2600 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates | Object | D2600V2 - SN:1 | 012 | | |---|---|--|---| | | | | | | Calibration procedure(s) | QA CAL-05.v11 | | | | | Calibration Proce | edure for SAR Validation Sources | between 0.7-3 GHz | | | | | | | | | | | | Calibration date: | July 17, 2019 | | | | The measurements and the uncert | tainties with confidence p | ional standards, which realize the physical un
probability are given on the following pages an | nd are part of the certificate. | | All calibrations have been conduct | ed in the closed laborato | ry facility: environment temperature $(22 \pm 3)^{\circ}$ | C and humidity < 70%. | | Calibration Equipment used (M&TE | E critical for calibration) | | | | | | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | ID #
SN: 104778 | Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) | Scheduled Calibration Apr-20 | | Power meter NRP
Power sensor NRP-Z91 | | | | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 | SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | Power meter NRP
Power sensor NRP-Z91
Power sensor NRP-Z91
Reference 20 dB Attenuator | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k) | 03-Apr-19 (No. 217-02892/02893)
03-Apr-19 (No. 217-02892) | Apr-20
Apr-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327 | 03-Apr-19 (No. 217-02892/02893)
03-Apr-19 (No. 217-02892)
03-Apr-19 (No. 217-02893) | Apr-20
Apr-20
Apr-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349 | 03-Apr-19 (No. 217-02892/02893)
03-Apr-19 (No. 217-02892)
03-Apr-19 (No. 217-02893)
04-Apr-19 (No. 217-02894) | Apr-20
Apr-20
Apr-20
Apr-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327 | 03-Apr-19 (No. 217-02892/02893)
03-Apr-19 (No. 217-02892)
03-Apr-19 (No. 217-02893)
04-Apr-19 (No. 217-02894)
04-Apr-19 (No. 217-02895) | Apr-20
Apr-20
Apr-20
Apr-20
Apr-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349 | 03-Apr-19 (No. 217-02892/02893)
03-Apr-19 (No. 217-02892)
03-Apr-19 (No. 217-02893)
04-Apr-19 (No. 217-02894)
04-Apr-19 (No. 217-02895)
29-May-19 (No. EX3-7349_May19) | Apr-20
Apr-20
Apr-20
Apr-20
Apr-20
May-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601 | 03-Apr-19 (No. 217-02892/02893)
03-Apr-19 (No. 217-02892)
03-Apr-19 (No. 217-02893)
04-Apr-19 (No. 217-02894)
04-Apr-19 (No. 217-02895)
29-May-19 (No. EX3-7349_May19)
30-Apr-19 (No. DAE4-601_Apr19) | Apr-20
Apr-20
Apr-20
Apr-20
Apr-20
May-20
Apr-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601 | 03-Apr-19 (No. 217-02892/02893)
03-Apr-19 (No. 217-02892)
03-Apr-19 (No. 217-02893)
04-Apr-19 (No. 217-02894)
04-Apr-19 (No. 217-02895)
29-May-19 (No. EX3-7349_May19)
30-Apr-19 (No. DAE4-601_Apr19)
Check Date (in house) | Apr-20
Apr-20
Apr-20
Apr-20
Apr-20
May-20
Apr-20
Scheduled Check | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601 | 03-Apr-19 (No. 217-02892/02893)
03-Apr-19 (No. 217-02892)
03-Apr-19 (No. 217-02893)
04-Apr-19 (No. 217-02894)
04-Apr-19 (No. 217-02895)
29-May-19 (No. EX3-7349_May19)
30-Apr-19 (No. DAE4-601_Apr19)
Check Date (in house)
30-Oct-14 (in house check Feb-19) | Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 May-20 Apr-20 Scheduled Check In house check: Oct-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783 | 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) | Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 May-20 Apr-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317 | 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) | Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 May-20 Apr-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972 | 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) | Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 May-20 Apr-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 | 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) | Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 May-20 Apr-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-19 Signature | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator
R&S SMT-06 Network Analyzer Agilent E8358A | SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name | 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895) 29-May-19 (No. EX3-7349_May19) 30-Apr-19 (No. DAE4-601_Apr19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) | Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 May-20 Apr-20 Scheduled Check In house check: Oct-20 In house check: Oct-19 | Certificate No: D2600V2-1012_Jul19 Page 1 of 8 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signs The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2600V2-1012_Jul19 Page 2 of 8 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY5 | V52.10.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | 102.10.2 | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | орасст | | Frequency | 2600 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.1 ± 6 % | 2.02 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.3 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 55.8 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.38 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.1 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.5 | 2.16 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 50.4 ± 6 % | 2.20 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.0 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 55.0 W/kg ± 17.0 % (k=2) | | condition | | |--------------------|--------------------------| | 250 mW input power | 6.26 W/kg | | normalized to 1W | 24.8 W/kg ± 16.5 % (k=2) | | | 250 mW input power | Certificate No: D2600V2-1012_Jul19 Page 3 of 8 #### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 47.5 Ω - 6.3 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.2 dB | | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 43.8 Ω - 4.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.6 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.153 ns | |-----------------------------------|----------| | Licetifeat Belay (offe direction) | 1.155115 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by SPEAG | |-----------------------| |-----------------------| Certificate No: D2600V2-1012_Jul19 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Date: 16.07.2019 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1012 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; σ = 2.02 S/m; ϵ_r = 37.1; ρ = 1000 kg/m 3 Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.69, 7.69, 7.69) @ 2600 MHz; Calibrated: 29.05.2019 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 30.04.2019 • Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 • DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 118.6 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 28.8 W/kg SAR(1 g) = 14.3 W/kg; SAR(10 g) = 6.38 W/kgMaximum value of SAR (measured) = 24.0 W/kg 0 dB = 24.0 W/kg = 13.80 dBW/kg Certificate No: D2600V2-1012_Jul19 Page 5 of 8 #### Impedance Measurement Plot for Head TSL # **DASY5 Validation Report for Body TSL** Date: 17.07.2019 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1012 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.2 \text{ S/m}$; $\varepsilon_r = 50.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.8, 7.8, 7.8) @ 2600 MHz; Calibrated: 29.05.2019 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 30.04.2019 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 • DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.1 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 28.3 W/kg SAR(1 g) = 14 W/kg; SAR(10 g) = 6.26 W/kg Maximum value of SAR (measured) = 23.3 W/kg 0 dB = 23.3 W/kg = 13.67 dBW/kg Certificate No: D2600V2-1012_Jul19 Page 7 of 8 # Impedance Measurement Plot for Body TSL
Certificate No: D2600V2-1012_Jul19 # ANNEX I SPOT CHECK # I.1 Dielectric Performance and System Validation Table I.1-1: Dielectric Performance of Head Tissue Simulating Liquid | Measurement Date
yyyy/mm/dd | Frequency | Туре | Permittivity ε | Drift (%) | Conductivity
σ (S/m) | Drift (%) | |--------------------------------|-----------|------|----------------|-----------|-------------------------|-----------| | 2021/9/28 | 750 MHz | Head | 43.443 | 3.58 | 0.819 | -7.98 | | 2021/9/28 | 2450 MHz | Head | 41.589 | 6.09 | 1.912 | 6.22 | Table I.1-2: System Validation of Head | Measurement | | Target val | ue (W/kg) | Measured | value(W/kg) | Devi | ation | |--------------|-----------|------------|-----------|----------|-------------|---------|---------| | Date | Frequency | 10 g | 1 g | 10 g | 1 g | 10 g | 1 g | | (yyyy-mm-dd) | | Average | Average | Average | Average | Average | Average | | 2021/9/28 | 750 MHz | 5.65 | 8.68 | 5.40 | 8.04 | -4.42% | -7.37% | | 2021/9/28 | 2450 MHz | 24.9 | 53.3 | 24.5 | 53.2 | -1.53% | -0.19% | #### I.2 SAR results | Test
Position | Phantom
position
L/R/F | Frequency Band | Channel
Number | Frequency (MHz) | Test setup | EUT
Measured
Power
(dBm) | Tune up
(dBm) | Measured
SAR 10g
(W/kg) | Measured
SAR 1g
(W/kg) | Calculated
SAR 10g
(W/kg) | Calculated
SAR 1g
(W/kg) | Power Drift | |------------------|------------------------------|----------------|-------------------|-----------------|----------------------|-----------------------------------|------------------|-------------------------------|------------------------------|---------------------------------|--------------------------------|-------------| | Tilt | R | WIFI2450 | 6 | 2437 | | 16.19 | 17.00 | 0.161 | 0.381 | 0.19 | 0.46 | -0.14 | | Body | F | LTE Band13 | 23230 | 782 | 1RB-Middle Rear 10mm | 23.24 | 24.50 | 0.157 | 0.262 | 0.21 | 0.35 | 0.13 | # I.3 Reported SAR Comparison Table I.3-1: Highest Reported SAR (1g) | | | Highest Reported | Highest Reported | |------------------------|-----------------|------------------|------------------| | Exposure Configuration | Technology Band | SAR 1g(W/kg) | SAR 1g(W/kg) | | | | original | spot check | | | GSM 850 | 0.15 | / | | | PCS 1900 | 0.06 | 1 | | | UMTS FDD 2 | 0.19 | 1 | | | UMTS FDD 4 | 0.29 | 1 | | Head | UMTS FDD 5 | 0.35 | 1 | | (Separation Distance | LTE Band 2 | 0.19 | 1 | | ` ' | LTE Band 5 | 0.22 | / | | 0mm) | LTE Band 7 | 0.18 | / | | | LTE Band 12 | 0.23 | 1 | | | LTE Band 13 | 0.28 | / | | | LTE Band 66 | 0.42 | / | | | WLAN 2.4 GHz | 0.58 | 0.46 | | Hotspot | GSM 850 | 0.29 | / | | • | PCS 1900 | 0.65 | / | | (Separation Distance | UMTS FDD 2 | 0.61 | 1 | | 10mm) | UMTS FDD 4 | 0.58 | / | |----------------------|--------------|------|------| | · | UMTS FDD 5 | 0.56 | / | | | LTE Band 2 | 0.67 | 1 | | | LTE Band 5 | 0.53 | 1 | | | LTE Band 7 | 0.59 | 1 | | | LTE Band 12 | 0.33 | 1 | | | LTE Band 13 | 0.76 | 0.35 | | | LTE Band 66 | 0.61 | 1 | | | WLAN 2.4 GHz | 0.22 | 1 | | | UMTS FDD 2 | 0.40 | 1 | | Body-worn | UMTS FDD 4 | 0.43 | 1 | | (Separation Distance | LTE Band 2 | 0.50 | 1 | | 15mm) | LTE Band 7 | 0.25 | 1 | | | LTE Band 66 | 0.56 | 1 | Note: The spot check results marked blue are larger than the original result. # **I.4 MAIN TEST INSTRUMENTS** | No. | Name | Туре | Serial
Number | Calibration Date | Valid Period | |-----|-----------------------|---------------|------------------|-------------------|--------------| | 01 | Network analyzer | E5071C | MY46110673 | January 14, 2021 | One year | | 02 | Power meter | NRVD | 102083 | October 23, 2020 | One year | | 03 | Power sensor | NRV-Z5 | 100542 | October 23, 2020 | One year | | 04 | Signal Generator | E4438C | MY49071430 | February 1, 2021 | One Year | | 05 | Amplifier | 60S1G4 | 0331848 | No Calibration | Requested | | 06 | BTS | CMW500 | 159890 | January 25 2021 | One year | | 07 | E-field Probe | SPEAG EX3DV4 | 7600 | November 30, 2020 | One year | | 08 | DAE | SPEAG DAE4 | 1525 | September 1, 2021 | One year | | 09 | Dipole Validation Kit | SPEAG D750V2 | 1017 | July 12,2021 | One year | | 10 | Dipole Validation Kit | SPEAG D2450V2 | 853 | July 26,2021 | One year | #### **I.5 GRAPH RESULTS** #### LTE750-FDD13_CH23230 Rear Date: 9/28/2021 Electronics: DAE4 Sn1525 Medium: H750 Medium parameters used (interpolated): f = 782 MHz; $\sigma = 0.822$ S/m; $\epsilon r = 43.56$; $\rho = 1000$ kg/m3 Ambient Temperature: 23.1oC Liquid Temperature: 22.7oC Communication System: LTE Band13 Frequency: 782 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(10.88, 10.88, 10.88) Area Scan (81x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.401 W/kg Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.59 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 0.499 W/kg SAR(1 g) = 0.262 W/kg; SAR(10 g) = 0.157 W/kg Fig I.5-1 ## WLAN2450_CH6 Right Tilt Date: 9/28/2021 Electronics: DAE4 Sn1525 Medium: H2450 Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.901$ S/m; $\epsilon r = 41.623$; $\rho = 1000$ kg/m3 Ambient Temperature: 23.1oC Liquid Temperature: 22.7oC Communication System: wifi 2450 Frequency: 2437 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(7.79, 7.79, 7.79) Area Scan (101x161x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.636 W/kg Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.97 V/m; Power Drift = -0.14 dB Peak SAR (extrapolated) = 0.861 W/kg SAR(1 g) = 0.381 W/kg; SAR(10 g) = 0.161 W/kg Maximum value of SAR (measured) = 0.623 W/kg Fig I.5-2 #### **I.6 System Verification Results** ### **750 MHz** Date: 9/28/2021 Electronics: DAE4 Sn1525 Medium: H750 Medium parameters used: f = 750 MHz; $\sigma = 0.819 \text{ S/m}$; $\epsilon r = 43.443$; $\rho = 1000 \text{ kg/m}3$ Ambient Temperature: 23.1oC Liquid Temperature: 22.7oC Communication System: CW Frequency: 750 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(10.88, 10.88, 10.88) Area Scan (51x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.78 W/kg Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 44.13 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 3.17 W/kg SAR(1 g) = 2.01 W/kg; SAR(10 g) = 1.35 W/kg Maximum value of SAR (measured) = 2.70 W/kg 0 dB = 2.70 W/kg = 4.31 dBW/kg Fig.I.6-1 validation 750 MHz 250mW ## 2450 MHz Date: 9/28/2021 Electronics: DAE4 Sn1525 Medium: H2450 Medium parameters used: f = 2450 MHz; $\sigma = 1.912 \text{ S/m}$; $\epsilon r = 41.589$; $\rho = 1000 \text{ kg/m}3$ Ambient Temperature: 23.1oC Liquid Temperature: 22.7oC Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(7.79, 7.79, 7.79) Area Scan (81x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 21.6 W/kg Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 86.03 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 28.0 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.13 W/kgMaximum value of SAR (measured) = 22.0 W/kg 0 dB = 22.0 W/kg = 13.42 dBW/kg Fig.I.6-2 validation 2450 MHz 250mW #### I.7 Probe Calibration Certificate #### **Probe 7600 Calibration Certificate** Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn Client CTTL Certificate No: Z20-60421 #### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN: 7600 Calibration Procedure(s) FF-Z11-004-02 Calibration Procedures for Dosimetric E-field Probes Calibration date: November 30, 2020 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3) $^{\circ}$ C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibratio | |----------------------------------|---------------------|--|-----------------------| | Power Meter NRP2 | 101919 | 16-Jun-20(CTTL, No.J20X04344) | Jun-21 | | Power sensor NRP-Z91 | 101547 | 16-Jun-20(CTTL, No.J20X04344) | Jun-21 | | Power sensor NRP-Z91 | 101548 | 16-Jun-20(CTTL, No.J20X04344) | Jun-21 | | Reference 10dBAttenuator | 18N50W-10dB | 10-Feb-20(CTTL, No.J20X00525) | Feb-22 | | Reference 20dBAttenuator | 18N50W-20dB | 10-Feb-20(CTTL, No.J20X00526) | Feb-22 | | Reference Probe EX3DV4 | SN 7307 | 29-May-20(SPEAG, No.EX3-7307_May | 20) May-21 | | DAE4 | SN 1556 | 4-Feb-20(SPEAG, No.DAE4-1556_Feb2 | 20) Feb-21 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | SignalGenerator MG3700A | 6201052605 | 23-Jun-20(CTTL, No.J20X04343) | Jun-21 | | Network Analyzer E5071C | MY46110673 | 10-Feb-20(CTTL, No.J20X00515) | Feb-21 | | N | lame | Function | Signature | | Calibrated by: | Yu Zongying | SAR Test Engineer | 金元金 | | Reviewed by: | Lin Hao | SAR Test Engineer | 林格 | | Approved by: | Qi Dianyuan | SAR Project Leader | vo | | | | Issued: Decem | | | This calibration certificate sha | Il not be reproduce | d except in full without written approval of | the laboratory. | Certificate No: Z20-60421 Page 1 of 9 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A.B.C.D
modulation dependent linearization parameters Polarization Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ=0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No:Z20-60421 Page 2 of 9 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7600 ### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |----------------------|----------|----------|----------|-----------| | Norm(µV/(V/m)²)A | 0.70 | 0.65 | 0.67 | ±10.0% | | DCP(mV) ^B | 109.4 | 109.2 | 108.7 | | ### **Modulation Calibration Parameters** | UID | Communication
System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Unc ^E
(<i>k</i> =2) | |-----|------------------------------|---|---------|-----------|-----|---------|----------|------------------------------------| | 0 | cw | Х | 0.0 | 0.0 | 1.0 | 0.00 | 225.0 | ±2.1% | | | | Υ | 0.0 | 0.0 | 1.0 | | 206.5 | | | | | Z | 0.0 | 0.0 | 1.0 | | 212.8 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No:Z20-60421 Page 3 of 9 A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4). ^B Numerical linearization parameter: uncertainty not required. ^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7600 #### Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 10.88 | 10.88 | 10.88 | 0.40 | 0.77 | ±12.1% | | 900 | 41.5 | 0.97 | 10.45 | 10.45 | 10.45 | 0.17 | 1.31 | ±12.1% | | 1450 | 40.5 | 1.20 | 9.28 | 9.28 | 9.28 | 0.10 | 1.40 | ±12.1% | | 1640 | 40.3 | 1.29 | 9.10 | 9.10 | 9.10 | 0.21 | 1.03 | ±12.1% | | 1750 | 40.1 | 1.37 | 9.01 | 9.01 | 9.01 | 0.20 | 1.11 | ±12.1% | | 1900 | 40.0 | 1.40 | 8.70 | 8.70 | 8.70 | 0.26 | 1.03 | ±12.1% | | 2000 | 40.0 | 1.40 | 8.68 | 8.68 | 8.68 | 0.21 | 1.16 | ±12.1% | | 2300 | 39.5 | 1.67 | 8.19 | 8.19 | 8.19 | 0.37 | 0.88 | ±12.1% | | 2450 | 39.2 | 1.80 | 7.79 | 7.79 | 7.79 | 0.35 | 1.00 | ±12.1% | | 2600 | 39.0 | 1.96 | 7.67 | 7.67 | 7.67 | 0.46 | 0.80 | ±12.1% | | 3300 | 38.2 | 2.71 | 7.35 | 7.35 | 7.35 | 0.43 | 0.95 | ±13.3% | | 3500 | 37.9 | 2.91 | 7.01 | 7.01 | 7.01 | 0.44 | 0.94 | ±13.3% | | 3700 | 37.7 | 3.12 | 6.77 | 6.77 | 6.77 | 0.42 | 1.02 | ±13.3% | | 3900 | 37.5 | 3.32 | 6.85 | 6.85 | 6.85 | 0.35 | 1.30 | ±13.3% | | 4100 | 37.2 | 3.53 | 6.75 | 6.75 | 6.75 | 0.40 | 1.15 | ±13.3% | | 4200 | 37.1 | 3.63 | 6.65 | 6.65 | 6.65 | 0.35 | 1.35 | ±13.3% | | 4400 | 36.9 | 3.84 | 6.54 | 6.54 | 6.54 | 0.35 | 1.35 | ±13.3% | | 4600 | 36.7 | 4.04 | 6.39 | 6.39 | 6.39 | 0.45 | 1.25 | ±13.3% | | 4800 | 36.4 | 4.25 | 6.34 | 6.34 | 6.34 | 0.40 | 1.42 | ±13.3% | | 4950 | 36.3 | 4.40 | 6.01 | 6.01 | 6.01 | 0.45 | 1.30 | ±13.3% | | 5250 | 35.9 | 4.71 | 5.68 | 5.68 | 5.68 | 0.45 | 1.30 | ±13.3% | | 5600 | 35.5 | 5.07 | 5.11 | 5.11 | 5.11 | 0.50 | 1.25 | ±13.3% | | 5750 | 35.4 | 5.22 | 5.07 | 5.07 | 5.07 | 0.50 | 1.25 | ±13.3% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No:Z20-60421 Page 4 of 9 F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Certificate No:Z20-60421 Page 5 of 9 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # Receiving Pattern (Φ), θ =0° # f=600 MHz, TEM # f=1800 MHz, R22 Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2) Certificate No:Z20-60421 Page 6 of 9 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ±0.9% (k=2) Certificate No:Z20-60421 Page 7 of 9 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn # **Conversion Factor Assessment** ## f=750 MHz,WGLS R9(H_convF) # f=1750 MHz,WGLS R22(H_convF) # **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2) Certificate No:Z20-60421 Page 8 of 9 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7600 ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 40.7 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length |
337mm | | Probe Body Diameter | 10mm | | Tip Length | 10mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | Certificate No:Z20-60421 Page 9 of 9 # I.8 Dipole Calibration Certificate # 750 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdiens C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL (Auden) Certificate No: D750V3-1017 Jul21 | CALIBRATION C | | | | |--|---|--|---| | Object | D750V3 - SN:10 | 17 | | | Calibration procedure(s) | QA CAL-05.v11
Calibration Proce | edure for SAR Validation Sources | s between 0.7-3 GHz | | Calibration date: | July 12, 2021 | | | | | ed in the closed laborator | robability are given on the following pages arry facility: environment temperature $(22\pm3)^{\circ}$ | | | | | | | | rimary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | | ID #
SN: 104778 | Cal Date (Certificate No.)
09-Apr-21 (No. 217-03291/03292) | | | ower meter NRP | | | Scheduled Calibration
Apr-22
Apr-22 | | ower meter NRP
ower sensor NRP-Z91 | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | ower meter NRP
ower sensor NRP-Z91
ower sensor NRP-Z91 | SN: 104778
SN: 103244 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291) | Apr-22
Apr-22 | | ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 ower sensor NRP-Z91 deference 20 dB Attenuator ype-N mismatch combination | SN: 104778
SN: 103244
SN: 103245 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292) | Apr-22
Apr-22
Apr-22 | | ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k) | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343) | Apr-22
Apr-22
Apr-22
Apr-22 | | ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344) | Apr-22
Apr-22
Apr-22
Apr-22
Apr-22 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344)
28-Dec-20 (No. EX3-7349_Dec20) | Apr-22
Apr-22
Apr-22
Apr-22
Apr-22
Dec-21 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Rype-N mismatch combination Reference Probe EX3DV4 RAE4 Recondary Standards Power meter E4419B | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344)
28-Dec-20 (No. EX3-7349_Dec20)
02-Nov-20 (No. DAE4-601_Nov20) | Apr-22
Apr-22
Apr-22
Apr-22
Apr-22
Dec-21
Nov-21 | | ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter E4419B ower sensor HP 8481A | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344)
28-Dec-20 (No. EX3-7349_Dec20)
02-Nov-20 (No. DAE4-601_Nov20)
Check Date (in house) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 | | Power meter NRP Power sensor NRP-Z91 N | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 | | ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter E4419B ower sensor HP 8481A F generator R&S SMT-06 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter E4419B ower sensor HP 8481A F generator R&S SMT-06 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | rower meter NRP rower sensor NRP-Z91 rower sensor NRP-Z91 rower sensor NRP-Z91 reference 20 dB
Attenuator rype-N mismatch combination reference Probe EX3DV4 recondary Standards rower meter E4419B rower sensor HP 8481A rower sensor HP 8481A | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | rower meter NRP rower sensor NRP-Z91 rower sensor NRP-Z91 reference 20 dB Attenuator ype-N mismatch combination reference Probe EX3DV4 recondary Standards recondary Standards rower meter E4419B rower sensor HP 8481A rower sensor HP 8481A reference PR&S SMT-06 retwork Analyzer Agilent E8358A | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-21 Signature | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: WY41092317
SN: 100972
SN: US41080477 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | Certificate No: D750V3-1017_Jul21 Page 1 of 6