apr-20
Apr-20
Apr-20
Apr-20
Mar-20
Apr-20
Scheduled Check | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter E4419B | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475 | 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 25-Mar-19 (No. EX3-3503_Mar19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (in house) 30-Oct-14 (in house check Feb-19) | Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Scheduled Check In house check: Oct-20 | | ower sensor NRP-Z91 ower sensor NRP-Z91 ower sensor NRP-Z91 leference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter E4419B ower sensor HP 8481A | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783 | 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 25-Mar-19 (No. EX3-3503_Mar19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) | Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Mar-20 Apr-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter E4419B Rower sensor HP 8481A | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317 | 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 25-Mar-19 (No. EX3-3503_Mar19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) | Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Mar-20 Apr-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe EX3DV4 RAC4 Recondary Standards Rower meter E4419B Rower sensor HP 8481A Reference TR&S SMT-06 | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: WY41092317
SN: 100972 | 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. EX3-3503_Mar19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) | Apr-20 Apr-20 Apr-20 Apr-20 Mar-20 Apr-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe EX3DV4 RAC4 Recondary Standards Rower meter E4419B Rower sensor HP 8481A Reference TR&S SMT-06 | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317 | 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 25-Mar-19 (No. EX3-3503_Mar19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) | Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Mar-20 Apr-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Peference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 POWER STANDARD Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Retwork Analyzer Agilent E8358A | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477 | 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. EX3-3503_Mar19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) | Apr-20 Apr-20 Apr-20 Apr-20 Mar-20 Apr-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Peference 20 dB Attenuator Type-N mismatch combination Reference Probe
EX3DV4 Power Memory Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477 | 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 25-Mar-19 (No. EX3-3503_Mar19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) | Apr-20 Apr-20 Apr-20 Apr-20 Mar-20 Apr-20 Scheduled Check In house check: Oct-20 | ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ### Calibration is Performed According to the Following Standards: - IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - EC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D4900V2-1025_Nov19 Page 2 of 6 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.3 | |------------------------------|----------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 4900 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.3 | 4.35 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.3 ± 6 % | 4.15 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | ***** | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.07 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 70.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.23 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.1 W/kg ± 19.5 % (k=2) | ### Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.6 Ω - 5.2 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 25.7 dB | | ## General Antenna Parameters and Design | 1.091 ns | |----------| | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|-------|--| |-----------------|-------|--| ### **DASY5 Validation Report for Head TSL** Date: 12.11.2019 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 4900 MHz; Type: D4900V2; Serial: D4900V2 - SN:1025 Communication System: UID 0 - CW; Frequency: 4900 MHz Medium parameters used: f = 4900 MHz; $\sigma = 4.15 \text{ S/m}$; $\varepsilon_r = 35.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(6.05, 6.05, 6.05) @ 4900 MHz; Calibrated: 25.03.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 30.04.2019 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) ### Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm 4900/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.76 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 21.6 W/kg ### SAR(1 g) = 7.07 W/kg; SAR(10 g) = 2.23 W/kg Smallest distance from peaks to all points 3 dB below = 7.6 mm Ratio of SAR at M2 to SAR at M1 = 72.5% Maximum value of SAR (measured) = 14.9 W/kg 0 dB = 14.9 W/kg = 11.73 dBW/kg ### Impedance Measurement Plot for Head TSL In Collaboration with # CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn Client SRTC Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com **Certificate No:** Z20-60398 # **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN: 1079 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: October 10, 2020 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------|--|---| | 106276 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | 101369 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | SN 3617 | 30-Jan-20(SPEAG,No.EX3-3617_Jan20) | Jan-21 | | SN 771 | 10-Feb-20(CTTL-SPEAG,No.Z20-60017) | Feb-21 | | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | MY49071430 | 25-Feb-20 (CTTL, No.J20X00516) | Feb-21 | | MY46107873 | 10-Feb-20 (CTTL, No.J20X00515) | Feb-21 | | | 106276
101369
SN 3617
SN 771
ID#
MY49071430 | 106276 12-May-20 (CTTL, No.J20X02965) 101369 12-May-20 (CTTL, No.J20X02965) SN 3617 30-Jan-20(SPEAG,No.EX3-3617_Jan20) SN 771 10-Feb-20(CTTL-SPEAG,No.Z20-60017) ID# Cal Date(Calibrated by, Certificate No.) MY49071430 25-Feb-20 (CTTL, No.J20X00516) | Name **Function** Calibrated by: Zhao Jing **SAR Test Engineer** Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: October 22, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z20-60398 Page 1 of 10 Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable
or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz ### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z20-60398 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5200 MHz ± 1 MHz
5300 MHz ± 1 MHz
5500 MHz ± 1 MHz
5600 MHz ± 1 MHz
5800 MHz ± 1 MHz | | # Head TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.0 | 4.66 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.0 ± 6 % | 4.65 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | **** | *** | # SAR result with Head TSL at 5200 MHz | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |---|--------------------|-----------------------------------| | SAR measured | 100 mW input power | 7.59 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 75.9 W/kg ± 24.4 % (<i>k</i> =2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.14 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.4 W/kg ± 24.2 % (k=2) | Certificate No: Z20-60398 ### Head TSL parameters at 5300 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.76 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.8 ± 6 % | 4.76 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ### SAR result with Head TSL at 5300 MHz | 100000000000000000000000000000000000000 | | | |---|--------------------|-----------------------------------| | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 7.81 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 78.0 W/kg ± 24.4 % (<i>k</i> =2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.20 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.0 W/kg ± 24.2 % (k=2) | ### Head TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.6 | 4.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.4 ± 6 % | 4.97 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ### SAR result with Head TSL at 5500 MHz | Tresuit Will flead for at 6666 Mills | | | |--|--------------------|--------------------------| | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 8.24 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 82.3 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.31 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.1 W/kg ± 24.2 % (k=2) | Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.2 ± 6 % | 5.08 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | **** | ### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.01 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.0 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.26 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.6 W/kg ± 24.2 % (k=2) | # Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.0 ± 6 % | 5.28 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ## SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |--|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.86 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 78.5 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.20 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.9 W/kg ± 24.2 % (k=2) | ### Appendix (Additional assessments outside the scope of CNAS L0570) ### Antenna Parameters with Head TSL at 5200 MHz | Impedance, transformed to feed point | 50.2Ω - 10.0jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 20.0dB | | ### Antenna Parameters with Head TSL at 5300 MHz | Impedance, transformed to feed point | 47.2Ω - 7.33jΩ | |--------------------------------------|----------------| | Return Loss | - 21.9dB | ### Antenna Parameters with Head TSL at 5500 MHz | Impedance, transformed to feed point | 52.0Ω - 7.96jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 21.9dB | | ### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 55.7Ω - 3.78jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 23.8dB | | ### Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | 53.7Ω - 5.87jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 23.5dB | | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.069 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. Certificate No: Z20-60398 ## **Additional
EUT Data** | Manufactured by | SPEAG | |-----------------|-------| ### **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1079 Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Date: 10.10.2020 Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz, Medium parameters used: f = 5200 MHz; σ = 4.65 S/m; ϵ_r = 35.95; ρ = 1000 kg/m³, Medium parameters used: f = 5300 MHz; σ = 4.759 S/m; ϵ_r = 35.75; ρ = 1000 kg/m³, Medium parameters used: f = 5500 MHz; σ = 4.969 S/m; ϵ_r = 35.39; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 5.081 S/m; ϵ_r = 35.24; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 5.279 S/m; ϵ_r = 34.97; ρ = 1000 kg/m³, Phantom section: Center Section **DASY5 Configuration:** - Probe: EX3DV4 SN3617; ConvF(5.49, 5.49, 5.49) @ 5200 MHz; ConvF(5.29, 5.29, 5.29) @ 5300 MHz; ConvF(5.14, 5.14, 5.14) @ 5500 MHz; ConvF(4.99, 4.99, 4.99) @ 5600 MHz; ConvF(5, 5, 5) @ 5800 MHz; Calibrated: 2020-01-30 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2020-02-10 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) Dipole Calibration /Pin=100mW, d=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.85 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 30.9 W/kg SAR(1 g) = 7.59 W/kg; SAR(10 g) = 2.14 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 64.9% Maximum value of SAR (measured) = 18.7 W/kg Dipole Calibration /Pin=100mW, d=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.07 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 32.5 W/kg SAR(1 g) = 7.81 W/kg; SAR(10 g) = 2.2 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 64.2% Maximum value of SAR (measured) = 18.8 W/kg Certificate No: Z20-60398 Page 8 of 10 ### Dipole Calibration /Pin=100mW, d=10mm, f=5500 MHz/Zoom Scan. dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.06 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 36.1 W/kg SAR(1 g) = 8.24 W/kg; SAR(10 g) = 2.31 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 62.5% Maximum value of SAR (measured) = 19.9 W/kg ### Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.87 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 36.0 W/kg SAR(1 g) = 8.01 W/kg; SAR(10 g) = 2.26 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 61.7% Maximum value of SAR (measured) = 19.9 W/kg ### Dipole Calibration /Pin=100mW, d=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.36 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 37.0 W/kg SAR(1 g) = 7.86 W/kg; SAR(10 g) = 2.2 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 60.2% Maximum value of SAR (measured) = 19.3 W/kg 0 dB = 19.3 W/kg = 12.86 dBW/kg Certificate No: Z20-60398 Page 9 of 10 # Impedance Measurement Plot for Head TSL Client : SRTC Certificate No: Z20-60283 # CALIBRATION CERTIFICATE Object DAE4 - SN: 546 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: August 13, 2020 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------------------|---------|--|-----------------------| | Process Calibrator 753 | 1971018 | 16-Jun-20 (CTTL, No.J20X04342) | Jun-21 | | | | | | Calibrated by: Name **Function** Signature oundrated by Yu Zongying SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: August 15, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z20-60283 Page 1 of 3 Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. # Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: Z20-60283 Page 2 of 3 ## DC Voltage Measurement A/D - Converter Resolution nominal High Range: $1LSB = 6.1 \mu V$, full range = -100...+300 mVLow Range: 1LSB = 61 nV, full range = -1......+3 mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | х | Y | z | | |---------------------|-----------------------|-----------------------|-----------------------|--| | High Range | 405.353 ± 0.15% (k=2) | 404.098 ± 0.15% (k=2) | 404.231 ± 0.15% (k=2) | | | Low Range | 3.98611 ± 0.7% (k=2) | 3.95646 ± 0.7% (k=2) | 3.97797 ± 0.7% (k=2) | | ## **Connector Angle** | Connector Angle to be used in DASY system | 238° ± 1 ° | |---|------------| |---|------------| Certificate No: Z20-60283 Page 3 of 3 Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.chinattl.cn Client : SRTC Certificate No: Z20-60409 # **CALIBRATION CERTIFICATE** Object DAE4 - SN: 720 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: September 30, 2020 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------------------|---------|--|-----------------------| | Process Calibrator 753 | 1971018 | 16-Jun-20 (CTTL, No.J20X04342) | Jun-21 | | 72 U | | | | Name Function Signature Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: October 02, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z20-60409 Page 1 of 3 Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. # Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: Z20-60409 Page 2 of 3 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn ### **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = 6.1µV, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | х | Υ | Z | | | |---------------------|-----------------------|-----------------------|-----------------------|--|--| | High Range | 403.361 ± 0.15% (k=2) | 404.781 ± 0.15% (k=2) | 403.225 ± 0.15% (k=2) | | | | Low Range | 3.93507 ± 0.7% (k=2) | 3.95340 ± 0.7% (k=2) | 3.95542 ± 0.7% (k=2) | | | ## **Connector Angle** | Connector Angle to be used in DASY system | 294.5° ± 1 ° | |---|--------------| |---|--------------| Certificate No: Z20-60409 Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.chinattl.cn Client SRTC Certificate No: Z20-60284 ## CALIBRATION CERTIFICATE Object ES3DV3 - SN: 3127 Calibration Procedure(s) FF-Z11-004-02 Calibration Procedures for Dosimetric E-field Probes Calibration date: September 01, 2020 This
calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | | |-----------------------------|------------------|--|-----------------------|--|--| | Power Meter NRP2 | 101919 | 16-Jun-20(CTTL, No.J20X04344) | Jun-21 | | | | Power sensor NRP-Z91 101547 | | 16-Jun-20(CTTL, No.J20X04344) | Jun-21 | | | | | | 16-Jun-20(CTTL, No.J20X04344) | Jun-21 | | | | Reference 10dBAttenua | ator 18N50W-10dB | 10-Feb-20(CTTL, No.J20X00525) | Feb-22 | | | | Reference 20dBAttenua | ator 18N50W-20dB | 10-Feb-20(CTTL, No.J20X00526) | Feb-22 | | | | Reference Probe EX3D | V4 SN 7307 | 29-May-20(SPEAG, No.EX3-7307_May20 | D) May-21 | | | | DAE4 | SN 1556 | 4-Feb-20(SPEAG, No.DAE4-1556_Feb20 | 5) 5 | | | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | | | SignalGenerator MG37 | 00A 6201052605 | 23-Jun-20(CTTL, No.J20X04343) | Jun-21 | | | | Network Analyzer E507 | 1C MY46110673 | 10-Feb-20(CTTL, No.J20X00515) | Feb-21 | | | | | Name | Function | Signature | | | | Calibrated by: | Yu Zongying | SAR Test Engineer | Sound | | | | Reviewed by: Lin Hao | | SAR Test Engineer | 好格 | | | | Approved by: | Qi Dianyuan | SAR Project Leader | 200 | | | | | | | | | | Issued: September 03, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Glossary: TSL tissue simulating liquid sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A.B.C.D modulation dependent linearization parameters Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ=0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No:Z20-60284 # DASY/EASY - Parameters of Probe: ES3DV3 - SN:3127 ## **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |-------------------------|----------|----------|----------|-----------| | $Norm(\mu V/(V/m)^2)^A$ | 1.26 | 1.26 | 1.21 | ±10.0% | | DCP(mV) ^B | 103.4 | 103.8 | 104.9 | | # **Modulation Calibration Parameters** | UID | Communication
System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Unc ^E
(<i>k</i> =2) | |-----|------------------------------|---|---------|-----------|-----|---------|----------|------------------------------------| | 0 | CW | Х | 0.0 | 0.0 | 1.0 | 0.00 | 270.5 | ±2.2% | | | | Υ | 0.0 | 0.0 | 1.0 | | 275.5 | | | | | Z | 0.0 | 0.0 | 1.0 | | 276.8 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4). ^B Numerical linearization parameter: uncertainty not required. ^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. # DASY/EASY - Parameters of Probe: ES3DV3 - SN:3127 # Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(<i>k</i> =2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|-------------------------| | 750 | 41.9 | 0.89 | 6.32 | 6.32 | 6.32 | 0.50 | 1.37 | ±12.1% | | 835 | 41.5 | 0.90 | 6.16 | 6.16 | 6.16 | 0.47 | 1.42 | ±12.1% | | 1810 | 40.0 | 1.40 | 5.12 | 5.12 | 5.12 | 0.70 | 1.23 | ±12.1% | | 2000 | 40.0 | 1.40 | 5.03 | 5.03 | 5.03 | 0.62 | 1.32 | ±12.1% | | 2300 | 39.5 | 1.67 | 4.74 | 4.74 | 4.74 | 0.90 | 1.10 | ±12.1% | | 2450 | 39.2 | 1.80 | 4.58 | 4.58 | 4.58 | 0.90 | 1.09 | ±12.1% | | 2600 | 39.0 | 1.96 | 4.37 | 4.37 | 4.37 | 0.90 | 1.11 | ±12.1% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Http://www.chinattl.cn # Receiving Pattern (Φ), θ =0° # f=600 MHz, TEM # f=1800 MHz, R22 Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ±0.9% (k=2)