

Report No. : EED32N80832103 Page 1 of 45

TEST REPORT

Product : Intelligent Automotive Detection Tool

Trade mark : Smart Safe

Model/Type reference : iSmartIMMO 801,iSmartLink 801

Serial Number : N/A

Report Number : EED32N80832103 FCC ID : 2AYANISMARTLINK

Date of Issue : Oct. 25, 2021

Test Standards : 47 CFR Part 15 Subpart E

Test result : PASS

Prepared for:

SHENZHEN SMARTSAFE TECH CO., LTD.

3F, Building B, Qiao'an Technology Industrial Park, Guanlan,
Longhua New District, Shenzhen, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Frazer. Lo
Frazer Li
David Wany

David Wang

Date:

Reviewed by:

Acron Ma

Aaron Ma

Oct. 25, 2021

Check No.:2230060921

V Page 2 of 45

Content

1 CONTENT		•••••	•••••	
2 VERSION				
3 TEST SUMMARY				4
4 GENERAL INFORMATIO	N			5
4.1 CLIENT INFORMATION 4.2 GENERAL DESCRIPTION 4.3 TEST CONFIGURATION. 4.4 TEST ENVIRONMENT 4.5 DESCRIPTION OF SUPP 4.6 TEST LOCATION 4.7 DEVIATION FROM STAN 4.8 ABNORMALITIES FROM 4.9 OTHER INFORMATION F 4.10 MEASUREMENT UNCE	PORT UNITSSTANDARD CONDITIONS REQUESTED BY THE CUSTERTAINTY (95% CONFIDEN	TOMER		
6 RADIO TECHNICAL REC	UIREMENTS SPECIFIC	CATION	••••••	12
6.1 ANTENNA REQUIREMEN 6.2 AC POWER LINE COND 6.3 MAXIMUM CONDUCTED 6.4 6DB EMISSON BANDWI 6.5 26DB EMISSION BANDWI 6.6 MAXIMUM POWER SPE 6.7 FREQUENCY STABILITY 6.8 RADIATED EMISSION W	DUCTED EMISSIONS	ED BANDWIDTH		
7 APPENDIX A				4 1
PHOTOGRAPHS OF TEST	SETUP		•••••	42
PHOTOGRAPHS OF EUT	CONSTRUCTIONAL DE	ETAILS		45

2 Version

Version No.	Date	Description Original		
00	Oct. 25, 2021			
(
1				

Report No. :EED32N80832103 V Page 4 of 45

3 Test Summary

Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart E Section 15.407 (b)(6)	PASS	
Duty Cycle	47 CFR Part 15 Subpart E Section 15.407	PASS	
Maximum Conducted Output Power	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS	
26dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS	
99% Occupied bandwidth	1	PASS	
6dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (e)	PASS	
Maximum Power Spectral Density	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS	
Frequency stability	47 CFR Part 15 Subpart E Section 15.407 (g)	PASS	
Radiated Emissions	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS	
Radiated Emissions which fall in the restricted bands	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS	

Remark

Only the model iSmartIMMO 801 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being model name.

^{1.}Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

^{2.}Model No.: iSmartIMMO 801,iSmartLink 801

Report No. :EED32N80832103 V Page 5 of 45

4 General Information

4.1 Client Information

Applicant:	SHENZHEN SMARTSAFE TECH CO., LTD.	
Address of Applicant: 3F, Building B, Qiao'an Technology Industrial Park, Guanlan, Lon New District, Shenzhen, China		
Manufacturer:	SHENZHEN SMARTSAFE TECH CO., LTD.	
Address of Manufacturer: 3F, Building B, Qiao'an Technology Industrial Park, Guanlan, Longh New District, Shenzhen, China		
Factory :	SHENZHEN SMARTSAFE TECH CO., LTD.	
Address of Factory :	3F, Building B, Qiao'an Technology Industrial Park, Guanlan, Longhua New District, Shenzhen, China	

4.2 General Description of EUT

Product Name:	Intelligent Automotive Detection Tool				
Model No.:	iSmartIMMO 801				
Add Model No.:	iSmartLink 801				
Trade mark:	Smart:	5afe a			
Product Type:	☐ Mobile ⊠	Portable			
Type of Modulation:	IEEE 802.11n(F	OFDM (BPSK, QPSK, 16QAM, 64QAM) HT20/HT40): OFDM (BPSK, QPSK, 16QAM, 64QAM) VHT20/VHT40/VHT80): OFDM (BPSK, QPSK, 16QAM,			
Operating Frequency	U-NII-1: 5180-5240MHz U-NII-3: 5745-5825MHz				
Operating Temperature:	0°C to +50°C				
Antenna Type:	Internal antenna				
Antenna Gain:	U-NII-1: 1.37dB U-NII-3: 4.22dB				
Power Supply:	AC Adapter	Model:C1902XZ/C1902XA/C1902XJ Input:100-240V~50/60Hz 0.5A Output:PD:5.0V,3.0A/9.0V,2.22A/12.0V,1.67A MAX:20.0W			
	Rechargeable lithium ion battery	nium ion			
Test voltage:	Rechargeable lithium ion battery DC 7.6V				
Sample Received Date:	Sep. 06, 2021				
Sample tested Date:	Sep. 06, 2021 to	o Oct. 25, 2021			

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

V Page 6 of 45

Operation Frequency each of channel

802.11a/802.11n/802.11ac (20MHz) Frequency/Channel Operations:

	U-NII-1	U-NII-3		
Channel	Channel Frequency(MHz)		Frequency(MHz)	
36	36 5180		5745	
40	40 5200		5765	
44	44 5220		5785	
48	48 5240		5805	
- (6	· -	165	5825	

802.11n/802.11ac (40MHz) Frequency/Channel Operations:

U-NII-1		U-NII-3		
Channel Frequency(MHz)		Channel	Frequency(MHz)	
38 5190		151	5755	
46	5230	159	5795	

802.11ac (80MHz) Frequency/Channel Operations:

U-NII-1			U-NII-3
Channel Frequency(MHz)		Channel	Frequency(MHz)
42	5210	155	5775

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Report No. :EED32N80832103 V Page 7 of 45

4.3 Test Configuration

EUT Test Software Settin	ngs:	
Software:	Default	70%
EUT Power Grade:	RF test	
Use test software to set th transmitting of the EUT.	e lowest frequency, the midd	lle frequency and the highest frequency keep
Test Mode:		
		al operation. All the test modes were carried out with this test report and defined as follows:
Per-scan all kind of data	rate in lowest channel, an	d found the follow list which it
was worst case.		
Mo	ode	Data rate
802) 11a	6 Mhns

802.11a	6 Mbps
802.11n(HT20)	MCS0
802.11n(HT40)	MCS0
802.11ac(VHT20)	MCS0
802.11ac(VHT40)	MCS0
802.11ac(VHT80)	MCS0

4.4 Test Environment

Operating Environment:					
Radiated Spurious Emission	s:				
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH		0		(0)
Atmospheric Pressure:	1010mbar				
Conducted Emissions:					
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH	(C.)		(0,)	
Atmospheric Pressure:	1010mbar				
RF Conducted:					
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar		(6)		(6)
	NT (Normal Temperature)	2	2~25.0 °C		
Temperature:	LT (Low Temperature)	0	°C		
	HT (High Temperature)	5	0 °C	/°>	
(5/2)	NV (Normal Voltage)	9	.0 V	(65)	
Working Voltage of the EUT:	LV (Low Voltage)	5	.0 V		
	HV (High Voltage)	1	2.0 V		

Report No. :EED32N80832103 V Page 8 of 45

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

	ociated nent name	Manufacture	model	S/N serial number	Supplied by	Certification
AE	N/A	1	1	1		1

4.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

FCC Designation No.: CN1164

4.7 Deviation from Standards

None

4.8 Abnormalities from Standard Conditions

None.

4.9 Other Information Requested by the Customer

None.

4.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty		
1	Radio Frequency	7.9 x 10 ⁻⁸		
2	DE nower conducted	0.46dB (30MHz-1GHz)		
2	RF power, conducted	0.55dB (1GHz-18GHz)		
		3.3dB (9kHz-30MHz)		
3	Dedicted Courieus ausicaias teat	4.5dB (30MHz-1GHz)		
3	Radiated Spurious emission test	4.8dB (1GHz-18GHz)		
		3.4dB (18GHz-40GHz)		
4	Conduction emission	3.5dB (9kHz to 150kHz)		
4	Conduction emission	3.1dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	3.8%		
7	DC power voltages	0.026%		

5 Equipment List

	RF test system					
Equipment	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)				
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-28-2020	12-27-2021	
Signal Generator	Keysight	N5181A	MY46240094	12-28-2020	12-27-2021	
Signal Generator	Keysight	N5182B	MY53051549	12-28-2020	12-27-2021	
Signal Generator	Keysight	E8257D	MY53401106	12-28-2020	12-27-2021	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-24-2021	06-23-2022	
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	(62)	(6	S)	
High-pass filter	MICRO- TRONICS	SPA-F-63029-4				
DC Power	Keysight	E3642A	MY56376072	12-28-2020	12-27-2021	
Power unit	R&S	OSP120	101374	12-28-2020	12-27-2021	
RF control unit	JS Tonscend	JS0806-2	158060006	12-28-2020	12-27-2021	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3			(6.)	

	3M Semi/full-anechoic Chamber						
Equipment Manufacturer		Model No.	Model No. Serial Number		Cal. Due date (mm-dd-yyyy)		
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022		
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2021	05-15-2022		
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-15-2021	04-14-2024		
Receiver	R&S	ESCI7	100938-003	10-16-2020 10-15-2021	10-15-2021 10-14-2022		
Multi device Controller	maturo	NCD/070/10711 112	(<u>C</u>)	(6	<u>)</u>		
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-24-2021	06-23-2022		
Communication test set	Agilent	E5515C	GB47050534	03-01-2019	02-28-2022		
Cable line	Fulai(7M)	SF106	5219/6A	(0.7	(6.)		
Cable line	Fulai(6M)	SF106	5220/6A				
Cable line	Fulai(3M)	SF106	5216/6A				
Cable line	Fulai(3M)	SF106	5217/6A	/	C		

V Page 10 of 45

		3M full-anechoi	ic Chamber		A 4 1			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
RSE Automatic test software	JS Tonscend	JS36-RSE	10166					
Receiver	Keysight	N9038A	MY57290136	03-04-2021	03-03-2022			
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-04-2021	03-03-2022			
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-04-2021	03-03-2022			
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024			
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024			
Communication Antenna	Schwarzbeck	CLSA 0110L	1014					
Horn Antenna	ETS- LINDGREN	3117	57407	07-04-2021	07-03-2024			
Preamplifier	EMCI	EMC184055SE	980596	05-20-2021	05-19-2022			
Communication test set	R&S	CMW500	102898	12-31-2020	12-30-2021			
Preamplifier	EMCI	EMC001330	980563	04-21-2021	04-20-2022			
Preamplifier	JS Tonscend	980380	EMC051845 SE	12-31-2020	12-30-2021			
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-16-2021	04-15-2022			
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024			
Filter bank	JS Tonscend	JS0806-F	188060094	04-09-2021	04-08-2024			
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001	(m			
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002	(D			
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003					
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		-(3)			
Cable line	Times	EMC104-NMNM- 1000	SN160710					
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001					
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001	(6	5)			
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001					
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		- (3)			

V Pag	e 11	of 45
v i au	С 1 1	OITO

	C	onducted distur	bance Test		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	04-15-2021	04-14-2022
Temperature/ Humidity Indicator	Defu	TH128	1	(A)	(3)
LISN	R&S	ENV216	100098	03-04-2021	03-03-2022
Barometer	changchun	DYM3	1188		

Report No. :EED32N80832103 V Page 12 of 45

6 Radio Technical Requirements Specification

6.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203
-----------------------	--------------------------------

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna: Please see Internal photos

The antenna is Internal antenna. The best case gain of the antenna are U-NII-1: 1.37dBi and U-NII-3 4.22dBi

Report No. :EED32N80832103 V Page 13 of 45

6.2 AC Power Line Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.20	07	(6,				
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	150kHz to 30MHz						
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto						
Limit:	Frequency range (MHz)	Limit (dl Quasi-peak	BuV) Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithm						
Test Setup:	Shielding Room EUT AC Mains LISN1	LISN2 AC Main	Test Receiver				
Test Procedure:	 The mains terminal disturbation. The EUT was connected Impedance Stabilization Neimpedance. The power of connected to a second LISI plane in the same way as multiple socket outlet strip wingle LISN provided the ration of the tabletop EUT was placed on the horizontal ground reference plane. An placed on the horizontal ground the EUT shall be 0.4 m fivertical ground reference reference plane. The LISN unit under test and bond mounted on top of the ground the closest points of the LI and associated equipment with the EUT of the test and sociated equipment with the EUT of the ground the closest points of the LI and associated equipment with the EUT of the test and sociated equipment with the closest points of the LI and associated equipment with the EUT of the test and bond and all of the interface cable ANSI C63.10: 2013 on conditions. 	to AC power source stwork) which provides ables of all other to N 2, which was bonded to the LISN 1 for the was used to connect ming of the LISN was not upon a non-metal and for floor-standing around reference plane. In a vertical ground reference plane was bonded to 1 was placed 0.8 m fled to a ground reference plane. The SN 1 and the EUT. A was at least 0.8 m from memission, the relatives must be changed a	through a LISN 1 (Line a 50Ω/50μH + 5Ω linear units of the EUT were do to the ground reference unit being measured. A nultiple power cables to a ot exceeded. Iic table 0.8m above the rangement, the EUT was been a concept the property of the horizontal ground from the boundary of the erence plane for LISNs has distance was between all other units of the EUT in the LISN 2.				
Test Mode:	All modes were tested, only the	e worst case was recor	ded in the report.				
Test Voltage:	AC 120V/60Hz						
Test Results:	Pass						

V Page 14 of 45

Measurement Data

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment		Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.3480	42.15	10.02	52.17	59.01	-6.84	peak	
2		0.3480	28.95	10.02	38.97	49.01	-10.04	AVG	
3	*	0.4605	43.75	9.96	53.71	56.68	-2.97	peak	
4		0.4605	33.29	9.96	43.25	46.68	-3.43	AVG	
5		0.6540	39.97	9.97	49.94	56.00	-6.06	peak	
6		0.6540	28.72	9.97	38.69	46.00	-7.31	AVG	
7		1.0184	40.69	9.83	50.52	56.00	-5.48	peak	
8		1.0184	29.26	9.83	39.09	46.00	-6.91	AVG	
9		1.1174	38.75	9.83	48.58	56.00	-7.42	peak	
10		1.2030	27.11	9.82	36.93	46.00	-9.07	AVG	
11		1.6710	38.39	9.80	48.19	56.00	-7.81	peak	
12		1.6710	26.00	9.80	35.80	46.00	-10.20	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

No	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
i l		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.4605	38.78	9.96	48.74	56.68	-7.94	peak	
2		0.4605	28.67	9.96	38.63	46.68	-8.05	AVG	
3		0.6540	35.47	9.97	45.44	56.00	-10.56	peak	
4		0.6540	25.25	9.97	35.22	46.00	-10.78	AVG	
5		1.0184	35.83	9.83	45.66	56.00	-10.34	peak	
6		1.0184	25.30	9.83	35.13	46.00	-10.87	AVG	
7		1.7745	21.43	9.80	31.23	46.00	-14.77	AVG	
8		1.9185	34.02	9.79	43.81	56.00	-12.19	peak	
9		2.5845	33.93	9.79	43.72	56.00	-12.28	peak	
10		2.6880	20.35	9.79	30.14	46.00	-15.86	AVG	
11		17.5920	39.31	9.95	49.26	60.00	-10.74	peak	
12		17.5920	19.53	9.95	29.48	50.00	-20.52	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Report No. :EED32N80832103 V Page 16 of 45

6.3 Maximum Conducted Output Power

Test Require	ment: 47 Cl	47 CFR Part 15C Section 15.407 (a)					
Test Method:	KDB7	789033 D02 G	General UNII Test	t Procedures New F	Rules v02r01 Section		
Test Setup:		(6	5)	(0,)	(6,		
	Con	Description (Control portion) Antenna portion (Antenna portion) Antenna portion (Antenna portion) Antenna portion (Antenna portion) Antenna portion (Antenna portion) Temperature casi	Attenuator	RF test System Instrument			
Test Procedu	ıre· 1 Th	e testina follow	vs the Measurem	ent Procedure of KD	DB789033 D02		
	2. Th atten meas 3. Se conti	e RF output of uator. The pat surement. It to the maximuously.	EUT was connected the loss was composited the loss was composited the loss was connected the loss was also better the loss was connected the loss was co	Rules v02r01 Section cted to the power mensated to the resulting and enable the EU wer and record the i	eter by RF cable and ts for each T transmit		
Limit:							
	Fre	quency band (MHz)	Limit				
	- 15	5150-5250	≤1W(30dBm) for master device				
	(6		≤250mW(24dBm) for client device				
	5	5250-5350	≤250mW(24dBr	m) for client device of	or 11dBm+10logB*		
	5	5470-5725	≤250mW(24dBr	m) for client device o	or 11dBm+10logB*		
	5	5725-5850	≤1W(30dBm)	/ °>			
		Remark:	* Where B is the 26dB emission bandwidth in MHz The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms- equivalent voltage.				
Test Mode:	Trans	Transmitting mode with modulation					
Test Results:	Refer	r to Appendix A		\			

Report No. :EED32N80832103 V Page 17 of 45

6.4 6dB Emisson Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.407 (e)						
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C						
Test Setup:	Control Computer Power ports) Power ports Power ports Attenuator Attenuator Instrument						
	Remark: Offset=Cable loss+ attenuation factor.						
Test Procedure:	1. KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. 4. Measure and record the results in the test report.						
Limit:	≥ 500 kHz						
Test Mode:	Transmitting mode with modulation						
Test Results:	Refer to Appendix A						

Report No. :EED32N80832103 V Page 18 of 45

6.5 26dB Emission Bandwidth and 99% Occupied Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.407 (a)
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D
Test Setup:	
	Cottol Computer Power Supply Table RF test System System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D Section D Section be a setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. Measure and record the results in the test report.
Limit:	No restriction limits
Test Mode:	Transmitting mode with modulation
Test Results:	Refer to Appendix A

Report No. :EED32N80832103 V Page 19 of 45

6.6 Maximum Power Spectral Density

٦	Test Requirement:	47 CFR Part 15C S	Section 15.407 (a)		
7	Test Method:	KDB789033 D02 G	eneral UNII Test	Procedures New Rules	v02r01 Section F
	Test Setup:			(.4)	
		C cetted C omputer Power Supply TEMPERATURE CAB	Attenuator	RF test System Instrument	
		D 10" 10"		190	
	Test Procedure:	Remark: Offset=Ca		ition factor. receiver span to view t	
L	Limit:	Auto, Detector = RI 2. Allow the sweeps	MS. s to continue unti	MHz, VBW ≥ 3*RBW, the trace stabilizes. letermine the maximum	
		Frequency band (MHz)	Limit		
		5150-5250	≤17dBm in 1MF	Iz for master device	
		(6)	≤11dBm in 1MF	Iz for client device	(6,2)
		5250-5350	≤11dBm in 1MF	Iz for client device	
		5470-5725	≤11dBm in 1MF	Iz for client device	
		5725-5850	≤30dBm in 500	kHz	
		Remark:	a conducted em	power spectral density in hission by direct connect to the equipr	ction of a
٦	Test Mode:	Transmitting mode	with modulation		
		Refer to Appendix		5,0000 - 5	

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Report No. :EED32N80832103 V Page 20 of 45

6.7 Frequency Stability

Test Requirement:	47 CFR Part 15C Section 15.407 (g)	
Test Method:	ANSI C63.10: 2013	_0_	_0.
Test Setup:			
	Control Computer Control Computer Power Supply TEMPERATURE CABRIET Table	RF test System Instrument	
	Remark: Offset=Cable loss+ attent	uation factor.	6.
Test Procedure:	 1.The EUT was placed inside the elements by nominal AC/DC voltage. 2. Turn the EUT on and couple its 3. Turn the EUT off and set the characteristic specified. d. Allow sufficient time (a of the chamber to stabilize. 4. Repeat step 2 and 3 with the ter temperature. 5. The test chamber was allowed to f 30 minutes. The supply voltage 115% and the frequency record. 	output to a spectrum amber to the highest approximately 30 min approximately 30 min apperature chamber so stabilize at +20 de was then adjusted o	n analyzer. I temperature n) for the temperature set to the lowest gree C for a minimum n the EUT from 85% to
Limit:	The frequency tolerance shall be frequency over a temperature vanormal supply voltage, and for a value 85% to 115% of the rated supply v	riation of 0 degree variation in the prima	es to 45 degrees C at arry supply voltage from
Test Mode:	Transmitting mode with modulation		(41)
Test Results:	Refer to Appendix A		

Report No. :EED32N80832103 V Page 21 of 45

6.8 Radiated Emission

T (D				1 B. C.	1
Test Requirement:	47 CFR Part 15C Section	on 15.209 and 1	5.407 (b)	(6)	
Test Method:	ANSI C63.10 2013				
Test Site:	Measurement Distance:				
Receiver Setup:	Frequency	Detector	RBV		Remark
	0.009MHz-0.090MHz	7.4	10kH		Peak
	0.009MHz-0.090MHz		10kH		Average
	0.090MHz-0.110MHz				Quasi-peak
	0.110MHz-0.490MHz		10kH		Peak
	0.110MHz-0.490MHz 0.490MHz -30MHz		10kH k 10kH		Average Quasi-peak
	30MHz-1GHz	Quasi-pea Quasi-pea			Quasi-peak Quasi-peak
	(62.)	Peak	1MH		Peak
	Above 1GHz	Peak	1MH		Average
Limit:					
		Field strength microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	70.	/ -	300
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
	1.705MHz-30MHz	30	-	-	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz 150		43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3
	*(1) For transmitters of outside of the 5.15-5.	5.15-5.2	h (HZ nand		
	dBm/MHz. (2) For transmitters ope of the 5.15-5.35 GHz bate (3) For transmitters ope outside of the 5.47-5. dBm/MHz. (4) For transmitters ope (i) All emissions shall be above or below the bare dge increasing linearly the band edge, and from linearly to a level of 27 of Remark: The emission measurements employ frequency bands 9-90 emission limits in these an average detector, the the maximum permitted.	erating in the 5.25 and shall not except and shall not except and shall not except and shall not except and edge increased and edge, and from 5 MHz aboved Bm/MHz at the nolimits shown ving a CISPR of three bands are peak field street average limits.	shall not 5-5.35 GH seed an e.i 5.47-5.72 shall not 25-5.85 GH rel of -27 c ing linearly from 25 MH re or below band edge in the a quasi-pea Hz and a re based c ength of ar	exceed an z band: All en r.p. of -27 dE 5 GHz band t exceed an Hz band: dBm/MHz at 7 y to 10 dBm/l Hz above or l Hz at 5 MHz w the band en	e.i.r.p. of -27 hissions outside m/MHz. All emissions e.i.r.p. of -27 hissions outside m/MHz. All emissions e.i.r.p. of -27 hissions outside m/MHz or more hissions outside hiss
	dBm/MHz. (2) For transmitters ope of the 5.15-5.35 GHz bat (3) For transmitters ope outside of the 5.47-5. dBm/MHz. (4) For transmitters ope (i) All emissions shall be above or below the bar above or below	erating in the 5.25 and shall not except and shall not except and shall not except and shall not except and edge increased and edge, and from 5 MHz aboved Bm/MHz at the nolimits shown ving a CISPR of three bands are peak field street average limits.	shall not 5-5.35 GH seed an e.i 5.47-5.72 shall not 25-5.85 GH rel of -27 c ing linearly from 25 MH re or below band edge in the a quasi-pea Hz and a re based c ength of ar	exceed an z band: All en r.p. of -27 dE 5 GHz band t exceed an Hz band: dBm/MHz at 7 y to 10 dBm/l Hz above or l Hz at 5 MHz w the band en	e.i.r.p. of -27 hissions outside m/MHz. All emissions e.i.r.p. of -27 hissions outside m/MHz. All emissions e.i.r.p. of -27 hissions outside m/MHz or more hissions outside hiss

V Page 22 of 45 Report No.: EED32N80832103

where: • E is the field strength in V/m; · d is the measurement distance in meters; • EIRP is the equivalent isotropically radiated power in watts. (ii) Working in dB units, the above equation is equivalent to: $EIRP[dBm] = E[dB\mu V/m] + 20 log(d[meters]) - 104.77$ (iii) Or, if d is 3 meters: $EIRP[dBm] = E[dB\mu V/m] - 95.2$ Test Setup: **RX Antenna** EUT 0.8 m **Ground Plane** Receiver Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement

\/	Page	23	Ωf	45
v	raue	23	OΙ	40

Test Results:	Pass
Test Mode:	 i. Repeat above procedures until all frequencies measured was complete. Transmitting mode with modulation
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dE margin would be re-tested one by one using peak, quasi-peak o average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel, the middle channel and the highes channel
	 d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights from the meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified
	 for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern or the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation

Report No. :EED32N80832103 V Page 24 of 45

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Remark: During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of 6Mbps for 802.11 a was recorded in the report.

Mode:	802.11 a Transmitting	Channel:	5180
Remark:			

Suspecte	Suspected List												
NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark				
NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Nesuit	Folarity	Remark				
1	48.0438	-17.17	31.84	14.67	40.00	25.33	PASS	Horizontal	PK				
2	90.0490	-20.12	29.74	9.62	43.50	33.88	PASS	Horizontal	PK				
3	137.0987	-21.90	34.04	12.14	43.50	31.36	PASS	Horizontal	PK				
4	199.9610	-17.84	36.13	18.29	43.50	25.21	PASS	Horizontal	PK				
5	270.0020	-16.15	35.83	19.68	46.00	26.32	PASS	Horizontal	PK				
6	528.3388	-10.28	29.13	18.85	46.00	27.15	PASS	Horizontal	PK				

V Page 25 of 45

Mode:	802.11 a Transmitting	Channel:	5180
Remark:			

Suspe	ected	l List								
NO		Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
INO		[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	lolanty	Remark
1		44.0664	-17.32	39.51	22.19	40.00	17.81	PASS	Vertical	PK
2		120.0250	-20.08	44.40	24.32	43.50	19.18	PASS	Vertical	PK
3		159.9930	-21.15	42.18	21.03	43.50	22.47	PASS	Vertical	PK
4		285.0385	-15.83	41.78	25.95	46.00	20.05	PASS	Vertical	PK
5		411.4421	-12.69	37.44	24.75	46.00	21.25	PASS	Vertical	PK
6		750.0060	-7.00	30.00	23.00	46.00	23.00	PASS	Vertical	PK

Report No. :EED32N80832103 V Page 26 of 45

Transmitter Emission above 1GHz

Mode	Mode:)2.11 a Tran	smitting		Channel:		5180MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1632.5633	2.64	41.51	44.15	68.20	24.05	PASS	Horizontal	PK
2	2535.2035	5.17	41.94	47.11	68.20	21.09	PASS	Horizontal	PK
3	4312.9813	10.98	38.17	49.15	68.20	19.05	PASS	Horizontal	PK
4	9057.7279	-8.55	53.06	44.51	68.20	23.69	PASS	Horizontal	PK
5	12467.0734	-4.18	53.09	48.91	68.20	19.29	PASS	Horizontal	PK
6	17106.4053	1.66	52.29	53.95	68.20	14.25	PASS	Horizontal	PK
7	1433.9934	1.49	42.10	43.59	68.20	24.61	PASS	Vertical	PK
8	2183.7184	4.11	42.38	46.49	68.20	21.71	PASS	Vertical	PK
9	3045.1045	6.67	41.83	48.50	68.20	19.70	PASS	Vertical	PK
10	7606.3553	-10.57	53.87	43.30	68.20	24.90	PASS	Vertical	PK
11	11235.3618	-6.02	52.85	46.83	68.20	21.37	PASS	Vertical	PK
12	15659.0580	0.68	49.56	50.24	68.20	17.96	PASS	Vertical	PK

Mode	Mode:		802.11 a Transmitting			Channel:		5200MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1625.9626	2.60	41.37	43.97	68.20	24.23	PASS	Horizontal	PK
2	2069.3069	4.92	41.58	46.50	68.20	21.70	PASS	Horizontal	PK
3	3176.0176	6.93	41.48	48.41	68.20	19.79	PASS	Horizontal	PK
4	9158.3579	-8.11	53.19	45.08	68.20	23.12	PASS	Horizontal	PK
5	12456.1478	-4.16	53.09	48.93	68.20	19.27	PASS	Horizontal	PK
6	15913.2207	0.08	51.04	51.12	68.20	17.08	PASS	Horizontal	PK
7	1574.8075	2.23	41.75	43.98	68.20	24.22	PASS	Vertical	PK
8	2682.0682	5.48	42.11	47.59	68.20	20.61	PASS	Vertical	PK
9	3911.4411	8.96	39.36	48.32	68.20	19.88	PASS	Vertical	PK
10	7752.9876	-11.27	56.07	44.80	68.20	23.40	PASS	Vertical	PK
11	11796.0148	-6.18	53.78	47.60	68.20	20.60	PASS	Vertical	PK
12	15950.5975	-0.05	52.29	52.24	68.20	15.96	PASS	Vertical	PK

V Page 27 of 45

_	/ "					7.3				
	Mode	:		802.11 a Tran	nsmitting		Chann	el:	5240MHz	
	NO	Freq. [MHz]	Factor	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1695.8196	3.00	41.58	44.58	68.20	23.62	PASS	Horizontal	PK
é	2	2535.2035	5.17	41.14	46.31	68.20	21.89	PASS	Horizontal	PK
6	3	3946.0946	9.15	38.97	48.12	68.20	20.08	PASS	Horizontal	PK
	4	9211.2606	-7.70	52.92	45.22	68.20	22.98	PASS	Horizontal	PK
	5	11832.2416	-5.95	53.78	47.83	68.20	20.37	PASS	Horizontal	PK
	6	15917.2459	0.07	51.96	52.03	68.20	16.17	PASS	Horizontal	PK
	7	1315.1815	1.19	42.83	44.02	68.20	24.18	PASS	Vertical	PK
	8	2123.2123	4.79	41.65	46.44	68.20	21.76	PASS	Vertical	PK
	9	3251.3751	7.19	40.75	47.94	68.20	20.26	PASS	Vertical	PK
, ide	10	8865.0933	-9.21	53.04	43.83	68.20	24.37	PASS	Vertical	PK
	11	12444.0722	-4.12	52.91	48.79	68.20	19.41	PASS	Vertical	PK
6	12	16427.8714	-0.08	53.13	53.05	68.20	15.15	PASS	Vertical	PK

Mode	Mode:		02.11 n(HT4	0) Transmitti	ng	Channel:		5190MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1279.9780	1.08	42.68	43.76	68.20	24.44	PASS	Horizontal	PK
2	2185.9186	4.09	42.03	46.12	68.20	22.08	PASS	Horizontal	PK
3	3345.4345	7.47	40.12	47.59	68.20	20.61	PASS	Horizontal	PK
4	7366.5683	-11.39	55.19	43.80	68.20	24.40	PASS	Horizontal	PK
5	11231.3366	-5.99	52.73	46.74	68.20	21.46	PASS	Horizontal	PK
6	16278.3639	0.92	50.92	51.84	68.20	16.36	PASS	Horizontal	PK
7	1220.5721	0.89	42.25	43.14	68.20	25.06	PASS	Vertical	PK
8	1926.8427	4.31	42.19	46.50	68.20	21.70	PASS	Vertical	PK
9	3173.8174	6.93	41.53	48.46	68.20	19.74	PASS	Vertical	PK
10	7664.4332	-10.96	55.60	44.64	68.20	23.56	PASS	Vertical	PK
11	9656.3328	-7.47	54.24	46.77	68.20	21.43	PASS	Vertical	PK
12	13140.4320	-3.05	52.08	49.03	68.20	19.17	PASS	Vertical	PK

V Page 28 of 45

	Mode	:		802.11 n(HT4	0) Transmitti	ng	Channe	el:	5230MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
/	1	1221.1221	0.89	42.96	43.85	68.20	24.35	PASS	Horizontal	PK
é	2	2067.6568	4.91	41.09	46.00	68.20	22.20	PASS	Horizontal	PK
6	3	3343.2343	7.47	40.22	47.69	68.20	20.51	PASS	Horizontal	PK
	4	9150.8825	-8.18	54.39	46.21	68.20	21.99	PASS	Horizontal	PK
	5	12438.3219	-4.11	53.65	49.54	68.20	18.66	PASS	Horizontal	PK
	6	16537.1269	0.75	52.02	52.77	68.20	15.43	PASS	Horizontal	PK
	7	1294.2794	1.13	42.32	43.45	68.20	24.75	PASS	Vertical	PK
	8	2123.7624	4.78	41.29	46.07	68.20	22.13	PASS	Vertical	PK
	9	3292.0792	7.36	40.36	47.72	68.20	20.48	PASS	Vertical	PK
	10	7394.7447	-11.47	55.04	43.57	68.20	24.63	PASS	Vertical	PK
	11	10404.4452	-6.28	53.21	46.93	68.20	21.27	PASS	Vertical	PK
9	12	13154.8077	-3.03	52.73	49.70	68.20	18.50	PASS	Vertical	PK

Mode	Mode:		302.11 ac(VH	T80) Transm	nitting	Channel:		5210MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1364.6865	1.34	42.17	43.51	68.20	24.69	PASS	Horizontal	PK
2	2034.6535	4.77	41.46	46.23	68.20	21.97	PASS	Horizontal	PK
3	3078.1078	6.76	40.81	47.57	68.20	20.63	PASS	Horizontal	PK
4	7563.2282	-10.81	54.18	43.37	68.20	24.83	PASS	Horizontal	PK
5	11216.9608	-5.86	53.61	47.75	68.20	20.45	PASS	Horizontal	PK
6	14356.6178	0.17	50.27	50.44	68.20	17.76	PASS	Horizontal	PK
7	1339.9340	1.27	42.72	43.99	68.20	24.21	PASS	Vertical	PK
8	2093.5094	5.02	41.06	46.08	68.20	22.12	PASS	Vertical	PK
9	3178.2178	6.94	40.68	47.62	68.20	20.58	PASS	Vertical	PK
10	7009.4755	-11.68	55.60	43.92	68.20	24.28	PASS	Vertical	PK
11	9700.0350	-7.57	53.64	46.07	68.20	22.13	PASS	Vertical	PK
12	13119.7310	-3.08	52.24	49.16	68.20	19.04	PASS	Vertical	PK

V Page 29 of 45

				-10%			4			
	Mode	:	80)2.11 a Tran	smitting		Channe	el:	5745MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
j	1	1403.1903	1.82	42.00	43.82	68.20	24.38	PASS	Horizontal	PK
4	2	2100.1100	5.63	41.84	47.47	68.20	20.73	PASS	Horizontal	PK
Į.	3	3185.3685	7.80	40.65	48.45	68.20	19.75	PASS	Horizontal	PK
	4	9015.6010	-8.44	52.81	44.37	68.20	23.83	PASS	Horizontal	PK
	5	10784.4190	-6.18	53.48	47.30	68.20	20.90	PASS	Horizontal	PK
	6	14366.5244	0.28	50.92	51.20	68.20	17.00	PASS	Horizontal	PK
	7	1303.0803	1.65	42.96	44.61	68.20	23.59	PASS	Vertical	PK
Ī	8	2042.9043	5.32	41.41	46.73	68.20	21.47	PASS	Vertical	PK
	9	3200.7701	7.82	40.78	48.60	68.20	19.60	PASS	Vertical	PK
	10	7558.0705	-10.84	54.50	43.66	68.20	24.54	PASS	Vertical	PK
	11	9679.5786	-7.52	53.95	46.43	68.20	21.77	PASS	Vertical	PK
C	12	13687.9792	-1.73	51.22	49.49	68.20	18.71	PASS	Vertical	PK

Mod	Mode:		802.11 a Transmitting			Channel:		5785MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1284.3784	1.55	43.10	44.65	68.20	23.55	PASS	Horizontal	PK
2	2074.8075	5.49	41.32	46.81	68.20	21.39	PASS	Horizontal	PK
3	3810.2310	9.40	40.09	49.49	68.20	18.71	PASS	Horizontal	PK
4	7583.3722	-10.65	54.44	43.79	68.20	24.41	PASS	Horizontal	PK
5	11754.3170	-6.01	53.14	47.13	68.20	21.07	PASS	Horizontal	PK
6	14370.3580	0.32	50.68	51.00	68.20	17.20	PASS	Horizontal	PK
7	1330.5831	1.70	42.51	44.21	68.20	23.99	PASS	Vertical	PK
8	2073.1573	5.48	41.49	46.97	68.20	21.23	PASS	Vertical	PK
9	3769.5270	9.03	40.57	49.60	68.20	18.60	PASS	Vertical	PK
10	7612.5075	-10.61	54.52	43.91	68.20	24.29	PASS	Vertical	PK
11	11106.4404	-6.37	54.04	47.67	68.20	20.53	PASS	Vertical	PK
12	15926.0284	0.04	51.70	51.74	68.20	16.46	PASS	Vertical	PK

V Page 30 of 45

-				-01-C				0 had		
	Mode	:	80	02.11 a Tran	smitting		Chann	el:	5825MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
j	1	1403.7404	1.82	42.59	44.41	68.20	23.79	PASS	Horizontal	PK
4	2	2099.0099	5.62	41.28	46.90	68.20	21.30	PASS	Horizontal	PK
Ó	3	3055.0055	7.42	41.28	48.70	68.20	19.50	PASS	Horizontal	PK
	4	7809.5540	-11.33	55.13	43.80	68.20	24.40	PASS	Horizontal	PK
	5	11186.9458	-5.81	53.63	47.82	68.20	20.38	PASS	Horizontal	PK
	6	15902.2602	0.12	51.35	51.47	68.20	16.73	PASS	Horizontal	PK
	7	1315.7316	1.67	43.30	44.97	68.20	23.23	PASS	Vertical	PK
	8	2102.3102	5.60	40.92	46.52	68.20	21.68	PASS	Vertical	PK
	9	3068.2068	7.48	41.26	48.74	68.20	19.46	PASS	Vertical	PK
	10	8828.5219	-9.14	52.59	43.45	68.20	24.75	PASS	Vertical	PK
	11	12451.2634	-4.14	53.55	49.41	68.20	18.79	PASS	Vertical	PK
Ĉ	12	15486.6991	0.29	50.21	50.50	68.20	17.70	PASS	Vertical	PK

Mode	:	8	02.11 n(HT4	0) Transmitti	ng	Channe	el:	5755MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1312.4312	1.66	42.81	44.47	68.20	23.73	PASS	Horizontal	PK
2	2105.6106	5.56	41.32	46.88	68.20	21.32	PASS	Horizontal	PK
3	3806.3806	9.39	39.41	48.80	68.20	19.40	PASS	Horizontal	PK
4	7601.0067	-10.54	54.37	43.83	68.20	24.37	PASS	Horizontal	PK
5	9785.3857	-7.23	53.63	46.40	68.20	21.80	PASS	Horizontal	PK
6	14361.9241	0.23	49.89	50.12	68.20	18.08	PASS	Horizontal	PK
7	1377.3377	1.78	42.56	44.34	68.20	23.86	PASS	Vertical	PK
8	2061.6062	5.42	41.78	47.20	68.20	21.00	PASS	Vertical	PK
9	3751.9252	8.84	40.12	48.96	68.20	19.24	PASS	Vertical	PK
10	9020.2013	-8.45	53.72	45.27	68.20	22.93	PASS	Vertical	PK
11	11782.6855	-6.13	54.02	47.89	68.20	20.31	PASS	Vertical	PK
12	14412.5275	0.46	50.13	50.59	68.20	17.61	PASS	Vertical	PK

V Page 31 of 45

Mode	:		802.11 n(HT4	0) Transmitti	ng	Channel:		5795MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1661.7162	3.25	41.87	45.12	68.20	23.08	PASS	Horizontal	PK
2	2594.6095	5.69	41.23	46.92	68.20	21.28	PASS	Horizontal	PK
3	3458.1958	8.28	40.28	48.56	68.20	19.64	PASS	Horizontal	PK
4	7598.7066	-10.54	54.44	43.90	68.20	24.30	PASS	Horizontal	PK
5	11232.9489	-6.00	53.65	47.65	68.20	20.55	PASS	Horizontal	PK
6	14327.4218	-0.14	50.12	49.98	68.20	18.22	PASS	Horizontal	PK
7	1404.2904	1.82	42.17	43.99	68.20	24.21	PASS	Vertical	PK
8	2447.7448	5.14	41.51	46.65	68.20	21.55	PASS	Vertical	PK
9	3957.6458	10.09	39.04	49.13	68.20	19.07	PASS	Vertical	PK
10	7614.8077	-10.63	54.37	43.74	68.20	24.46	PASS	Vertical	PK
11	11259.7840	-6.23	53.92	47.69	68.20	20.51	PASS	Vertical	PK
12	14394.8930	0.58	50.21	50.79	68.20	17.41	PASS	Vertical	PK

Mode	:		802.11 ac(VH	T80) Transm	itting	Channe	el:	5775MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1286.5787	1.56	42.81	44.37	68.20	23.83	PASS	Horizontal	PK
2	2554.4554	5.58	41.07	46.65	68.20	21.55	PASS	Horizontal	PK
3	3738.7239	8.70	40.15	48.85	68.20	19.35	PASS	Horizontal	PK
4	7547.3365	-10.92	55.01	44.09	68.20	24.11	PASS	Horizontal	PK
5	10348.1565	-6.26	52.90	46.64	68.20	21.56	PASS	Horizontal	PK
6	14371.8915	0.34	50.37	50.71	68.20	17.49	PASS	Horizontal	PK
7	1687.0187	3.47	41.23	44.70	68.20	23.50	PASS	Vertical	PK
8	2678.2178	6.03	41.68	47.71	68.20	20.49	PASS	Vertical	PK
9	3847.0847	9.53	40.63	50.16	68.20	18.04	PASS	Vertical	PK
10	9264.7843	-7.63	53.15	45.52	68.20	22.68	PASS	Vertical	PK
11	12424.4283	-4.07	52.98	48.91	68.20	19.29	PASS	Vertical	PK
12	14394.8930	0.58	50.86	51.44	68.20	16.76	PASS	Vertical	PK

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Factor
 - Factor=Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.
- 3) Through Pre-scan, for 20MHz Occupied Bandwidth, 802.11 a mode was the worst case; for 40MHz Occupied Bandwidth, 802.11 n(HT40) mode was the worst case; for 80MHz Occupied Bandwidth, 802.11 ac(VHT80) mode was the worst case; only the worst case was in the report.

Report No. :EED32N80832103 V Page 32 of 45

6.9 Radiated Emission which fall in the restricted bands

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.407 (b)								
Test Method:	ANSI C63.10 2013		_0_		_0_				
Test Site:	Measurement Distance: 3m	n (Semi-Anech	oic Chan	nber)	(27)				
Receiver Setup:	Frequency	Detector	RBW	V VBW	Remark				
	0.009MHz-0.090MHz	Peak	10kH	z 30kHz	Peak				
	0.009MHz-0.090MHz	Average	10kH	z 30kHz	Average				
	0.090MHz-0.110MHz	Quasi-peak	10kH	z 30kHz	Quasi-peak				
	0.110MHz-0.490MHz	Peak	10kH	z 30kHz	Peak				
	0.110MHz-0.490MHz	Average	10kH	z 30kHz	Average				
	0.490MHz -30MHz	Quasi-peak	10kH	z 30kHz	Quasi-peak				
	30MHz-1GHz	Quasi-peak	100 kH	Hz 300kHz	Quasi-peak				
	Above 4011-	Peak	1MH:	z 3MHz	Peak				
	Above 1GHz	Peak	1MH:	z 10kHz	Average				
Limit:									
	Lreguency/	ld strength rovolt/meter) (Limit dBuV/m)	Remark	Measurement distance (m)				
	0.009MHz-0.490MHz 24	00/F(kHz)	-	-	300				
	0.490MHz-1.705MHz 240	000/F(kHz)	-	-	30				
	1.705MHz-30MHz	30	-/-2	-	30				
	30MHz-88MHz	100	40.0	Quasi-peak	3				
	88MHz-216MHz	150	43.5	Quasi-peak	3				
	216MHz-960MHz	200	46.0	Quasi-peak	3				
	960MHz-1GHz	500	54.0	Quasi-peak	3				
	Above 1GHz	500	54.0	Average	3				
	*(1) For transmitters oper outside of the 5.15-5.35 dBm/MHz. (2) For transmitters operation of the 5.15-5.35 GHz band (3) For transmitters operation outside of the 5.47-5.725 dBm/MHz. (4) For transmitters operation outside of the 5.47-5.725 dBm/MHz. (4) For transmitters operation of the band be limple of the band of	GHz band sing in the 5.25-shall not excepting in the 5.72shall not excepting in the 5.72shall not be a level of a level of 15.05 MHz above a level of 15.05 MHz at the bimits shown	shall not -5.35 GH; ed an e.i. 5.47-5.729 shall not 5-5.85 GH; of -27 ch ng linearly m 25 MH; 6 dBm/MI e or below pand edge in the a	exceed an z band: All em r.p. of -27 dB 5 GHz band: t exceed an Hz band: dBm/MHz at 7 y to 10 dBm/M Hz above or b Hz at 5 MHz s w the band e e. above table	e.i.r.p. of -27 hissions outside 8m/MHz. All emissions e.i.r.p. of -27 hissions outside 8m/MHz. All emissions e.i.r.p. of -27 hissions outside 8m/MHz. Hissions outside 9m/Hz. Hissions e.i.r.p. of -27 Hissions outside 9m/Hz. Hissions outside				
	frequency bands 9-90kHz								

V Page 33 of 45

emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Note:

(i) EIRP = ((E*d)^2) / 30

(i) EIRP = ((E*d)^2) / 30 where:

• E is the field strength in V/m;

- · d is the measurement distance in meters;
- EIRP is the equivalent isotropically radiated power in watts.
- (ii) Working in dB units, the above equation is equivalent to: EIRP[dBm] = $E[dB\mu V/m] + 20 \log(d[meters]) 104.77$
- (iii) Or, if d is 3 meters:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

Test Setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Report No. :EED32N80832103 V Page 34 of 45

Test Results:	Pass
Test Mode:	Transmitting mode with modulation
	 q. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. r. Repeat above procedures until all frequencies measured was complete.
	 o. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. p. Test the EUT in the lowest channel, the Highest channel q. The radiation measurements are performed in X, Y, Z axis positioning
	and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. n. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	I. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. m. For each suspected emission, the EUT was arranged to its worst case.
	determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. k. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	Note: For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT

Report No. :EED32N80832103 V Page 35 of 45

Test Data:

Mode:	802.11 a Transmitting	Channel:	5180
Remark:			

	Suspected List										
0.7	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark	
	NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Folality	Itemark	
	1	5150.00	12.36	38.67	51.03	68.20	17.17	PASS	Horizontal	PK	
	2	5150.00	12.36	26.55	38.91	54.00	15.09	PASS	Horizontal	AV	

V Page 36 of 45

Mode:	802.11 a Transmitting	Channel:	5180
Remark:			

Suspected List											
0.7	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark	
١	INO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polarity	INCIIIAIN	
	1	5150.00	12.36	42.72	55.08	68.20	13.12	PASS	Vertical	PK	
	2	5150.00	12.36	28.34	40.70	54.00	13.30	PASS	Vertical	AV	

V Page 37 of 45

Mode:	802.11 n(HT40) Transmitting	Channel:	5190
Remark:			

Suspected List										
	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
		[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]			
	1	5150.00	12.36	37.62	49.98	68.20	18.22	PASS	Horizontal	PK
	2	5150.00	12.36	26.14	38.50	54.00	15.50	PASS	Horizontal	AV

V Page 38 of 45

Mode:	802.11 n(HT40) Transmitting	Channel:	5190
Remark:			

Suspected List										
0.7	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
١	INO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polarity	INGILIALK
_	1	5150.00	12.36	37.53	49.89	54.00	4.11	PASS	Vertical	PK
	2	5150.00	12.36	26.37	38.73	54.00	15.27	PASS	Vertical	AV

V Page 39 of 45

Mode:	802.11 ac(VHT80) Transmitting	Channel:	5210
Remark:			

Suspected List										
	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
1	NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Nesuit	Folality	INGILIAIN
-	1	5150.00	12.36	33.52	45.88	68.20	22.32	PASS	Horizontal	PK
	2	5150.00	12.36	23.64	36.00	54.00	18.00	PASS	Horizontal	AV

V Page 40 of 45

Mode:	802.11 ac(VHT80) Transmitting	Channel:	5210
Remark:			

Test Graph

	Suspected List											
0.7	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark		
5	NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Nesuit	Polarity	Remaik		
	1	5150.00	12.36	34.53	46.89	68.20	21.31	PASS	Vertical	PK		
	2	5150.00	12.36	24.77	37.13	54.00	16.87	PASS	Vertical	AV		

- 1) Through Pre-scan transmitting mode and charge+transmitter mode with all kind of modulation and data rate and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

7 Appendix A

Refer to Appendix: 5G WIFI of EED32N80832103

