

EMC TEST REPORT

Applicant Nokia Shanghai Bell Co., Ltd

FCC ID 2ADZRG140WH

Product 7368 ISAM ONT G-140W-H

Brand Nokia

Model G-140W-H

Report No. R1905B0058-E1V1

Issue Date August 9, 2019

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in FCC Code CFR47 Part15B (2018)/ ANSI C63.4 (2014). The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Performed by: Wei Liu/ Manager

Wei Liu

Approved by: Guangchang Fan/ Director

Guangchang Fan

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

Table of Contents

1	Test	Laboratory	4
	1.1	Notes of the Test Report	4
	1.2	Test facility	4
	1.3	Testing Location	5
2	Gen	eral Description of Equipment under Test	. 6
	2.1	Client Information	. 6
	2.2	General information	6
	2.3	Applied Standards	. 8
	2.4	Test Mode	9
3	Test	Case Results	10
	3.1	Radiated Emission	10
	3.2	Conducted Emission	15
4	Maii	n Test Instrument	18
Α	NNEX	A: The EUT Appearance and Test Configuration	19
		JT Appearance	
		st Setup	

Summary of measurement results

Number	Test Case	Clause in FCC Rules	Conclusion					
1	Radiated Emission	FCC Part15.109, ANSI C63.4-2014	PASS					
2	Conducted Emission	FCC Part15.107, ANSI C63.4-2014	PASS					
Test Date: June 3, 2019 ~ August 4, 2019								

Test Laboratory

Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **TA technology** (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein . Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2 Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

IC (recognition number is 8510A)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Canada to perform electromagnetic emission measurement.

VCCI (recognition number is C-4595, T-2154, R-4113, G-10766)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Japan to perform electromagnetic emission measurement.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

EMC Test Report No.: R1905B0058-E1V1

1.3 Testing Location

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Xu Kai

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: xukai@ta-shanghai.com

2 General Description of Equipment under Test

2.1 Client Information

Applicant Nokia Shanghai Bell Co., Ltd.			
Applicant address	No. 388, Ningqiao Rd. Pilot Free Trade Zone, Shanghai, China		
Manufacturer	Nokia Shanghai Bell Co., Ltd.		
Manufacturer address	No. 388, Ningqiao Rd. Pilot Free Trade Zone, Shanghai, China		

Report No.: R1905B0058-E1V1

2.2 General information

EUT Description						
Device Type:	Movable Device					
Model: G-140W-H						
IMEI:	1					
HW Version:	3FE 48055 AAAA					
SW Version:	3FE48077FGBB12					
Antenna Type:	Internal Antenna					
	Band	Tx (MHz)	Rx (MHz)			
F	WIFI 2.4G:	2412 ~ 2462	2412 ~ 2462			
Frequency:	WIFI 5G(U-NII-1):	5150 ~ 5250	5150 ~ 5250			
	WIFI 5G(U-NII-3):	5725 ~ 5850	5725 ~ 5850			
Modulation:	WLAN 802.11b: DSSS					
Modulation.	WLAN 802.11a/g/n/ac: OFDM					
	EUT	Accessory				
Adaptor 1	Manufacturer: Dongguan Shilong Fuhua Electronic Co., Ltd.					
Adapter 1	Model: UE190412GWAD1RI/UES24WU-120200SPA					
Adapter 2	Manufacturer: Dongguan Shilong Fuhua Electronic Co., Ltd.					
Adapter 2	Model: UE190412GWAD2RI/UE24WU-120200SPA					
Adapter 3	Manufacturer: SOY					
Adapter 5	Model: SOY-1200200AR					
Adapter 4	Manufacturer: RUIDE(SHENZHEN) ELECTRONIC INDUSTRIAL CO., LTD.					
Adapter 4	Model: BR120200-UC6C-LL00/RD1202000-C55-154MG					
Adapter 5	Manufacturer: RUIDE(SHENZHEN) ELECTRONIC INDUSTRIAL CO., LTD.					
Adapter 0	Model: BR120200-UC5C-HH00/RD1202000-C55-154MG					
Adapter 6	Manufacturer: Donggu	an Shilong Fuhua Electroni	c Co., Ltd.			
/ dupter 0	Model: UE190412GWA	ND5RI/UE24WV-120200SP	Α			

TA Technology (Shanghai) Co., Ltd. TA-MB-06-001E This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd.

EMC Test Report Report No.: R1905B0058-E1V1

Adapter 7	Manufacturer: RUIDE(SHENZHEN) ELECTRONIC INDUSTRIAL CO., LTD.				
	Model: BR120200-EC5C-HH00/RD1202000-C55-154OG				
Auxiliary test equipment					
PC	PC Manufacturer: lenovo				
FC	Model:E40-70(SN :R3028SCZ)				
Note: The information of the EUT is declared by the manufacturer.					

MC Test Report No.: R1905B0058-E1V1

2.3 Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards FCC Code CFR47 Part15B (2018) ANSI C63.4 (2014)

2.4 Test Mode

Test Mode			
Mode 1	EUT+ LAN cable + PC + WIFI 2.4G and WIFI 5G RX		

3 Test Case Results

3.1 Radiated Emission

Ambient condition

Temperature	Relative humidity	Pressure
24°C~26°C	45%~50%	102.5kPa

Report No.: R1905B0058-E1V1

Methods of Measurement

The EUT is placed on a non-metallic table 0.8m above the horizontal metal reference ground plane. The distance between EUT and receive antenna should be 3 meters. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Sweep the whole frequency band through the range from 30MHz to the 5th harmonic of the carrier. During the test, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turn table shall be rotated from 0 to 360 degrees for detecting the maximum of radiated signal level.

The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. During the test, the EUT is worked at maximum output power.

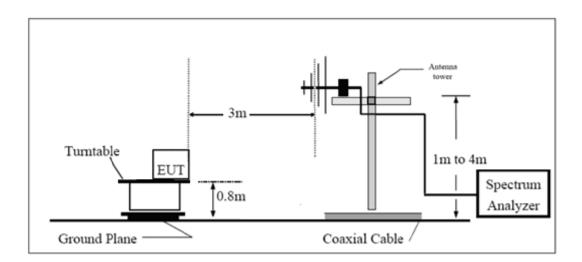
Set the spectrum analyzer in the following:

Below 1GHz:

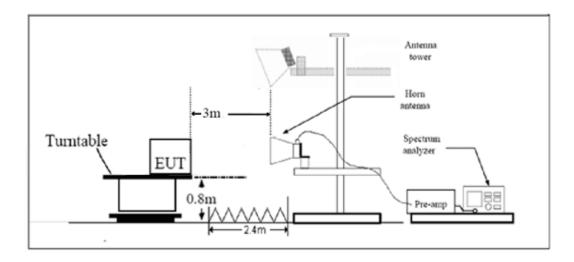
RBW=100 kHz / VBW=300 kHz / Sweep=AUTO

Above 1GHz:

- (a) PEAK: RBW=1MHz / VBW=3MHz/ Sweep=AUTO
- (b) AVERAGE: RBW=1MHz / VBW=3MHz / Sweep=AUTO


The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the worst case was recorded.

During the test, EUT is connected to a laptop via a USB cable in the case of Transfer Data mode. The EUT is used as the peripheral equipment of the PC. The data is transferred from EUT to PC; PC is connected to server via a long LAN cable.


Test Setup

Below 1GHz

Report No.: R1905B0058-E1V1

Above 1GHz

Note: Area side:2.4mX3.6m

Antenna Tower meets ANSI C63.4 requirements for measurements above 1 GHz by keeping the antenna aimed at the EUT during the antenna's ascent/ descent along the antenna mast.

EMC Test Report No.: R1905B0058-E1V1

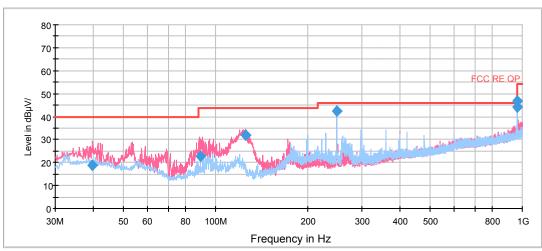
Limits

Frequency (MHz)	Field Strength (dBµV/m)	Detector
30 -88	40.0	Quasi-peak
88-216	43.5	Quasi-peak
216 – 960	46.0	Quasi-peak
960-1000	54.0	Quasi-peak
1000-5 th harmonic of the highest	54	Average
frequency or 40GHz, which is lower	74	Peak

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.

Frequency	Uncertainty
30MHz~200MHz	4.02 dB
200MHz~1000MHz	3.28 dB
1GHz~18GHz	3.70 dB
18GHz~26.5GHz	5.78 dB
26.5GHz~40GHz	5.82 dB

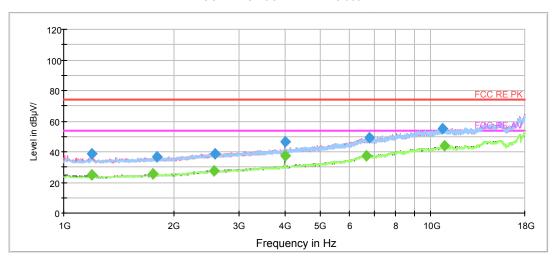

Test Results

Sweep the whole frequency band through the range from 30MHz to the 5th harmonic of the carrier, the Emissions in the frequency band 18GHz- 26.5GHz is more than 20dB below the limit are not reported.

Report No.: R1905B0058-E1V1

The following graphs display the maximum values of horizontal and vertical by software. For above 1GHz, Blue trace uses the peak detection, Green trace uses the average detection.

RE 0.03-1GHz QP Class B


Radiated Emission from 30MHz to 1GHz

Frequency (MHz)	Quasi-Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
39.620000	18.9	100.0	V	65.0	17.0	21.1	40.0
89.042500	22.6	100.0	V	4.0	12.4	20.9	43.5
125.018750	31.8	100.0	V	357.0	10.8	11.7	43.5
247.926250	42.2	200.0	V	282.0	13.9	3.8	46.0
960.027500	46.8	100.0	Н	99.0	27.1	7.2	54.0
960.028750	44.0	100.0	V	117.0	27.1	10.0	54.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain)

2. Margin = Limit - Quasi-Peak

Radiated Emission from 1GHz to 18GHz

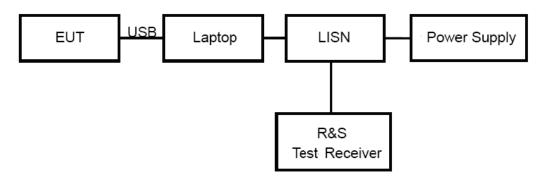
Frequency (MHz)	Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1191.250000	38.5	100.0	V	0.0	-11.2	35.5	74.0
1790.500000	37.0	100.0	V	293.0	-9.4	37.0	74.0
2583.125000	38.9	200.0	Н	285.0	-6.2	35.1	74.0
4000.500000	46.4	100.0	V	4.0	-2.7	27.6	74.0
6775.750000	49.3	100.0	Н	148.0	5.1	24.7	74.0
10781.375000	55.2	200.0	V	59.0	13.4	18.8	74.0

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1195.500000	25.1	100.0	V	227.0	-11.2	28.9	54.0
1754.375000	25.3	200.0	V	59.0	-9.5	28.7	54.0
2568.250000	27.8	200.0	Н	248.0	-6.3	26.2	54.0
3998.375000	37.2	100.0	V	303.0	-2.7	16.8	54.0
6682.250000	37.6	200.0	Н	352.0	5.0	16.4	54.0
10891.875000	43.7	200.0	V	210.0	13.5	10.3	54.0

3.2 Conducted Emission

Ambient condition

Temperature Relative humi		Pressure
24°C ~26°C	50%~55%	102.5kPa


Report No.: R1905B0058-E1V1

Methods of Measurement

The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9 kHz, VBW is set to 30kHz. The measurement result should include both L line and N line.

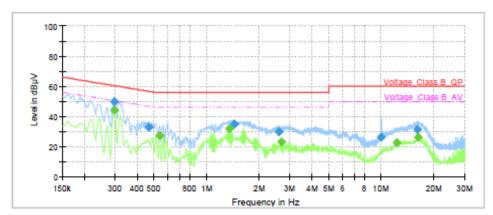
During the test, EUT is connected to a laptop via a USB cable in the case of Transfer Data mode. The EUT is used as the peripheral equipment of the PC. The data is transferred from EUT to PC; PC is connected to server via a long LAN cable.

Test Setup

Note: Power Supply is AC Power source and it is used to change the voltage 120V/60Hz.

Limits

Frequency	Conducted Limits(dBµV)					
(MHz)	Quasi-peak	Average				
0.15 - 0.5	66 to 56 *	56 to 46 [*]				
0.5 - 5	56	46				
5 - 30 60 50						
* Decreases with the logarithm of the frequency.						


Measurement Uncertainty

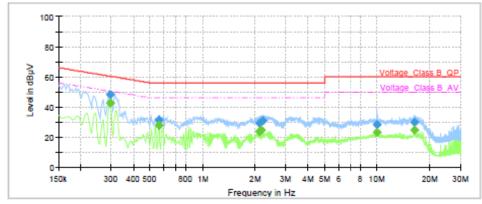
The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96. U= 2.57 dB.

EMC Test Report No.: R1905B0058-E1V1

Test Results

Following plots, Blue trace uses the peak detection; Green trace uses the average detection.

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.29		44.20	50.41	6.21	1000.0	9.000	L1	ON	19.20
0.30	49.67		60.35	10.67	1000.0	9.000	L1	ON	19.20
0.47	32.97		56.60	23.63	1000.0	9.000	L1	ON	19.23
0.54		26.99	46.00	19.01	1000.0	9.000	L1	ON	19.25
1.34		31.68	46.00	14.32	1000.0	9.000	L1	ON	19.20
1.44	34.62		56.00	21.38	1000.0	9.000	L1	ON	19.18
2.60	29.72		56.00	26.28	1000.0	9.000	L1	ON	19.02
2.69		22.94	46.00	23.06	1000.0	9.000	L1	ON	19.02
10.00	26.14		60.00	33.86	1000.0	9.000	L1	ON	19.40
12.30		22.61	50.00	27.39	1000.0	9.000	L1	ON	19.41
16.16	31.50		60.00	28.50	1000.0	9.000	L1	ON	19.47
16.23		26.23	50.00	23.77	1000.0	9.000	L1	ON	19.48


Remark: Correct factor=cable loss + LISN factor

L line

Conducted Emission from 150 KHz to 30 MHz

TA Technology (Shanghai) Co., Ltd.

TA-MB-06-001E

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.29		42.81	50.41	7.60	1000.0	9.000	N	ON	19.20
0.30	48.34		60.35	12.01	1000.0	9.000	Ν	ON	19.20
0.56		27.50	46.00	18.50	1000.0	9.000	N	ON	19.26
0.56	31.22		56.00	24.78	1000.0	9.000	N	ON	19.26
2.11	29.08		56.00	26.92	1000.0	9.000	Ν	ON	19.08
2.12		23.73	46.00	22.27	1000.0	9.000	N	ON	19.08
2.15		24.70	46.00	21.30	1000.0	9.000	Ν	ON	19.07
2.21	30.82		56.00	25.18	1000.0	9.000	N	ON	19.07
9.95		23.03	50.00	26.97	1000.0	9.000	N	ON	19.41
10.00	28.43		60.00	31.57	1000.0	9.000	N	ON	19.42
16.23	29.78		60.00	30.22	1000.0	9.000	N	ON	19.42
16.23		24.62	50.00	25.38	1000.0	9.000	N	ON	19.42

Remark: Correct factor=cable loss + LISN factor

N line

Conducted Emission from 150 KHz to 30 MHz

4 Main Test Instrument

Name	Manufacturer	Туре	Serial Number	Calibration Date	Expiration Time
Spectrum Analyzer	R&S	FSV40	15195-01- 00	2019-05-19	2020-05-18
EMI Test Receiver	R&S	ESCI	100948	2019-05-19	2020-05-18
Trilog Antenna	SCHWARZBECK	VULB 9163	9163-201	2017-11-18	2019-11-17
Horn Antenna	R&S	HF907	100126	2018-07-07	2020-07-06
Standard Gain Horn	ETS-Lindgren	3160-09	00102643	2018-06-20	2020-06-19
EMI Test Receiver	R&S	ESR	101667	2019-05-19	2020-05-18
LISN	R&S	ENV216	101171	2016-12-16	2019-12-15
Bore Sight Antenna mast	ETS	2171B	00058752	1	1
Test software	EMC32	R&S	9.26.0	1	1

*****END OF REPORT *****

ANNEX A: The EUT Appearance and Test Configuration

A.1 EUT Appearance

a: EUT

TA Technology (Shanghai) Co., Ltd. TA-MB-06-001E Page 19 of 25 This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd.

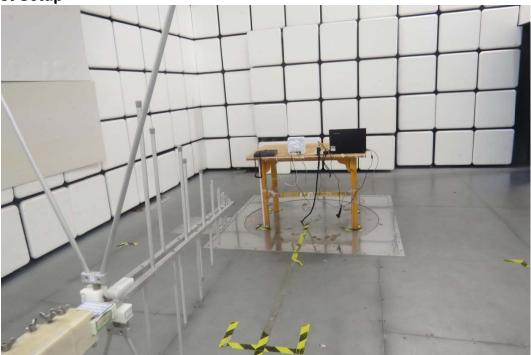
Adapter 1

Adapter 2

Adapter 3

Adapter 4

Adapter 5


Adapter 6


Adapter 7 b: Adapter **Picture 1 EUT and Accessory**

A.2 Test Setup

Below 1GHz

Above 1GHz **Picture 2 Radiated Emission Test Setup**

Picture 3 Conducted Emission Test Setup