

Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 1 of 39

FCC Test Report

Applicant : Shenzhen Donghuaxing Technology Co., Ltd

6A016 Building C, No. 164 Pingxin North Road,

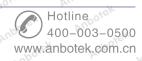
Address : Hehua Community, Pinghu Street, Longgang

District, Shenzhen, Guangdong, 518000, China

Product Name : Mini smartphone

Report Date : Jun. 17, 2024

Shenzhen Anbotek Compliance Laboratory Limited



Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 2 of 39

Contents

1. Gene	ral Information	nbotek Anl	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	br.	2000		AUD JEK		e _K
1.2	Client Information Description of Device	e (EUT)	otek	ν_{up_c}). h	Yar	,'oo'	P.L.	
1.3	Auxiliary Equipment	Used During 7	Test	.V	0 [†] 8 ^r	VUD.			70,
1.4	Operation channel li Description of Test N	st Modes	Kupo.	- ek	-107e/	AUPO!	24		
1.5	. Measurement Uncer	tainty	,k An		. Mar.	امر	0016		
1.7.	Measurement Uncer Test Summary Description of Test F	21. P.1.	, ek	W.poter	Anba	.; ₍ ,	- Spotek	- Moore	!
M1.10	0. Test Equipment Lis	t ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	⁷ UD01		le _K	/oc/		des X	:tel
2. Anten	Discialmer	, botek	Anbore	β Σι	woiek	Aupoter	Anbe		\19
2.1.	Conclusion	h. Hotek	Aupole	<i>Υ</i> ι		pobote	ik Wul	⁹ /	1
3. Cond	ucted Emission at AC EUT Operation Test Setup	power line	k Ant	ote.	AUR	ام.	otek	Yupo,	1
.3\1	EUT Operation	Le Vun	iek .	rupotek	Aupo.	ek K	potek	Aupore.	،. 1،
Anbo 3.2	Test Setup	pole" And	V		Anbo		7, 24e _F	KUPO46.	1
3.3	Test Data	vupotek b	6p0,	Pr.	ek An'	onte		k vup	, et
4. Occu	Test Setup Test Data pied Bandwidth EUT Operation Test Setup	- Apolok	- Pupoge	- Ans		anbotek		rek Fr.	1
4.1.	EUT Operation		Allpote	P.U.	-*&#</th><th>- abotel</th><th>dn4 And</th><th>0, b</th><th> 1</th></tr><tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><th>5 Mayir</th><th>num Conducted Outp EUT Operation Test Setup</th><th>ut Power</th><th>· e/·</th><th>abotek</th><th>Aupole</th><th>r Vien</th><th>-otek</th><th>Anboten</th><th> 1</th></tr><tr><th>5. Waxii</th><th>FUT Operation</th><th>potek OWCI</th><th>b</th><th>hotek</th><th>Anbore</th><th>P</th><th>Wek.</th><th>abotek</th><th>۱۰</th></tr><tr><td>5.1</td><td>. Test Setup</td><td>botek A</td><td>100kg</td><td>p.O.V</td><td>Y0</td><td>olok</td><td>Vigo.</td><td></td><td>2</td></tr><tr><td>5.3</td><td>Test Data</td><td>bu. Zolok</td><td>Allpoter</td><td>Anbo</td><td></td><td>botek</td><td></td><td>-_K</td><td>2</td></tr><tr><th>6. Chan</th><th>rest Setup Test Data nel Separation EUT Operation Test Setup</th><th>Aug Jick</th><th>eotek</th><th>And</th><th>0, 1</th><th>y,,</th><th>pob</th><th>ye. Ar</th><th> 2</th></tr><tr><th>6.1</th><th>EUT Operation</th><th>Aupo.</th><th></th><th>iek (</th><th>Mpore.</th><th>V.</th><th>,e.Y.</th><th>opotek</th><th>2</th></tr><tr><td>6.2</td><td>Test Setup</td><td>k kopore</td><td>Y V</td><td></td><td>Anbotek</td><td>Anb</td><td></td><td>botek</td><td> 2</td></tr><tr><td>bote 6.3</td><td>Test Data per of Hopping Freque</td><td>otek Anbot</td><td>.e</td><td>3P</td><td>, nbotel</td><td>P.</td><td>/o0````</td><td>- Ali hotek</td><td>2</td></tr><tr><td>7. Numb</td><td>per of Hopping Freque</td><td>encies</td><td>,001/2/</td><td>100°</td><td>F "10,</td><td>04.6A</td><td>Autore</td><td></td><td>2</td></tr><tr><th>7.1</th><th>EUT Operation</th><th>Npc Pk</th><th>yorodk</th><th></th><th>r Vu.</th><th>······································</th><th>Anbeten</th><th></th><th>2</th></tr><tr><td>7.2</td><td>. Test Setup . Test Data</td><td>Anbolt</td><td>**************************************</td><td>anb'</td><td>24.02.</td><td></td><td>700</td><td>iep. Vu</td><td>2</td></tr><tr><td>8 Dwell</td><td>Time k hotek</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td></tr><tr><td>20 2 11 2 11 2 11 2 11 2 11 2 11 2 11 2</td><td>FLIT Operation</td><td>k anbotek</td><td>Anb</td><td>.el</td><td>sbotek</td><td>Aupo</td><td>, E</td><td>, otek</td><td>2</td></tr><tr><td>8.2</td><td>Test Setup</td><td>¹,000,</td><td>sk Pu</td><td>/20°</td><td>, and the second</td><td>`</td><td>poter</td><td>VV_P</td><td> 2</td></tr><tr><td>8.3</td><td>Test Data</td><td>0, VII.</td><td>Ve/t</td><td>Nupoter.</td><td>Aug</td><td>*S#</td><td>~ Upotek</td><td>- Vupo,</td><td>2</td></tr><tr><td>9. Emiss</td><td>EUT Operation Test Setup Test Data EUT Operation EUT Operation Test Setup Test Data Sions in non-restricted EUT Operation EUT Operation</td><td>d frequency ba</td><td>inds</td><td>anbotek</td><td>Anbo</td><td></td><td>n.</td><td>Pupot</td><td> 2</td></tr><tr><td>9.1.</td><td>EUT Operation</td><td><u>unbotek</u></td><td>YUD.</td><td><u>.</u></td><td>iek N</td><td>por</td><td></td><td>ekyo</td><td>2</td></tr><tr><td>9.2</td><td>Test Setup</td><td>, upakek</td><td>- bupor</td><td>ν_K</td><td>100 (e)4</td><td>Antooten</td><td>AUD.</td><td>-tek</td><td> 2</td></tr><tr><td>93</td><td>resupata</td><td>Pot .</td><td></td><td>e:</td><td>N</td><td></td><td></td><td>vo.,</td><td>:: Z(</td></tr></tbody></table>				

Report No.: 18220WC40091001	FCC ID: 2BGA8-KING9000	Page 3 of 39
10. Band edge emissions (Radiated)	nabotek Anbore An	otek nbotek 2
10.1. EUT Operation 10.2. Test Setup 10.3. Test Data	Mipotek Vipous W	27
11. Emissions in frequency bands (below 1GHz) stek anbotek Anbotes	hotek Anbotek
11.1. EUT Operation	Andrew Andrew Andrew	
12. Emissions in frequency bands (above 1GHz	z)hibore	34
12.1. EUT Operation 12.2. Test Setup 12.3. Test Data	er Amotek Anborer	34
APPENDIX I TEST SETUP PHOTOGRAPH APPENDIX II EXTERNAL PHOTOGRAPH		

Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 4 of 39

TEST REPORT

Applicant : Shenzhen Donghuaxing Technology Co., Ltd

Manufacturer : Shenzhen Donghuaxing Technology Co., Ltd

Product Name : Mini smartphone

Test Model No. : KING 9000

KING 1000, KING 2000, KING 3000, KING 4000, KING 5000, KING 6000,

Reference Model No. KING 7000, KING 8000, S23 Ultra, S24 mini, S24 Ultra, S25 mini,

S25 Ultra, P60 PRO, P70 PRO, 15 SE, 15 PRO, 15 MAX, 16 SE, 16 PRO,

16 MAX, 17 SE, 17 PRO, 17 MAX

Trade Mark : SERVO

Rating(s) : Input: 5V= 1A(with DC 3.85V, 2000mAh battery inside)

47 CFR Part 15.247

Test Standard(s) : ANSI C63.10-2020

KDB 558074 D01 15.247 Meas Guidance v05r02

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt:	May 08, 2024
Anbotek Anbotek Anbotek	
Date of Test:	May 08, 2024 to Jun. 03, 2024
otek Anbotek Anbotek Anbotek Ar	Nian xiu Chen
Prepared By:	Anbo, K hotek Pupote, Vun
Anborek Anborek Anborek	(Nianxiu Chen)
Anbotek Anbotek Anbotek Anbotek	Idward pan
Approved & Authorized Signer:	Anbyles Anb
ak botek Anbor An	(Edward Pan)

Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 5 of 39

Revision History

	Report Version	Description	Issued Date
	Anbore R00 potek An	Original Issue.	Jun. 17, 2024
¿e	k Anborek Anborek	Anbotek Anbotek Anbotek	K Anbotek Anbotek Anb
(10	otek Anbotek Anbotek	Anbotek Anbotek Anbot	tek Anbotek Anbotek

Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 6 of 39

1. General Information

1.1. Client Information

V.7.1.		
Applicant	:	Shenzhen Donghuaxing Technology Co., Ltd
Address	:	6A016 Building C, No. 164 Pingxin North Road, Hehua Community, Pinghu Street, Longgang District, Shenzhen, Guangdong, 518000, China
Manufacturer	:	Shenzhen Donghuaxing Technology Co., Ltd
Address	:	6A016 Building C, No. 164 Pingxin North Road, Hehua Community, Pinghu Street, Longgang District, Shenzhen, Guangdong, 518000, China
Factory	:	Shenzhen Donghuaxing Technology Co., Ltd
Address	:	6A016 Building C, No. 164 Pingxin North Road, Hehua Community, Pinghu Street, Longgang District, Shenzhen, Guangdong, 518000, China

1.2. Description of Device (EUT)

18. VAD.		ok ho, by,
Product Name	:	Mini smartphone
Test Model No.	:	KING 9000
Reference Model No.	:	KING 1000, KING 2000, KING 3000, KING 4000, KING 5000, KING 6000, KING 7000, KING 8000, S23 Ultra, S24 mini, S24 Ultra, S25 mini, S25 Ultra, P60 PRO, P70 PRO,15 SE, 15 PRO, 15 MAX, 16 SE, 16 PRO, 16 MAX, 17 SE, 17 PRO, 17 MAX (Note: All samples are the same except the model number, so we prepare "KING 9000" for test only.)
Trade Mark	:	SERVO Anborek Anborek
Test Power Supply	:	DC 5V from Adapter input AC 120V/60Hz/ DC 3.85V Battery inside
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)
Adapter	:	N/A Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek
RF Specification		
Operation Frequency	:	2402MHz to 2480MHz
Number of Channel	:	79 ofek Anbotek Anbotek Anbotek Anbotek Anbotek
Modulation Type	:	GFSK, π/4 DQPSK, 8DPSK
Antenna Type	:	FPC Antenna
Antenna Gain(Peak)	:	2.41 dBi nootek Anbotek Anbotek Anbotek Anbotek
Romark:	by.	rk 10 get Vius

Remark:

- (1) All of the RF specification are provided by customer.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 7 of 39

1.3. Auxiliary Equipment Used During Test

Title Manufacturer		Model No.	Serial No.	
Xiaomi 33W adapter	Xiaomi	MDY-11-EX	SA62212LA04358J	

1.4. Operation channel list

Operation Band:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
Ootek Ootek	2402	20 rek	2422	40	2442	60	2462
1 botek	2403	21	2423	41	2443	61,0000	2463
2 2 bo	2404	22	2424	42 Anbo	2444	rek 62 Anbo	2464
3	bote 2405 And	23	2425	43 An	2445	,50 ^{4el} 63 A	2465
4	2406	24	2426	44	2446	64	2466
And 5	2407	Ant 25	2427	45	2447	65	2467
And Grek	2408	26	2428	46	2448	66	2468
7	2409	27. ^{nbox}	2429	47 Anbor	2449	ek 67 _{Amb} o	2469
8 And	2410 M	28 And	2430	otek 48 Ant	2450	68 N	2470
9 An	2411	100 ¹⁰ 29	2431	49	2451	69	2471
Anbort 10	2412	Anb 30	2432	50 ^k	2452	70	2472
An 91	2413	31	2433	510tek	2453	71 Dotek	2473
12	2414	32	2434	52 _{mb} ote	2454	72	2474
13Anbox	2415	ek 33 Anbo	2435	otek 53 Anb	2455 Andrew	73	2475 M
otek 14 Ank	2416	pote ^k 34 M	2436	54	2456	74	2476
nb ^{ot} 15	2417	10035	2437	55	2457	75 _k	2477
16	2418	36	2438	56	2458	An 76	2478
17° 10'	2419	37, otek	2439	57	2459	77	2479
18,000°	2420	38 _{Anb} ol	2440	58	2460	78	2480 M
stek 19 Anb	2421	39	2441 M	59	2461	Ole - Vill	Jek-

Hotline

www.anbotek.com.cn

400-003-0500

Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 8 of 39

1.5. Description of Test Modes

Pretest Modes	Descriptions			
Anborek TM1nboren A	Keep the EUT in continuously transmitting mode (non-hopping) with GFSK modulation.			
TM2 Anborek	Keep the EUT in continuously transmitting mode (non-hopping) with π/4 DQPSK modulation.			
otek Anborek	Keep the EUT in continuously transmitting mode (non-hopping) with 8DPSK modulation.			
Inbotes And TM4 And	Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation,.			
Anborek TM5 borek Ar	Keep the EUT in continuously transmitting mode (hopping) with $\pi/4$ DQPSK modulation.			
Anborek TM6 Anborek	Keep the EUT in continuously transmitting mode (hopping) with 8DPSK modulation.			

1.6. Measurement Uncertainty

Parameter	Uncertainty				
Conducted emissions (AMN 150kHz~30MHz)	3.4dB				
Occupied Bandwidth	925Hz				
Conducted Output Power	0.76dB				
Power Spectral Density	0.76dB				
Conducted Spurious Emission	1.24dB				
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.78dB; 6G-18GHz: 4.88dB 18G-40GHz: 5.68dB				
Radiated emissions (Below 30MHz)	3.53dB Anborek Anborek Anborek				
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.92dB; Vertical: 4.52dB				
	707 Pri				

The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

FCC ID: 2BGA8-KING9000 Report No.: 18220WC40091001 Page 9 of 39

1.7. Test Summary

Test Items	Test Modes	Status
Antenna requirement	Anbotek / Anboten	P
Conducted Emission at AC power line	Mode1,2,3	P ^{AND}
Occupied Bandwidth	Mode1,2,3	P. Pur
Maximum Conducted Output Power	Mode1,2,3	Wpoles B
Channel Separation	Mode4,5,6	Anbor Park
Number of Hopping Frequencies	Mode4,5,6	AP atel
Dwell Time	Mode4,5,6	Panbo
Emissions in non-restricted frequency bands	Mode1,2,3,4,5,6	P AUP
Band edge emissions (Radiated)	Mode1,2,3	ipotes P
Emissions in frequency bands (below 1GHz)	Mode1,2,3	Anboye
Emissions in frequency bands (above 1GHz)	Mode1,2,3	Pub Cak
Note: P: Pass N: N/A not applicable	k Anbotek Anbotek	tek Anbo

Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 10 of 39

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 2. The test report is invalid if there is any evidence and/or falsification.
- 3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- 4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- 5. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- 6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 11 of 39

1.10. Test Equipment List

Cond	ucted Emission at A	C power line	Aupo	k hotel	Anbore	Andrek
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
. 1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2024-01-18	2025-01-17
otek 2	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2024-01-17	2025-01-16
30t	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	Alooiek	Anborek
4	EMI Test Receiver	Rohde & Schwarz	ESPI3	100926	2023-10-12	2024-10-11

Occupied Bandwidth

Maximum Conducted Output Power

Channel Separation

Number of Hopping Frequencies

Dwell Time

Emissions in non-restricted frequency bands

	Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
4	1	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	oo ^{tek} N/A An	2023-10-16	2024-10-15
	2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2023-10-20	2024-10-19
	41130tel	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2024-05-06	2025-05-05
	4.nb	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2024-02-22	2025-02-21
	5	Oscilloscope	Tektronix	MDO3012	C020298	2023-10-12	2024-10-11
X E	6	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2024-02-04	2025-02-03

Hotline

www.anbotek.com.cn

400-003-0500

Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 12 of 39

ote.	And	stek rupo.	N. Ok	pote.	AUS	iek
	edge emissions (Ra sions in frequency ba		Auporg	Anbotek	Aupotek	Anbotek
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1 00	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2024-01-17	2025-01-16
3	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
nbote 4	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	Andotek	Aupolok
5	Horn Antenna	A-INFO	LB-180400- KF	J21106062 8	2023-10-12	2024-10-11
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2024-05-06	2025-05-05
*e*7	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2024-05-07	2025-05-06

Emiss	Emissions in frequency bands (below 1GHz)					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	Pre-amplifier	SONOMA	310N	186860	2024-01-17	2025-01-16
34	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22
Andorel	Loop Antenna (9K- 30M)	Schwarzbeck	FMZB1519 B	00053	2023-10-12	2024-10-11
5,00	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A.cbott	Nupon pole	k Anbotek

Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 13 of 39

2. Antenna requirement

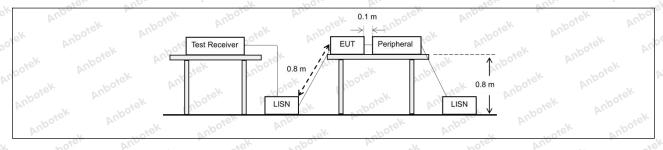
Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1. Conclusion

The antenna is a FPC antenna which permanently attached, and the best case gain of the antenna is 2.41dBi . It complies with the standard requirement.

FCC ID: 2BGA8-KING9000 Report No.: 18220WC40091001 Page 14 of 39

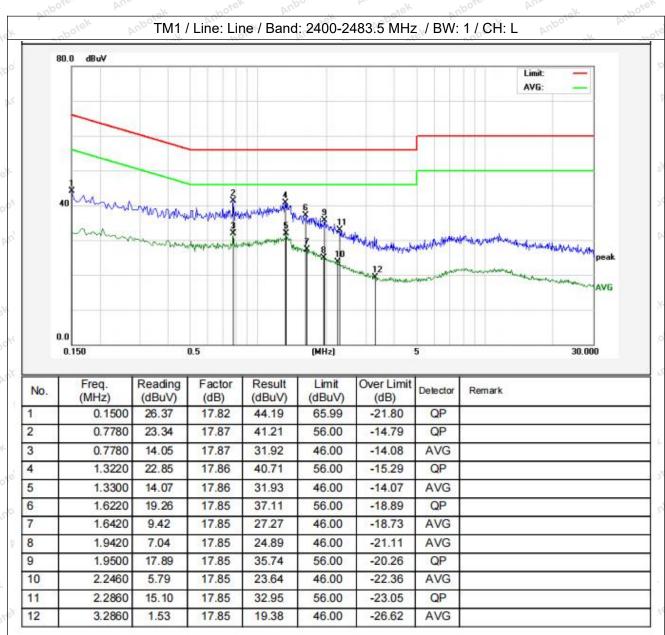

3. Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except section, for an intentional radiator public utility (AC) power line, the reback onto the AC power line on ar band 150 kHz to 30 MHz, shall no measured using a 50 µH/50 ohms (LISN).	that is designed to be con adio frequency voltage tha by frequency or frequencie t exceed the limits in the fo	nected to the at is conducted as, within the collowing table, as
spoick Aupon	Frequency of emission (MHz)	Conducted limit (dBµV)	V otek
YII.	Anbore Anbore	Quasi-peak	Average
Aupor Air	0.15-0.5	66 to 56*	56 to 46*
Test Limit:	0.5-5	56 Hotek An	46
Will work	5-30 And 1	60	50 ter And
k Anbors Ar.	*Decreases with the logarithm of t	ne frequency.	
Test Method:	ANSI C63.10-2020 section 6.2	Projek Aupore	And
Procedure:	Refer to ANSI C63.10-2020 section line conducted emissions from unline conducted emissions from the conducted emission		

3.1. EUT Operation

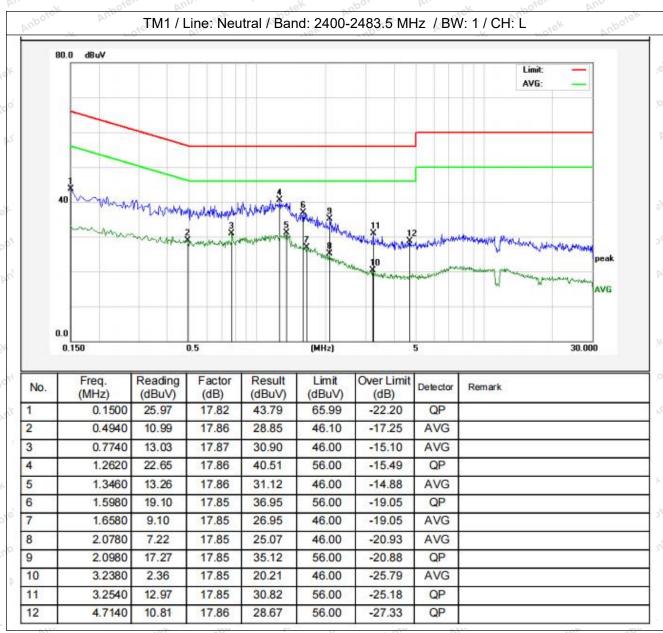
Operating Envi	ronment:	Aupo, ok	bojek .	Aupote,	And	nboiek	Anborr
Test mode:	hopping) w 2: TX-π/4-I (non-hoppi 3: TX-8DP	rith GFSK ma DQPSK (Nor ng) with π/4	odulation. n-Hopping): K DQPSK mod oping): Keep	eep the EU ulation.	ontinuously tran T in continuousl continuously tra	ly transmitting	g mode

3.2. Test Setup


Hotline

Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 15 of 39

3.3. Test Data


Temperature: 23.5°C Humidit	/: 57 %	Atmospheric Pressure: 101 kPa
-----------------------------	---------	-------------------------------

Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 16 of 39

Temperature: 23.5°C Humidity: 57 % Atmospheric Pressure: 101 kPa

Note: Only record the worst data in the report.

Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 17 of 39

4. Occupied Bandwidth

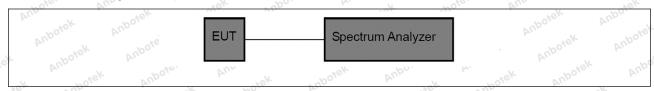
Test Requirement:	47 CFR 15.215(c)
rest requirement.	
abotek Anbo.	Refer to 47 CFR 15.215(c), intentional radiators operating under the
	alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to
Test Limit:	ensure that the 20 dB bandwidth of the emission, or whatever bandwidth
rest Limit.	may otherwise be specified in the specific rule section under which the
	equipment operates, is contained within the frequency band designated in
upotek Aupo,	the rule section under which the equipment is operated.
To Selvetto al Anboren	ANSI C63.10-2020, section 7.8.6, For occupied bandwidth measurements,
Test Method:	use the procedure in 6.9.3. Frequency hopping shall be disabled for this test.
Anbo	The occupied bandwidth is the frequency bandwidth such that, below its
	lower and above its upper frequency limits, the mean powers are each equal
	to 0.5% of the total mean power of the given emission. The following
	procedure shall be used for measuring 99% power bandwidth:
	a) The instrument center frequency is set to the nominal EUT channel center
	frequency. The frequency span for the spectrum analyzer shall be between
	1.5 times and 5.0 times the OBW.
	b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to
	5% of the OBW, and VBW shall be at least three times the RBW, unless
Sorek Anbore	otherwise specified by the applicable requirement.
	c) Set the reference level of the instrument as required, keeping the signal
	from exceeding the maximum input mixer level for linear operation. In
	general, the peak of the spectral envelope shall be more than [10 log
otek Aupa	(OBW/RBW)] below the reference level. Specific guidance is given in
	4.1.6.2.
Dragadura, "otek	d) Step a) through step c) might require iteration to adjust within the
Procedure:	specified range.
	e) Video averaging is not permitted. Where practical, a sample detection and
	single sweep mode shall be used. Otherwise, peak detection and max-hold mode (until the trace stabilizes) shall be used.
	f) Use the 99% power bandwidth function of the instrument (if available) and
	report the measured bandwidth.
	g) If the instrument does not have a 99% power bandwidth function, then the
	trace data points are recovered and directly summed in linear power terms.
	The recovered amplitude data points, beginning at the lowest frequency, are
	placed in a running sum until 0.5% of the total is reached; that frequency is
	recorded as the lower frequency. The process is repeated until 99.5% of the
	total is reached; that frequency is recorded as the upper frequency. The 99%
	power bandwidth is the difference between these two frequencies.
	h) The occupied bandwidth shall be reported by providing spectral plot(s) of
	the measuring instrument display; the plot axes and the scale units per
	division shall be clearly labeled. Tabular data may be reported in addition to
	the plot(s).
	1 20

Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 18 of 39

4.1. EUT Operation

Operating Environment:

1: TX-GFSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non-


hopping) with GFSK modulation.

Test mode: 2: TX-π/4-DQPSK (Non-Hopping): Keep the EUT in continuously transmitting mode

(non-hopping) with π/4 DQPSK modulation.
3: TX-8DPSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non-

hopping) with 8DPSK modulation.

4.2. Test Setup

4.3. Test Data

30.	Temperature:	24.3 °C	Humidity:	49 %	Atmospheric Pressure:	101 kPa
-----	--------------	---------	-----------	------	-----------------------	---------

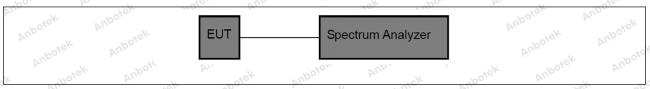
Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 19 of 39

5. Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(1)
Test Limit: ek Anborek Anborek Anborek	Refer to 47 CFR 15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.
Test Method:	ANSI C63.10-2020, section 7.8.5
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. Frequency hopping shall be disabled for this test. Use the following spectrum analyzer settings: a) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. b) RBW > 20 dB bandwidth of the emission being measured.
Anbotek Anbotek	c) VBW ≥ RBW. d) Sweep: No faster than coupled (auto) time. e) Detector function: Peak.
Procedure:	f) Trace: Max-hold. g) Allow trace to stabilize.
	h) Use the marker-to-peak function to set the marker to the peak of the emission.
	i) The indicated level is the peak output power, after any corrections for external attenuators and cables.
	j) A spectral plot of the test results and setup description shall be included in the test report.
	NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum
Anbo otek Anbo	analyzer.

5.1. EUT Operation

70	Operating Envi	nment: Anborek Anborek Anborek Anborek Anborek Anborek	.
7	Test mode:	1: TX-GFSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non hopping) with GFSK modulation. 2: TX- π /4-DQPSK (Non-Hopping): Keep the EUT in continuously transmitting mod (non-hopping) with π /4 DQPSK modulation. 3: TX-8DPSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non-hopping) with 8DPSK modulation.	otek de mbote



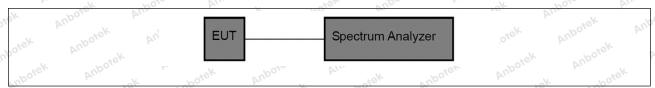
Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 20 of 39

5.2. Test Setup

5.3. Test Data

· - · · · · · · · · · · · · · · · · · ·	04.0.00	11 . 114	40.0000	All I D Sier	404 LD
Temperature:	24.3 °C	Humidity:	49 %	Atmospheric Pressure:	101 kPa

Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 21 of 39


6. Channel Separation

Npo. k.	- tour All the tour and the tour
Test Requirement:	47 CFR 15.247(a)(1)
Test Limit: Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10-2020, section 7.8.2
Anbotek	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: No faster than coupled (auto) time. e) Detector function: Peak. f) Trace: Max-hold. g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A spectral plot of the data shall be included in the test report.

6.1. EUT Operation

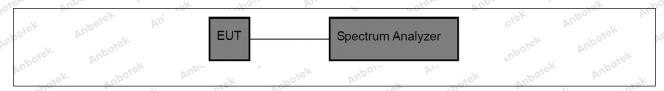
Operating Envir	onmentiek Anboret And
Test mode:	4: TX-GFSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation,. 5: TX-π/4-DQPSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with π/4 DQPSK modulation. 6: TX-8DPSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with 8DPSK modulation.

6.2. Test Setup

6.3. Test Data

	Temperature:	24.3 °C	Humidity:	49 %	Atmospheric Pressure:	101 kPa
- 1	V	1.0/2	,	'SL 70.		

Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 22 of 39


7. Number of Hopping Frequencies

Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit: Anbotek Anbotek Anbotek Anbotek Anbotek	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2020, section 7.8.3
Anborek	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it could be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: No faster than coupled (auto) time. e) Detector function: Peak. f) Trace: Max-hold. g) Allow the trace to stabilize.
	It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A spectral plot of the data shall be included in the test report.

7.1. EUT Operation

Operating Envi	ronment: Anbores Anbores Anbores Anbores Anbores
Test mode:	 4: TX-GFSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation,. 5: TX-π/4-DQPSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with π/4 DQPSK modulation. 6: TX-8DPSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with 8DPSK modulation.

7.2. Test Setup

7.3. Test Data

Те	mperature:	24.3 °C	Humidity:	49 %	Atmospheric Pressure:	101 kPa
----	------------	---------	-----------	------	-----------------------	---------

Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 23 of 39

8. Dwell Time

Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit: Anbotek Anbotek Anbotek Anbotek Anbotek	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2020, section 7.8.4
	The dwell time per hop on a channel is the time from the start of the first transmission to the end of the last transmission for that hop. If the device has a single transmission per hop then the dwell time is the duration of that transmission. If the device has a multiple transmissions per hop then the dwell time is measured from the start of the first transmission to the end of the last transmission.
	The time of occupancy is the total time that the device dwells on a channel over an observation period specified in the regulatory requirement. To determine the time of occupancy the spectrum analyzer will be configured to measure both the dwell time per hop and the number of times the device transmits on a specific channel in a given period.
Anborek Anborek Anborek Procedure:	The EUT shall have its hopping function enabled. Compliance with the requirements shall be made with the minimum and with the maximum number of channels enabled. If the dwell time per channel does not vary with the number of channels than compliance with the requirements may be based on the minimum number of channels. If the device supports different dwell times per channel (example Bluetooth devices can dwell on a channel for 1, 3 or 5 time slots) then measurements can be limited to the longest
	dwell time with the minimum number of channels. Use the following spectrum analyzer settings to determine the dwell time per
	a) Span: Zero span, centered on a hopping channel. b) RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected transmission time per hop. c) Sweep time: Set so that the start of the first transmission and end of the last transmission for the hop are clearly captured. Setting the sweep time to be slightly longer than the hopping period per channel (hopping period = 1/hopping rate) should achieve this. d) Use a video trigger, where possible with a trigger delay, so that the start of the transmission is clearly observed. The trigger level might need adjustment to reduce the chance of triggering when the system hops on an adjacent channel.
	e) Detector function: Peak. f) Trace: Clear-write, single sweep. g) Place markers at the start of the first transmission on the channel and at the end of the last transmission. The dwell time per hop is the time between

Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 24 of 39

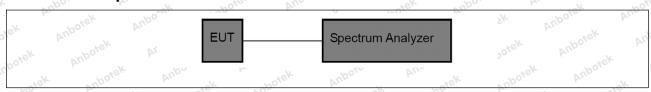
these two markers.

To determine the number of hops on a channel in the regulatory observation period repeat the measurement using a longer sweep time. When the device uses a single hopping sequence the period of measurement should be sufficient to capture at least 2 hops. When the device uses a dynamic hopping sequence, or the sequence varies, the period of measurement may need to capture multiple hops to better determine the average time of occupancy. Count the number of hops on the channel across the sweep time.

The average number of hops on the same channel within the regulatory observation period is calculated from the number of hops on the channel divided by the spectrum analyzer sweep time multiplied by the regulatory observation period. For example, if three hops are counted with an analyzer sweep time of 500 ms and the regulatory observation period is 10 s, then the number of hops in that ten seconds is $3 / 0.5 \times 10$, or 60 hops.

The average time of occupancy is calculated by multiplying the dwell time per hop by the number of hops in the observation period.

8.1. EUT Operation


Operating Environment:

4: TX-GFSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation..

Test mode:

- 5: TX- π /4-DQPSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with π /4 DQPSK modulation.
- 6: TX-8DPSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with 8DPSK modulation.

8.2. Test Setup

8.3. Test Data

 Temperature:	24.3 °C	Humi	dity: 49 %	spheric Pres	sure: 101 kP	a
			The state of the s			

Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 25 of 39

9. Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Anbotek Anbotek Anbotek Anbotek Test Limit: Anbotek	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2020 section 7.8.7
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	7.8.7.1 General considerations To demonstrate compliance with the relative out-of-band emissions requirements conducted spurious emissions shall be measured for the transmit frequencies, per 5.5 and 5.6, and at the maximum transmit powers. Frequency hopping shall be disabled for this test with the exception of measurements at the allocated band-edges which shall be repeated with hopping enabled.
	Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The frequency range of testing shall span 30 MHz to 10 times the operating frequency and this may be done in a single sweep or, to aid resolution, across a number of sweeps. The resolution bandwidth shall be 100 kHz, video bandwidth 300 kHz, and a coupled sweep time with a peak detector.
Procedure:	The limit is based on the highest in-band level across all channels measured using the same instrument settings (resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector). To help clearly demonstrate compliance a display line may be set at the required offset (typically 20 dB) below the highest in-band level. Where the highest in-band level is not clearly identified in the out-of-band measurements a separate spectral plot showing the in-band level shall be provided.
	When conducted measurements cannot be made (for example a device with integrated, non-removable antenna) radiated measurements shall be used. The reference level for determining the limit shall be established by maximizing the field strength from the highest power channel and measuring using the resolution and video bandwidth settings and peak detector as described above. The field strength limit for spurious emissions outside of restricted-bands shall then be set at the required offset (typically 20 dB) below the highest in-band level. Radiated measurements will follow the standards measurement procedures described in Clause 6 with the exception that the resolution bandwidth shall be 100 kHz, video bandwidth

Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 26 of 39

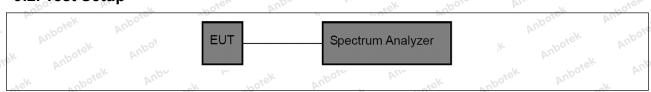
300 kHz, and a coupled sweep time with a peak detector. Note that use of wider measurement bandwidths are acceptable for measuring the spurious emissions provided that the peak detector is used and that the measured value of spurious emissions are compared to the highest in-band level measured with the 100 kHz / 300 kHz bandwidth settings to determine compliance.

7.8.7.2 Band-edges

Compliance with a relative limit at the band-edges (e.g., -20 dBc) shall be made on the lowest and on the highest channels with frequency hopping disabled and repeated with frequency hopping enabled. For the latter test the hopping sequence shall include the lowest and highest channels.

For measurements with the hopping disabled the analyzer screen shall clearly show compliance with the requirement within 10 MHz of the allocated band-edge.

For measurements with the hopping enabled the analyzer screen shall clearly show compliance with the requirement within 10 MHz of both of the allocated band-edges. This could require separate spectral plots for each band-edge.


9.1. EUT Operation

Operating Environment:

- 1: TX-GFSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non-hopping) with GFSK modulation.
- 2: TX- π /4-DQPSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non-hopping) with π /4 DQPSK modulation.
- 3: TX-8DPSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non-hopping) with 8DPSK modulation.
- 4: TX-GFSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation..
 - 5: TX- π /4-DQPSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with π /4 DQPSK modulation.
 - 6: TX-8DPSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with 8DPSK modulation.

9.2. Test Setup

Test mode:

9.3. Test Data

Temperature:	24.3 °C	Humidity:	49 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	------	-----------------------	---------

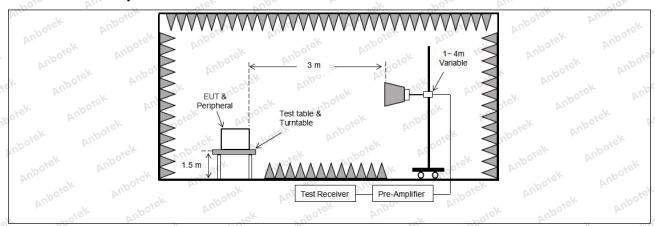
Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 27 of 39

10. Band edge emissions (Radiated)

Test Requirement:	restricted bands, as defined	In addition, radiated emissions d in § 15.205(a), must also compecified in § 15.209(a)(see § 15.2	ly with the
k Anbotek Anbot	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
ok spotek	0.009-0.490	2400/F(kHz)	300
inpose Aug	0.490-1.705	24000/F(kHz)	30
hotek Anbo.	1.705-30.0	30	30
Ant sk shotek	30-88	100 **	3,ek Anbore
Anbort All	88-216	150 **	3
soiek Anbor	216-960	200 **	3
Test Limit:	Above 960	500 ragraph (g), fundamental emissi	MOSE. MU
nbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	intentional radiators operatifrequency bands 54-72 MH However, operation within t sections of this part, e.g., § In the emission table above The emission limits shown employing a CISPR quasi-p 90 kHz, 110–490 kHz and a	ng under this section shall not b z, 76-88 MHz, 174-216 MHz or hese frequency bands is permitt	e located in the 470-806 MHz. ed under other and edges. measurements uency bands 9–sion limits in
Test Method:	ANSI C63.10-2020 section	6.10° Anbores Anbores	3k Aupotek
Procedure:	ANSI C63.10-2020 section	6.10.5.2	otek Anbotek

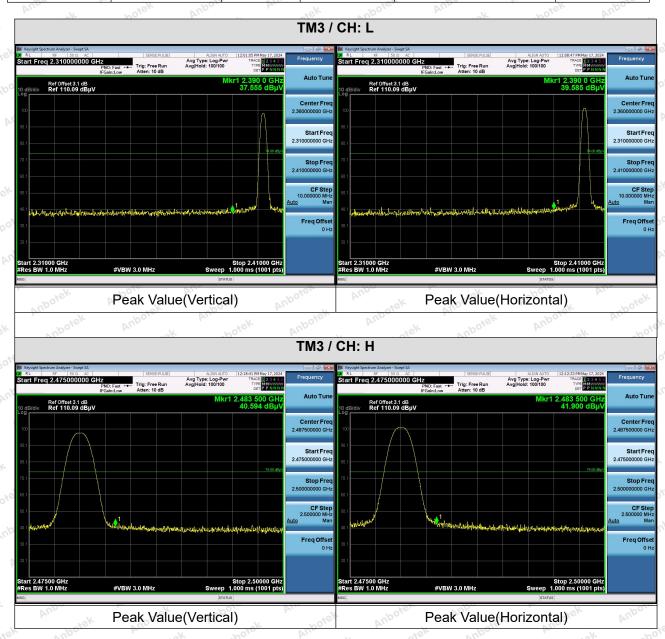
10.1. EUT Operation

	Operating Envir	onment:					Aupotek	Anbo
20,0	Test mode:	hopping) with 2: TX-π/4-DC (non-hopping	n GFSK modu QPSK (Non-H g) with π/4 DC ((Non-Hoppi	ulation. lopping): Keep QPSK modula ng): Keep the	the EUT ir	nuously transn n continuously itinuously trans	transmitting	mode



Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 28 of 39

10.2. Test Setup



Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 29 of 39

10.3. Test Data

Temperature: 24.3 °C Humidity: 49 % Atmospheric Pressure: 101 kPa

Note: When the PK measure result value is less than the AVG limit value, the AV measure result values test not applicable.

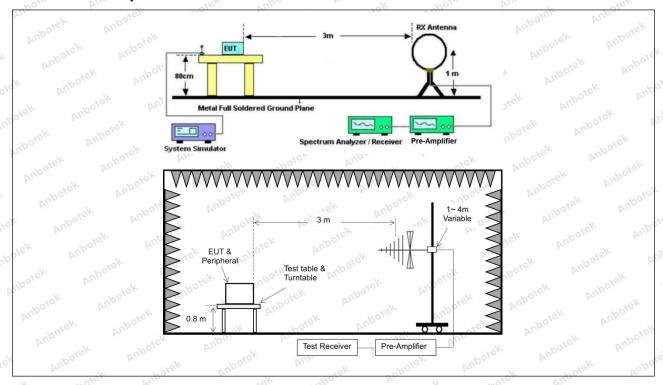
Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 30 of 39

11. Emissions in frequency bands (below 1GHz)

Test Requirement:	restricted bands, as defined	In addition, radiated emissions d in § 15.205(a), must also compecified in § 15.209(a)(see § 15.2	ly with the
otek Anbotek Anbot	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
otek Anbotek	0.009-0.490 0.490-1.705	2400/F(kHz) 24000/F(kHz)	300
hotek Anbotek	1.705-30.0	30° kek nbo	30
Vupotek Vupotek	30-88 88-216	100 ** 150 **	3
Anbotek Anbote	216-960 Above 960	200 ** 500	3 sek
Test Limit: Anbotek Anbotek	intentional radiators operatifrequency bands 54-72 MH However, operation within t sections of this part, e.g., § In the emission table above The emission limits shown employing a CISPR quasi-p 90 kHz, 110–490 kHz and a	ragraph (g), fundamental emissing under this section shall not bz, 76-88 MHz, 174-216 MHz or hese frequency bands is permitt§ 15.231 and 15.241. In the tighter limit applies at the bin the above table are based on peak detector except for the frequency above 1000 MHz. Radiated emisted on measurements employing	e located in the 470-806 MHz. ed under other and edges. measurements uency bands 9—sion limits in
Test Method:	ANSI C63.10-2020 section	6.6.4 And	SK Wipole
Procedure:	ANSI C63.10-2020 section	6.6.4 Anbore	otek Anboten

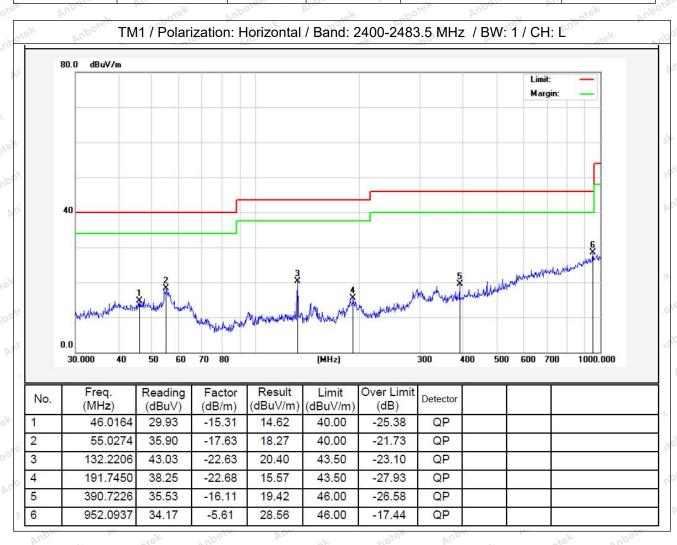
11.1. EUT Operation

	Operating Envir	onment:					Aupotek	Anbo
20,0	Test mode:	hopping) with 2: TX-π/4-DC (non-hopping	n GFSK modu QPSK (Non-H g) with π/4 DC ((Non-Hoppi	ulation. lopping): Keep QPSK modula ng): Keep the	the EUT ir	nuously transn n continuously itinuously trans	transmitting	mode



Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 31 of 39

11.2. Test Setup

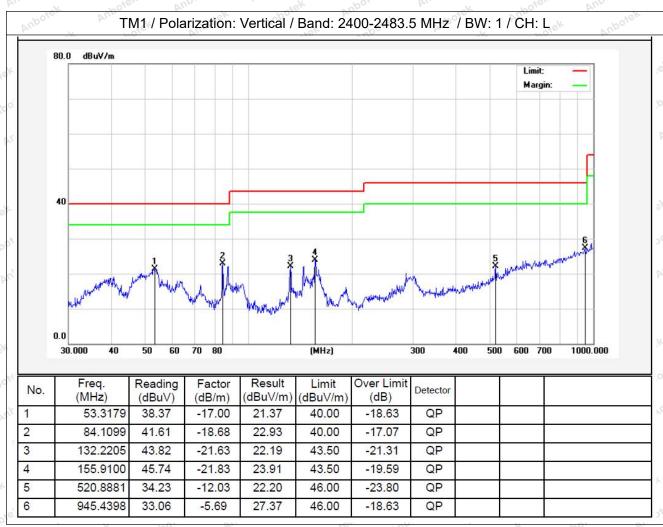


Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 32 of 39

11.3. Test Data

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Temperature:	20.3 °C	Humidity:	46 %	Atmospheric Pressure: 101 kPa	,0.
romporataro.	20.0	i i i ai i i i ai i y .	10.70	7 tarricopriorio i 1000aro.	



Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 33 of 39

Temperature: 20.3 °C Humidity: 46 % Atmospheric Pressure: 101 kPa

Note: Only record the worst data in the report.

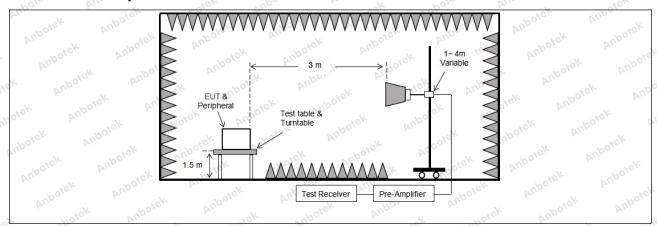
Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 34 of 39

12. Emissions in frequency bands (above 1GHz)

Aupotek A	in § 15.209(a)(see § 15 Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance
	Aug Potek	Anbor Ar otek anborer	(meters)
	0.009-0.490	2400/F(kHz)	iek 300 Mpore
poter And	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30 And
Aupo.	30-88	100 **	3,ek nbore
	88-216	150 **	A103
	216-960	200 **	3 botes Ant
	Above 960	500 horse Anbou	3
	frequency bands 54-72 However, operation with sections of this part, e.g. In the emission table at The emission limits should be a section of the section of	erating under this section shall not MHz, 76-88 MHz, 174-216 MHz of hin these frequency bands is perming., §§ 15.231 and 15.241. Bove, the tighter limit applies at the bwn in the above table are based casi-peak detector except for the free	or 470-806 MHz. nitted under other e band edges. on measurements
	90 kHz, 110–490 kHz a these three bands are l	and above 1000 MHz. Radiated en based on measurements employin	nission limits in
Anbotek Anh	90 kHz, 110–490 kHz a these three bands are be detector.	and above 1000 MHz. Radiated em based on measurements employin	nission limits in
Test Method:	90 kHz, 110–490 kHz a these three bands are l	and above 1000 MHz. Radiated en based on measurements employin tion 6.6.4	nission limits in

12.1. EUT Operation

	Operating Envir	onment:					Aupotek	Anbo
20,0	Test mode:	hopping) with 2: TX-π/4-DC (non-hopping	n GFSK modu QPSK (Non-H g) with π/4 DC ((Non-Hoppi	ulation. lopping): Keep QPSK modula ng): Keep the	the EUT ir	nuously transn n continuously itinuously trans	transmitting	mode



Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 35 of 39

12.2. Test Setup

Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 36 of 39

12.3. Test Data

Temperature: 24.3 °C Humidity: 2	49 %	Atmospheric Pressure:	101 kPa	
----------------------------------	------	-----------------------	---------	--

AUL	hotek Anb	D. N.	stek suboti	Ans	ok hotek	Anbo.
		•	TM1 / CH: L			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	27.92	15.27	43.19	74.00	-30.81	Vertical
7206.00	28.96	18.09	47.05	74.00	-26.95	Vertical
9608.00	30.04	23.76	53.80	74.00	-20.20	Vertical
12010.00	Aupote * A	iek.	abořek Anb	74.00	otek Anbote	Vertical
14412.00	"Upo*sk	Anbo.	hoiek E	74.00	rick on	Vertical
4804.00	28.23	15.27	43.50	74.00	-30.50	Horizontal
7206.00	29.41	18.09	47.50	74.00	-26.50	Horizontal
9608.00	28.56	23.76	52.32	74.00	-21.68	Horizontal
12010.00	otek * Aupo	-K 20	ick Aupote	74.00	- nboiek	Horizontal
14412.00	notek* An	poter And	iek inbo	74.00	ok hotel	Horizontal
Average value:	Dooding	Factor	Result	Limit	Over Limit	
Frequency (MHz)	Reading (dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	polarization
4804.00	17.30	15.27	32.57	54.00	-21.43	Vertical
7206.00	17.99	18.09	36.08	54.00	-17.92	Vertical
9608.00	19.06	23.76	42.82	54.00	-11.18	Vertical
12010.00	Loiet.	Aupote. Au	iek .	54.00	A Pr.	Vertical Vertical
14412.00	And *	, upotek	Aupo.	54.00	Pur Vue	Vertical
4804.00	16.58	15.27	31.85	54.00	-22.15	Horizontal
7206.00	18.47	18.09	36.56	54.00	-17.44	Horizontal
9608.00	17.87 hote	23.76	41.63	54.00	-12.37	Horizontal
12010.00	sek *	otek Wipor	ek hoj	54.00	Aug-	Horizontal
14412.00	<i>"</i>	stek ont	Oto And	54.00	ek Vupe.	Horizontal

Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 37 of 39

				hotek	Anbor	*ek
		•	ГМ1 / CH: M			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	27.94	15.42	43.36	74.00	-30.64	Vertical
7323.00	28.81	18.02	46.83	74.00	-27.17	Vertical
9764.00	29.05	23.80	52.85	74.00	-21.15	Vertical
12205.00	ek * nbotek	Anbo.	, worek	74.00	And	Vertical
14646.00	* * *	ick Aupore	Pur of 6	74.00	Aupo	Vertical
4882.00	27.93	15.42	43.35	74.00	-30.65	Horizontal
7323.00	29.40	18.02	47.42	74.00	-26.58	Horizontal
9764.00	28.26	23.80	52.06	74.00	-21.94	Horizontal
12205.00	* otek	Anbore	And	74.00	Yupo, ok	Horizontal
14646.00	AT*	nbotek	Aupo	74.00	Aupoto.	Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4882.00	17.03	15.42	32.45	54.00	-21.55	Vertical
7323.00	18.09	18.02	36.11	54.00	-17.89	Vertical
9764.00	18.92	23.80	42.72	54.00	-11.28	Vertical
12205.00	k Auport	Dr. Siek	Anborek	54.00	boiek	Vertical
14646.00	otek * Anbot	AND	ek spojek	54.00	Die Cotek	Vertical
4882.00	16.49	15.42	31.91	54.00	-22.09	Horizontal
7323.00	18.03	18.02	36.05	54.00	-17.95	Horizontal
9764.00	18.38	23.80	42.18	54.00	11.82 M	Horizontal
12205.00	Aupolek	Aupa, *ek	abotek	54.00	wotek o	Horizontal
14646.00	* botek	Anbor	W. Siek	54.00	Aug.	Horizontal

Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 38 of 39

En VUD	rick	anbore	VI.	hoter	AUD	rick
		٦	ГМ1 / CH: H			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	28.21	15.58	43.79	74.00	30.21 noo	Vertical
7440.00	28.82	17.93	46.75	74.00	-27.25	Vertical
9920.00	29.60	23.83	53.43	74.00	-20.57	Vertical
12400.00	* P*	anbore.	And	74.00	Aupo,	Vertical
14880.00	* Vup	iek upołek	Aupo.	74.00	Anbore.	Vertical
4960.00	28.00	15.58	43.58	74.00	-30.42	Horizontal
7440.00	29.43	17.93	47.36	74.00	-26.64	Horizontal
9920.00	28.94	23.83	52.77	74.00	-21.23	Horizontal
12400.00	AUD * "SK	abotek	Aupo, k	74.00	Aupore, Au	Horizontal
14880.00	V.Apo.	Notek Notek	Anbores	74.00	abotek	Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4960.00	18.15	15.58	33.73	54.00	-20.27	Vertical
7440.00	19.10	17.93	37.03	54.00	16.97 M	Vertical
9920.00	19.47	23.83	43.30	54.00	-10.70	Vertical V
12400.00	k * spojek	Aupor	hotek	54.00	Aug	Vertical
14880.00	* * *	sk Aupole.	Aur	54.00	Vupo.	Vertical
4960.00	17.93	15.58 NO	33.51	54.00	-20.49	Horizontal
7440.00	19.40	17.93	37.33 Andre	54.00	-16.67 pole	Horizontal
9920.00	18.28	23.83	42.11	54.00 And	-11.89	Horizontal
12400.00	* tok	Aupore	Aur	54.00	Ipo. br	Horizontal
14880.00	An*	Vipolek	Aupo	54.00	Anboro	Horizontal

Remark:

- 1. Result =Reading + Factor
- 2. "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.
- 3. Only the worst case is recorded in the report.

Report No.: 18220WC40091001 FCC ID: 2BGA8-KING9000 Page 39 of 39

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_Unlicensed

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

----- End of Report -----

