

LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Identification No.		Current Calibration Date	Next Calibration Date	
CALIPROBE Test Bench	Version 2	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2024	08/2027	
Network Analyzer	Agilent 8753ES	MY40003210	10/2022	10/2025	
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025	
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027	
Multimeter	Keithley 2000	1160271	02/2025	02/2026	
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025	
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	NI-USB 5680	170100013	06/2021	06/2026	
Power Meter	Rohde & Schwarz NRVD	832839-056	11/2022	11/2025	
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Waveguide	MVG	SN 32/16 WG4_1	Validated. No cal required.	Validated. No cal required.	
Liquid transition	MVG	SN 32/16 WGLIQ_0G900_1	Validated. No cal required.	Validated. No cal required.	
Waveguide	MVG	SN 32/16 WG6_1	Validated. No cal required.	Validated. No cal required.	
Liquid transition	MVG	SN 32/16 WGLIQ_1G500_1	Validated. No cal required.	Validated. No cal required.	
Waveguide	MVG	SN 32/16 WG8_1	Validated. No cal required.	Validated. No cal required.	
Liquid transition	MVG	SN 32/16 WGLIQ_1G800B_1	Validated. No cal required.	Validated. No cal required.	
Liquid transition	MVG	SN 32/16 WGLIQ_1G800H_1	Validated. No cal required.	Validated. No cal required.	
Waveguide	MVG	SN 32/16 WG10_1	Validated. No cal required.	Validated. No cal required.	
Liquid transition	MVG	SN 32/16 WGLIQ_3G500_1	Validated. No cal required.	Validated. No cal required.	

Page: 10/11

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Waveguide	MVG			Validated. No cal required.
Liquid transition	MVG		Validated. No cal required.	Validated. No cal required.
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2024	06/2027

SAR Reference Dipole Calibration Report

Ref: ACR.42.11.25.BES.A

LGT(SHENZHEN) TEST TECHNOLOGY CO., LTD.

13-B205, ZONE B, CHEN HSONG INDUSTRIAL PARK(SHENZHEN), NO.33 RENMIN MIDDLE ROAD, JINSHA COMMUNITY

KENGZI SUBDISTRICT, PINGSHAN NEW DISTRICT, SHENZHEN, GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 835 MHZ

SERIAL NO.: SN 06/22 DIP0G835-639

Calibrated at MVG

Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 02/05/2025

Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction.

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

SAR REFERENCE DIPOLE CALIBRATION REPORT

	Name	Function	Date	Signature
Prepared by:	Jérôme Luc	Technical Manager	2/05/2025	JES
Checked by:	Jérôme Luc	Technical Manager	2/05/2025	JES
Approved by:	Yann Toutain	Laboratory Director	2/05/2025	Gann TOUTANN

2025.02.05 13:25:53 +01'00'

	Customer Name
Distribution:	LGT(Shenzhen) Test Technology Co., Ltd.

Name	Date	Modifications
Jérôme Luc	2/05/2025	Initial release

TABLE OF CONTENTS

1	intro	oduction4	
2	Dev	ice Under Test4	
3	Proc	luct Description4	
	3.1	General Information	4
4	Mea	surement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	
5	Mea	surement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	
	5.3	Validation Measurement	5
6	Cali	bration Measurement Results6	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	7
7	Vali	dation measurement7	
	7.1	Head Liquid Measurement	8
	7.2	SAR Measurement Result With Head Liquid	
	7.3	Body Liquid Measurement	11
	7.4	SAR Measurement Result With Body Liquid	12
8	List	of Equipment	

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR 835 MHz REFERENCE DIPOLE		
Manufacturer	MVG		
Model	SID835		
Serial Number	SN 06/22 DIP0G835-639		
Product Condition (new / used)	Used		

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – *MVG COMOSAR Validation Dipole*

4 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.2 <u>MECHANICAL REQUIREMENTS</u>

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

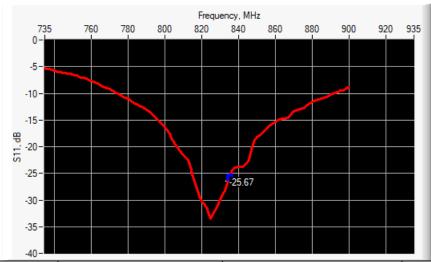
Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.08 LIN

5.2 DIMENSION MEASUREMENT

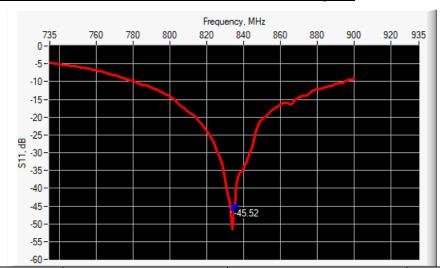
The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length	
0 - 300	0.20 mm	
300 - 450	0.44 mm	

5.3 VALIDATION MEASUREMENT


The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	19 % (SAR)
10 g	19 % (SAR)


6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
835	-25.67	-20	$54.4 \Omega - 2.7 j\Omega$

6.2 <u>RETURN LOSS AND IMPEDANCE IN BODY LIQUID</u>

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
835	-45.52	-20	$50.4 \Omega + 0.3 j\Omega$

6.3 MECHANICAL DIMENSIONS

Frequency MHz	L mm		h mm		d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.	160.87	89.8 ±1 %.	89.73	3.6 ±1 %.	3.61
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	86.2 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3300	-		-		-	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3900	-		-		-	
4200	-		-		-	
4600	-		-		-	
4900	-		-		-	

7 VALIDATION MEASUREMENT

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.