Test of: Nanit N151 Smart Baby Monitor

To: FCC CFR 47 Pt 15.247 (DTS) & ISED RSS-247

Report No.: UDIS01-U6 Rev A Addendum

### ADDENDUM TEST REPORT





Test of: Nanit N151 Smart Baby Monitor

## To: FCC CFR 47 Pt 15.247 (DTS) & ISED RSS-247

Test Report Serial No.: UDIS01-U6 Rev A Addendum

This report supersedes: NONE

This is an Addendum Report to show compliance for modifications made to the Nanit N151. MiCOM Labs Test Report UDIS01-U6 Rev A is the original complete test report.

Applicant: UdiSense Inc. (DBA: Nanit) 244 Fifth Avenue Suite # 2702, New York, NY 10001 USA

Product Function: Wireless Video Baby Monitor

Issue Date: 8<sup>th</sup> October 2018

# This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com



MiCOM Labs is an ISO 17025 Accredited Testing Laboratory



## **Table of Contents**

| 1. ACCREDITATION, LISTINGS & RECOGNITION         | 4   |
|--------------------------------------------------|-----|
| 1.1. TESTING ACCREDITATION                       | 4   |
| 1.2. RECOGNITION                                 | 5   |
| 1.3. PRODUCT CERTIFICATION                       | 6   |
| 2. DOCUMENT HISTORY                              |     |
| 3. TEST RESULT CERTIFICATE                       | 8   |
| 4. REFERENCES AND MEASUREMENT UNCERTAINTY        |     |
| 4.1. Normative References                        |     |
| 4.2. Test and Uncertainty Procedure              | .10 |
| 5. PRODUCT DETAILS AND TEST CONFIGURATIONS       | .11 |
| 5.1. Technical Details                           |     |
| 5.2. Scope of Test Program                       |     |
| 5.3. Equipment Model(s) and Serial Number(s)     |     |
| 5.4. Antenna Details                             |     |
| 5.5. Cabling and I/O Ports                       |     |
| 5.6. Test Configurations                         |     |
| 5.7. Equipment Modifications                     |     |
| 5.8. Deviations from the Test Standard           |     |
| 6. TEST SUMMARY                                  | .16 |
| 7. TEST EQUIPMENT CONFIGURATION(S)               |     |
| 7.1. Radiated Emissions - 3m Chamber             |     |
| 8. MEASUREMENT AND PRESENTATION OF TEST DATA     |     |
| 9. TEST RESULTS                                  |     |
| 9.1.1. Radiated Emissions                        |     |
| 9.1.1.1. TX Spurious & Restricted Band Emissions | .23 |
| A. APPENDIX - GRAPHICAL IMAGES                   |     |
| A.1. Emissions                                   |     |
| A.1.1. Radiated Emissions                        |     |
| A.1.1.1. TX Spurious & Restricted Band Emissions | .27 |



# 1. ACCREDITATION, LISTINGS & RECOGNITION

## 1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2005. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-01.pdf</u>





### 1.2. RECOGNITION

MiCOM Labs, Inc has widely recognized wireless testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA countries. MiCOM Labs test reports are accepted globally.

| Country   | Recognition Body                                                                                          | Status | Phase      | Identification No.                      |
|-----------|-----------------------------------------------------------------------------------------------------------|--------|------------|-----------------------------------------|
| USA       | Federal Communications<br>Commission (FCC)                                                                | ТСВ    | -          | US0159<br>Listing #: 102167             |
| Canada    | Industry Canada (IC)                                                                                      | FCB    | APEC MRA 2 | US0159<br>Listing #: 4143A-2<br>4143A-3 |
| Japan     | MIC (Ministry of Internal<br>Affairs and Communication)                                                   | CAB    | APEC MRA 2 | RCB 210                                 |
|           | VCCI                                                                                                      |        |            | A-0012                                  |
| Europe    | European Commission                                                                                       | NB     | EU MRA     | NB 2280                                 |
| Australia | Australian Communications<br>and Media Authority (ACMA)                                                   | CAB    | APEC MRA 1 |                                         |
| Hong Kong | Office of the<br>Telecommunication Authority<br>(OFTA)                                                    | CAB    | APEC MRA 1 |                                         |
| Korea     | Ministry of Information and<br>Communication Radio<br>Research Laboratory (RRL)                           | САВ    | APEC MRA 1 |                                         |
| Singapore | Infocomm Development<br>Authority (IDA)                                                                   | CAB    | APEC MRA 1 | US0159                                  |
| Taiwan    | National Communications<br>Commission (NCC)<br>Bureau of Standards,<br>Metrology and Inspection<br>(BSMI) | САВ    | APEC MRA 1 |                                         |
| Vietnam   | Ministry of Communication<br>(MIC)                                                                        | CAB    | APEC MRA 1 |                                         |

EU MRA – European Union Mutual Recognition Agreement.

NB – Notified Body

APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement. Recognition

agreement under which test lab is accredited to regulatory standards of the APEC member countries. Phase I - recognition for product testing

Phase II – recognition for both product testing and certification



### 1.3. PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-02.pdf</u>



# **Accredited Product Certification Body**

A2LA has accredited

MICOM LABS

Pleasanton, CA

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC 17065:2012 Requirements for bodies certifying products, processes and services. This product certification body also meets the A2LA R322 – Specific Requirements – Notified Body Accreditation Requirements and A2LA R308 - Specific Requirements - ISO-IEC 17065 - Telecommunication Certification Body Accreditation Program. This accreditation demonstrates technical competence for a defined scope and the operation of a management system.



Presented this 14<sup>th</sup> day of May 2018

President and CEO

President and CEO For the Accreditation Council Certificate Number 2381.02 Valid to November 30, 2019

For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditation.

United States of America – Telecommunication Certification Body (TCB) Industry Canada – Certification Body, CAB Identifier – US0159 Europe – Notified Body (NB), NB Identifier - 2280 Japan – Recognized Certification Body (RCB), RCB Identifier - 210



## 2. DOCUMENT HISTORY

| Document History     |                                 |                                                                                         |  |  |  |
|----------------------|---------------------------------|-----------------------------------------------------------------------------------------|--|--|--|
| Revision             | Date                            | Comments                                                                                |  |  |  |
| Draft                | 8 <sup>th</sup> August 2018     | Draft report for client review.                                                         |  |  |  |
| Rev A                | 13 <sup>th</sup> August 2018    | Initial release.                                                                        |  |  |  |
| Addendum Rev A Draft | 19 <sup>th</sup> September 2018 | Updated testing to show compliance after customer modifications to the radio circuitry. |  |  |  |
| Addendum Rev A       | 8 <sup>th</sup> October 2018    | Initial Addendum release                                                                |  |  |  |
|                      |                                 |                                                                                         |  |  |  |
|                      |                                 |                                                                                         |  |  |  |
|                      |                                 |                                                                                         |  |  |  |

In the above table the latest report revision will replace all earlier versions.



## 3. TEST RESULT CERTIFICATE

Manufacturer: UdiSense Inc. (DBA: Nanit) 244 Fifth Avenue Suite # 2702, New York, NY 10001 USA

Model: N151

Type Of Equipment: 802.11 b/g/n

S/N's: N151AWZ18367NQ

Test Date(s): 11-12<sup>th</sup> Sept. 2018

Tested By: MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA

Telephone: +1 925 462 0304

Fax: +1 925 462 0306

Website: www.micomlabs.com

### STANDARD(S)

### TEST RESULTS

**EQUIPMENT COMPLIES** 

FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & ISED RSS-247

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

#### Notes:

1. This document reports conditions under which testing was conducted and the results of testing performed.

2. Details of test methods used have been recorded and kept on file by the laboratory.

3. Test results apply only to the item(s) tested.

### Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve Quality Manager MiCOM Labs, Inc.

ACCREDITED TESTING CERT #2381.01

Gordon Hurst President & CEO MiCOM Labs, Inc.



## 4. REFERENCES AND MEASUREMENT UNCERTAINTY

## 4.1. Normative References

| REF. | PUBLICATION               | YEAR                                    | TITLE                                                                                                                                                                                                          |
|------|---------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I    | KDB 662911 D01<br>& D02   | Oct 31 2013                             | Guidance for measurement of output emission of devices<br>that employ single transmitter with multiple outputs or<br>systems with multiple transmitters operating<br>simultaneously in the same frequency band |
| П    | KDB 558074 D01<br>v04     | 5th April 2017                          | Guidance for performing compliance measurements on Digital Transmission Systems (DTS) operating under section 15.247.                                                                                          |
| Ш    | A2LA                      | August 2017                             | R105 - Requirement's When Making Reference to A2LA<br>Accreditation Status                                                                                                                                     |
| IV   | ANSI C63.10               | 2013                                    | American National Standard for Testing Unlicensed<br>Wireless Devices                                                                                                                                          |
| v    | ANSI C63.4                | 2014                                    | American National Standards for Methods of<br>Measurement of Radio-Noise Emissions from Low-<br>Voltage Electrical and Electronic Equipment in the Range<br>of 9 kHz to 40 GHz                                 |
| VI   | CISPR 32                  | 2015                                    | Electromagnetic compatibility of multimedia equipment -<br>Emission requirements                                                                                                                               |
| VII  | ETSI TR 100 028           | 2001-12                                 | Parts 1 and 2 Electromagnetic compatibility and Radio<br>Spectrum Matters (ERM); Uncertainties in the<br>measurement of mobile radio equipment characteristics                                                 |
| VIII | FCC 47 CFR Part<br>15.247 | 2016                                    | Radio Frequency Devices; Subpart C – Intentional Radiators                                                                                                                                                     |
| IX   | ICES-003                  | Issue 6 Jan 2016;<br>Updated April 2017 | Information Technology Equipment (Including Digital Apparatus) – Limits and methods of measurement.                                                                                                            |
| х    | M 3003                    | Edition 3 Nov.2012                      | Expression of Uncertainty and Confidence in<br>Measurements                                                                                                                                                    |
| XI   | RSS-247 Issue 2           | Feb 2017                                | Digital Transmission Systems (DTSs), Frequency<br>Hopping System (FHSs) and Licence-Exempt Local Area<br>Network (LE-LEN) Devices                                                                              |
| XII  | RSS-Gen Issue 5           | April 2018                              | General Requirements for Compliance of Radio<br>Apparatus                                                                                                                                                      |
| XIII | FCC 47 CFR Part<br>2.1033 | 2016                                    | FCC requirements and rules regarding photographs and test setup diagrams.                                                                                                                                      |
| XIV  | KDB 789033 D02<br>V02r01  | 14th December,<br>2017                  | Guidelines For Compliance Testing Of Unlicensed<br>National Information Infrastructure (U-NII) Devices Part<br>15, Subpart E                                                                                   |



### 4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.



# 5. PRODUCT DETAILS AND TEST CONFIGURATIONS

## 5.1. Technical Details

|                                  | Description                                                   |
|----------------------------------|---------------------------------------------------------------|
| Purpose:                         | Test of the Nanit N151 to FCC CFR 47 Part 15 Subpart C 15.247 |
|                                  | (DTS) & ISED RSS-247.                                         |
| Applicant:                       | UdiSense Inc. (DBA: Nanit)                                    |
|                                  | 244 Fifth Avenue<br>Suite # 2702,                             |
|                                  | New York, NY 10001                                            |
|                                  | USA                                                           |
| Manufacturer:                    | Same as applicant.                                            |
| Laboratory performing the tests: |                                                               |
|                                  | 575 Boulder Court                                             |
|                                  | Pleasanton California 94566 USA                               |
| Test report reference number:    | UDIS01-U6 Rev A Addendum                                      |
|                                  | 10 <sup>th</sup> September 2018                               |
|                                  | FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & ISED RSS-247      |
| Dates of test (from - to):       |                                                               |
| No of Units Tested:              |                                                               |
|                                  | Nanit Smart Baby Monitor                                      |
| Model(s):                        |                                                               |
| Location for use:                |                                                               |
| Declared Frequency Range(s):     |                                                               |
| Type of Modulation:              |                                                               |
| EUT Modes of Operation:          | 2400 - 2483.5 MHz:                                            |
|                                  | b; g; n: HT-20, HT-40;                                        |
| Declared Nominal Output Power:   | 17dBm                                                         |
| Transmit/Receive Operation:      | Duplex                                                        |
| Rated Input Voltage and Current: |                                                               |
| Operating Temperature Range:     | 10 to 40 °C                                                   |
| ITU Emission Designator:         |                                                               |
|                                  | 802.11g: 16M6D1D                                              |
|                                  | 802.11n HT-20: 17M6D1D<br>802.11n HT-40: 36M0D1D              |
| Equipment Dimensions:            | 3 1/8 x 3 1/8 x 1 1/2 inch                                    |
| Weight:                          |                                                               |
| Hardware Rev:                    |                                                               |
| Software Rev:                    |                                                               |
| Soltware Rev:                    | 1.1.4.4.2                                                     |



### 5.2. Scope of Test Program

#### Nanit N151

The scope of the test program was to test the Nanit N151 Smart Baby Monitor 802.11 configurations after manufacturer modifications to the RF circuitry in the frequency range 2400 - 2483.5 MHz; for compliance against the following specifications;

#### FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Radio Frequency Devices; Subpart C – Intentional Radiators.

#### **ISED RSS-247**

Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

The following Product description was provided by the manufacturer:

Nanit smart video baby monitor is a wireless camera that is mounted above a crib and uses machine learning and computer vision algorithms to analyze the baby's sleep, providing parents actionable insights to help them extend and improve the baby's sleep.

This is an Addendum Report to show compliance as a result of manufacturing modifications made-Radiated Transmitter Spurious Testing was performed, for complete test report see MiCOM Labs Test Report UDIS-U6 Rev A.

For a list of manufacture's changes see section 5.7



Title:Nanit N151 Smart Baby MonitorTo:FCC CFR 47 15.247 (DTS) & ISED RSS-247Serial #:UDIS01-U6 Rev A AddendumIssue Date:8th October 2018Page:13 of 30



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



### 5.3. Equipment Model(s) and Serial Number(s)

| Туре | Description                    | Manufacturer | Model | Serial no.     | Delivery Date               |
|------|--------------------------------|--------------|-------|----------------|-----------------------------|
| EUT  | Wireless Video<br>Baby Monitor | Nanit        | N151  | N151AWZ18367NQ | 10 <sup>th</sup> Sept. 2018 |

### 5.4. Antenna Details

| Туре                           | Manufacturer     | Model   | Family | Gain<br>(dBi) | BF Gain | Dir BW | X-Pol | Frequency<br>Band (MHz) |
|--------------------------------|------------------|---------|--------|---------------|---------|--------|-------|-------------------------|
| integral                       | Pulse            | SZ0845W | Dipole | 5.42          | -       | 360    | -     | 2400 - 2483.5           |
| integral                       | Pulse            | SZ0845W | Dipole | 4.69          | -       | 360    | -     | 5150 - 5250             |
| integral                       | Pulse            | SZ0845W | Dipole | 4.69          | -       | 360    | -     | 5250 - 5350             |
| integral                       | Pulse            | SZ0845W | Dipole | 4.69          | -       | 360    | -     | 5470 - 5725             |
| integral                       | Pulse            | SZ0845W | Dipole | 4.69          | -       | 360    | -     | 5725 - 5850             |
| BF Gain - Beamforming Gain     |                  |         |        |               |         |        |       |                         |
| Dir BW - Directional BeamWidth |                  |         |        |               |         |        |       |                         |
| X-Pol - Cro                    | oss Polarization |         |        |               |         |        |       |                         |

## 5.5. Cabling and I/O Ports

| Port Type | Max Cable<br>Length | # of Ports | Screened | Conn Type | Data Type | Environment          |
|-----------|---------------------|------------|----------|-----------|-----------|----------------------|
| USB       | 10-30m              | 1          | Shielded | USB-C     | Digital   | End-User<br> Indoors |

## 5.6. Test Configurations

Results for the following configurations are provided in this report:

| Operational<br>Mode(s) | Data Rate with<br>Highest Power | Channel Frequency<br>(MHz) |          |          |  |  |  |  |
|------------------------|---------------------------------|----------------------------|----------|----------|--|--|--|--|
| (802.11a/b/g/n)        | MBit/s                          | Low Mid High               |          |          |  |  |  |  |
|                        | 2400 - 2483.5 MHz               |                            |          |          |  |  |  |  |
| 11b                    | 1                               | 2,412.00                   | 2,437.00 | 2,462.00 |  |  |  |  |



### 5.7. Equipment Modifications

The following modifications were made by the manufacturer as part of sustainability:

- 1. Change in the dimensions of the ferrite absorbent sheet on the Main board:
  - Original dimensions were 40x35mm.
  - New dimensions are 40x28mm.
- 2. Change in the FPC cable connecting the Main and IR board:
  - Original cable had ferrite absorbent sheet covering it.
  - New cable is shielded and does not have the sheet covering it.
- 3. Replaced zero Ohm resistor (ref R208) on the Main board with 1.6pF +-0.05pF capacitor.

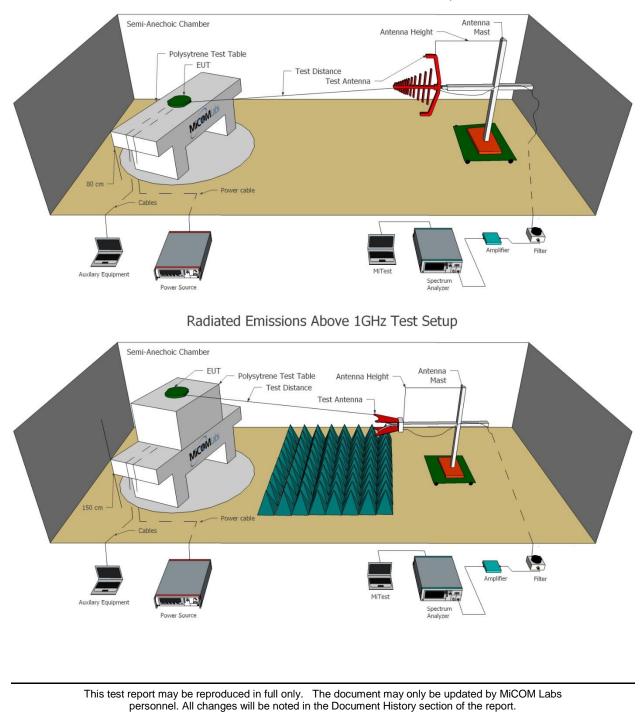
### 5.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program: 1. NONE



## 6. TEST SUMMARY

| List of Measurements                        |          |           |
|---------------------------------------------|----------|-----------|
| Test Header                                 | Result   | Data Link |
| Emissions                                   | Complies | -         |
| (1) Radiated Emissions                      | Complies | View Data |
| (i) TX Spurious & Restricted Band Emissions | Complies | View Data |




## 7. TEST EQUIPMENT CONFIGURATION(S)

## 7.1. Radiated Emissions - 3m Chamber

The following tests were performed using the radiated test set-up shown in the diagram below.

Radiated Emissions Below 1GHz Test Setup





| A full system calibration was performed on the test station and any resulting system losses (or gains) |
|--------------------------------------------------------------------------------------------------------|
| were taken into account in the production of all final measurement data.                               |

| Asset# | Description                                             | Manufacturer            | Model#                                           | Serial#    | Calibration<br>Due Date |
|--------|---------------------------------------------------------|-------------------------|--------------------------------------------------|------------|-------------------------|
| 170    | Video System Controller<br>for Semi Anechoic<br>Chamber | Panasonic               | WV-CU101                                         | 04R08507   | Not Required            |
| 298    | 3M Radiated Emissions<br>Chamber Maintenance<br>Check   | MiCOM                   | 3M Chamber                                       | 298        | 21 Jan 2019             |
| 377    | Band Rejection Filter<br>5150 to 5880MHz                | Microtronics            | BRM50716                                         | 034        | 6 Nov 2018              |
| 378    | Rohde & Schwarz 40<br>GHz Receiver with<br>Generator    | Rhode &<br>Schwarz      | ESIB40                                           | 100107/040 | 12 Oct 2018             |
| 396    | 2.4 GHz Notch Filter                                    | Microtronics            | BRM50701                                         | 001        | 6 Nov 2018              |
| 399    | ETS 1-18 GHz Horn<br>Antenna                            | ETS                     | 3117                                             | 00154575   | 12 Oct 2018             |
| 406    | Amplifier for Radiated<br>Emissions                     | MiCOM Labs              | 40dB 1 to<br>18GHz Amp                           | 0406       | 12 Oct 2018             |
| 410    | Desktop Computer                                        | Dell                    | Inspiron 620                                     | WS38       | Not Required            |
| 411    | Mast/Turntable<br>Controller                            | Sunol Sciences          | SC98V                                            | 060199-1D  | Not Required            |
| 412    | USB to GPIB Interface                                   | National<br>Instruments | GPIB-USB HS                                      | 11B8DC2    | Not Required            |
| 413    | Mast Controller                                         | Sunol Science           | TWR95-4                                          | 030801-3   | Not Required            |
| 414    | DC Power Supply 0-60V                                   | HP                      | 6274                                             | 1029A01285 | Cal when used           |
| 415    | Turntable Controller                                    | Sunol Sciences          | Turntable<br>Controller                          | None       | Not Required            |
| 416    | Gigabit ethernet filter                                 | ETS-Lingren             | Gigafoil<br>260366                               | None       | Not Required            |
| 447    | MiTest Rad Emissions<br>Test Software                   | MiCOM                   | Rad<br>Emissions<br>Test Software<br>Version 1.0 | 447        | Not Required            |
| 480    | Cable - Bulkhead to<br>Amp                              | SRC Haverhill           | 157-3050360                                      | 480        | 6 Nov 2018              |
| 481    | Cable - Bulkhead to<br>Receiver                         | SRC Haverhill           | 151-3050787                                      | 481        | 6 Nov 2018              |
| 482    | Cable - Amp to Antenna                                  | SRC Haverhill           | 157-3051574                                      | 482        | 6 Nov 2018              |
| 510    | Barometer/Thermometer                                   | Control<br>Company      | 68000-49                                         | 170871375  | 11 Dec 2018             |



## 8. MEASUREMENT AND PRESENTATION OF TEST DATA

The measurement and graphical data presented in this test report was generated automatically using state-of-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by <u>MiTest</u>. <u>MiTest</u> is an automated test system developed by MiCOM Labs. <u>MiTest</u> is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.





The MiCOM Labs "MiTest" Automated Test System" (Patent Pending)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



## 9. TEST RESULTS

#### 9.1.1. Radiated Emissions

| 9.1.1. Radiated Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>s</u>                                                                                                               |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Radia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ted Test Conditions for Radiated                                                                                       | I Spurious and Band-Edge Emis                                                                                                                                                                                                                                                         | sions                                                                                                                                                                                          |  |  |  |  |
| Standard:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FCC CFR 47: Part 15.205<br>ISED RSS-GEN:8.9, 8.10                                                                      | Ambient Temp. (ºC):                                                                                                                                                                                                                                                                   | 20.0 - 24.5                                                                                                                                                                                    |  |  |  |  |
| Test Heading:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Radiated Spurious Emissions                                                                                            | Rel. Humidity (%):                                                                                                                                                                                                                                                                    | 32 - 45                                                                                                                                                                                        |  |  |  |  |
| Standard Section(s):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ANSI C63.10: 6.3, 6.5 & 6.6,<br>6.10<br>KDB 558074 D01 Measurement<br>Guidance V04                                     | Pressure (mBars): 999 - 1001<br>e V04                                                                                                                                                                                                                                                 |                                                                                                                                                                                                |  |  |  |  |
| Reference Document(s):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | See Normative References                                                                                               |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                |  |  |  |  |
| were measured on every azimuti<br>emissions the receive antenna w<br>Emissions nearest the limits were<br>from 30 MHz – 1000 MHz are me<br>120 kHz. Emissions above 1000<br>bandwidth of 1 MHz. Only the hi<br>Field Strength Calculation<br>The field strength is calculated by<br>reading. All factors are included i<br>FS = R + AF + CORR - FO<br>where:<br>FS = Field Strength<br>R = Measured Spectrum analyze<br>AF = Antenna Factor<br>CORR = Correction Factor = CL<br>CL = Cable Loss<br>AG = Amplifier Gain<br>FO = Distance Falloff Factor<br>NFL = Notch Filter Loss or Wave<br>Example:<br>Given receiver input reading of 5 | r Input Amplitude<br>– AG + NFL<br>guide Loss<br>1.5 dBmV; Antenna Factor of 8.5 c<br>1 dB. The Field Strength (FS) of | both horizontal and vertical polari.<br>The emissions are recorded with<br>nal measurement using a CISPR (<br>nt quasi-peak detector with a tuneor<br>PR compliant average detector wi<br>t are listed.<br>Cable Loss, and subtracting Amplifi<br>B; Cable Loss of 1.3 dB; Falloff Fa | zations. To further maximize<br>receiver in peak hold mode.<br>Compliant receiver. Emissions<br>d receiver, using a bandwidth of<br>th a tuned receiver, using a<br>fer Gain from the measured |  |  |  |  |
| Conversion between dBmV/m (or<br>Level (dBmV/m) = 20 * Log (leve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | r dBmV) and mV/m (or mV) are as<br>el (mV/m))                                                                          | follows:                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                        |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                |  |  |  |  |

40 dBmV/m = 100 mV/m 48 dBmV/m = 250 mV/m



#### **Restricted Bands of Operation (15.205)**

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

|                   | Frequenc            | y Band        |             |
|-------------------|---------------------|---------------|-------------|
| MHz               | MHz                 | MHz           | GHz         |
| 0.090-0.110       | 16.42-16.423        | 399.9-410     | 4.5-5.15    |
| 0.495-0.505       | 16.69475-16.69525   | 608-614       | 5.35-5.46   |
| 2.1735-2.1905     | 16.80425-16.80475   | 960-1240      | 7.25-7.75   |
| 4.125-4.128       | 25.5-25.67          | 1300-1427     | 8.025-8.5   |
| 4.17725-4.17775   | 37.5-38.25          | 1435-1626.5   | 9.0-9.2     |
| 4.20725-4.20775   | 73-74.6             | 1645.5-1646.5 | 9.3-9.5     |
| 6.215-6.218       | 74.8-75.2           | 1660-1710     | 10.6-12.7   |
| 6.26775-6.26825   | 108-121.94          | 1718.8-1722.2 | 13.25-13.4  |
| 6.31175-6.31225   | 123-138             | 2200-2300     | 14.47-14.5  |
| 8.291-8.294       | 149.9-150.05        | 2310-2390     | 15.35-16.2  |
| 8.362-8.366       | 156.52475-156.52525 | 2483.5-2500   | 17.7-21.4   |
| 8.37625-8.38675   | 156.7-156.9         | 2690-2900     | 22.01-23.12 |
| 8.41425-8.41475   | 162.0125-167.17     | 3260-3267     | 23.6-24.0   |
| 12.29-12.293      | 167.72-173.2        | 3332-3339     | 31.2-31.8   |
| 12.51975-12.52025 | 240-285             | 3345.8-3358   | 36.43-36.5  |
| 12.57675-12.57725 | 322-335.4           | 3600-4400     | Above 38.6  |
| 13.36-13.41       |                     |               |             |

(b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

(c) Except as provided in paragraphs (d) and (e) of this section, regardless of the field strength limits specified elsewhere in this subpart, the provisions of this section apply to emissions from any intentional radiator.

(d) The following devices are exempt from the requirements of this section:

(1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a) of this section, the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section, more than 99% of the time the device is actively transmitting, without compensation for duty cycle.

(2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.

(3) Cable locating equipment operated pursuant to §15.213.

(4) Any equipment operated under the provisions of §15.253, 15.255, and 15.256 in the frequency band 75-85 GHz, or §15.257 of this part.

(5) Biomedical telemetry devices operating under the provisions of §15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



(6) Transmitters operating under the provisions of subparts D or F of this part.

(7) Devices operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.

(8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in §15.245(b).

(9) Devices operated in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in §15.249(a).

(e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of §15.245 shall not exceed the limits specified in §15.245(b).



#### 9.1.1.1. TX Spurious & Restricted Band Emissions

#### Equipment Configuration for Restricted Band Spurious Emissions

| Antenna:                 | Pulse SZ0845W  | Variant:        | 802.11b  |
|--------------------------|----------------|-----------------|----------|
| Antenna Gain (dBi):      | 5.42           | Modulation:     | CCK      |
| Beam Forming Gain (Y):   | Not Applicable | Duty Cycle (%): | 99       |
| Channel Frequency (MHz): | 2412.00        | Data Rate:      | 1 MBit/s |
| Power Setting:           | 19             | Tested By:      | JMH      |

**Test Measurement Results** 

| Num      | Frequency<br>MHz                                                                                    | Raw<br>dBµV | Cable<br>Loss<br>dB | AF dB  | Level<br>dBµV/m | Measurement<br>Type | Pol      | Hgt cm | Azt<br>Deg | Limit<br>dBµV/m | Margin<br>dB | Pass<br>/Fail |
|----------|-----------------------------------------------------------------------------------------------------|-------------|---------------------|--------|-----------------|---------------------|----------|--------|------------|-----------------|--------------|---------------|
| #1       | 2411.58                                                                                             | 51.73       | -1.76               | -12.32 | 37.65           | Fundamental         | Vertical | 159    | 0          |                 |              |               |
| #2       | 4823.90                                                                                             | 67.84       | -2.52               | -12.43 | 52.89           | Max Peak            | Vertical | 163    | 289        | 74.0            | -21.1        | Pass          |
| #3       | 4823.90                                                                                             | 63.55       | -2.52               | -12.43 | 48.60           | Max Avg             | Vertical | 163    | 289        | 54.0            | -5.4         | Pass          |
| Test Not | Fest Notes: EUT connected to and powered by laptop. 2.4G notch in front of amp to prevent overload. |             |                     |        |                 |                     |          |        |            |                 |              |               |

Note: click the links in the above matrix to view the graphical image (plot).



| Equ                      | Equipment Configuration for Restricted Band Spurious Emissions |                 |          |  |  |  |  |  |  |  |
|--------------------------|----------------------------------------------------------------|-----------------|----------|--|--|--|--|--|--|--|
|                          |                                                                |                 |          |  |  |  |  |  |  |  |
| Antenna:                 | Pulse SZ0845W                                                  | Variant:        | 802.11b  |  |  |  |  |  |  |  |
| Antenna Gain (dBi):      | 5.42                                                           | Modulation:     | CCK      |  |  |  |  |  |  |  |
| Beam Forming Gain (Y):   | Not Applicable                                                 | Duty Cycle (%): | 99       |  |  |  |  |  |  |  |
| Channel Frequency (MHz): | 2437.00                                                        | Data Rate:      | 1 MBit/s |  |  |  |  |  |  |  |
| Power Setting:           | 19                                                             | Tested By:      | JMH      |  |  |  |  |  |  |  |

#### **Test Measurement Results**

|          | 1000.00 - 18000.00 MHz |             |                     |            |                 |                     |           |            |            |                 |              |               |
|----------|------------------------|-------------|---------------------|------------|-----------------|---------------------|-----------|------------|------------|-----------------|--------------|---------------|
| Num      | Frequency<br>MHz       | Raw<br>dBµV | Cable<br>Loss<br>dB | AF dB      | Level<br>dBµV/m | Measurement<br>Type | Pol       | Hgt cm     | Azt<br>Deg | Limit<br>dBµV/m | Margin<br>dB | Pass<br>/Fail |
| #1       | 2437.97                | 57.36       | -1.78               | -12.10     | 43.48           | Fundamental         | Vertical  | 151        | 0          |                 |              |               |
| #2       | 4873.99                | 67.90       | -2.51               | -12.61     | 52.78           | Max Peak            | Vertical  | 176        | 317        | 74.0            | -21.2        | Pass          |
| #3       | 4873.99                | 64.14       | -2.51               | -12.61     | 49.02           | Max Avg             | Vertical  | 176        | 317        | 54.0            | -5.0         | Pass          |
| Test Not | es: EUT conn           | ected to a  | and powe            | red by lap | top. 2.4G       | notch in front of   | amp to pr | event over | rload.     |                 |              |               |

Note: click the links in the above matrix to view the graphical image (plot).



| Equ                      | Equipment Configuration for Restricted Band Spurious Emissions |                 |          |  |  |  |  |  |  |  |
|--------------------------|----------------------------------------------------------------|-----------------|----------|--|--|--|--|--|--|--|
|                          |                                                                |                 |          |  |  |  |  |  |  |  |
| Antenna:                 | Variant:                                                       | 802.11b         |          |  |  |  |  |  |  |  |
| Antenna Gain (dBi):      | 5.42                                                           | Modulation:     | CCK      |  |  |  |  |  |  |  |
| Beam Forming Gain (Y):   | Not Applicable                                                 | Duty Cycle (%): | 99       |  |  |  |  |  |  |  |
| Channel Frequency (MHz): | 2462.00                                                        | Data Rate:      | 1 MBit/s |  |  |  |  |  |  |  |
| Power Setting:           | 19                                                             | Tested By:      | JMH      |  |  |  |  |  |  |  |

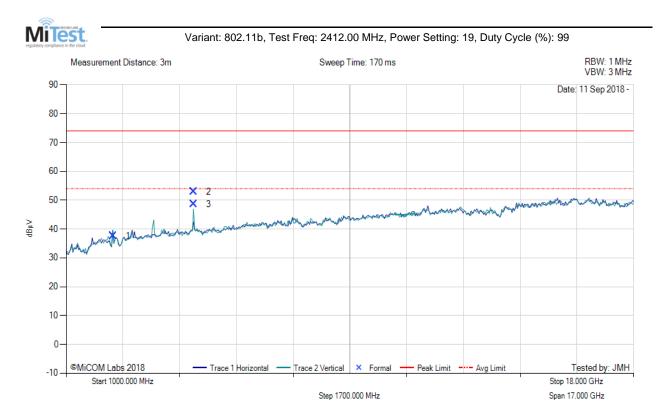
#### **Test Measurement Results**

|          | 1000.00 - 18000.00 MHz                             |             |                     |        |                 |                     |          |        |            |                 |              |               |
|----------|----------------------------------------------------|-------------|---------------------|--------|-----------------|---------------------|----------|--------|------------|-----------------|--------------|---------------|
| Num      | Frequency<br>MHz                                   | Raw<br>dBµV | Cable<br>Loss<br>dB | AF dB  | Level<br>dBµV/m | Measurement<br>Type | Pol      | Hgt cm | Azt<br>Deg | Limit<br>dBµV/m | Margin<br>dB | Pass<br>/Fail |
| #1       | 2461.46                                            | 58.09       | -1.79               | -11.95 | 44.35           | Fundamental         | Vertical | 151    | 0          |                 |              |               |
| #2       | 4924.05                                            | 66.30       | -2.56               | -12.35 | 51.39           | Max Peak            | Vertical | 178    | 291        | 74.0            | -22.6        | Pass          |
| #3       | 4924.05                                            | 61.98       | -2.56               | -12.35 | 47.07           | Max Avg             | Vertical | 178    | 291        | 54.0            | -6.9         | Pass          |
| Test Not | est Notes: EUT connected to and powered by laptop. |             |                     |        |                 |                     |          |        |            |                 |              |               |

Note: click the links in the above matrix to view the graphical image (plot).

|               | Title:      | Nanit N151 Smart Baby Monitor          |
|---------------|-------------|----------------------------------------|
|               | То:         | FCC CFR 47 15.247 (DTS) & ISED RSS-247 |
| MiC MLabs     | Serial #:   | UDIS01-U6 Rev A Addendum               |
| $\mathcal{C}$ | Issue Date: | 8 <sup>th</sup> October 2018           |
|               | Page:       | 26 of 30                               |
|               |             |                                        |

# A. APPENDIX - GRAPHICAL IMAGES


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

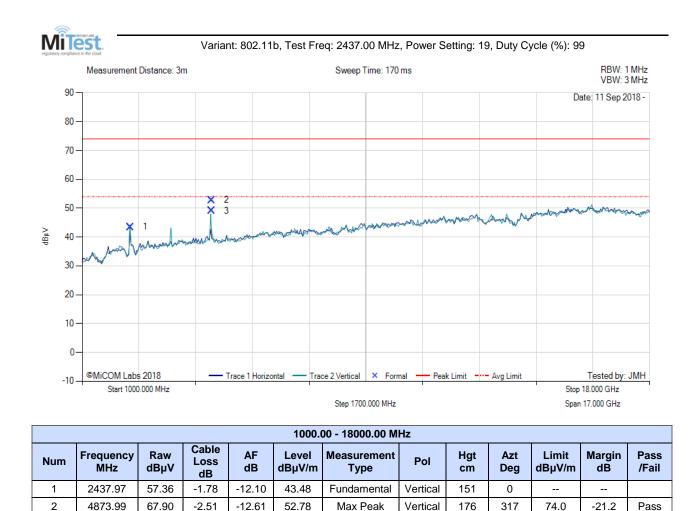
|                        | Title:      | Nanit N151 Smart Baby Monitor          |
|------------------------|-------------|----------------------------------------|
|                        | To:         | FCC CFR 47 15.247 (DTS) & ISED RSS-247 |
| MiC <sup>®</sup> MLabs | Serial #:   | UDIS01-U6 Rev A Addendum               |
| $\mathcal{C}$          | Issue Date: | 8 <sup>th</sup> October 2018           |
|                        | Page:       | 27 of 30                               |
|                        |             |                                        |

## A.1. Emissions

### A.1.1. Radiated Emissions

#### A.1.1.1. TX Spurious & Restricted Band Emissions




|     | 1000.00 - 18000.00 MHz |             |                     |          |                 |                     |          |           |            |                 |              |               |
|-----|------------------------|-------------|---------------------|----------|-----------------|---------------------|----------|-----------|------------|-----------------|--------------|---------------|
| Num | Frequency<br>MHz       | Raw<br>dBµV | Cable<br>Loss<br>dB | AF<br>dB | Level<br>dBµV/m | Measurement<br>Type | Pol      | Hgt<br>cm | Azt<br>Deg | Limit<br>dBµV/m | Margin<br>dB | Pass<br>/Fail |
| 1   | 2411.58                | 51.73       | -1.76               | -12.32   | 37.65           | Fundamental         | Vertical | 159       | 0          |                 |              |               |
| 2   | 4823.90                | 67.84       | -2.52               | -12.43   | 52.89           | Max Peak            | Vertical | 163       | 289        | 74.0            | -21.1        | Pass          |
| 3   | 4823.90                | 63.55       | -2.52               | -12.43   | 48.60           | Max Avg             | Vertical | 163       | 289        | 54.0            | -5.4         | Pass          |

Test Notes: EUT connected to and powered by laptop. 2.4G notch in front of amp to prevent overload.

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.





Test Notes: EUT connected to and powered by laptop.

64.14

-2.51

-12.61

49.02

Max Avg

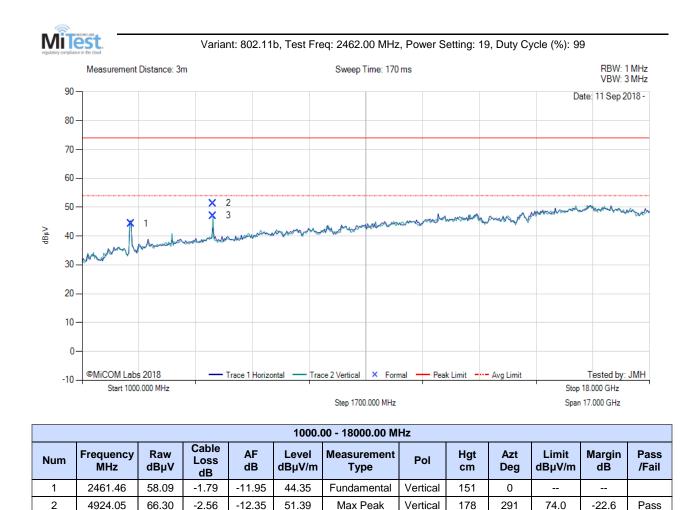
Vertical

176

317

54.0

-5.0


Pass

back to matrix

4873.99

3





Test Notes: EUT connected to and powered by laptop.

-2.56

-12.35

47.07

Max Avg

Vertical

178

291

54.0

-6.9

Pass

61.98

back to matrix

4924.05

3



575 Boulder Court Pleasanton, California 94566, USA Tel: +1 (925) 462 0304 Fax: +1 (925) 462 0306 www.micomlabs.com