EX3DV4-SN:3693 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3693 ## Other Probe Parameters | Sensor Arrangement | Triangular | |-----------------------------------------------|------------| | Connector Angle (a) | -24.1 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 2 mm | #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client RF Exposure Lab Certificate No: EX3-3662\_Apr14 Accreditation No.: SCS 108 ## **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3662 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5, **QA CAL-25.v6** Calibration procedure for dosimetric E-field probes Calibration date: April 15, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Power sensor E4412A | MY41498087 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 03-Apr-14 (No. 217-01915) | Apr-15 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 03-Apr-14 (No. 217-01919) | Apr-15 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 03-Apr-14 (No. 217-01920) | Apr-15 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-13 (No. ES3-3013_Dec13) | Dec-14 | | DAE4 | SN: 660 | 13-Dec-13 (No. DAE4-660_Dec13) | Dec-14 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-13) | In house check: Oct-14 | Name Function Calibrated by: Jeton Kastrati Laboratory Technicia ion Signatu Approved by: Certificate No: EX3-3662\_Apr14 Katja Pokovic **Technical Manager** Issued: April 15, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Accreditation No.: SCS 108 Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty\_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: Certificate No: EX3-3662\_Apr14 - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). EX3DV4 – SN:3662 April 15, 2014 # Probe EX3DV4 SN:3662 Manufactured: October 20, 2008 Calibrated: April 15, 2014 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) April 15, 2014 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3662 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------------------------|----------|----------|----------|-----------| | Norm (µV/(V/m) <sup>2</sup> ) <sup>A</sup> | 0.42 | 0.49 | 0.50 | ± 10.1 % | | DCP (mV) <sup>B</sup> | 98.4 | 97.6 | 95.1 | | #### **Modulation Calibration Parameters** | UID Communication System Name | | | Α | В | С | D | VR | Unc | |-------------------------------|----|---|-----|-------|-----|------|-------|--------| | | | | dB | dΒ√μV | | dB | mV | (k=2) | | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 119.4 | ±1.7 % | | <del></del> | | Y | 0.0 | 0.0 | 1.0 | | 118.3 | | | | | Z | 0.0 | 0.0 | 1.0 | | 110.9 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. <sup>B</sup> Numerical linearization parameter: uncertainty not required. <sup>&</sup>lt;sup>A</sup> The uncertainties of NormX,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Pages 5 and 6). E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4- SN:3662 April 15, 2014 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3662 ## Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 150 | 52.3 | 0.76 | 10.96 | 10.96 | 10.96 | 0.00 | 1.00 | ± 13.3 % | | 220 | 49.0 | 0.81 | 10.87 | 10.87 | 10.87 | 0.00 | 1.00 | ± 13.3 % | | 450 | 43.5 | 0.87 | 10.99 | 10.99 | 10.99 | 0.18 | 1.20 | ± 13.3 % | | 750 | 41.9 | 0.89 | 9.72 | 9.72 | 9.72 | 0.21 | 1.44 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.43 | 9.43 | 9.43 | 0.22 | 1.20 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.23 | 9.23 | 9.23 | 0.15 | 1.56 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.01 | 8.01 | 8.01 | 0.76 | 0.57 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 7.75 | 7.75 | 7.75 | 0.46 | 0.77 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.04 | 7.04 | 7.04 | 0.57 | 0.68 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 6.84 | 6.84 | 6.84 | 0.26 | 1.06 | ± 12.0 % | | 5200 | 36.0 | 4.66 | 5.22 | 5.22 | 5.22 | 0.30 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 4.99 | 4.99 | 4.99 | 0.30 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 4.89 | 4.89 | 4.89 | 0.35 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.84 | 4.84 | 4.84 | 0.35 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.87 | 4.87 | 4.87 | 0.35 | 1.80 | ± 13.1 % | <sup>&</sup>lt;sup>c</sup> Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. the ConvF uncertainty for indicated target tissue parameters. The uncertainty is the Hood of the ConvF uncertainty for indicated target tissue parameters. All requerioles above 3 GHz, the variants of the Hood Certificate No: EX3-3662\_Apr14 F At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$ and $\sigma$ ) can be relaxed to $\pm$ 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$ and $\sigma$ ) is restricted to $\pm$ 5%. The uncertainty is the RSS of the ConyF uncertainty for indicated target tissue parameters. EX3DV4- SN:3662 April 15, 2014 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3662 ## Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 150 | 61.9 | 0.80 | 10.62 | 10.62 | 10.62 | 0.00 | 1.00 | ± 13.3 % | | 220 | 59.4 | 0.88 | 10.31 | 10.31 | 10.31 | 0.00 | 1.00 | ± 13.3 % | | 450 | 56.7 | 0.94 | 10.37 | 10.37 | 10.37 | 0.10 | 1.20 | ± 13.3 % | | 750 | 55.5 | 0.96 | 9.42 | 9.42 | 9.42 | 0.57 | 0.75 | ± 12.0 % | | 835 | 55.2 | 0.97 | 9.30 | 9.30 | 9.30 | 0.43 | 0.86 | ± 12.0 % | | 900 | 55.0 | 1.05 | 9.13 | 9.13 | 9.13 | 0.39 | 0.89 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 7.76 | 7.76 | 7.76 | 0.27 | 1.06 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.47 | 7.47 | 7.47 | 0.42 | 0.82 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.12 | 7.12 | 7.12 | 0.77 | 0.57 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 6.95 | 6.95 | 6.95 | 0.80 | 0.50 | ± 12.0 % | | 5200 | 49.0 | 5.30 | 4.59 | 4.59 | 4.59 | 0.40 | 1.90 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 4.43 | 4.43 | 4.43 | 0.40 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 4.22 | 4.22 | 4.22 | 0.40 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 3.97 | 3.97 | 3.97 | 0.50 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 4.10 | 4.10 | 4.10 | 0.50 | 1.90 | ± 13.1 % | Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. f At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$ and $\sigma$ ) can be relaxed to $\pm$ 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$ and $\sigma$ ) is restricted to $\pm$ 5%. The uncertainty is the RSS of the ConvE uncertainty for indicated target lissue parameters. the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) April 15, 2014 # Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: $\pm$ 0.5% (k=2) ## Dynamic Range f(SAR<sub>head</sub>) (TEM cell , f<sub>eval</sub>= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) EX3DV4- SN:3662 April 15, 2014 ## **Conversion Factor Assessment** ## Deviation from Isotropy in Liquid Error ( $\phi$ , $\vartheta$ ), f = 900 MHz EX3DV4- SN:3662 April 15, 2014 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3662 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |-----------------------------------------------|------------| | Connector Angle (°) | -33.1 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 2 mm | Certificate No: EX3-3662\_Apr14 Page 11 of 11 Report Number: SAR.20141207 # **Appendix E – Dipole Calibration Data Sheets** #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **RF Exposure Lab** Accreditation No.: SCS 108 C Certificate No: D750V3-1016\_Dec12 ## CALIBRATION CERTIFICATE Object D750V3 - SN: 1016 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: December 03, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Power sensor HP 8481A | US37292783 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 27-Mar-12 (No. 217-01530) | Apr-13 | | Type-N mismatch combination | SN: 5047.3 / 06327 | 27-Mar-12 (No. 217-01533) | Apr-13 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-11 (No. ES3-3205_Dec11) | Dec-12 | | DAE4 | SN: 601 | 27-Jun-12 (No. DAE4-601_Jun12) | Jun-13 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 | Page 1 of 8 Name Calibrated by: Israe E Israe El-Naouq Function Laboratory Technician Signature Approved by: Katja Pokovic Technical Manager Issued: December 3, 2012 Israe El Dancy This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D750V3-1016\_Dec12 ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### **Calibration is Performed According to the Following Standards:** - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.3 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.6 ± 6 % | 0.89 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### **SAR** result with Head TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.10 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.39 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.37 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.47 W/kg ± 16.5 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.6 ± 6 % | 0.97 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.21 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.74 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.46 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.79 W/kg ± 16.5 % (k=2) | Certificate No: D750V3-1016\_Dec12 Page 3 of 8 #### **Appendix** #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 54.2 Ω + 0.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.9 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 50.0 Ω - 1.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 38.1 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.037 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|----------------| | Manufactured on | March 22, 2010 | Certificate No: D750V3-1016\_Dec12 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Date: 03.12.2012 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1016 Communication System: CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.89 \text{ mho/m}$ ; $\varepsilon_r = 41.6$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(6.33, 6.33, 6.33); Calibrated: 30.12.2011; • Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 27.06.2012 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.3(988); SEMCAD X 14.6.7(6848) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.855 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 3.19 W/kg SAR(1 g) = 2.1 W/kg; SAR(10 g) = 1.37 W/kg Maximum value of SAR (measured) = 2.44 W/kg 0 dB = 2.44 W/kg = 3.87 dBW/kg ## Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 03.12.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1016 Communication System: CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.97 \text{ mho/m}$ ; $\varepsilon_r = 54.6$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(6.12, 6.12, 6.12); Calibrated: 30.12.2011; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.06.2012 • Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 • DASY52 52.8.3(988); SEMCAD X 14.6.7(6848) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.855 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 3.31 W/kg SAR(1 g) = 2.21 W/kg; SAR(10 g) = 1.46 W/kg Maximum value of SAR (measured) = 2.56 W/kg 0 dB = 2.56 W/kg = 4.08 dBW/kg #### Impedance Measurement Plot for Body TSL #### **Extended Calibration** Usage of SAR dipoles calibrated less than 2 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 865664 D01 v01r03. | D750V3 SN: 1016 - Head | | | | | | | |------------------------|---------------------|------|------------------|------|-----------------------------|------| | Date of<br>Measurement | Return Loss<br>(dB) | Δ% | Impedance<br>(Ω) | ΔΩ | Impedance<br>Imaginary (jΩ) | ΔΩ | | 12/3/2012 | -27.9 | | 54.2 | | 0.3 | | | 12/4/2013 | -28.9 | 3.6 | 53.9 | -0.3 | 0.1 | -0.2 | | 12/4/2014 | -26.5 | -5.0 | 55.6 | 1.4 | 0.4 | 0.1 | | D750V3 SN: 1016 - Body | | | | | | | |------------------------|---------------------------|------|------------------|------|-----------------------------|-----| | Date of<br>Measurement | Return Loss<br>(dB) | Δ% | Impedance<br>(Ω) | ΔΩ | Impedance<br>Imaginary (jΩ) | ΔΩ | | 12/3/2012 | 12/3/2012 -38.1 50.0 -1.2 | | | | | | | 12/4/2013 | -36.7 | -3.7 | 48.7 | -1.3 | -0.6 | 0.6 | | 12/4/2014 | -37.5 | -1.6 | 49.8 | -0.2 | -0.9 | 0.3 | #### **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **RF Exposure Lab** Accreditation No.: SCS 108 C S Certificate No: D835V2-4d089\_Dec12 #### IBRATION CERTIFICATE Object D835V2 - SN: 4d089 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: December 03, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Power sensor HP 8481A | US37292783 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 27-Mar-12 (No. 217-01530) | Apr-13 | | Type-N mismatch combination | SN: 5047.3 / 06327 | 27-Mar-12 (No. 217-01533) | Apr-13 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-11 (No. ES3-3205_Dec11) | Dec-12 | | DAE4 | SN: 601 | 27-Jun-12 (No. DAE4-601_Jun12) | Jun-13 | | Secondary Standards | ID # | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 | | | | E cultur | Cianatura | | | Name | Function | Signature | Calibrated by: Israe El-Naouq Function Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: December 3, 2012 Isran Enaune This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: D835V2-4d089\_Dec12 Page 1 of 8 #### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.3 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.4 ± 6 % | 0.92 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### **SAR** result with Head TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.38 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.36 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | | |---------------------------------------------------------|--------------------|--------------------------|--| | SAR measured | 250 mW input power | 1.55 W/kg | | | SAR for nominal Head TSL parameters | normalized to 1W | 6.12 W/kg ± 16.5 % (k=2) | | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.5 ± 6 % | 0.99 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.42 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.51 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.59 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.27 W/kg ± 16.5 % (k=2) | Certificate No: D835V2-4d089\_Dec12 Page 3 of 8 #### **Appendix** #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 51.7 Ω - 2.5 jΩ | | | |--------------------------------------|-----------------|--|--| | Return Loss | - 30.5 dB | | | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 47.4 Ω - 4.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.0 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.391 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** Certificate No: D835V2-4d089\_Dec12 | Manufactured by | SPEAG | | | |-----------------|------------------|--|--| | Manufactured on | October 17, 2008 | | | #### **DASY5 Validation Report for Head TSL** Date: 03.12.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d089 Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.92$ mho/m; $\varepsilon_r = 41.4$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(6.07, 6.07, 6.07); Calibrated: 30.12.2011; • Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 27.06.2012 • Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 • DASY52 52.8.3(988); SEMCAD X 14.6.7(6848) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.782 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.58 W/kg SAR(1 g) = 2.38 W/kg; SAR(10 g) = 1.55 W/kg Maximum value of SAR (measured) = 2.79 W/kg 0 dB = 2.79 W/kg = 4.46 dBW/kg ## Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 03.12.2012 Test Laboratory: SPEAG, Zurich, Switzerland **DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d089** Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.99$ mho/m; $\varepsilon_r = 54.5$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(6.02, 6.02, 6.02); Calibrated: 30.12.2011; • Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 27.06.2012 • Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.3(988); SEMCAD X 14.6.7(6848) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.384 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.54 W/kg SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (measured) = 2.82 W/kg 0 dB = 2.82 W/kg = 4.50 dBW/kg #### Impedance Measurement Plot for Body TSL #### **Extended Calibration** Usage of SAR dipoles calibrated less than 2 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 865664 D01 v01r03. | D835V2 SN: 4d089 - Head | | | | | | | |--------------------------------------------------------|-------|------|------|------|------|-----| | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | 12/3/2012 | -30.5 | | 51.7 | | -2.5 | | | 12/4/2013 | -28.7 | -5.9 | 52.4 | 0.7 | -1.5 | 1.0 | | 12/4/2014 | -29.2 | -4.3 | 50.7 | -1.0 | -1.2 | 1.3 | | D835V2 SN: 4d089 - Body | | | | | | | |--------------------------------------------------------|-------|------|------|------|------|------| | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | 12/3/2012 | -25.0 | | 47.4 | | -4.8 | | | 12/4/2013 | -24.6 | -1.6 | 48.2 | 0.8 | -5.2 | -0.4 | | 12/4/2014 | -26.7 | 6.8 | 46.3 | -1.1 | -3.7 | 1.1 | #### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland S C S Accreditation No.: SCS 108 Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates **RF Exposure Lab** Client Certificate No: D1750V2-1018\_Dec12 ## CALIBRATION CERTIFICATE D1750V2 - SN: 1018 Object QA CAL-05.v8 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz December 05, 2012 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Calibrated by: Certificate No: D1750V2-1018\_Dec12 | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |--------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | GB37480704 | 01-Nov-12 (No. 217-01640) | Oct-13 | | US37292783 | 01-Nov-12 (No. 217-01640) | Oct-13 | | SN: 5058 (20k) | 27-Mar-12 (No. 217-01530) | Apr-13 | | SN: 5047.3 / 06327 | 27-Mar-12 (No. 217-01533) | Apr-13 | | SN: 3205 | 30-Dec-11 (No. ES3-3205_Dec11) | Dec-12 | | SN: 601 | 27-Jun-12 (No. DAE4-601, Jun12) | Jun-13 | | ID# | Check Date (in house) | Scheduled Check | | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | US37390585 S4206 | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 | | | GB37480704<br>US37292783<br>SN: 5058 (20k)<br>SN: 5047.3 / 06327<br>SN: 3205<br>SN: 601<br>ID #<br>MY41092317<br>100005 | GB37480704 01-Nov-12 (No. 217-01640) US37292783 01-Nov-12 (No. 217-01640) SN: 5058 (20k) 27-Mar-12 (No. 217-01530) SN: 5047.3 / 06327 27-Mar-12 (No. 217-01533) SN: 3205 30-Dec-11 (No. ES3-3205_Dec11) SN: 601 27-Jun-12 (No. DAE4-601_Jun12) ID # Check Date (in house) MY41092317 18-Oct-02 (in house check Oct-11) 100005 04-Aug-99 (in house check Oct-11) | Function Name Israe El-Naouq Laboratory Technician Deraa El Daeen 19 Technical Manager Katja Pokovic Approved by: Issued: December 5, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Page 1 of 8 ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.3 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, $dy$ , $dz = 5 mm$ | | | Frequency | 1750 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.3 ± 6 % | 1.34 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.02 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.82 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.4 W/kg ± 16.5 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.8 ± 6 % | 1.47 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## **SAR result with Body TSL** | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.30 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 37.3 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.99 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.0 W/kg ± 16.5 % (k=2) | Certificate No: D1750V2-1018\_Dec12 Page 3 of 8 #### **Appendix** #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 50.2 Ω + 0.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 42.2 dB | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 46.2 Ω + 0.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.9 dB | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.221 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | February 11, 2009 | Certificate No: D1750V2-1018\_Dec12 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Date: 05.12.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1018 Communication System: CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.34$ mho/m; $\varepsilon_r = 39.3$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### **DASY52** Configuration: Probe: ES3DV3 - SN3205; ConvF(5.22, 5.22, 5.22); Calibrated: 30.12.2011; Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 27.06.2012 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 • DASY52 52.8.3(988); SEMCAD X 14.6.7(6848) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 92.822 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 16.0 W/kg SAR(1 g) = 9.02 W/kg; SAR(10 g) = 4.82 W/kg Maximum value of SAR (measured) = 11.0 W/kg 0 dB = 11.0 W/kg = 10.41 dBW/kg ## Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 05.12.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1018 Communication System: CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.47$ mho/m; $\varepsilon_r = 51.8$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(4.85, 4.85, 4.85); Calibrated: 30.12.2011; • Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 27.06.2012 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 • DASY52 52.8.3(988); SEMCAD X 14.6.7(6848) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 92.822 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 16.0 W/kg SAR(1 g) = 9.3 W/kg; SAR(10 g) = 4.99 W/kg Maximum value of SAR (measured) = 11.7 W/kg 0 dB = 11.7 W/kg = 10.68 dBW/kg #### Impedance Measurement Plot for Body TSL #### **Extended Calibration** Usage of SAR dipoles calibrated less than 2 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 865664 D01 v01r03. | D1750V2 SN: 1018 - Head | | | | | | | |-------------------------|---------------------|------|------------------|--------------|-----------------------------|-------------------| | Date of Measurement | Return Loss<br>(dB) | Δ% | Impedance<br>(Ω) | ΔΩ | Impedance<br>Imaginary (jΩ) | ΔΩ | | 12/5/2012 | -42.2 | | 50.2 | | 0.8 | | | 12/5/2013 | -41.8 | -0.9 | 52.1 | 1.9 | 0.6 | -0.2 | | 12/5/2014 | -40.5 | -4.0 | 51.6 | 1.4 | 0.2 | -0.6 | | D1750V2 SN: 1018 - Body | | | | | | | | | | | | | | | | Date of Measurement | Return Loss<br>(dB) | Δ% | Impedance<br>(Ω) | ΔΩ | Impedance<br>Imaginary (jΩ) | ΔΩ | | | | Δ% | | <del> </del> | 1 . | ΔΩ | | Measurement | (dB) | Δ% | (Ω) | <del> </del> | Imaginary (jΩ) | ΔΩ<br>-0.3<br>0.2 | #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **RF Exposure Lab** Accreditation No.: SCS 108 C S Certificate No: D1900V2-5d116\_Dec12 #### **CALIBRATION CERTIFICATE** Object D1900V2 - SN: 5d116 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: December 06, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Power sensor HP 8481A | US37292783 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 27-Mar-12 (No. 217-01530) | Apr-13 | | Type-N mismatch combination | SN: 5047.3 / 06327 | 27-Mar-12 (No. 217-01533) | Apr-13 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-11 (No. ES3-3205_Dec11) | Dec-12 | | DAE4 | SN: 601 | 27-Jun-12 (No. DAE4-601_Jun12) | Jun-13 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 | | | | | | Calibrated by: Name Function Signatur Calibrated by: Israe El-Naouq Laboratory Technician ----- Man El Dawing Approved by: Katja Pokovic Technical Manager Issued: December 6, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1900V2-5d116\_Dec12 Page 1 of 8 #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d116\_Dec12 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.3 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, $dy$ , $dz = 5 mm$ | | | Frequency | 1900 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | The following parameters and calculations were app. | Temperature | Permittivity | Conductivity | |-----------------------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.5 ± 6 % | 1.38 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.97 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 40.1 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.24 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.0 W/kg ± 16.5 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | To following parameters and embersions and | Temperature | Permittivity | Conductivity | |--------------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.2 ± 6 % | 1.52 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ### SAR result with Body TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.1 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 40.2 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.31 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.2 W/kg ± 16.5 % (k=2) | Certificate No: D1900V2-5d116\_Dec12 Page 3 of 8 #### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.4 Ω + 6.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.5 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 47.4 Ω + 6.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.7 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.202 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-----------------| | Manufactured on | August 21, 2009 | Certificate No: D1900V2-5d116\_Dec12 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Date: 06.12.2012 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d116 Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.38$ mho/m; $\varepsilon_r = 39.5$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2011; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.06.2012 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 • DASY52 52.8.3(988); SEMCAD X 14.6.7(6848) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.363 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 17.9 W/kg SAR(1 g) = 9.97 W/kg; SAR(10 g) = 5.24 W/kg Maximum value of SAR (measured) = 12.3 W/kg 0 dB = 12.3 W/kg = 10.90 dBW/kg Certificate No: D1900V2-5d116\_Dec12 Page 5 of 8 ### Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 06.12.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d116 Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.52$ mho/m; $\varepsilon_r = 52.2$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 30.12.2011; • Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 27.06.2012 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 • DASY52 52.8.3(988); SEMCAD X 14.6.7(6848) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.415 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 17.7 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.31 W/kg Maximum value of SAR (measured) = 12.7 W/kg 0 dB = 12.7 W/kg = 11.04 dBW/kg Certificate No: D1900V2-5d116\_Dec12 #### Impedance Measurement Plot for Body TSL #### **Extended Calibration** Usage of SAR dipoles calibrated less than 2 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 865664 D01 v01r03. | D1900V2 SN: 5d116 - Head | | | | | | | |--------------------------|---------------------|------|---------------|------|-----------------------------|------| | Date of<br>Measurement | Return Loss<br>(dB) | Δ% | Impedance (Ω) | ΔΩ | Impedance<br>Imaginary (jΩ) | ΔΩ | | 12/6/2012 | -23.5 | | 51.4 | | 6.6 | | | 12/6/2013 | -23.6 | 0.4 | 51.0 | -0.4 | 6.1 | -0.5 | | 12/6/2014 | -22.7 | -3.4 | 50.5 | -0.9 | 6.7 | 0.1 | | D1900V2 SN: 5d116 - Body | | | | | | | |--------------------------|---------------------|------|------------------|------|-----------------------------|------| | Date of Measurement | Return Loss<br>(dB) | Δ% | Impedance<br>(Ω) | ΔΩ | Impedance<br>Imaginary (jΩ) | ΔΩ | | 12/6/2012 | -22.7 | | 47.4 | | 6.7 | | | 12/6/2013 | -21.9 | -3.5 | 46.9 | -0.5 | 5.8 | -0.9 | | 12/6/2014 | -22.9 | 0.9 | 45.4 | -2.0 | 6.1 | -0.6 | ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **RF Exposure Lab** Accreditation No.: SCS 108 Certificate No: D2450V2-829\_Dec12 ### CALIBRATION CERTIFICATE Object D2450V2 - SN: 829 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: December 04, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |--------------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Power sensor HP 8481A | US37292783 | 01-Nov-12 (No. 217-01640) | Oct-13 | | | SN: 5058 (20k) | 27-Mar-12 (No. 217-01530) | Apr-13 | | Reference 20 dB Attenuator | SN: 5047.3 / 06327 | 27-Mar-12 (No. 217-01533) | Apr-13 | | Type-N mismatch combination | SN: 3205 | 30-Dec-11 (No. ES3-3205_Dec11) | Dec-12 | | Reference Probe ES3DV3<br>DAE4 | SN: 601 | 27-Jun-12 (No. DAE4-601_Jun12) | Jun-13 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 | | | Name | Function | Signature | | Calibrated by: | Leif Klysner | Laboratory Technician | Sif Her | | Approved by: | Katja Pokovic | Technical Manager | | Issued: December 4, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2450V2-829\_Dec12 Page 1 of 8 #### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service** Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: tissue simulating liquid TSL sensitivity in TSL / NORM x,y,z ConvF not applicable or not measured N/A ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Page 2 of 8 Certificate No: D2450V2-829\_Dec12 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | ASY system configuration, as far as not DASY Version | DASY5 | V52.8.3 | |------------------------------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | he following parameters and calculations were appli | Temperature | Permittivity | Conductivity | |-----------------------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.2 ± 6 % | 1.84 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.7 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 53.9 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.33 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.1 W/kg ± 16.5 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | he following parameters and calculations were appli | Temperature | Permittivity | Conductivity | |-----------------------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 50.7 ± 6 % | 2.02 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ### SAR result with Body TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.2 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 51.5 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.08 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 24.0 W/kg ± 16.5 % (k=2) | | SAH for nominal body TSL parameters | 110111121121 | | Page 3 of 8 Certificate No: D2450V2-829\_Dec12 #### **Appendix** #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 53.1 Ω + 4.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.9 dB | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 49.7 Ω + 5.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.9 dB | | Helum 2033 | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.158 ns | |----------------------------------|----------| | Electrical Delay (one direction) | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | December 11, 2008 | Certificate No: D2450V2-829\_Dec12 Page 4 of 8 ### **DASY5 Validation Report for Head TSL** Date: 04.12.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 829 Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.84$ mho/m; $\varepsilon_r = 38.2$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2011; Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 27.06.2012 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 • DASY52 52.8.3(988); SEMCAD X 14.6.7(6848) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.1 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 28.3 W/kg SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.33 W/kg Maximum value of SAR (measured) = 17.8 W/kg 0 dB = 17.8 W/kg = 12.50 dBW/kg ### Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 04.12.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 829 Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.02$ mho/m; $\varepsilon_r = 50.7$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 30.12.2011; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.06.2012 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 • DASY52 52.8.3(988); SEMCAD X 14.6.7(6848) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.1 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 27.4 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.08 W/kg Maximum value of SAR (measured) = 17.5 W/kg 0 dB = 17.5 W/kg = 12.43 dBW/kg #### Impedance Measurement Plot for Body TSL #### **Extended Calibration** Usage of SAR dipoles calibrated less than 2 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 865664 D01 v01r03. | | | D2450 | V2 SN: 829 - | Head | | | |------------------------|---------------------|-------|------------------|------|-----------------------------|------| | Date of<br>Measurement | Return Loss<br>(dB) | Δ% | Impedance<br>(Ω) | ΔΩ | Impedance<br>Imaginary (jΩ) | ΔΩ | | 12/4/2012 | -25.9 | | 53.1 | | 4.2 | | | 12/5/2013 | -26.5 | 2.3 | 52.6 | -0.5 | 3.8 | -0.4 | | 12/5/2014 | -24.6 | -5.0 | 51.6 | -1.5 | 4.9 | 0.7 | | | | D2450 | V2 SN: 829 - | Body | | | |------------------------|---------------------|-------|------------------|------|-----------------------------|------| | Date of<br>Measurement | Return Loss<br>(dB) | Δ% | Impedance<br>(Ω) | ΔΩ | Impedance<br>Imaginary (jΩ) | ΔΩ | | 12/4/2012 | -25.9 | | 49.7 | | 5.1 | | | 12/5/2013 | -26.2 | 1.2 | 48.5 | -1.2 | 4.6 | -0.5 | | 12/4/2014 | -24.6 | -5.0 | 47.6 | -2.1 | 5.9 | 0.8 | #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **RF Exposure Lab** Accreditation No.: SCS 108 Certificate No: D5GHzV2-1085\_Dec12 ### CALIBRATION CERTIFICATE Object D5GHzV2 - SN: 1085 Calibration procedure(s) **QA CAL-22.v1** Calibration procedure for dipole validation kits between 3-6 GHz Calibration date: December 11, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3503 SN: 601 | Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. EX3-3503_Dec11) 27-Jun-12 (No. DAE4-601_Jun12) | Scheduled Calibration Oct-13 Oct-13 Apr-13 Apr-13 Dec-12 Jun-13 | |-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------| | Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E | ID # MY41092317 100005 US37390585 S4206 | Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-12) | Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13 | | Calibrated by: | Name<br>Israe El-Naouq | Function Laboratory Technician | Signature Oxrau El-Daoue | | Approved by: | Katja Pokovic | Technical Manager | Jelly . | Issued: December 11, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010 - b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** c) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1085\_Dec12 Page 2 of 14 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | ASY system configuration, as far as no | t given on page 1. | | |----------------------------------------|------------------------------------------------------------------------------|----------------------------------| | DASY Version | DASY5 | V52.8.3 | | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5200 MHz ± 1 MHz<br>5300 MHz ± 1 MHz<br>5600 MHz ± 1 MHz<br>5800 MHz ± 1 MHz | | ### Head TSL parameters at 5200 MHz The following parameters and calculations were applied. | he following parameters and calculations were appli | Temperature | Permittivity | Conductivity | |-----------------------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.0 | 4.66 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.8 ± 6 % | 4.53 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5200 MHz | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.20 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.4 W/kg ± 19.9 % (k=2) | | condition | | |--------------------|--------------------------| | 100 mW input power | 2.35 W/kg | | normalized to 1W | 23.3 W/kg ± 19.5 % (k=2) | | - | 100 mW input power | ### Head TSL parameters at 5300 MHz The following parameters and calculations were applied. | ne following parameters and calculations were appli | Temperature | Permittivity | Conductivity | |-----------------------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.76 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.7 ± 6 % | 4.63 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5300 MHz | t power 8.35 W/kg | |----------------------------------| | to 1W 82.9 W / kg ± 19.9 % (k=2) | | | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.39 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.7 W/kg ± 19.5 % (k=2) | | SAR for nominal Head 13L parameters | | | ### Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | ne following parameters and calculations were appli | Temperature | Permittivity | Conductivity | |-----------------------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.2 ± 6 % | 4.93 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |-------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.69 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 86.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.48 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.5 W/kg ± 19.5 % (k=2) | ### Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | ne following parameters and calculations were appli | Temperature | Permittivity | Conductivity | |-----------------------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.0 ± 6 % | 5.15 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.16 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.33 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.1 W/kg ± 19.5 % (k=2) | ### Body TSL parameters at 5200 MHz The following parameters and calculations were applied. | he following parameters and calculations were appli | Temperature | Permittivity | Conductivity | |-----------------------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 49.0 | 5.30 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.8 ± 6 % | 5.35 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ### SAR result with Body TSL at 5200 MHz | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.41 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 73.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.08 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.6 W/kg ± 19.5 % (k=2) | ### Body TSL parameters at 5300 MHz The following parameters and calculations were applied. | he following parameters and calculations were appli | Temperature | Permittivity | Conductivity | |-----------------------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.9 | 5.42 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.7 ± 6 % | 5.47 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ### SAR result with Body TSL at 5300 MHz | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.43 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 73.6 W/kg ± 19.9 % (k=2) | | condition | | |--------------------|--------------------------| | 100 mW input power | 2.09 W/kg | | normalized to 1W | 20.7 W/kg ± 19.5 % (k=2) | | | 100 mW input power | ### **Body TSL parameters at 5600 MHz** The following parameters and calculations were applied. | he following parameters and calculations were appli | Temperature | Permittivity | Conductivity | |-----------------------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.5 | 5.77 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.2 ± 6 % | 5.86 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ### SAR result with Body TSL at 5600 MHz | Condition | | |--------------------|--------------------------| | 100 mW input power | 7.98 W/kg | | normalized to 1W | 79.1 W/kg ± 19.9 % (k=2) | | | 100 mW input power | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.22 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.9 W/kg ± 19.5 % (k=2) | Body TSL parameters at 5800 MHz The following parameters and calculations were applied. | ne following parameters and calculations were appli | Temperature | Permittivity | Conductivity | |-----------------------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.2 | 6.00 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 45.9 ± 6 % | 6.13 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ### SAR result with Body TSL at 5800 MHz | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.36 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 72.9 W/kg ± 19.9 % (k=2) | | condition | | |--------------------|--------------------------| | 100 mW input power | 2.04 W/kg | | normalized to 1W | 20.2 W/kg ± 19.5 % (k=2) | | | 100 mW input power | #### **Appendix** #### Antenna Parameters with Head TSL at 5200 MHz | Impedance, transformed to feed point | 50.9 Ω - 9.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 20.2 dB | | | | #### Antenna Parameters with Head TSL at 5300 MHz | Impedance, transformed to feed point | 48.7 Ω - 5.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.7 dB | ### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 56.1 Ω - 4.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.0 dB | ### Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | 51.9 Ω - 4.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.2 dB | | 11010111 2000 | | ### Antenna Parameters with Body TSL at 5200 MHz | Impedance, transformed to feed point | 50.0 Ω - 9.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 20.5 dB | ### Antenna Parameters with Body TSL at 5300 MHz | Impedance, transformed to feed point | 49.7 Ω - 5.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.0 dB | ### Antenna Parameters with Body TSL at 5600 MHz | Impedance, transformed to feed point | 56.5 Ω - 3.4 jΩ | |--------------------------------------|-----------------| | | - 23.2 dB | | Return Loss | | ### Antenna Parameters with Body TSL at 5800 MHz | Impedance, transformed to feed point | 53.5 Ω - 4.7 jΩ | |--------------------------------------|-----------------| | | - 25.0 dB | | Return Loss | | Certificate No: D5GHzV2-1085\_Dec12 Page 7 of 14 #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.207 ns | |-----------------------------------|----------| | Electrical Delay (offe direction) | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | December 21, 2009 | #### **Extended Calibration** Usage of SAR dipoles calibrated less than 2 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 865664 D01 v01r03. | D5GHzV2 SN: 1085 - Head | | | | | | | | |-------------------------|------------|---------------------|------|------------------|------|-----------------------------|------| | Date of<br>Measurement | Frequency | Return Loss<br>(dB) | Δ% | Impedance<br>(Ω) | ΔΩ | Impedance<br>Imaginary (jΩ) | ΔΩ | | 12/11/2012 | | -20.2 | | 50.9 | | -9.9 | | | 12/11/2013 | 5200 MHz | -21.3 | 5.4 | 51.2 | 0.3 | -8.7 | 1.2 | | 12/11/2014 | 1 | -20.8 | 3.0 | 50.1 | -0.8 | -9.4 | 0.5 | | 12/11/2012 | | -24.7 | | 48.7 | | -5.6 | | | 12/11/2013 | 5300 MHz | -24.3 | -1.6 | 47.9 | -0.8 | -4.8 | 0.8 | | 12/11/2014 | 1 | -23.9 | -3.2 | 47.2 | -1.5 | -4.2 | 1.4 | | 12/11/2012 | | -23.0 | | 56.1 | | -4.4 | | | 12/11/2013 | 5600 MHz | -23.9 | 3.9 | 55.0 | -1.1 | -4.9 | -0.5 | | 12/11/2014 | | -23.5 | 2.2 | 55.8 | -0.3 | -3.8 | 1.1 | | 12/11/2012 | - | -26.2 | | 51.9 | | -4.6 | | | 12/11/2013 | 1 5800 MHz | -25.6 | -2.3 | 53.1 | 1.2 | -4.1 | 0.5 | | 12/11/2014 | 1 | -25.2 | -3.8 | 52.6 | 0.7 | -5.2 | -0.6 | | D5GHzV2 SN: 1085 - Body | | | | | | | | |-------------------------|---------------|---------------------|------|-----------------------|------|-----------------------------|------| | Date of<br>Measurement | Frequency | Return Loss<br>(dB) | Δ% | Impedance<br>Real (Ω) | ΔΩ | Impedance<br>Imaginary (jΩ) | ΔΩ | | 12/11/2012 | | -20.5 | | 50.0 | | -9.5 | | | 12/11/2013 | 5200 MHz | -21.3 | 3.9 | 51.2 | 1.2 | -8.7 | 0.8 | | 12/11/2014 | | -21.6 | 5.4 | 49.8 | -0.2 | -10.2 | -0.7 | | 12/11/2012 | * | -26.0 | - | 49.7 | | -5.0 | | | 12/11/2013 | 5300 MHz | -25.3 | -2.7 | 51.3 | 1.6 | -4.6 | 0.4 | | 12/11/2014 | 3330 //// | -27.1 | 4.2 | 50.3 | 0.6 | -5.8 | -0.8 | | 12/11/2012 | | -23.2 | | 56.5 | | -3.4 | | | 12/11/2013 | 5600 MHz | -22.6 | -2.6 | 55.9 | -0.6 | -3.9 | -0.5 | | 12/11/2014 | | -24.3 | 4.7 | 57.1 | 0.6 | -2.8 | 0.6 | | 12/11/2012 | | -25.0 | | 53.5 | | -4.7 | | | 12/11/2012 | 5800 MHz | -23.9 | -4.4 | 52.6 | -0.9 | -5.7 | -1.0 | | 12/11/2013 | 1 2000 111112 | -25.6 | 2.4 | 53.9 | 0.4 | -4.5 | 0.2 | Certificate No: D5GHzV2-1085\_Dec12 Page 8 of 14 ### DASY5 Validation Report for Head TSL Date: 11.12.2012 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1085 Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.53$ mho/m; $\epsilon_r = 34.8$ ; $\rho = 1000$ kg/m<sup>3</sup>, Medium parameters used: f = 5300 MHz; $\sigma = 4.63$ mho/m; $\epsilon_r = 34.7$ ; $\rho = 1000$ kg/m $^3$ , Medium parameters used: f = 5600 MHz; $\sigma$ = 4.93 mho/m; $\epsilon_r$ = 34.2; $\rho$ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; $\sigma$ = 5.15 mho/m; $\epsilon_r$ = 34; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41); Calibrated: 30.12.2011, ConvF(5.1, 5.1, 5.1); Calibrated: 30.12.2011, ConvF(4.76, 4.76, 4.76); Calibrated: 30.12.2011, ConvF(4.81, 4.81, 4.81); Calibrated: 30.12.2011; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.06.2012 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 - DASY52 52.8.3(988); SEMCAD X 14.6.7(6848) # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.782 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 30.1 W/kg SAR(1 g) = 8.2 W/kg; SAR(10 g) = 2.35 W/kg Maximum value of SAR (measured) = 18.9 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.947 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 31.3 W/kg SAR(1 g) = 8.35 W/kg; SAR(10 g) = 2.39 W/kg Maximum value of SAR (measured) = 19.4 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.857 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 34.4 W/kg SAR(1 g) = 8.69 W/kg; SAR(10 g) = 2.48 W/kg Maximum value of SAR (measured) = 20.8 W/kg Page 9 of 14 Certificate No: D5GHzV2-1085\_Dec12 ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 61.816 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 33.5 W/kg SAR(1 g) = 8.16 W/kg; SAR(10 g) = 2.33 W/kg Maximum value of SAR (measured) = 19.9 W/kg 0 dB = 19.9 W/kg = 12.99 dBW/kg #### Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 10.12.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1085 Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f=5200 MHz; $\sigma=5.35$ mho/m; $\epsilon_r=46.8$ ; $\rho=1000$ kg/m $^3$ , Medium parameters used: f=5300 MHz; $\sigma=5.47$ mho/m; $\epsilon_r=46.7$ ; $\rho=1000$ kg/m $^3$ , Medium parameters used: f=5600 MHz; $\sigma=5.86$ mho/m; $\epsilon_r=46.2$ ; $\rho=1000$ kg/m $^3$ , Medium parameters used: f=5800 MHz; $\sigma=6.13$ mho/m; $\epsilon_r=45.9$ ; $\rho=1000$ kg/m $^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91); Calibrated: 30.12.2011, ConvF(4.67, 4.67, 4.67); Calibrated: 30.12.2011, ConvF(4.22, 4.22, 4.22); Calibrated: 30.12.2011, ConvF(4.38, 4.38, 4.38); Calibrated: 30.12.2011; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.06.2012 - Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 - DASY52 52.8.3(988); SEMCAD X 14.6.7(6848) # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 58.435 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 29.5 W/kg SAR(1 g) = 7.41 W/kg; SAR(10 g) = 2.08 W/kg Maximum value of SAR (measured) = 17.3 W/kg ### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 57.938 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 30.1 W/kg SAR(1 g) = 7.43 W/kg; SAR(10 g) = 2.09 W/kg Maximum value of SAR (measured) = 17.4 W/kg ### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 58.467 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 35.4 W/kg SAR(1 g) = 7.98 W/kg; SAR(10 g) = 2.22 W/kg Maximum value of SAR (measured) = 19.5 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 54.901 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 34.6 W/kg SAR(1 g) = 7.36 W/kg; SAR(10 g) = 2.04 W/kg Maximum value of SAR (measured) = 18.3 W/kg 0 dB = 18.3 W/kg = 12.62 dBW/kg ### Impedance Measurement Plot for Body TSL Page 14 of 14 Report Number: SAR.20141207 ### **Appendix F – Phantom Calibration Data Sheets** Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com #### Certificate of Conformity / First Article Inspection | Item | Oval Flat Phantom ELI 4.0 | | | | | |--------------|---------------------------------|--|--|--|--| | Type No | QD OVA 001 B | | | | | | Series No | 1003 and higher | | | | | | Manufacturer | Untersee Composites | | | | | | | Knebelstrasse 8 | | | | | | | CH-8268 Mannenbach, Switzerland | | | | | #### Tests Complete tests were made on the prototype units QD OVA 001 AA 1001, QD OVA 001 AB 1002, pre-series units QD OVA 001 BA 1003-1005 as well as on the series units QD OVA 001 BB, 1006 ff. | Test | Requirement | Details | Units tested | |-------------|----------------------------------------|--------------------------------|--------------| | Material | Compliant with the standard | Bottom plate: | all | | thickness | requirements | 2.0mm +/- 0.2mm | | | Material | Dielectric parameters for required | < 6 GHz: Rel. permittivity = 4 | Material | | parameters | frequencies | +/-1, Loss tangent ≤ 0.05 | sample | | Material | The material has been tested to be | DGBE based simulating | Equivalent | | resistivity | compatible with the liquids defined in | liquids. | phantoms, | | - | the standards if handled and cleaned | Observe Technical Note for | Material | | | according to the instructions. | material compatibility. | sample | | Shape | Thickness of bottom material, | Bottom elliptical 600 x 400 mm | Prototypes, | | · | Internal dimensions, | Depth 190 mm, | Sample | | | Sagging | Shape is within tolerance for | testing | | | compatible with standards from | filling height up to 155 mm, | _ | | | minimum frequency | Eventual sagging is reduced or | | | | | eliminated by support via DUT | | #### Standards - CENELEC EN 50361-2001, « Basic standard for the measurement of the Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz – 3 GHz) », July 2001 - [2] IEEE 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques, December 2003 - [3] IEC 62209 1, "Specific Absorption Rate (SAR) in the frequency range of 300 MHz to 3 GHz Measurement Procedure, Part 1: Hand-held mobile wireless communication devices", February 2005 - [4] IEC 62209 2, Draft, "Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices Human models, Instrumentation and Procedures Part 2: Procedure to determine the Specific Absorption Rate (SAR) in the head and body for 30 MHz to 6 GHz Handheld and Body-Mounted Devices used in close proximity to the Body.", February 2005 - [5] OET Bulletin 65, Supplement C, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", Edition January 2001 Based on the tests above, we certify that this item is in compliance with the standards [1] to [5] if operated according to the specific requirements and considering the thickness. The dimensions are fully compliant with [4] from 30 MHz to 6 GHz. For the other standards, the minimum lower frequency limit is limited due to the dimensional requirements ([1]: 450 MHz, [2]: 300 MHz, [3]: 800 MHz, [5]: 375 MHz) and possibly further by the dimensions of the DUT. Date 28.4.2008 Signature / Stamp Schmid & Partner Engineering AG Zeughaustrasse 43, 6004 Zurich, Switzerland Phone +41 44 245 9709, Fax +41,44,245 9779 info@speag.com; http://www.speag.com