

CAICT No. 25T04Z100239-027

EF3DV3 - SN:4060

May 23, 2024

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k = 2
10609	AAD	IEEE 802.11ac WiFi (20 MHz, MCS2, 90pc duty cycle)	WLAN	8.57	±9.6
10610	AAD	IEEE 802.11ac WiFi (20 MHz, MCS3, 90pc duty cycle)	WLAN	8.78	±9.6
10611	AAD	IEEE 802.11ac WiFi (20 MHz, MCS4, 90pc duty cycle)	WLAN	8.70	±9.6
10612	AAD	IEEE 802.11ac WiFi (20 MHz, MCS5, 90pc duty cycle)	WLAN	8.77	±9.6
0613	AAD	IEEE 802.11ac WiFi (20 MHz, MCS6, 90pc duty cycle)	WLAN	8.94	±9.6
10614	AAD	IEEE 802.11ac WiFi (20 MHz, MCS7, 90pc duty cycle)	WLAN	8.59	±9.6
10615	AAD	IEEE 802.11ac WiFi (20 MHz, MCS8, 90pc duty cycle)	WLAN	8.82	±9.6
10616	AAD	IEEE 802.11ac WiFi (40 MHz, MCS0, 90pc duty cycle)	WLAN	8.82	±9.6
10617	AAD	IEEE 802.11ac WiFi (40 MHz, MCS1, 90pc duty cycle)	WLAN	8.81	±9.6
10618	AAD	IEEE 802.11ac WiFi (40 MHz, MCS2, 90pc duty cycle)	WLAN	8.58	±9.6
10619	AAD	IEEE 802.11ac WiFi (40 MHz, MCS3, 90pc duty cycle)	WLAN	8.86	±9.6
10620	AAD	IEEE 802.11ac WiFi (40 MHz, MCS4, 90pc duty cycle)	WLAN	8.87	±9.6
10621	AAD	IEEE 802.11ac WiFi (40 MHz, MCS5, 90pc duty cycle)	WLAN	8.77	±9.6
10622	AAD	IEEE 802.11ac WiFi (40 MHz, MCS6, 90pc duty cycle)	WLAN	8.68	±9.6
10623	AAD	IEEE 802.11ac WiFi (40 MHz, MCS7, 90pc duty cycle)	WLAN	8.82	±9.6
10624	AAD	IEEE 802.11ac WiFi (40 MHz, MCS8, 90pc duty cycle)	WLAN	8.96	±9.6
10625	AAD	IEEE 802.11ac WiFi (40 MHz, MCS9, 90pc duty cycle)	WLAN	8.96	±9.6
10626	AAD	IEEE 802.11ac WiFi (80 MHz, MCS0, 90pc duty cycle)	WLAN	8.83	±9.6
10627	AAD	IEEE 802.11ac WiFi (80 MHz, MCS1, 90pc duty cycle)	WLAN	8.88	±9.6
10628	AAD	IEEE 802.11ac WiFi (80 MHz, MCS2, 90pc duty cycle)	WLAN	8.71	±9.6
10629	AAD	IEEE 802.11ac WiFi (80 MHz, MCS3, 90pc duty cycle)	WLAN	8.85	±9.6
10630	AAD	IEEE 802.11ac WiFi (80 MHz, MCS4, 90pc duty cycle)	WLAN	8.72	±9.6
10631	AAD	IEEE 802.11ac WiFi (80 MHz, MCS5, 90pc duty cycle)	WLAN	8.81	±9.6
10632	AAD	IEEE 802.11ac WiFi (80 MHz, MCS6, 90pc duty cycle)	WLAN	8.74	±9.6
10633	AAD	IEEE 802.11ac WiFi (80 MHz, MCS7, 90pc duty cycle)	WLAN	8.83	±9.6 ±9.6
10634	AAD	IEEE 802.11ac WiFi (80 MHz, MCS8, 90pc duty cycle)	WLAN	8.80	±9.6
10635	AAD	IEEE 802.11ac WiFi (80 MHz, MCS9, 90pc duty cycle)	WLAN	8.81	±9.6
10636	AAE	IEEE 802.11ac WiFi (160 MHz, MCS0, 90pc duty cycle)	WLAN	8.79	±9.6
10637	AAE	IEEE 802.11ac WiFi (160 MHz, MCS1, 90pc duty cycle)	WLAN	8.86	±9.6
10638	AAE	IEEE 802.11ac WiFi (160 MHz, MCS2, 90pc duty cycle)	WLAN	8.85	±9.6
10639	AAE	IEEE 802.11ac WiFi (160 MHz, MCS3, 90pc duty cycle)	WLAN	8.98	±9.6
10640	AAE	IEEE 802.11ac WiFi (160 MHz, MCS4, 90pc duty cycle)	WLAN	9.06	±9.6
10641	AAE	IEEE 802.11ac WiFi (160 MHz, MCS5, 90pc duty cycle)	WLAN	9.06	±9.6
10642	AAE	IEEE 802.11ac WiFi (160 MHz, MCS6, 90pc duty cycle)	WLAN	8.89	±9.6
10643	AAE	IEEE 802.11ac WiFi (160 MHz, MCS7, 90pc duty cycle)	WLAN	9.05	±9.6
10644	AAE	IEEE 802.11ac WiFi (160 MHz, MCS8, 90pc duty cycle)	WLAN	9.11	±9.6
10645	AAE	IEEE 802.11ac WiFi (160 MHz, MCS9, 90pc duty cycle)	LTE-TDD	11.96	±9.6
10646	AAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	LTE-TDD	11.96	±9.6
10647	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	CDMA2000	3.45	±9.6
10648	AAA	CDMA2000 (1x Advanced)	LTE-TDD	6.91	±9.6
10652	AAF	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.42	±9.6
10653	AAF	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.96	±9.6
10654	AAE	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	±9.6
10655	AAF	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	Test	10.00	+9.6
10658	AAB	Pulse Waveform (200Hz, 10%) Pulse Waveform (200Hz, 20%)	Test	6.99	±9.6
10659	_	Pulse Waveform (200Hz, 20%) Pulse Waveform (200Hz, 40%)	Test	3.98	±9.6
10660	AAB	Pulse Waveform (200Hz, 40%) Pulse Waveform (200Hz, 60%)	Test	2.22	±9.6
10661	-	Pulse Waveform (200Hz, 80%) Pulse Waveform (200Hz, 80%)	Test	0.97	±9.6
10662		Bluetooth Low Energy	Bluetooth	2.19	±9.6
10670	AAA	IEEE 802.11ax (20 MHz, MCS0, 90pc duty cycle)	WLAN	9.09	±9.6
10671		IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle)	WLAN	8.57	±9.6
10672	_	IEEE 802.11ax (20 MHz, MCS2, 90pc duty cycle)	WLAN	8.78	±9.6
10673	-	IEEE 802.11ax (20 MHz, MCS3, 90pc duty cycle)	WLAN	8.74	±9.6
10675		IEEE 802.11ax (20 MHz, MCS4, 90pc duty cycle)	WLAN	8.90	±9.6
10676		IEEE 802.11ax (20 MHz, MCS5, 90pc duty cycle)	WLAN	8.77	±9.6
10677	-	IEEE 802.11ax (20 MHz, MCS6, 90pc duty cycle)	WLAN	8.73	±9.6
10678	_	IEEE 802.11ax (20 MHz, MCS7, 90pc duty cycle)	WLAN	8.78	±9.6
10679		IEEE 802.11ax (20 MHz, MCS7, 90pc duty cycle)	WLAN	8.89	±9.6
10678	_	IEEE 802.11ax (20 MHz, MCS9, 90pc duty cycle)	WLAN	8.80	±9.6
10681	-	IEEE 802.11ax (20 MHz, MCS10, 90pc duty cycle)	WLAN	8.62	±9.6
10682		IEEE 802.11ax (20 MHz, MCS11, 90pc duty cycle)	WLAN	8.83	±9.6
10683		IEEE 802.11ax (20 MHz, MCS0, 99pc duty cycle)	WLAN	8.42	±9.6
10684	_	IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle)	WLAN	8.26	±9.6
10685		IEEE 802.11ax (20 MHz, MCS2, 99pc duty cycle)	WLAN	8.33	±9.6
	1	IEEE 802.11ax (20 MHz, MCS3, 99pc duty cycle)	WLAN	8.28	±9.6

Certificate No: EF-4060_May24

Page 16 of 21

CAICT No. 25T04Z100239-027

EF3DV3 - SN:4060

May 23, 2024

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k =
10687	AAC	IEEE 802.11ax (20 MHz, MCS4, 99pc duty cycle)	WLAN	8.45	±9.6
10688	AAC	IEEE 802.11ax (20 MHz, MCS5, 99pc duty cycle)	WLAN	8.29	±9.6
0689	AAC	IEEE 802.11ax (20 MHz, MCS6, 99pc duty cycle)	WLAN	8.55	±9.6
0690	AAC	IEEE 802.11ax (20 MHz, MCS7, 99pc duty cycle)	WLAN	8.29	±9.6
0691	AAC	IEEE 802.11ax (20 MHz, MCS8, 99pc duty cycle)	WLAN	8.25	±9.6
0692	AAC	IEEE 802.11ax (20 MHz, MCS9, 99pc duty cycle)	WLAN	8.29	±9.6
0693	AAC	IEEE 802.11ax (20 MHz, MCS10, 99pc duty cycle)	WLAN	8.25	±9.6
0694	AAC	IEEE 802.11ax (20 MHz, MCS11, 99pc duty cycle)	WLAN	8.57	±9.6
0695	AAC	IEEE 802.11ax (40 MHz, MCS0, 90pc duty cycle)	WLAN	8.78	±9.6
0696	AAC	IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle)	WLAN	8.91	±9.6
0697	AAC	IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle)	WLAN	8.61	±9.6
0698	AAC	IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle)	WLAN	8.89	±9.6
0699	AAC	IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle)	WLAN	8.82	±9.6
0700	AAC	IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle)	WLAN	8.73	±9.6
0701	AAC	IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle)	WLAN	8.86	±9.6
0702	AAC	IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle)	WLAN	8.70	±9.6
0703	AAC	IEEE 802.11ax (40 MHz, MCS8, 90pc duty cycle)	WLAN	8.82	±9.6
0704	AAC	IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle)	WLAN	8.56	±9.6
0705	AAC	IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle)	WLAN	8.69	±9.6
0706	AAC	IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle)	WLAN	8.66	±9.6
0707	AAC	IEEE 802.11ax (40 MHz, MCS0, 99pc duty cycle)	WLAN	8.32	±9.6
0708	AAC	IEEE 802.11ax (40 MHz, MCS1, 99pc duty cycle)	WLAN	8.55	±9.6
0709	AAC	IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle)	WLAN	8.33	±9.6
0710	AAC	IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle)	WLAN	8.29	±9.6
0711	AAC	IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle)	WLAN	8.39	±9.6
10712	AAC	IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle)	WLAN	8.67	±9.6
0713	AAC	IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle)	WLAN	8.33	±9.6
0714	AAC	IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle)	WLAN	8.26	±9.6
0715	AAC	IEEE 802.11ax (40 MHz, MCS8, 99pc duty cycle)	WLAN	8.45	±9.6
0716	AAC	IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle)	WLAN	8.30	±9.6
10717	AAC	IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle)	WLAN	8.48	±9.6
10718	AAC	IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle)	WLAN	8.24	±9.6
10719	AAC	IEEE 802.11ax (80 MHz, MCS0, 90pc duty cycle)	WLAN	8.81	±9.6
10720	AAC	IEEE 802.11ax (80 MHz, MCS1, 90pc duty cycle)	WLAN	8.87	±9.6
10721	AAC	IEEE 802.11ax (80 MHz, MCS2, 90pc duty cycle)	WLAN	8.76	±9.6
10722	AAC	IEEE 802.11ax (80 MHz, MCS3, 90pc duty cycle)	WLAN	8.55	±9.6
10723	AAC	IEEE 802.11ax (80 MHz, MCS4, 90pc duty cycle)	WLAN	8.70	±9.6
10724	AAC	IEEE 802.11ax (80 MHz, MCS5, 90pc duty cycle)	WLAN	8.90	±9.6
10725	AAC	IEEE 802.11ax (80 MHz, MCS6, 90pc duty cycle)	WLAN	8.74	±9.6
10726	AAC	IEEE 802.11ax (80 MHz, MCS7, 90pc duty cycle)	WLAN	8.72	±9.6
10727	AAC	IEEE 802.11ax (80 MHz, MCS8, 90pc duty cycle)	WLAN	8.66	±9.6
10728	AAC	IEEE 802.11ax (80 MHz, MCS9, 90pc duty cycle)	WLAN	8.65	±9.6
10729	AAC	IEEE 802.11ax (80 MHz, MCS10, 90pc duty cycle)	WLAN	8.64	±9.6
10730	AAC	IEEE 802.11ax (80 MHz, MCS11, 90pc duty cycle)	WLAN	8.67	±9.6
10731	AAC	IEEE 802.11ax (80 MHz, MCS0, 99pc duty cycle)	WLAN	8.42	±9.6
10732	AAC	IEEE 802.11ax (80 MHz, MCS1, 99pc duty cycle)	WLAN	8.46	±9.6
10733	AAC	IEEE 802.11ax (80 MHz, MCS2, 99pc duty cycle)	WLAN	8.40	±9.6
10734	AAC	IEEE 802.11ax (80 MHz, MCS3, 99pc duty cycle)	WLAN	8.25	±9.6
10735	AAC	IEEE 802.11ax (80 MHz, MCS4, 99pc duty cycle)	WLAN	8.33	±9.0
10736	AAC	IEEE 802.11ax (80 MHz, MCS5, 99pc duty cycle)	WLAN	8.27	±9.
10737	AAC	IEEE 802.11ax (80 MHz, MCS6, 99pc duty cycle)	WLAN	8.36	±9.
10738	AAC	IEEE 802.11ax (80 MHz, MCS7, 99pc duty cycle)	WLAN	8.42	±9.
10739	AAC	IEEE 802.11ax (80 MHz, MCS8, 99pc duty cycle)	WLAN	8.29	±9.
10740	AAC	IEEE 802.11ax (80 MHz, MCS9, 99pc duty cycle)	WLAN	8.48	±9.
10741	AAC	IEEE 802.11ax (80 MHz, MCS10, 99pc duty cycle)	WLAN	8.40	±9.
10742	AAC	IEEE 802.11ax (80 MHz, MCS11, 99pc duty cycle)	WLAN	8.43	±9.
10743	AAC	IEEE 802.11ax (160 MHz, MCS0, 90pc duty cycle)	WLAN	8.94	±9.
10744		IEEE 802.11ax (160 MHz, MCS1, 90pc duty cycle)	WLAN	9.16	±9.
10745		IEEE 802.11ax (160 MHz, MCS2, 90pc duty cycle)	WLAN	8.93	±9.
10746		IEEE 802.11ax (160 MHz, MCS3, 90pc duty cycle)	WLAN	9.11	±9.
10747	-	IEEE 802.11ax (160 MHz, MCS4, 90pc duty cycle)	WLAN	9.04	±9.
10748	AAC	IEEE 802.11ax (160 MHz, MCS5, 90pc duty cycle)	WLAN	8.93	±9.
10749	AAC	IEEE 802.11ax (160 MHz, MCS6, 90pc duty cycle)	WLAN	8.90	±9.
10750	AAC	IEEE 802.11ax (160 MHz, MCS7, 90pc duty cycle)	WLAN	8.79	±9.
10751	AAC	IEEE 802.11ax (160 MHz, MCS8, 90pc duty cycle)	WLAN	8.82	±9.
10752	AAC	IEEE 802.11ax (160 MHz, MCS9, 90pc duty cycle)	WLAN	8.81	±9.

Certificate No: EF-4060_May24

Page 17 of 21

EF3DV3 - SN:4060

May 23, 2024

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10753	AAC	IEEE 802.11ax (160 MHz, MCS10, 90pc duty cycle)	WLAN	9.00	±9.6
10754	AAC	IEEE 802.11ax (160 MHz, MCS11, 90pc duty cycle)	WLAN	8.94	±9.6
10755	AAC	IEEE 802.11ax (160 MHz, MCS0, 99pc duty cycle)	WLAN	8.64	±9.6
10756	AAC	IEEE 802.11ax (160 MHz, MCS1, 99pc duty cycle)	WLAN	8.77	±9.6
10757	AAC	IEEE 802.11ax (160 MHz, MCS2, 99pc duty cycle)	WLAN	8.77	±9.6
10758	AAC	IEEE 802.11ax (160 MHz, MCS3, 99pc duty cycle)	WLAN	8.69	±9.6
10759	AAC	IEEE 802.11ax (160 MHz, MCS4, 99pc duty cycle)	WLAN	8.58	±9.6
10760	AAC	IEEE 802.11ax (160 MHz, MCS5, 99pc duty cycle)	WLAN	8.49	±9.6
10761	AAC	IEEE 802.11ax (160 MHz, MCS6, 99pc duty cycle)	WLAN	8.58	±9.6
10762	AAC	IEEE 802.11ax (160 MHz, MCS7, 99pc duty cycle)	WLAN	8.49	±9.6
10763	AAC	IEEE 802.11ax (160 MHz, MCS8, 99pc duty cycle)	WLAN	8.53	±9.6
10764	AAC	IEEE 802.11ax (160 MHz, MCS9, 99pc duty cycle)	WLAN	8.54	±9.6
10765	AAC	IEEE 802.11ax (160 MHz, MCS10, 99pc duty cycle)	WLAN	8.54	±9.6
10766	AAC	IEEE 802.11ax (160 MHz, MCS11, 99pc duty cycle)	WLAN	8.51	±9.6
10767	AAG	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	7.99	±9.6
10768	AAE	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	±9.6
10769	AAD	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	±9.6
10770	AAE	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6
10771	AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6
10772	AAE	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.23	±9.6
10773	AAF	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.03	±9.6
10774	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6
10775	AAF	5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	±9.6
10776	AAE	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	±9.6
10777	AAC	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	±9.6
10778	AAE	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.34	±9.6
10779	AAC	5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.42	±9.6
10780	AAE	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	±9.6
10781	AAF	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	±9.6
10782	AAE	5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.43	±9.6
10783	AAG	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	±9.6
10784	AAE	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.29	±9.6
10785	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.40	±9.6
10786	AAE	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.35	±9.6
10787	AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.44	±9.6
10788	AAE	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	±9.6
10789	AAF	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.37	±9.6
10790	AAE	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	±9.6
10791	AAG	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.83	±9.6
10792	AAE	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.92	±9.6
10793	AAD	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.95	±9.6
10794	AAE	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	±9.6
10795	AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.84	±9.6
10796	AAE	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	±9.6
10797	AAF	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.01	±9.6
10798	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	±9.6
10799	AAF	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	±9.6
10801	AAF	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	±9.6
10802	AAE	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.87	±9.6
10803	AAF	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	±9.6
10805	AAE	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
10806	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.37 8.34	±9.6
10809		5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	8.34	±9.6
10810		5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)			±9.6
10812		5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD		-
10817	-	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	±9.6
10818	-	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
10819		5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.33	±9.6
10820		5G NR (CP-OFDM, 100% RB, 20 MHz, OPSK, 30 kHz)	5G NR FR1 TDD	8.30	+9.6
10821	-	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	±9.6
10822		5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	±9.6
10823	-	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	-	±9.6
10824	-	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.39	±9.6
10825	-	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	±9.6
10827		5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD		±9.6
10828	AAE	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.43	±9.6

Certificate No: EF-4060_May24

Page 18 of 21

EF3DV3 - SN:4060

May 23, 2024

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k = 2
10829	AAF	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.40	±9.6
10830	AAE	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.63	±9.6
10831	AAD	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.73	±9.6
0832	AAE	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.74	±9.6
0833	AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6
0834	AAE	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.75	±9.6
0835	AAF	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6
0836	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.66	±9.6
0837	AAF	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.68	±9.6
0839	AAF	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6
0840	AAE	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.67	±9.6
10841	AAF	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.71	±9.6
10843	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.49	±9.6
10844	AAE	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	±9.6
10846	AAE	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10854	AAE	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	±9.6
10855	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	±9.6
10856	AAE	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	±9.6
10857	AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.35	±9.6
10858	AAE	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	±9.6
10859	AAF	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	±9.6
10860	AAE	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10861	AAF	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.40	±9.6
10863	AAF	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10864	AAE	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	±9.6
10865	AAF	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10866	AAF	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10868	AAF	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.89	±9.6
10869	AAE	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	±9.6
10870	AAE	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.86	±9.6
10871	AAE	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	5.75	±9.6
10872	AAE	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.52	±9.6
10873	AAE	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	±9.6
10874	AAE	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	±9.6
10875	AAE	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	±9.6
10876	AAE	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.39	±9.6
10877	AAE	5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	7.95	±9.6
10878	AAE	5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.41	±9.6
10879	AAE	5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.12	±9.6
10880		5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.38	±9.6
10881	AAE	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	±9.6
10882	AAE	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.96	±9.6
10883		5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.57	±9.6
10884	-	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.53	±9.6
10885	AAE	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	±9.6
10886		5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	±9.6
10887	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	±9.6
10888	-	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.35	±9.6
10889	-	5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.02	±9.6
10890	-	5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.40	±9.6
10891	-	5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.13	±9.6
10892	-	5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.41	±9.6
10897		5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.66	±9.6
10898		5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	±9.6
10899			5G NR FR1 TDD	5.67	±9.6
10900	-		5G NR FR1 TDD	5.68	±9.6
10901	-		5G NR FR1 TDD	5.68	±9.6
10902	-	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10902			5G NR FR1 TDD		±9.6
10903			5G NR FR1 TDD		±9.6
10904	-		5G NR FR1 TDD	-	±9.6
10906	-		5G NR FR1 TDD	-	±9.6
	-		5G NR FR1 TDD		±9.6
10907			5G NR FR1 TDD	-	±9.6
10908			5G NR FR1 TDD		±9.6
	, AAB	outinit (or re-or bin, overla, romite, dr bit, overlar)	5G NR FR1 TDD		±9.6

Certificate No: EF-4060_May24

Page 19 of 21

CAICT No. 25T04Z100239-027

EF3DV3 - SN:4060

May 23, 2024

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k =
0911	AAB	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	±9.6
0912	AAC	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
0913	AAD	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
0914	AAC	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.85	±9.6
0915	AAD	5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	±9.6
0916	AAD	5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	±9.6
0917	AAD	5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	±9.6
0918	AAE	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	±9.6
0919	AAC	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	±9.6
0920	AAB	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	±9.6
0921	AAC	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
0922	AAB	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.82	±9.6
0923	AAC	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
0924	AAD	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
0925	AAC	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.95	±9.6
0926	AAD	5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
0927	AAD	5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	±9.6
0928	AAD	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
0929	AAD	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
0930	AAC	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
0931	AAC	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
0932	AAC	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
0933	AAC	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
0934	AAC	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
0935	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
0936	AAD	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	±9.6
0937	AAD	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.77	±9.6
0938	AAC	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	±9.6
0939	AAC	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.82	±9.6
0940	AAC	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.89	±9.6
0941	AAC	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	±9.6
0942	AAC	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	±9.6
0943	AAD	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.95	±9.6
0944	AAD	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.81	±9.6
10945	AAD	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	±9.6
10946	AAC	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	±9.6
0947	AAC	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	±9.6
0948	AAC	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	±9.6
0949	AAC	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	±9.6
10950	AAC	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	±9.6
0951	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.92	±9.6
0952	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.25	±9.6
0953	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.15	±9.6
10954	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.23	±9.6
0955	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.42	±9.6
0956	-	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.14	±9.6
0957	-	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.31	±9.6
0958	-	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.61	±9.6
0959	-	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.33	±9.6
0960		5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.32	±9.6
10961	AAC	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.36	±9.6
0962	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.40	±9.6
0963	-	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.55	±9.6
0964		5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.29	±9.
0965	-	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.37	±9.
0966	-	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.55	±9.
0967	_	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.42	±9.
10968	-	5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.49	±9.
10972		5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	11.59	±9.
10973		5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD		±9.
10974	-	5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz)	5G NR FR1 TDD	10.28	±9.
10978		ULLA BDR	ULLA	1.16	±9.
10979	-	ULLA HDR4	ULLA	8.58	±9.
10980	-	ULLA HDR8	ULLA	10.32	±9.
10981	_	ULLA HDRp4	ULLA	3.19	±9.
			ULLA	3.43	±9.

Certificate No: EF-4060_May24

Page 20 of 21

EF3DV3 - SN:4060

May 23, 2024

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k = 2
10983	AAC	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.31	±9.6
10983	AAB	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.42	±9.6
10984	AAC	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.54	±9.6
10985	AAB	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.50	±9.6
10986	AAC	5G NR DL (CP-OFDM, TM 3.1, 60 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.53	±9.6
10987	AAB	5G NR DL (CP-OFDM, TM 3.1, 70 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.38	±9.6
10988	AAD	5G NR DL (CP-OFDM, TM 3.1, 80 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.33	±9.6
10989	AAC	5G NR DL (CP-OFDM, TM 3.1, 90 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.52	±9.6
11003	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	10.24	±9.6
	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	10.73	±9.6
11004	AAA	5G NR DL (CP-OFDM, TM 3.1, 25 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.70	±9.6
11005	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.55	±9.6
11006	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64 QAM, 15 KHz)	5G NR FR1 FDD	8.46	±9.6
11007	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.51	±9.6
11008	AAA	5G NR DL (CP-OFDM, TM 3.1, 25 MHz, 64-QAM, 30 KHz)	5G NR FR1 FDD	8.76	±9.6
11010	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 KHz)	5G NR FR1 FDD	8.95	±9.6
11010	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.96	±9.6
11012	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.68	±9.6
11012	AAB	IEEE 802.11be (320 MHz, MCS1, 99pc duty cycle)	WLAN	8.47	±9.6
11013	AAB	IEEE 802.11be (320 MHz, MCS1, 35pc duty cycle)	WLAN	8.45	±9.6
11014	AAB	IEEE 802.11be (320 MHz, MCS3, 99pc duty cycle)	WLAN	8.44	±9.6
11015	AAB	IEEE 802.11be (320 MHz, MCS4, 99pc duty cycle)	WLAN	8.44	±9.6
11017	AAB	IEEE 802.11be (320 MHz, MCS5, 99pc duty cycle)	WLAN	8.41	±9.6
11018	AAB	IEEE 802.11be (320 MHz, MCS6, 99pc duty cycle)	WLAN	8.40	±9.6
11019	AAB	IEEE 802.11be (320 MHz, MCS7, 99pc duty cycle)	WLAN	8.29	±9.6
11020	AAB	IEEE 802.11be (320 MHz, MCS8, 99pc duty cycle)	WLAN	8.27	±9.6
11020	AAB	IEEE 802.11be (320 MHz, MCS9, 99pc duty cycle)	WLAN	8.46	±9.6
11021	AAB	IEEE 802.11be (320 MHz, MCS10, 99pc duty cycle)	WLAN	8.36	±9.6
11022	AAB	IEEE 802.11be (320 MHz, MCS11, 99pc duty cycle)	WLAN	8.09	±9.6
11023	AAB	IEEE 802.11be (320 MHz, MCS12, 99pc duty cycle)	WLAN	8.42	±9.6
11024	AAB	IEEE 802.11be (320 MHz, MCS12, 55pc duty cycle)	WLAN	8.37	±9.6
11025		IEEE 802.11be (320 MHz, MCS13, 39pc duty cycle)	WLAN	8.39	±9.6

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EF-4060_May24

Page 21 of 21

ANNEX E DIPOLE CALIBRATION CERTIFICATE

Dipole 835 MHz

	, Switzerland	Midululului	Swiss Calibration Service
Accredited by the Swiss Accreditation The Swiss Accreditation Service Multilateral Agreement for the rec	is one of the signatorie		Accreditation No.: SCS 0108
Client CTTL Beijing			CD835V3-1023_Aug24
CALIBRATION C	ERTIFICATE		Carlos Carlos and
Dbject	CD835V3 - SN: 1	023	
Calibration procedure(s)	QA CAL-20.v7		
	Calibration Proce	dure for Validation Sources in air	
Calibration date:	August 16, 2024		
	•	onal standards, which realize the physical unit	
The measurements and the anoona	annoo man oomoonee p	robability are given on the following pages and	a are part of the contineater
		robability are given on the following pages and	a are part of the continuate.
		y facility: environment temperature (22 ± 3)°C	
All calibrations have been conducte	ed in the closed laborator		
All calibrations have been conducte Calibration Equipment used (M&TE	ed in the closed laborator	y facility: environment temperature $(22 \pm 3)^{\circ}$ C	
All calibrations have been conducte	ed in the closed laborator		c and humidity < 70%.
All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards	ed in the closed laborator critical for calibration)	y facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.)	c and humidity < 70%. Scheduled Calibration
All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91	ed in the closed laborator critical for calibration) ID # SN: 104778	y facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 26-Mar-24 (No. 217-04036/04037)	c and humidity < 70%. Scheduled Calibration Mar-25
All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244	y facility: environment temperature (22 ± 3)°C <u>Cal Date (Certificate No.)</u> 26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036)	C and humidity < 70%. Scheduled Calibration Mar-25 Mar-25
All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2	ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245	y facility: environment temperature (22 ± 3)°C <u>Cal Date (Certificate No.)</u> 26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037)	C and humidity < 70%. Scheduled Calibration Mar-25 Mar-25 Mar-25
All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k)	y facility: environment temperature (22 ± 3)°C <u>Cal Date (Certificate No.)</u> 26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04046)	C and humidity < 70%. Scheduled Calibration Mar-25 Mar-25 Mar-25 Mar-25 Mar-25
All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3	ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327	y facility: environment temperature (22 ± 3)°C <u>Cal Date (Certificate No.)</u> 26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04046) 26-Mar-24 (No. 217-04047)	c and humidity < 70%. Scheduled Calibration Mar-25 Mar-25 Mar-25 Mar-25 Mar-25 Mar-25
All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4	ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 4013	26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04046) 26-Mar-24 (No. 217-04047) 28-Dec-23 (No. EF3-4013_Dec23)	c and humidity < 70%. Scheduled Calibration Mar-25 Mar-25 Mar-25 Mar-25 Mar-25 Dec-24
All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards	ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 4013 SN: 781	y facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04046) 26-Mar-24 (No. 217-04047) 28-Dec-23 (No. EF3-4013_Dec23) 16-Feb-24 (No. DAE4-781_Feb24)	C and humidity < 70%. Scheduled Calibration Mar-25 Mar-25 Mar-25 Mar-25 Mar-25 Dec-24 Feb-25
All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B	ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 4013 SN: 781 ID #	y facility: environment temperature (22 ± 3)°C <u>Cal Date (Certificate No.)</u> 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04046) 26-Mar-24 (No. 217-04047) 28-Dec-23 (No. EF3-4013_Dec23) 16-Feb-24 (No. DAE4-781_Feb24) Check Date (in house)	C and humidity < 70%. Scheduled Calibration Mar-25 Mar-25 Mar-25 Mar-25 Mar-25 Dec-24 Feb-25 Scheduled Check
All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A	ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 4013 SN: 781 ID # ID # SN: GB42420191	y facility: environment temperature (22 ± 3)°C <u>Cal Date (Certificate No.)</u> 26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-0406) 26-Mar-24 (No. 217-04047) 28-Dec-23 (No. EF3-4013_Dec23) 16-Feb-24 (No. DAE4-781_Feb24) <u>Check Date (in house)</u> 09-Oct-09 (in house check Nov-23)	C and humidity < 70%. Scheduled Calibration Mar-25 Mar-25 Mar-25 Mar-25 Mar-25 Dec-24 Feb-25 Scheduled Check In house check: Nov-24
All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A	ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103244 SN: 103245 SN: 8H9394 (20k) SN: 310982 / 06327 SN: 4013 SN: 781 ID # ID # SN: GB42420191 SN: US38485102	y facility: environment temperature (22 ± 3)°C <u>Cal Date (Certificate No.)</u> 26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04047) 28-Dec-23 (No. EF3-4013_Dec23) 16-Feb-24 (No. DAE4-781_Feb24) <u>Check Date (in house)</u> 09-Oct-09 (in house check Nov-23) 05-Jan-10 (in house check Nov-23)	C and humidity < 70%. Scheduled Calibration Mar-25 Mar-25 Mar-25 Mar-25 Mar-25 Dec-24 Feb-25 Scheduled Check In house check: Nov-24 In house check: Nov-24
All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06	ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 4013 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597	y facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04047) 28-Dec-23 (No. EF3-4013_Dec23) 16-Feb-24 (No. DAE4-781_Feb24) Check Date (in house) 09-Oct-09 (in house check Nov-23) 05-Jan-10 (in house check Nov-23) 09-Oct-09 (in house check Nov-23)	2 and humidity < 70%. Scheduled Calibration Mar-25 Mar-25 Mar-25 Mar-25 Dec-24 Feb-25 Scheduled Check In house check: Nov-24 In house check: Nov-24 In house check: Nov-24
All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP B4482A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 4013 SN: 781 ID # ID # SN: GB42420191 SN: US3749597 SN: US37295597 SN: US37295597 SN: US37033/005 SN: US41080477 Name	y facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04046) 26-Mar-24 (No. 217-04047) 28-Dec-23 (No. EF3-4013_Dec23) 16-Feb-24 (No. DAE4-781_Feb24) Check Date (in house) 09-Oct-09 (in house check Nov-23) 05-Jan-10 (in house check Nov-23) 09-Oct-09 (in house check Nov-23) 10-Jan-19 (in house check Nov-23) 31-Mar-14 (in house check Oct-22) Function	2 and humidity < 70%. Scheduled Calibration Mar-25 Mar-25 Mar-25 Mar-25 Dec-24 Feb-25 Scheduled Check In house check: Nov-24 In house check: Nov-24 In house check: Nov-24 In house check: Nov-24 In house check: Nov-24
All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP B4482A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 4013 SN: 781 ID # ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: US37295597 SN: US3705 SN: US41080477	y facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04047) 28-Dec-23 (No. EF3-4013_Dec23) 16-Feb-24 (No. DAE4-781_Feb24) Check Date (in house) 09-Oct-09 (in house check Nov-23) 05-Jan-10 (in house check Nov-23) 09-Oct-09 (in house check Nov-23) 10-Jan-19 (in house check Nov-23) 31-Mar-14 (in house check Not-22)	2 and humidity < 70%. Scheduled Calibration Mar-25 Mar-25 Mar-25 Mar-25 Dec-24 Feb-25 Scheduled Check In house check: Nov-24 In house check: Nov-24
All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 4013 SN: 781 ID # ID # SN: GB42420191 SN: US3749597 SN: US37295597 SN: US37295597 SN: US37033/005 SN: US41080477 Name	y facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04046) 26-Mar-24 (No. 217-04047) 28-Dec-23 (No. EF3-4013_Dec23) 16-Feb-24 (No. DAE4-781_Feb24) Check Date (in house) 09-Oct-09 (in house check Nov-23) 05-Jan-10 (in house check Nov-23) 09-Oct-09 (in house check Nov-23) 10-Jan-19 (in house check Nov-23) 31-Mar-14 (in house check Oct-22) Function	C and humidity < 70%. Scheduled Calibration Mar-25 Mar-25 Mar-25 Mar-25 Dec-24 Feb-25 Scheduled Check In house check: Nov-24 In house check: Nov-24
All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by:	ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 8H9394 (20k) SN: 310962 / 06327 SN: 4013 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 837633/005 SN: US41080477 Name Leif Klysner	Y facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04046) 26-Mar-24 (No. 217-04047) 28-Dec-23 (No. EF3-4013_Dec23) 16-Feb-24 (No. DAE4-781_Feb24) Check Date (in house) 09-Oct-09 (in house check Nov-23) 05-Jan-10 (in house check Nov-23) 09-Oct-09 (in house check Nov-23) 10-Jan-19 (in house check Not-22) Function Laboratory Technician	2 and humidity < 70%. Scheduled Calibration Mar-25 Mar-25 Mar-25 Mar-25 Dec-24 Feb-25 Scheduled Check In house check: Nov-24 In house check: Nov-24

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

S Schweize C Service s S Servizio s Swiss Ca

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

References

 ANSI-C63.19-2019 (ANSI-C63.19-2011)
 American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
 is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
 directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic E-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CD835V3-1023_Aug24

Page 2 of 5

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	835 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 835 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	112.6 V/m = 41.03 dBV/m
Maximum measured above low end	100 mW input power	109.9 V/m = 40.82 dBV/m
Averaged maximum above arm	100 mW input power	111.3 V/m ± 12.8 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Frequency	Return Loss	Impedance
800 MHz	17.2 dB	41.3 Ω - 9.3 jΩ
835 MHz	26.2 dB	51.9 Ω + 4.6 jΩ
880 MHz	16.5 dB	62.3 Ω - 11.7 jΩ
900 MHz	16.3 dB	53.0 Ω - 15.6 jΩ
945 MHz	26.4 dB	46.9 Ω + 3.5 jΩ

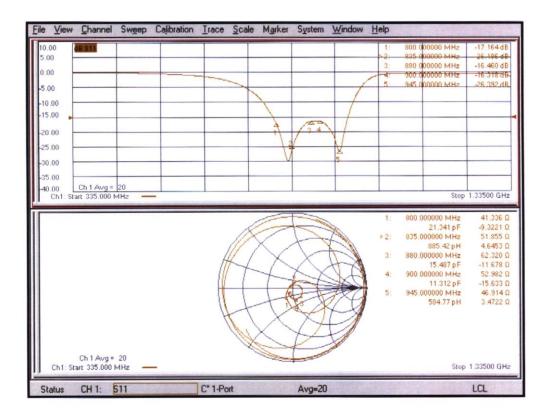
3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.


Certificate No: CD835V3-1023_Aug24

Page 3 of 5

Impedance Measurement Plot

Page 4 of 5

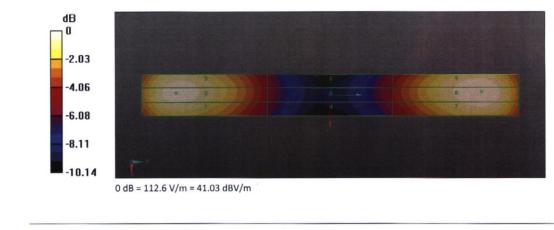
DASY5 E-field Result

Date: 16.08.2024

Test Laboratory: SPEAG Lab2

DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: CD835V3 - SN: 1023

 $\begin{array}{l} \mbox{Communication System: UID 0 - CW ; Frequency: 835 MHz} \\ \mbox{Medium parameters used: } \sigma = 0 \mbox{S/m}, \mbox{ϵ_r} = 1; \mbox{ρ} = 0 \mbox{kg/m^3} \\ \mbox{Phantom section: } RF \mbox{Section} \\ \mbox{Measurement Standard: } DASY5 (IEEE/IEC/ANSI C63.19-2011) \\ \end{array}$


DASY52 Configuration:

- Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 835 MHz; Calibrated: 28.12.2023
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 16.02.2024
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole E-Field measurement @ 835MHz/E-Scan - 835MHz d=15mm/Hearing Aid Compatibility Test (41x361x1):

Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 221.0 V/m; Power Drift = 0.02 dB Applied MIF = 0.00 dB RF audio interference level = 41.03 dBV/m Emission category: M3

MIF scaled E-fi	eld	
	Grid 2 M3 40.82 dBV/m	
	Grid 5 M4 36.22 dBV/m	Grid 6 M4 36.19 dBV/m
	Grid 8 M3 41.03 dBV/m	Grid 9 M3 40.96 dBV/m

Certificate No: CD835V3-1023_Aug24

Page 5 of 5

Dipole 1880 MHz

he Swiss Accreditation Service i Iultilateral Agreement for the rec	n Service (SAS) s one of the signatorie: ognition of calibration	s to the EA certificates	Accreditation No.: SCS 0108
Client CTTL Beijing		Certificate No.	CD1880V3-1018_Aug24
CALIBRATION C	ERTIFICATE		
Dbject	CD1880V3 - SN:	1018	
Calibration procedure(s)	QA CAL-20.v7	dure for Validation Sources in air	
	Calibration 11000		
Calibration date:	August 16, 2024		
		onal standards, which realize the physical unit obability are given on the following pages and	
All calibrations have been conducte	ed in the closed laborator	y facility: environment temperature (22 ± 3)°C	and humidity < 70%.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	26-Mar-24 (No. 217-04036/04037)	Mar-25
Power sensor NRP-Z91 Power sensor NRP-Z91	SN: 103244 SN: 103245	26-Mar-24 (No. 217-04036)	Mar-25 Mar-25
Reference 20 dB Attenuator	SN: BH9394 (20k)	26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04046)	Mar-25
Type-N mismatch combination	SN: 310982 / 06327	26-Mar-24 (No. 217-04047)	Mar-25
Probe EF3DV3	SN: 4013	28-Dec-23 (No. EF3-4013_Dec23)	Dec-24
DAE4	SN: 781	16-Feb-24 (No. DAE4-781_Feb24)	Feb-25
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter Agilent 4419B	SN: GB42420191	09-Oct-09 (in house check Nov-23)	In house check: Nov-24
Power sensor HP E4412A	SN: US38485102	05-Jan-10 (in house check Nov-23)	In house check: Nov-24
Power sensor HP 8482A RF generator R&S SMT-06	SN: US37295597 SN: 837633/005	09-Oct-09 (in house check Nov-23) 10-Jan-19 (in house check Nov-23)	In house check: Nov-24 In house check: Nov-24
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature
	Leif Klysner	Laboratory Technician	Sel They
Calibrated by:	Sven Kühn	Technical Manager	Con
	Sven Kunn		
Calibrated by: Approved by:	Sven Kunn		Issued: August 20, 2024

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

References

- ANSI-C63.19-2019 (ANSI-C63.19-2011) [1]
- American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy
- Feed Point Impedance and Return Loss: These parameters are measured using a Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic E-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any nonparallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CD1880V3-1018 Aug24

Page 2 of 5

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	1880 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 1880 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	88.2 V/m = 38.91 dBV/m
Maximum measured above low end	100 mW input power	87.1 V/m = 38.80 dBV/m
Averaged maximum above arm	100 mW input power	87.7 V/m ± 12.8 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Frequency	Return Loss	Impedance
1730 MHz	27.4 dB	54.4 Ω + 0.1 jΩ
1880 MHz	21.6 dB	54.9 Ω + 7.3 jΩ
1900 MHz	22.6 dB	56.6 Ω + 4.3 jΩ
1950 MHz	31.9 dB	52.6 Ω - 0.1 jΩ
2000 MHz	19.8 dB	47.4 Ω + 9.7 jΩ

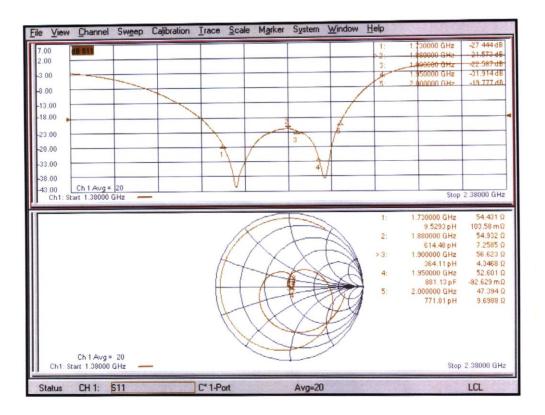
3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.


Certificate No: CD1880V3-1018_Aug24

Page 3 of 5

Impedance Measurement Plot

Page 4 of 5

DASY5 E-field Result

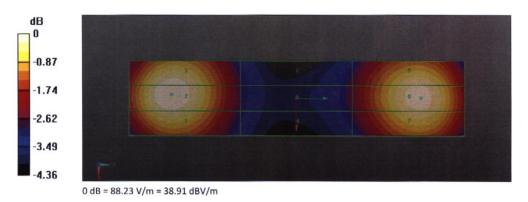
Date: 16.08.2024

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: CD1880V3 - SN: 1018

Communication System: UID 0 - CW ; Frequency: 1880 MHz Medium parameters used: $\sigma = 0$ S/m, $\epsilon_r = 1$; $\rho = 0$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 1880 MHz; Calibrated: 28.12.2023
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 16.02.2024
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole E-Field measurement @ 1880MHz/E-Scan - 1880MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm Reference Value = 153.2 V/m; Power Drift = 0.01 dB Applied MIF = 0.00 dB RF audio interference level = 38.91 dBV/m Emission category; M2

MIF scaled E-field

Grid 1 M2	Grid 2 M2	Grid 3 M2
38.59 dBV/m	38.91 dBV/m	38.83 dBV/m
Grid 4 M2	Grid 5 M2	Grid 6 M2
36.14 dBV/m	36.27 dBV/m	36.21 dBV/m
Grid 7 M2	Grid 8 M2	Grid 9 M2
38.59 dBV/m	38.8 dBV/m	38.64 dBV/m

Certificate No: CD1880V3-1018_Aug24

Page 5 of 5

Dipole 3500 MHz

ccredited by the Swiss Accreditatio	on Service (SAS)		Swiss Calibration Service Accreditation No.: SCS 0108
he Swiss Accreditation Service i ultilateral Agreement for the rec			
lient CTTL Beijing			CD3500V3-1008_Aug24
CALIBRATION CI	ERTIFICATE		
Dbject	CD3500V3 - SN:	1008	
Calibration procedure(s)	QA CAL-20.v7		
		dure for Validation Sources in air	
Calibration date:	August 16, 2024		
he measurements and the uncerta	ainties with confidence pr	anal standards, which realize the physical unit obability are given on the following pages and y facility: environment temperature $(22 \pm 3)^{\circ}$ C	d are part of the certificate.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID #	Cal Data (Cartificata Na.)	Scheduled Calibration
minary Standards	10 #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	26-Mar-24 (No. 217-04036/04037)	Mar-25
Power meter NRP2 Power sensor NRP-Z91	SN: 104778 SN: 103244	26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036)	Mar-25 Mar-25
Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	SN: 104778 SN: 103244 SN: 103245	26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037)	Mar-25 Mar-25 Mar-25
Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k)	26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04046)	Mar-25 Mar-25 Mar-25 Mar-25
Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327	26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04046) 26-Mar-24 (No. 217-04047)	Mar-25 Mar-25 Mar-25 Mar-25 Mar-25
Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Probe EF3DV3	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k)	26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04046)	Mar-25 Mar-25 Mar-25 Mar-25
Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Probe EF3DV3 DAE4	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 4013	26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04046) 26-Mar-24 (No. 217-04047) 28-Dec-23 (No. EF3-4013_Dec23)	Mar-25 Mar-25 Mar-25 Mar-25 Mar-25 Dec-24
Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 4013 SN: 781	26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04046) 26-Mar-24 (No. 217-04047) 28-Dec-23 (No. EF3-4013_Dec23) 16-Feb-24 (No. DAE4-781_Feb24)	Mar-25 Mar-25 Mar-25 Mar-25 Mar-25 Dec-24 Feb-25
Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 4013 SN: 781	26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04043) 26-Mar-24 (No. 217-04047) 28-Dec-23 (No. EF3-4013_Dec23) 16-Feb-24 (No. DAE4-781_Feb24) Check Date (in house)	Mar-25 Mar-25 Mar-25 Mar-25 Dec-25 Dec-24 Feb-25 Scheduled Check In house check: Nov-24 In house check: Nov-24
Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 4013 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597	26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04046) 26-Mar-24 (No. 217-04047) 28-Dec-23 (No. EF3-4013_Dec23) 16-Feb-24 (No. DAE4-781_Feb24) Check Date (in house) 09-Oct-09 (in house check Nov-23) 05-Jan-10 (in house check Nov-23)	Mar-25 Mar-25 Mar-25 Mar-25 Dec-24 Feb-25 Scheduled Check In house check: Nov-24 In house check: Nov-24 In house check: Nov-24
Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 4013 SN: 781 ID # SN: GB42420191 SN: US38485102	26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-040437) 26-Mar-24 (No. 217-04047) 28-Dec-23 (No. EF3-4013_Dec23) 16-Feb-24 (No. DAE4-781_Feb24) Check Date (in house) 09-Oct-09 (in house check Nov-23) 05-Jan-10 (in house check Nov-23)	Mar-25 Mar-25 Mar-25 Mar-25 Dec-25 Dec-24 Feb-25 Scheduled Check In house check: Nov-24 In house check: Nov-24
Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 4013 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 837633/005	26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04046) 26-Mar-24 (No. 217-04047) 28-Dec-23 (No. EF3-4013_Dec23) 16-Feb-24 (No. DAE4-781_Feb24) Check Date (in house) 09-Oct-09 (in house check Nov-23) 05-Jan-10 (in house check Nov-23) 10-Jan-19 (in house check Nov-23)	Mar-25 Mar-25 Mar-25 Mar-25 Dec-24 Feb-25 Scheduled Check In house check: Nov-24 In house check: Oct-24 Signature
Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 4013 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 837633/005 SN: US41080477	26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04046) 28-Dec-23 (No. EF3-4013_Dec23) 16-Feb-24 (No. DAE4-781_Feb24) Check Date (in house) 09-Oct-09 (in house check Nov-23) 05-Jan-10 (in house check Nov-23) 10-Jan-19 (in house check Nov-23) 31-Mar-14 (in house check Oct-22)	Mar-25 Mar-25 Mar-25 Mar-25 Dec-24 Feb-25 Scheduled Check In house check: Nov-24 In house check: Oct-24 Signature
Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 4013 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: US37295597 SN: US37633/005 SN: US41080477 Name	26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04046) 28-Dec-23 (No. EF3-4013_Dec23) 16-Feb-24 (No. DAE4-781_Feb24) Check Date (in house) 09-Oct-09 (in house check Nov-23) 05-Jan-10 (in house check Nov-23) 09-Oct-09 (in house check Nov-23) 10-Jan-19 (in house check Nov-23) 31-Mar-14 (in house check Oct-22) Function	Mar-25 Mar-25 Mar-25 Mar-25 Dec-24 Feb-25 Scheduled Check In house check: Nov-24 In house check: Oct-24
Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power sensor Standards Power sensor HP E4412A Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by:	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 4013 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 837633/005 SN: US41080477 Name Leif Klysner	26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04046) 28-Dec-23 (No. EF3-4013_Dec23) 16-Feb-24 (No. DAE4-781_Feb24) Check Date (in house) 09-Oct-09 (in house check Nov-23) 05-Jan-10 (in house check Nov-23) 09-Oct-09 (in house check Nov-23) 10-Jan-19 (in house check Nov-23) 31-Mar-14 (in house check Not-22) Function Laboratory Technician	Mar-25 Mar-25 Mar-25 Mar-25 Dec-24 Feb-25 Scheduled Check In house check: Nov-24 In house check: Oct-24
Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power sensor HP E4412A Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by:	SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 310982 / 06327 SN: 310982 / 06327 SN: 4013 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 837633/005 SN: US41080477 Name Leif Klysner Sven Kühn	26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04046) 28-Dec-23 (No. EF3-4013_Dec23) 16-Feb-24 (No. DAE4-781_Feb24) Check Date (in house) 09-Oct-09 (in house check Nov-23) 05-Jan-10 (in house check Nov-23) 09-Oct-09 (in house check Nov-23) 10-Jan-19 (in house check Nov-23) 31-Mar-14 (in house check Not-22) Function Laboratory Technician	Mar-25 Mar-25 Mar-25 Mar-25 Dec-24 Feb-25 Scheduled Check In house check: Nov-24 In house check: Oct-24 Signature Sey My Cocc Issued: August 20, 2024

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

IBC MRA

S

С

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

References

[1] ANSI-C63.19-2019 (ANSI-C63.19-2011)

American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
 is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
 directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic E-field probe with 100 mW forward
 power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the
 dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms.
 Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one
 line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any nonparallelity to the measurement plane as well as the sensor displacement. The E-field value stated as
 calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CD3500V3-1008_Aug24

Page 2 of 7

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	3500 MHz ± 1 MHz 3900 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 3500 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	85.7 V/m = 38.65 dBV/m
Maximum measured above low end	100 mW input power	84.3 V/m = 38.51 dBV/m
Averaged maximum above arm	100 mW input power	85.0 V/m ± 12.8 % (k=2)

Maximum Field values at 3900 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	81.8 V/m = 38.26 dBV/m
Maximum measured above low end	100 mW input power	80.7 V/m = 38.14 dBV/m
Averaged maximum above arm	100 mW input power	81.3 V/m ± 12.8 % (k=2)

Certificate No: CD3500V3-1008_Aug24

Page 3 of 7

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Nominal Frequencies

Frequency	Return Loss	Impedance
3300 MHz	18.3 dB	63.2 Ω + 3.9 jΩ
3400 MHz	22.7 dB	55.4 Ω - 5.5 jΩ
3500 MHz	24.3 dB	51.9 Ω - 5.9 jΩ
3600 MHz	22.1 dB	47.0 Ω - 7.0 jΩ
3700 MHz	20.5 dB	41.6 Ω - 2.1 jΩ

Additional Frequencies

Frequency	Return Loss	Impedance
3900 MHz	21.4 dB	48.7 Ω + 8.3 jΩ

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Page 4 of 7