DAG	DAC	Report No.: DACE250109001RF00
DAC	RF TEST REP	ORT DAG
	For	
Beij	ing Kegong Technolog	gy Co Ltd
Pro	oduct Name: Elliptical	l Machine
	Test Model(s): YE	40
Report Reference No.	: DACE250109001RF001	
FCC ID	: 2BE9Q-YE40	
Applicant's Name	: Beijing Kegong Technology Co.	Ltd
Address		g 10, Baigiang Avenue, Fengtai District
Testing Laboratory	: Shenzhen DACE Testing Techn	
Address		ng H, Hongfa Science & Technology Park, Ibdistrict, Bao'an District, Shenzhen,
Test Specification Standard	: 47 CFR Part 15.247	
Date of Receipt	: January 9, 2025	
Date of Test	: January 9, 2025 to February 28	3, 2025
Data of Issue	: February 28, 2025	
Result	: Pass	
Testing Technology Co., Ltd. Th	all be noted in the revision section of	vritten approval of Shenzhen DACE ed by Shenzhen DACE Testing Technology f the document. The test results in the
102, Building H1, & 1/F., Building H, Hongfa Scie Web: http://www.dace-lab.com		bdistrict, Bao'an District, Shenzhen, Guangdong, China vice@dace-lab.com Page 1 of 79

Ì

DAG

Apply for company information

Applicant's Name	:	Beijing Kegong Technology Co Ltd		
Address	:	Init 313-155, 3rd Floor, Building 10, Baigiang Avenue, Fengtai District Beijing 100070 China (Peoples Republic Of)		
Product Name	:	Elliptical Machine		
Test Model(s)	:	/E40		
Series Model(s)		N/A		
Test Specification Standard(s)	÷	47 CFR Part 15.247		

NOTE1:

NE

.

DA

36

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

NC

Compiled by: Keren Huang

Keren Huang / Test Engineer February 28, 2025

Supervised by:

ne Am

Stone Yin / Project Engineer February 28, 2025

Approved by:

ø

Tomchen

Tom Chen / Manager February 28, 2025

AC

C

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG	V1.0	DAC	Report No.: DACE250109001
DA		vision History Of Repo	rt DAC
Version	Description	REPORT No.	Issue Date
V1.0	Original	DACE250109001RF001	February 28, 2025
	DAC	26	e di
			2
	270		
		G	

D

CONTENTS

V1.0		Report No.: DACE250109001R
		P
	CONTENTS	
	CONTENTS	
V		
	ULT	
2.1 CLIENT INFORMATION		
	: (EUT) Nodes	
	RT UNITS	
	ING THE TEST	
	ASUREMENT UNCERTAINTY	
	ING LABORATORY	
	LUATION)	
S EVALUATION RESULTS (EVAL	LUATION)	7
	TEST RESULTS (RF)	
4.1.1 E.U.T. Operatio	on:	
	gram:	
	DUTPUT POWER	
4.2.1 E.U.T. Operatio	on: gram:	
	gram:	
	SITY	
	on:	
	gram:	
4.4 EMISSIONS IN NON-REST	RICTED FREQUENCY BANDS	
4.4.1 E.U.T. Operatio	on:	
	gram:	
	RADIATED)	
	on:	
	gram:	
	Y BANDS (BELOW 1GHZ)	
•	on:	
	Y BANDS (ABOVE 1GHZ)	
	on:	
4.7.2 Test Data:		
160B BANDWIDTH	<u> </u>	

	Report No.: DACE250109001RF001
3. DUTY CYCLE	
6. BANDEDGE	
7. SPURIOUS EMISSION	
6	

-

TEST SUMMARY 1

1.1 Test Standards

DAG

NE

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15.247		47 CFR 15.203	Pass
6dB Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(2)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(b)(3)	Pass
Power Spectral Density	47 CFR Part 15.247	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(e)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

NC

)AC

D76	'1.0	Report No.: DACE250109001RF001
2 GENERAL IN	IFOI	
2.1 Client Informatio	n	
Applicant's Name	:	Beijing Kegong Technology Co Ltd
Address	:	Unit 313-155, 3rd Floor, Building 10, Baigiang Avenue, Fengtai District Beijing 100070 China (Peoples Republic Of)
Manufacturer	:	Beijing Kegong Technology Co Ltd
Address	:	Unit 313-155, 3rd Floor, Building 10, Baigiang Avenue, Fengtai District Beijing 100070 China (Peoples Republic Of)

2.2 Description of Device (EUT)

-	
Product Name:	Elliptical Machine
Model/Type reference:	YE40
Series Model:	N/A
Trade Mark:	ҮАМО
Power Supply:	DC3.0
Operation Frequency:	2402MHz to 2480MHz
Number of Channels:	40
Modulation Type:	GFSK
Antenna Type:	PCB
Antenna Gain:	0dBi
Hardware Version:	V1.0
Software Version:	V1.0

(Remark: The Antenna Gain is supplied by the customer. DACE is not responsible for This data and the related calculations associated with it)

Operation	Frequency	each of	channel
-----------	-----------	---------	---------

operation	oporation requerey each of enamer						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Tel: +86-755-23010613

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Report No.: DACE250109001RF001

Test channel	Frequency (MHz)
	BLE
Lowest channel	2402MHz
Middle channel	2440MHz
Highest channel	2480MHz

2.3 Description of Test Modes

DAG

No	Title	Description
TM1	Lowest channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.
TM2	Middle channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.
ТМ3	Highest channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.

2.4 Description of Support Units

Title	Manufacturer	Model No.	Serial No.
Battery		AAA (1.5V)	

2.5 Equipments Used During The Test

Conducted Emiss	ion at AC power li	ne			
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Power absorbing clamp	SCHWARZ BECK	MESS- ELEKTRONIK	1	2024-03-25	2025-03-24
Electric Network	SCHWARZ BECK	CAT5 8158	CAT5 8158#207	1	/
Cable	SCHWARZ BECK	1	C I	2024-03-20	2025-03-19
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Attenuation	561-G071	2024-12-06	2025-12-05
50ΩCoaxial Switch	Anritsu	MP59B	M20531	/	/
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	ID:1164.6607K 03-102109- MH	2024-06-12	2025-06-11
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2023-12-12	2025-12-11
L.I.S.N	SCHWARZ BECK	NSLK 8126	05055	2024-06-14	2025-06-13
Pulse Limiter	CYBERTEK	EM5010A	1	2024-09-27	2025-09-26
EMI test software	EZ -EMC	EZ	V1.1.42	1	/

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

Report No.: DACE250109001RF001

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RF Test Software	Tachoy Information Technology(she nzhen) Co.,Ltd.	RTS-01	V1.0.0	20	
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	1	DAG
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11
Vector Signal Generator	Keysight	N5181A	MY50143455	2024-12-06	2025-12-05
Signal Generator	Keysight	N5182A	MY48180415	2024-12-06	2025-12-05
Spectrum Analyzer	Keysight	N9020A	MY53420323	2024-12-06	2025-12-05

Band edge emissions (Radiated) Emissions in frequency bands (below 1GHz) Emissions in frequency bands (above 1GHz)

V1.0

DAG

Emissions in frequence	missions in frequency bands (above 1GHZ)					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
EMI Test software	Farad	EZ -EMC	V1.1.42	/	/	
Positioning Controller	MF	MF-7802	/	/	C'	
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04	
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04	
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2024-06-14	2026-06-13	
Cable(LF)#2	Schwarzbeck	/	61	2024-12-19	2025-12-18	
Cable(LF)#1	Schwarzbeck	1 -1	1	2024-12-19	2025-12-18	
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2024-03-20	2025-03-19	
Cable(HF)#1	Schwarzbeck	SYV-50-3-1	/	2024-03-20	2025-03-19	
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2024-06-12	2025-06-11	
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2024-06-12	2025-06-11	
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11	
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2024-06-12	2025-06-11	
Test Receiver	R&S	ESCI 3	1166.5950K03 -101431-Jq	2024-06-13	2025-06-12	
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12	
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2024-09-28	2026-09-27	

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613

Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

Page 9 of 79

DA

2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty
Conducted Disturbance (0.15~30MHz)	±3.41dB
Occupied Bandwidth	±3.63%
RF conducted power	±0.733dB
RF power density	±0.234%
Conducted Spurious emissions	±1.98dB
Radiated Emission (Above 1GHz)	±5.46dB
Radiated Emission (Below 1GHz)	±5.79dB
Note: (1) This uncertainty represents an ex	incortainty expressed at approximately the 05%

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.7 Identification of Testing Laboratory

Address:Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Sl ChinaPhone Number:+86-13267178997Fax Number:86-755-29113252Designation Number:CN1342				
Address:Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Sl ChinaPhone Number:+86-13267178997Fax Number:86-755-29113252Identification of the Responsible Testing LocationCompany Name:Shenzhen DACE Testing Technology Co., Ltd.Address:102, Building H1, & 1/F., Building H, Hongfa Science & Te Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Sl ChinaPhone Number:+86-13267178997Fax Number:86-755-29113252Designation Number:CN1342				
Fax Number:86-755-29113252Identification of the Responsible Testing LocationCompany Name:Shenzhen DACE Testing Technology Co., Ltd.Address:102, Building H1, & 1/F., Building H, Hongfa Science & Te Tangtou Connunity, Shiyan Subdistrict, Bao'an District, SI ChinaPhone Number:+86-13267178997Fax Number:86-755-29113252Designation Number:CN1342				
Identification of the Responsible Testing LocationCompany Name:Shenzhen DACE Testing Technology Co., Ltd.Address:102, Building H1, & 1/F., Building H, Hongfa Science & Te Tangtou Connunity, Shiyan Subdistrict, Bao'an District, SI ChinaPhone Number:+86-13267178997Fax Number:86-755-29113252Designation Number:CN1342	C.			
Company Name:Shenzhen DACE Testing Technology Co., Ltd.Address:102, Building H1, & 1/F., Building H, Hongfa Science & Te Tangtou Connunity, Shiyan Subdistrict, Bao'an District, SI ChinaPhone Number:+86-13267178997Fax Number:86-755-29113252Designation Number:CN1342	C			
Address:102, Building H1, & 1/F., Building H, Hongfa Science & Te Tangtou Connunity, Shiyan Subdistrict, Bao'an District, SI ChinaPhone Number:+86-13267178997Fax Number:86-755-29113252Designation Number:CN1342				
Address:Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Sl ChinaPhone Number:+86-13267178997Fax Number:86-755-29113252Designation Number:CN1342				
Fax Number:86-755-29113252Designation Number:CN1342	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China			
Designation Number: CN1342	200			
	V			
Test Firm Registration 778666 778666				
A2LA Certificate Number: 6270.01				

2.8 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by DACE and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Page 10 of 79

Report No.: DACE250109001RF001

3 Evaluation Results (Evaluation)

3.1 Antenna requirement

Test Requirement:

DAG

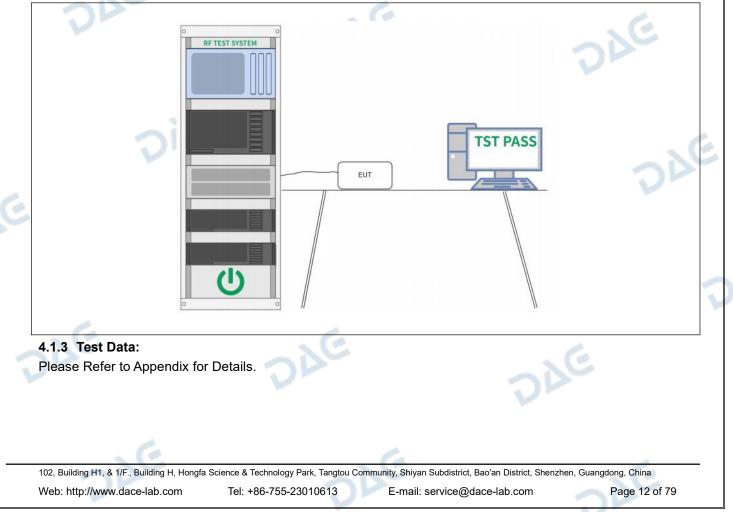
Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.1 Conclusion:

Report No.: DACE250109001RF001

4 Radio Spectrum Matter Test Results (RF)

4.1 6dB Bandwidth


DAG

Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW >= [3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

4.1.1 E.U.T. Operation:

Operating Enviro	onment:		- 2	E	
Temperature:	22.5 °C		Humidity:	50 %	Atmospheric Pressure: 102 kPa
Pretest mode:		TM1,	TM2, TM3		240
Final test mode:		TM1,	TM2, TM3		

4.1.2 Test Setup Diagram:

DAG

Report No.: DACE250109001RF001

,AC

4.2 Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power
1e	Note: Per ANSI C63.10-2013, if there are two or more antnnas, the conducted powers at Core 0, Core 1,, Core i were first measured separately, as shown in the section above(this product olny have one antenna). The measured values were then summed in linear power units then converted back to dBm. Per ANSI C63.10-2013 Section 14.4.3.2.3, the directional gain is calculated using the following formula, where GN is the gain of the nth antenna and NANT, the total
DAC	number of antennas used. For correlated unequal antenna gain Directional gain = 10*log[(10G1/20 + 10G2/20 + + 10GN/20)2 / NANT] dBi For completely uncorrelated unequal antenna gain Directional gain = 10*log[(10G1/10 + 10G2/10 + + 10GN/10)/ NANT] dBi Sample Multiple antennas Calculation: Core 0 + Core 1 +Core i. = MIMO/CDD (i is the number of antennas) (#VALUE! mW + mW) = #VALUE! mW = dBm Sample e.i.r.p. Calculation: e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)

6

4.2.1 E.U.T. Operation:

Operating Envir	onment:				- NC		
Temperature:	22.5 °C		Humidity:	50 %	Atmospheric Pressure:	102 kPa	~ > (
Pretest mode:		TM1,	TM2, TM3				
Final test mode:		TM1,	TM2, TM3				

4.2.2 Test Setup Diagram:

NE

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.comPage 13 of 79

Se

DAG -	V1.0	Report No.: DACE250109001RF001
DAC	O O O	DAC
E		EUT
4.2.3 Test Data: Please Refer to Ap	opendix for Details.	DIE
		DIE
102, Building H1, & 1/F., Bui Web: http://www.dace-		ngtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China 13 E-mail: service@dace-lab.com Page 14 of 79

۰.

Report No.: DACE250109001RF001

4.3 Power Spectral Density

DΔC

47 CFR 15.247(e)
Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
ANSI C63.10-2013, section 11.10, Maximum power spectral density level in the fundamental emission

6

4.3.1 E.U.T. Operation:

Operating Environment:							
Temperature:	22.5 °C		Humidity:	50 %	Atmospheric Pressure:	102 kPa	
Pretest mode:		TM1, TM2, TM3				-	
Final test mode:		TM1,	TM2, TM3				

4.3.2 Test Setup Diagram:

	O RF TEST SYSTEM	2	E
DYE		TST PASS	DAE
			DAG
4.3.3 Test Data: Please Refer to Appendix	for Details.	DAG	
102 Building H1 & 1/E Building H H/	ongfa Science & Technology Park, Tangtou Community, Shiy	van Subdistrict Bao'an District Shenzhen	Guanadona China

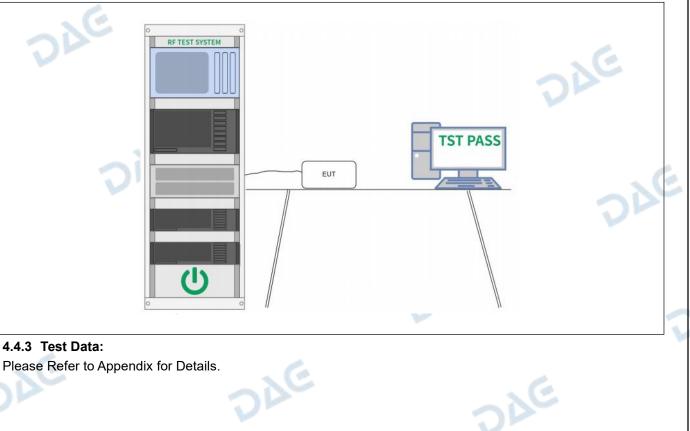
Tel: +86-755-23010613

Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

Report No.: DACE250109001RF001

4.4 Emissions in non-restricted frequency bands


Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3

4.4.1 E.U.T. Operation:

DVC

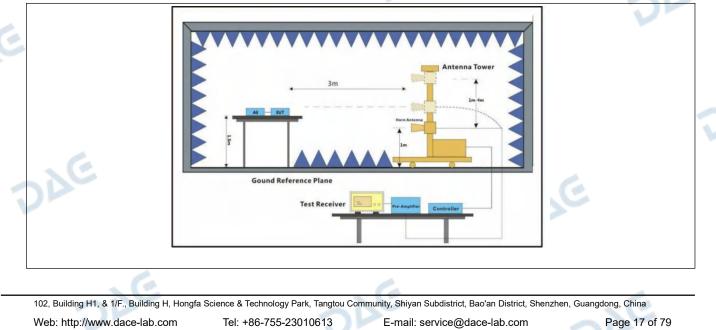
Operating Environment:								
Temperature:	22.5 °C		Humidity:	50 %	Atmospheric Pressure:	102 kPa		
Pretest mode:		TM1,	TM2, TM3			6		
Final test mode: TM1, TM2, TM3			TM2, TM3					
4.4.0 Test 0.4								

4.4.2 Test Setup Diagram:

Report No.: DACE250109001RF001

4.5 Band edge emissions (Radiated)

DγG


Test Requirement:	restricted bands, as defi	(d), In addition, radiated emissio ned in § 15.205(a), must also co in § 15.209(a)(see § 15.205(c))	mply with the radiated				
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
20	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
J.C.	 ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.23 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. 						
Test Method:	ANSI C63.10-2013 sect KDB 558074 D01 15.24	on 6.10 7 Meas Guidance v05r02					
Procedure:	ANSI C63.10-2013 sect	on 6.10.5.2	.C.				
4.5.1 E.U.T. Operation:							

6

4.5.1 E.U.T. Operation:

Temperature: 22.5 °C Humidity: 50 % Ati	Atmospheric Pressure:	10015
	Aunospheric i ressure.	102 kPa
Pretest mode: TM1, TM2, TM3	6	
Final test mode: TM1, TM2, TM3	20	

4.5.2 Test Setup Diagram:

DΔC V1.0 Report No.: DACE250109001RF001 4.5.3 Test Data: TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L 110.0 dBu∀/m 100 90 80 FCC Part 15C (F 70 60 FCC Part 15C AVI 50 40 30 AVG 20 10 0.0 2310.000 2320.000 2330.000 2340.000 2350.000 2370.000 2400.000 2410.000 (MHz) 2380.000 2390.000 Frequency Reading Factor Level Limit Margin Height Azimuth Detector P/F Remark No. (dBuV) (cm) (deg.) (MHz) (dB/m)(dBuV/m) (dBuV/m) (dB) 1 2310.000 41.82 -3.63 38.19 74.00 -35.81 Ρ peak 2310.000 -27.48 P 2 * 30.15 -3.63 26.52 54.00 AVG P 3 2390.000 41.06 -3.42 37.64 74.00 -36.36 peak 4 2390.000 29.71 -3.42 26.29 54.00 -27.71 AVG P

DAG

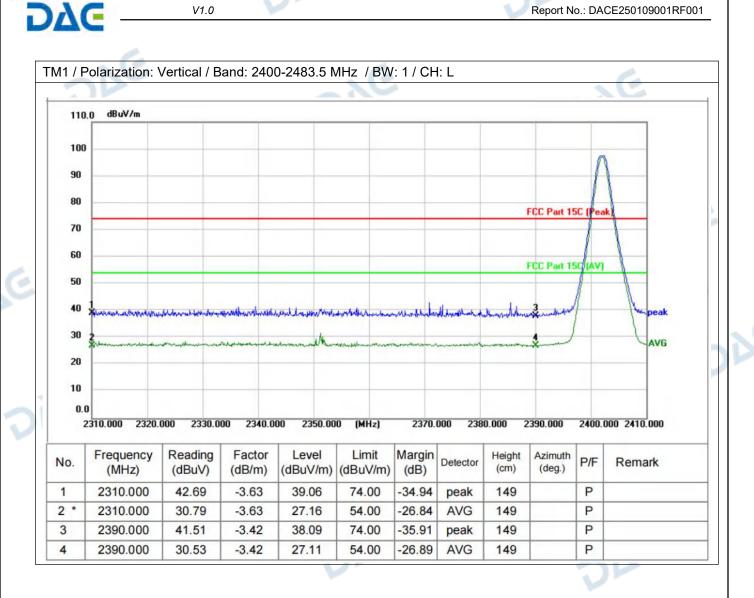
)De

DAG

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC


)De

\$

DAG

NE

Report No.: DACE250109001RF001

DAE

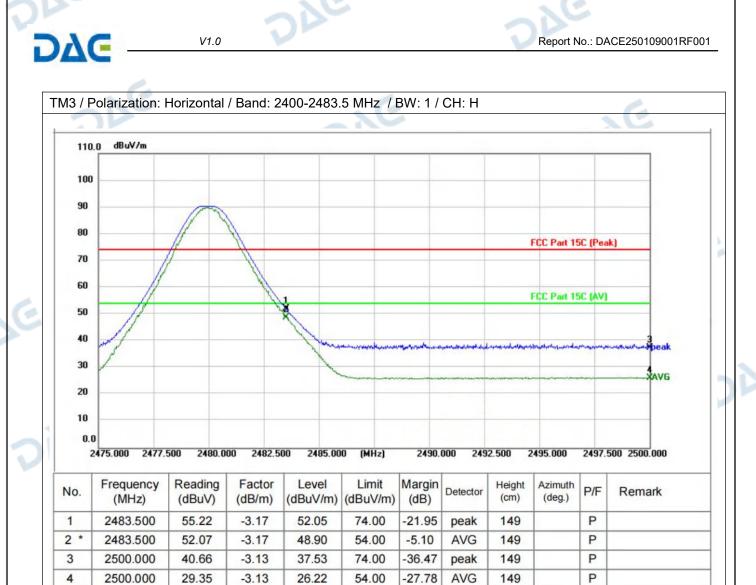
4

DAG

DAE

)AC

DAG


102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

DAG

Page 19 of 79

)DE

DAE

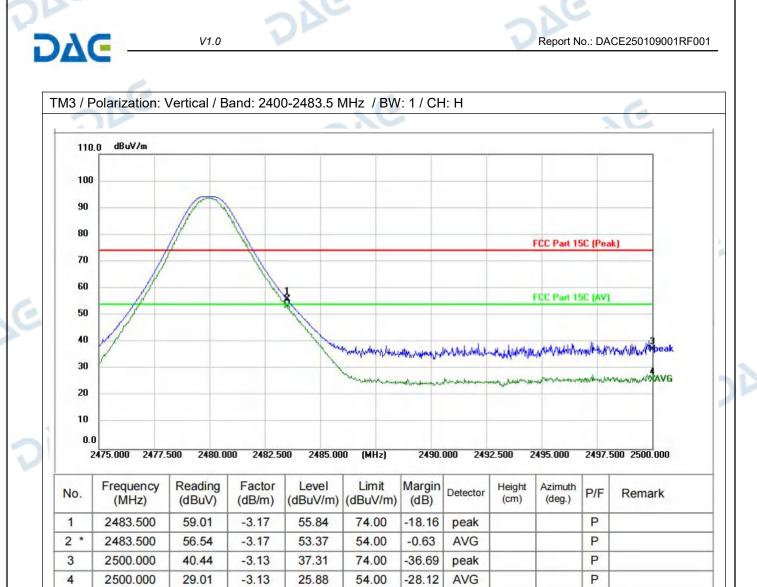
4

DAG

DAG

24C

DAG


102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAE

DAG

Page 20 of 79

NE

DAE

4

DAG

DAG

2AC

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

DAG

Page 21 of 79

DE

DγG

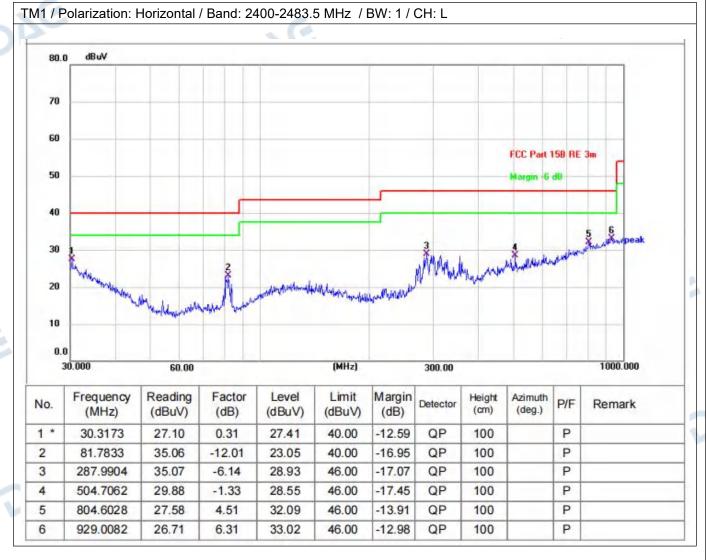
4.6 Emissions in frequency bands (below 1GHz)

Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`						
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
	 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. 						
Test Method:	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02						
Procedure:	above the ground at a 3 360 degrees to determine b. For above 1GHz, the f above the ground at a 3 degrees to determine the c. The EUT was set 3 or which was mounted on t d. The antenna height is determine the maximum polarizations of the anter e. For each suspected e the antenna was tuned to below 30MHz, the anten was turned from 0 degree f. The test-receiver syste Bandwidth with Maximur g. If the emission level of specified, then testing co reported. Otherwise the tested one by one using reported in a data sheet. h. Test the EUT in the low i. The radiation measure Transmitting mode, and	f the EUT in peak mode was 10d buld be stopped and the peak val emissions that did not have 10dE peak, quasi-peak or average me	hber. The table was rotate ation. rotating table 1.5 meters he table was rotated 360 h. rence-receiving antenna, na tower. eters above the ground to horizontal and vertical ement. to its worst case and then rs (for the test frequency of) and the rotatable table iximum reading. ion and Specified IB lower than the limit lues of the EUT would be B margin would be re- ethod as specified and the ethot as specified and the state of the st channel. xis positioning for the it is the worst case.				
		GHz, through pre-scan found the	worst case is the lowest				

 102, Building H1, & 1/F., Building H, Hongta Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdor

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613

 E-mail: service@dace-lab.com
 P

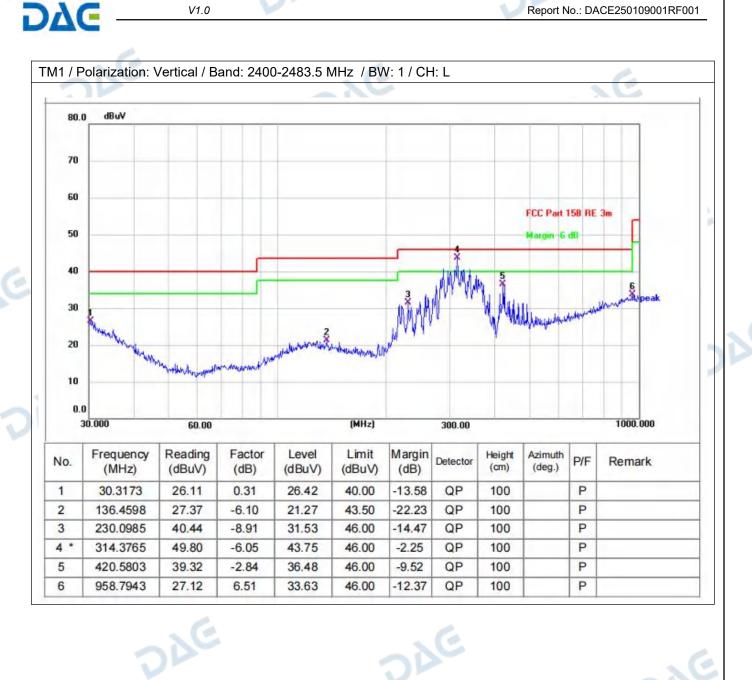

ΔΟΕ ——	V1.0	Report No.: DACE250109001RF0
DIC	Preamplifier. The basic equat	is recorded in the report. ated by adding the Antenna Factor, Cable Factor & tion with a sample calculation is as follows: eading + Antenna Factor + Cable Factor ¨C
DAG	3) Scan from 9kHz to 25GHz was very low. The points mar found when testing, so only a spurious emissions from the	, the disturbance above 12.75GHz and below 30MHz ked on above plots are the highest emissions could be bove points had been displayed. The amplitude of radiator which are attenuated more than 20dB below I. Fundamental frequency is blocked by filter, and only

4.6.1 E.U.T. Operation:

Operating Environment:						
Temperature:	22.5 °C		Humidity:	50 %	Atmospheric Pressure:	102 kPa
Pretest mode:		TM1				
Final test mode: TM1						

4.6.2 Test Data:

1



102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

Page 23 of 79

Report No.: DACE250109001RF001

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

DAG

DD

DAG

Page 24 of 79

)AC

DAG

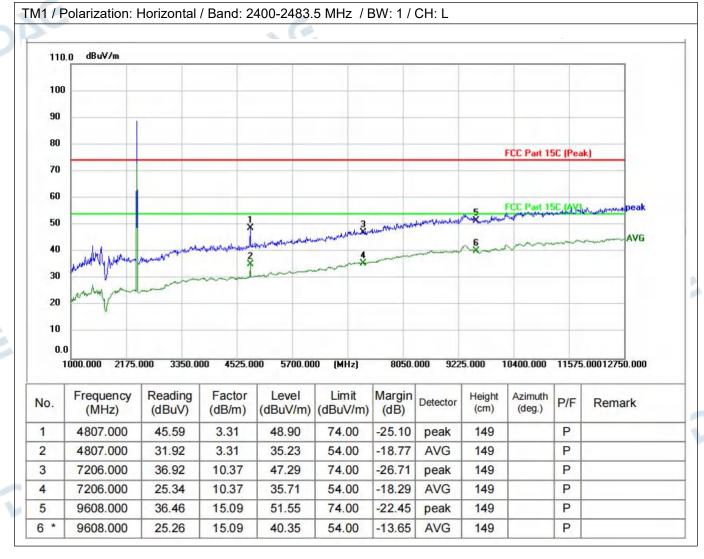
)DE

DγG

Report No.: DACE250109001RF001

4.7 Emissions in frequency bands (above 1GHz)

Frequency (MHz) 0.009-0.490 0.490-1.705 1.705-30.0 30-88	Field strength (microvolts/meter) 2400/F(kHz) 24000/F(kHz)	Measurement distance (meters)				
0.490-1.705 1.705-30.0	24000/F(kHz)					
1.705-30.0		300				
		30				
30-88	30	30				
50-00	100 **	3				
88-216	150 **	3				
216-960	200 **	3				
Above 960	500	3				
 these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. 						
ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02						
above the ground at a 3 of 360 degrees to determine b. For above 1GHz, the El above the ground at a 3 m degrees to determine the p c. The EUT was set 3 or 1 which was mounted on the d. The antenna height is v determine the maximum v polarizations of the antenna the antenna was tuned to below 30MHz, the antenna was turned from 0 degrees f. The test-receiver system Bandwidth with Maximum g. If the emission level of t specified, then testing cou reported. Otherwise the er tested one by one using pure tested one by one using pure test the EUT in the lower i. The radiation measurem Transmitting mode, and fo j. Repeat above procedure	10 meter semi-anechoic chan the position of the highest radi JT was placed on the top of a r eter fully-anechoic chamber. T position of the highest radiation 0 meters away from the interfe e top of a variable-height anten aried from one meter to four m alue of the field strength. Both a are set to make the measure ission, the EUT was arranged the heights from 1 meter to 4 meter a was tuned to heights 1 meter is to 360 degrees to find the main was set to Peak Detect Funct Hold Mode. he EUT in peak mode was 100 ld be stopped and the peak val nissions that did not have 10df eak, quasi-peak or average me ents are performed in X, Y, Z a und the X axis positioning which	nber. The table was rotate ation. rotating table 1.5 meters the table was rotated 360 n. rence-receiving antenna, ina tower. eters above the ground to horizontal and vertical ement. to its worst case and then ers (for the test frequency and the rotatable table aximum reading. tion and Specified dB lower than the limit lues of the EUT would be B margin would be re- ethod as specified and the el, the Highest channel. twis positioning for ch it is the worst case.				
	Hz, through pre-scan found the	e worst case is the lowest				
	Above 960 ** Except as provided in paradiators operating under to 54-72 MHz, 76-88 MHz, 17 these frequency bands is paradia 15.241. In the emission table above The emission limits shown employing a CISPR quasi- 110–490 kHz and above 1 are based on measurement ANSI C63.10-2013 section (ADB 558074 D01 15.247 H a. For below 1GHz, the EU above the ground at a 3 or 360 degrees to determine b. For above 1GHz, the EU above the ground at a 3 m degrees to determine the paradia and be the ground at a 3 m degrees to determine the paradia and be the ground at a 3 m degrees to determine the paradia and be antenna height is varadia and be antenna height is varadia and the antenna height is varadia and be antenna was tuned to be antenna the antenna was tuned to be antenna the antenna was tuned to be antenna was turned from 0 degrees f. The test-receiver system Bandwidth with Maximum g. If the emission level of the specified, then testing coulting reported in a data sheet. h. Test the EUT in the lower and the antenna measurement the radiation measurement the radiation measurement and the anten and the antenna was turned from 0 degrees f. The test-receiver system Bandwidth with Maximum g. If the emission level of the specified, then testing coulting the antenna was tuned to be antenna was turned from 0 degrees f. The test-receiver system Bandwidth with Maximum g. If the emission level of the specified is a data sheet. h. Test the EUT in the lower and the antenna beight is was the emission level of the antenna and the antenna a	Above 960 500 ** Except as provided in paragraph (g), fundamental emiradiators operating under this section shall not be located 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. these frequency bands is permitted under other sections and 15.241. In the emission table above, the tighter limit applies at the memission limits shown in the above table are based employing a CISPR quasi-peak detector except for the frithour 490 kHz and above 1000 MHz. Radiated emission lare based on measurements employing an average determine based on measurements employing an average determine based on the top of 15.247 Meas Guidance v05r02 a. For below 1GHz, the EUT was placed on the top of a rabove the ground at a 3 or 10 meter semi-anechoic charm 360 degrees to determine the position of the highest radiator. The automation at a 3 meter fully-anechoic chamber. The automation at a 3 meter fully-anechoic chamber. The automation at a 3 meter fully-anechoic chamber. The antenna height is varied from one meter to four mathematic the maximum value of the field strength. Both polarizations of the antenna are set to make the measure. For each suspected emission, the EUT was arranged the antenna was tuned to heights from 1 meter to 4 meter foelow 30MHz, the antenna was tuned to heights 1 meter was turned from 0 degrees to 360 degrees to find the mathematic. The test-receiver system was set to Peak Detect Funct Bandwidth with Maximum Hold Mode. g. If the emission level of the EUT in peak mode was 100 specified, then testing could be stopped and the peak vareported. Otherwise the emissions that did not have 100 specified, then testing could be stopped and the peak vareported in a data sheet. m. Test the EUT in the lowest channel, the middle channel. The radiation measurements are performed in X, Y, Z a transmitting mode, and				

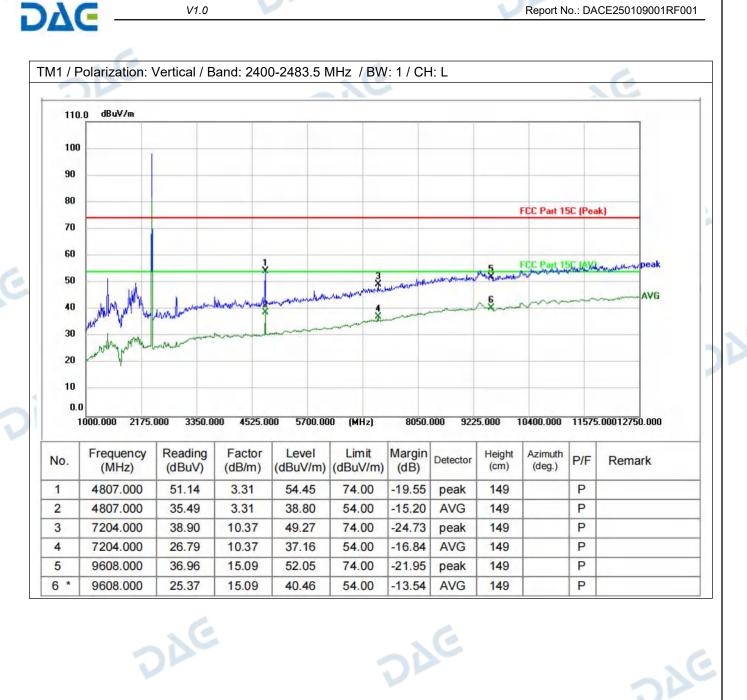

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

	Report No.: DACE250109001RF001
channel. Only the worst case is recorded in th 2) The field strength is calculated by adding th Preamplifier. The basic equation with a sampl Final Test Level =Receiver Reading + Antenn Preamplifier Factor 3) Scan from 9kHz to 25GHz, the disturbance was very low. The points marked on above pl found when testing, so only above points had spurious emissions from the radiator which ar the limit need not be reported. Fundamental f spurious emission is shown.	he Antenna Factor, Cable Factor & le calculation is as follows: a Factor + Cable Factor "C e above 12.75GHz and below 30MHz ots are the highest emissions could be been displayed. The amplitude of re attenuated more than 20dB below

4.7.1 E.U.T. Operation:

Operating Environment:						
Temperature:	22.5 °C		Humidity:	50 %	Atmospheric Pressure:	102 kPa
Pretest mode: TM1, TM2, TM3						
Final test mode: TM1, TM2, TM3						

4.7.2 Test Data:



102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 26 of 79

Report No.: DACE250109001RF001

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)De

)AC

\$

DAG

DAG

)De

Page 27 of 79

Report No.: DACE250109001RF001

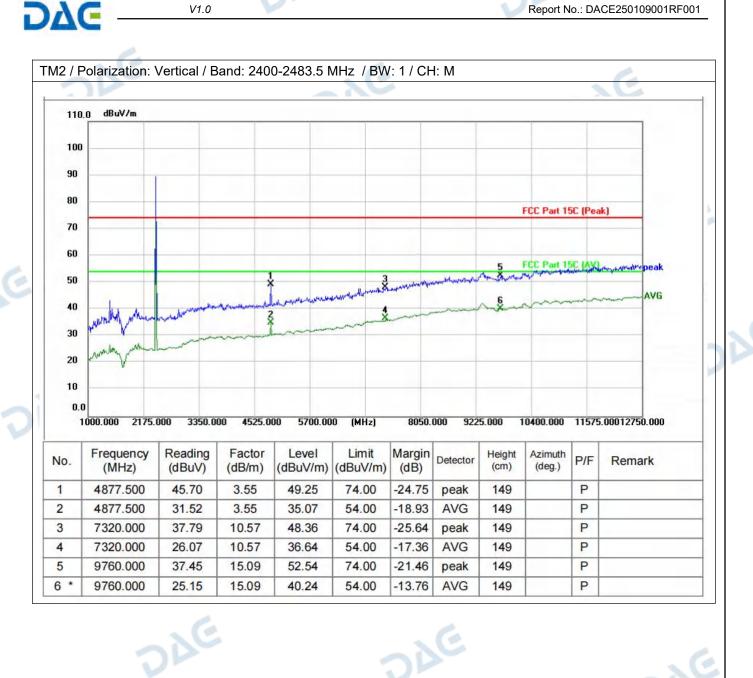
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)De

)ÀC

Ŷ

DAG


DAG

)De

Page 28 of 79

)DE

Report No.: DACE250109001RF001

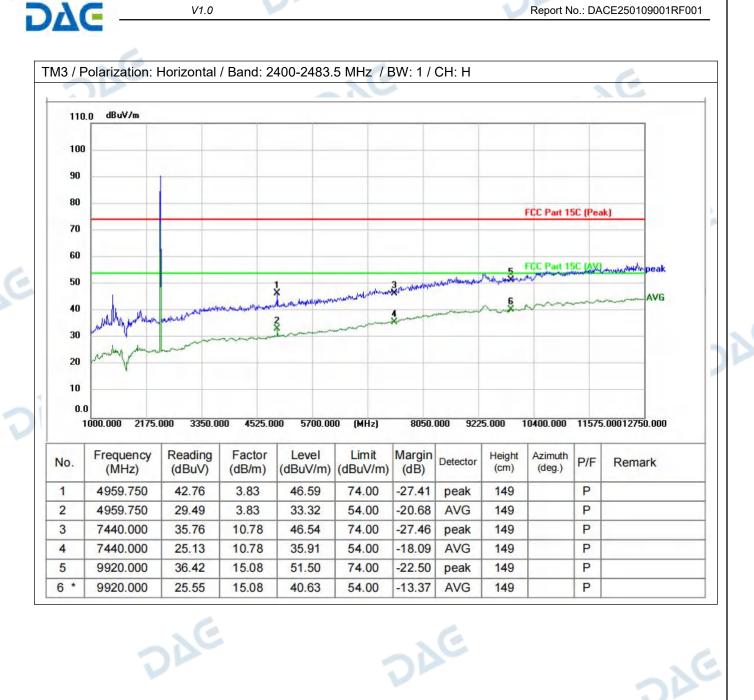
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)De

)AC

Ŷ

DAG


DAG

)De

Page 29 of 79

)DE

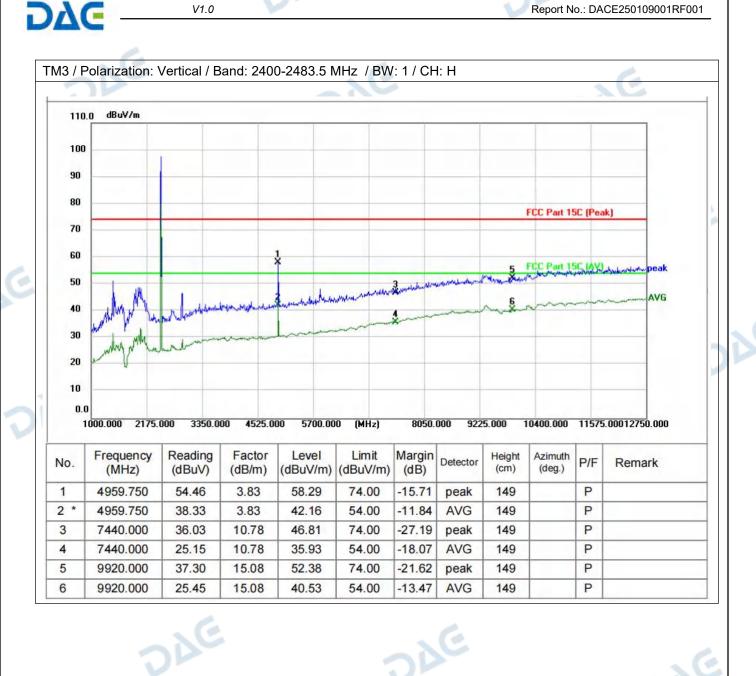
Report No.: DACE250109001RF001

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)De

)AC

\$


DAG

Page 30 of 79

)De

DAG

Report No.: DACE250109001RF001

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

NE

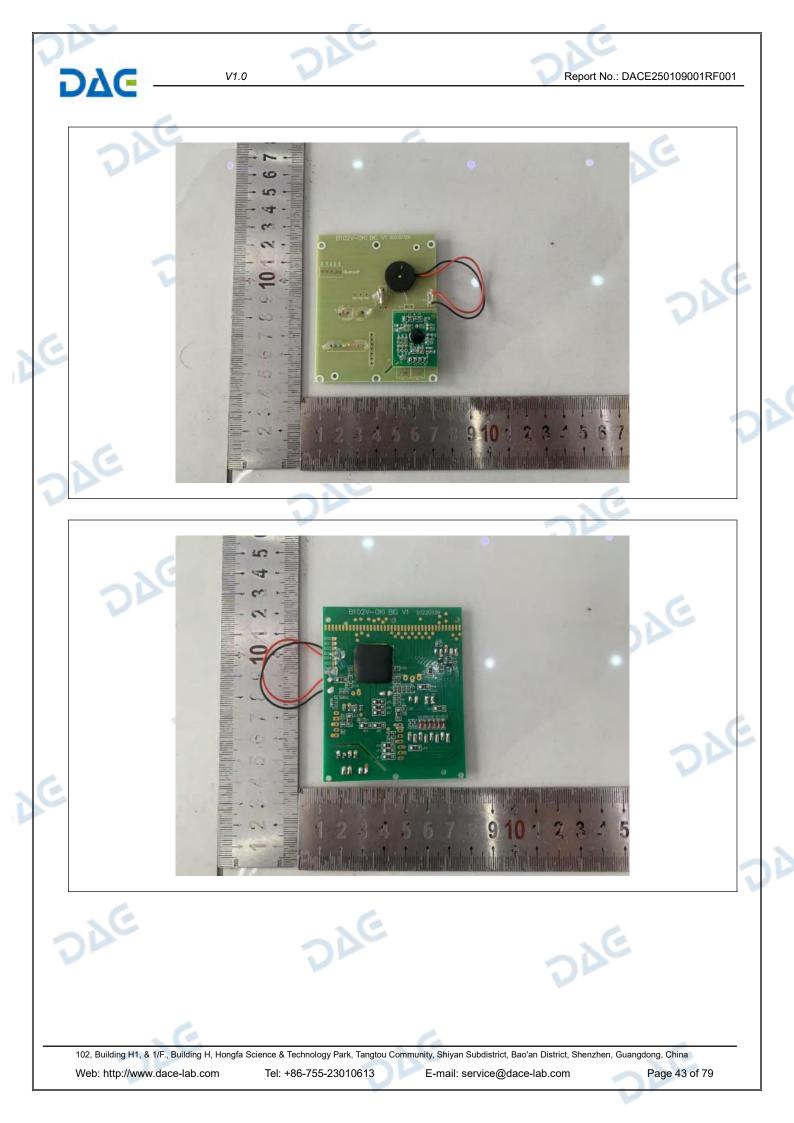
)DE

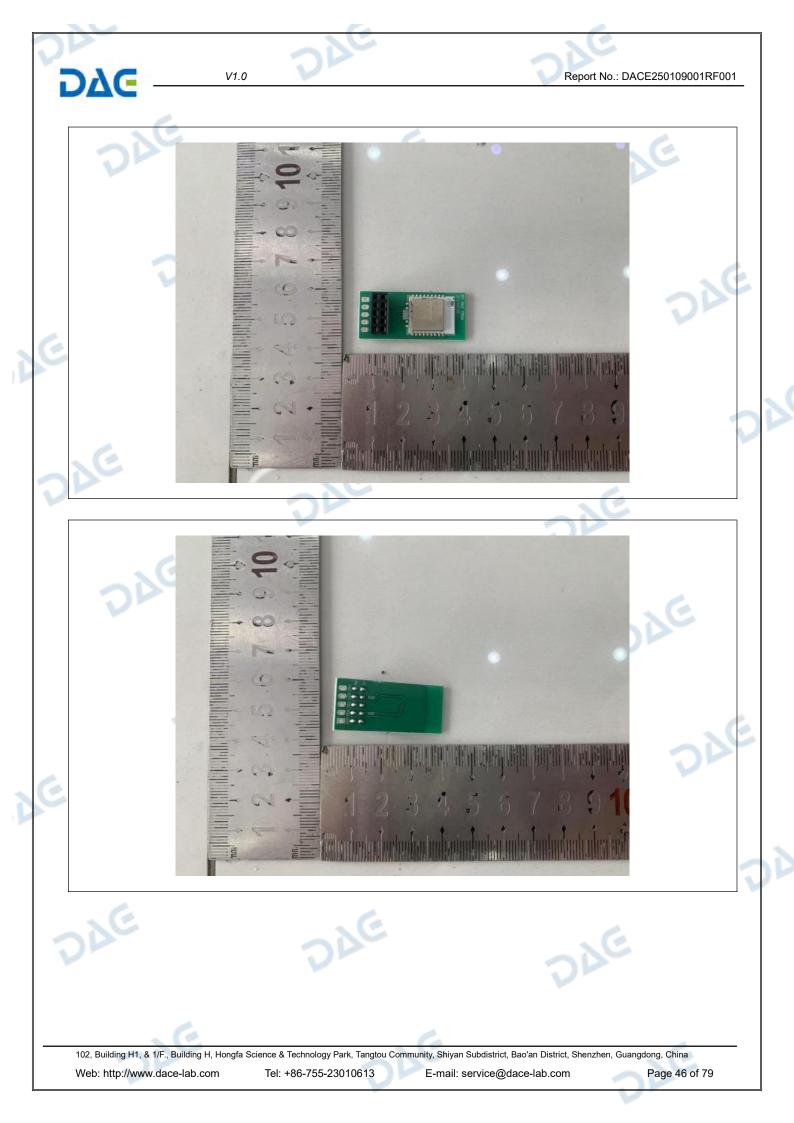
DAG

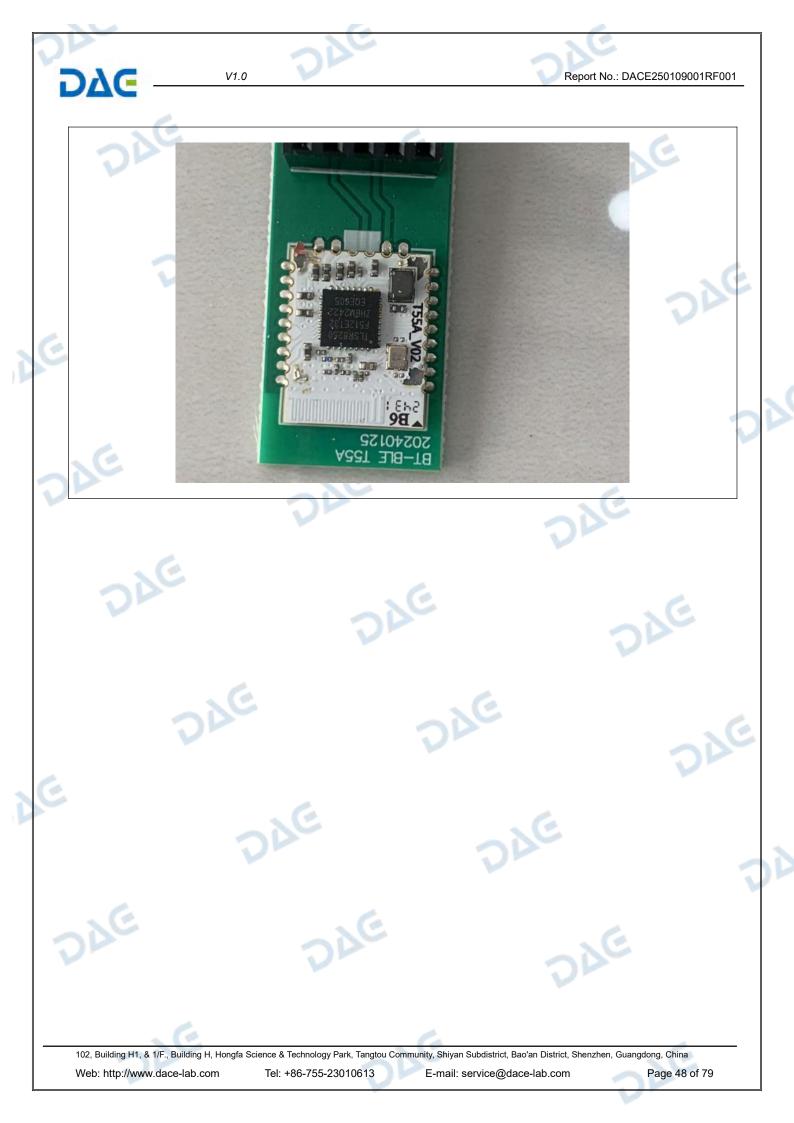
)De

Page 31 of 79

NE

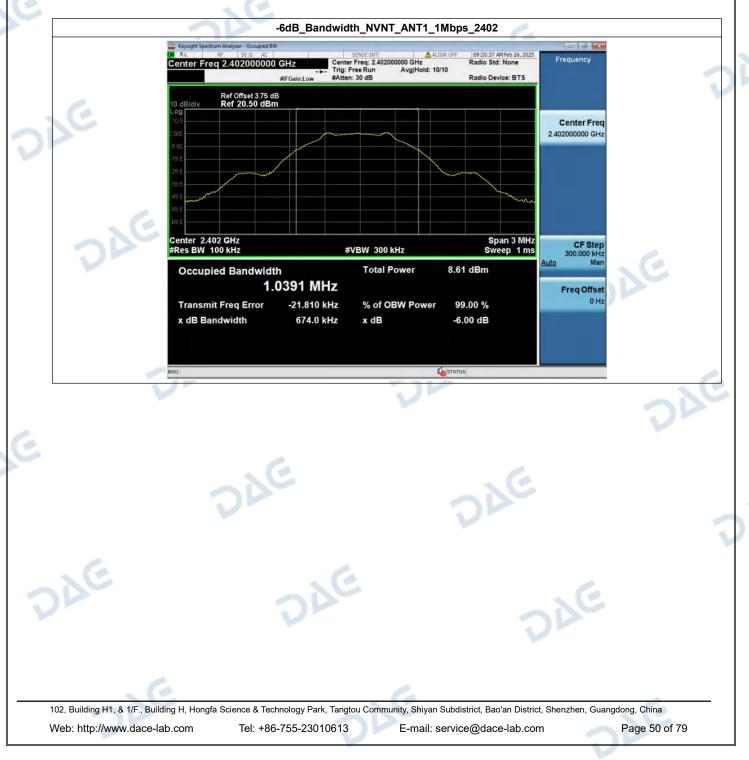






Report No.: DACE250109001RF001

2


HT250109014--YE40--BLE--FCC FCC_BLE (Part15.247) Test Data

1. -6dB Bandwidth

V1.0

DAG

Condition	Antenna	Rate	Frequency (MHz)	-6dB BW(kHz)	limit(kHz)	Result
NVNT	ANT1	1Mbps	2402.00	673.96	500	Pass
NVNT 🦳	ANT1	1Mbps	2440.00	684.13	500	Pass
NVNT 🔰	ANT1	1Mbps	2480.00	677.83	500	Pass
NVNT	ANT1	2Mbps	2402.00	1381.89	500	Pass
NVNT	ANT1	2Mbps	2440.00	1365.09	500	Pass
NVNT	ANT1	2Mbps	2480.00	1354.38	500	Pass

DAG V1.0 Report No.: DACE250109001RF001 -6dB_Bandwidth_NVNT_ANT1_1Mbps_2440 13 SENSE:INT Center Freq: 2.44000000 GHz Trig: Free Run Avg|Hold #Atten: 30 dB 09:24:14 AM Feb 26, 2025 Radio Std: None Frequency Center Freq 2.440000000 GHz Avg|Hold: 10/10 #IFGain:Low Radio Device: BTS Ref Offset 3.72 dB Ref 20.44 dBm **Center Freq** 2.44000000 GHz Span 3 MHz Sweep 1 ms Center 2.44 GHz #Res BW 100 kHz CF Step #VBW 300 kHz **Occupied Bandwidth** Total Power 8.36 dBm 1.0408 MHz Freq Offset % of OBW Power 0 Hz -21.166 kHz 99.00 % **Transmit Freq Error** -6.00 dB x dB Bandwidth 684.1 kHz x dB . STATUS -6dB_Bandwidth_NVNT_ANT1_1Mbps_2480 1 B X Center Freq: 2.48000000 GHz Trig: Free Run Avg|Hold: 10/10 #Atten: 30 dB 09:27:35 AM Feb 26, 2025 Radio Std: None Frequency Center Freq 2.480000000 GHz 1 #IFGain:Low Radio Device: BTS Ref Offset 3.85 dB Ref 20.70 dBm **Center Freq** 2.48000000 GHz Center 2.48 GHz #Res BW 100 kHz Span 3 MHz Sweep 1 ms CF Step 300.000 kH #VBW 300 kHz Auto **Occupied Bandwidth** Total Power 8.68 dBm 1.0299 MHz Freq Offset 0 Hz Transmit Freg Error -21.628 kHz % of OBW Power 99.00 % 677.8 kHz x dB Bandwidth x dB -6 00 dB TATL STATL DAG NE DAG 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 51 of 79

DAG V1.0 Report No.: DACE250109001RF001 -6dB_Bandwidth_NVNT_ANT1_2Mbps_2402 10 SENSE:INT Center Freq: 2.40200000 GHz Trig: Free Run Avg|Hold: 10/10 #Atten: 30 dB 09:31:26 AM Feb 26, 2025 Radio Std: None Frequency Center Freg 2.402000000 GHz #IFGain:Low Radio Device: BTS Ref Offset 3.75 dB Ref 14.50 dBm Center Freq 2.40200000 GHz Span 5 MHz Sweep 1 ms Center 2.402 GHz #Res BW 100 kHz CF Step #VBW 300 kHz **Occupied Bandwidth** Total Power 9.88 dBm 2.0606 MHz Freq Offset % of OBW Power 0 Hz -19.352 kHz 99.00 % **Transmit Freq Error** x dB Bandwidth 1.382 MHz x dB -6.00 dB . STATUS -6dB_Bandwidth_NVNT_ANT1_2Mbps_2440 1 B X Center Freq: 2.44000000 GHz Trig: Free Run Avg|Hold:>10/10 #Atten: 30 dB 09:34:58 AM Feb 26, 2025 Radio Std: None Frequency Center Freq 2.440000000 GHz ø #IFGain:Low Radio Device: BTS Ref Offset 3.72 dB Ref 14.44 dBm **Center Freq** 2.44000000 GHz Span 5 MHz Sweep 1 ms Center 2.44 GHz #Res BW 100 kHz CF Step 500.000 kH #VBW 300 kHz Auto **Occupied Bandwidth** Total Power 9.86 dBm 2.0572 MHz Freq Offset 0 Hz Transmit Freq Error -21.277 kHz % of OBW Power 99.00 % 1.365 MHz x dB Bandwidth x dB -6 00 dB TATL STATL DAG NE DAG 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 52 of 79

DVC -			0Mbma 0/00	
DAC	Keysight Spectrum Analyzer - Occupied BW RL RF 50 Ω AC		N AUTO/NO RF 09:38:58 AM Feb 26, 2025	requency
	Center Freq 2.480000000 GHz #IFGain:Lo Ref Offset 3.85 dB	Center Freq: 2.480000000 GHz Trig: Free Run Avg Hold: w #Atten: 30 dB		
	10 dB/div Ref 14.70 dBm			Center Freq
	6.30 -15.3 -25.3		2.4	80000000 GHz
V	-35.3		hanne	60
	-55.3			VE
-	Center 2.48 GHz #Res BW 100 kHz	#VBW 300 kHz	Span 5 MHz Sweep 1 ms	CF Step 500.000 kHz
	Occupied Bandwidth 2.0459	Total Power MHz	10.3 dBm	Man Freq Offset
	Transmit Freq Error -20.4	422 kHz % of OBW Powe 54 MHz x dB	r 99.00 % -6.00 dB	0 Hz
6				
	MSG		STATUS	
				AC .
	-			

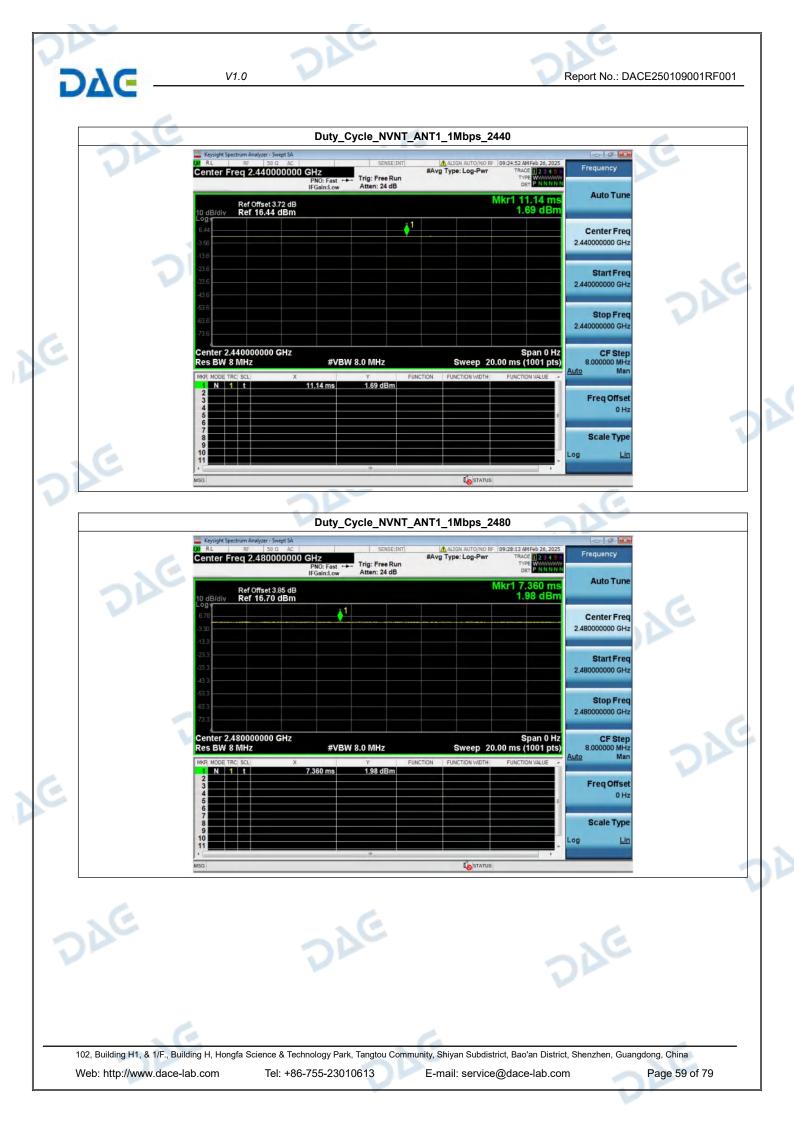
2. 99% Occupied Bandwidth

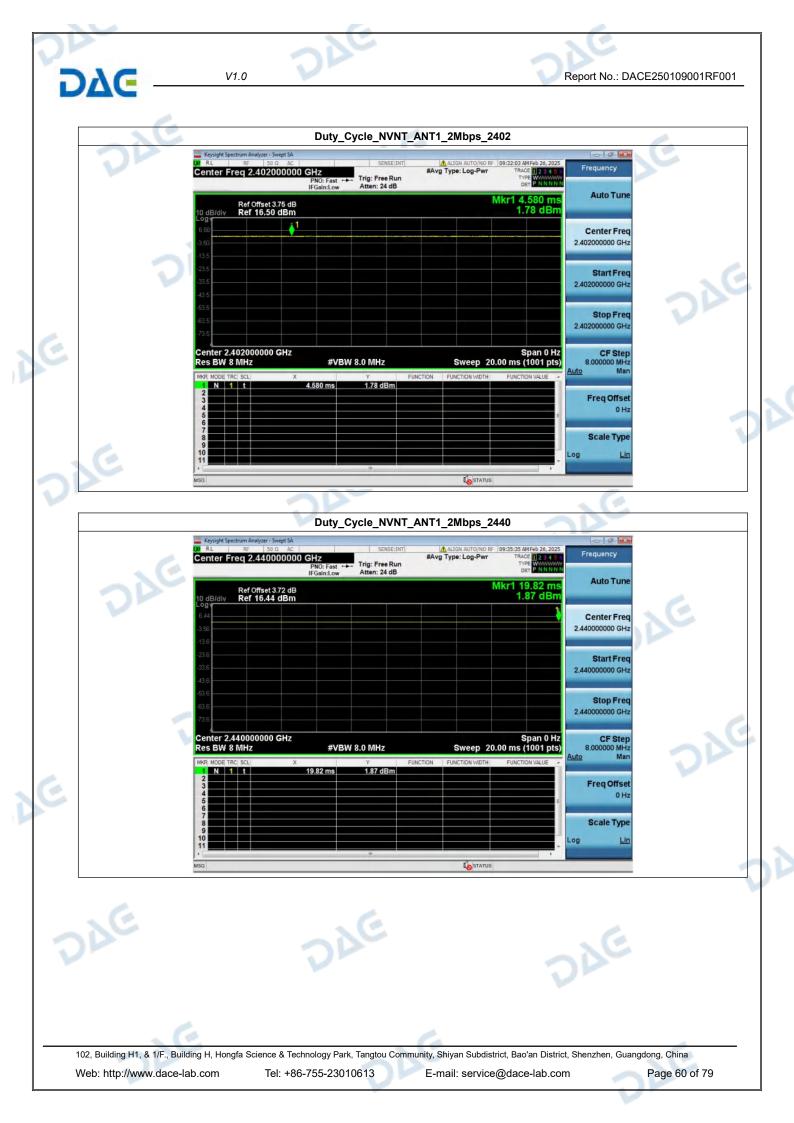
DΔC

Condition	Antenna	Rate	Frequency (MHz)	99%%BW(MHz)
NVNT	ANT1	1Mbps	2402.00	1.023
NVNT	ANT1	1Mbps	2440.00	1.030
NVNT	ANT1	1Mbps	2480.00	1.016
NVNT	ANT1	2Mbps	2402.00	2.057
NVNT	ANT1	2Mbps	2440.00	2.050
NVNT	ANT1	2Mbps	2480.00	2.017

		- XC	
V1.0		Report No.: DACE2501090	01RF001
99% Occupied Ban	dwidth NVNT ANT1 2Mbps 24	480	
Keysight Spectrum Analyzer - Occupied BW RL RF 50 Ω AC	SENSE:INT	eb 26, 2025	
Trig: F	ree Run Avg Hold: 10/10		
Ref Offset 3.85 dB 10 dB/div Ref 16.70 dBm Log			
6.70 -3.30	month and a second a	Center Freq 2.48000000 GHz	
-13.3 -23.3 -23.3			
43.3	Munum	Martin Contraction	
-63.3			
Center 2.48 GHz #Res BW 30 kHz #\	Span VBW 100 kHz Sweep 5.		
Occupied Bandwidth	Total Power 12.1 dBm	Auto Man	
2.0165 MHZ Transmit Freq Error -22.153 kHz	% of OBW Power 99.00 %	Freq Offset 0 Hz	
x dB Bandwidth 2.567 MHz	x dB -26.00 dB		
MSG	I STATUS	6	
VE			
	99%_Occupied_Ban	99%_Occupied_Bandwidth_UVNT_ANT_2Dhps_2	9%_Occupied_Bandwidth_IVNT_ANT_2Mbps_2A80 Competing_Bandwidth_Units Competing_Bandwidth_Units Competing_Bandwidth Total Power 20,000 Competing_Bandwidth Total Power 20,000 Competing_Bandwidth Total Power 20,000 Competing_Bandwidth Total Power 20,000 Competing_Bandwidth Competing_Bandwidth Competing_Bandwidth Competing Competing_Bandwidth Co


D


Report No.: DACE250109001RF001

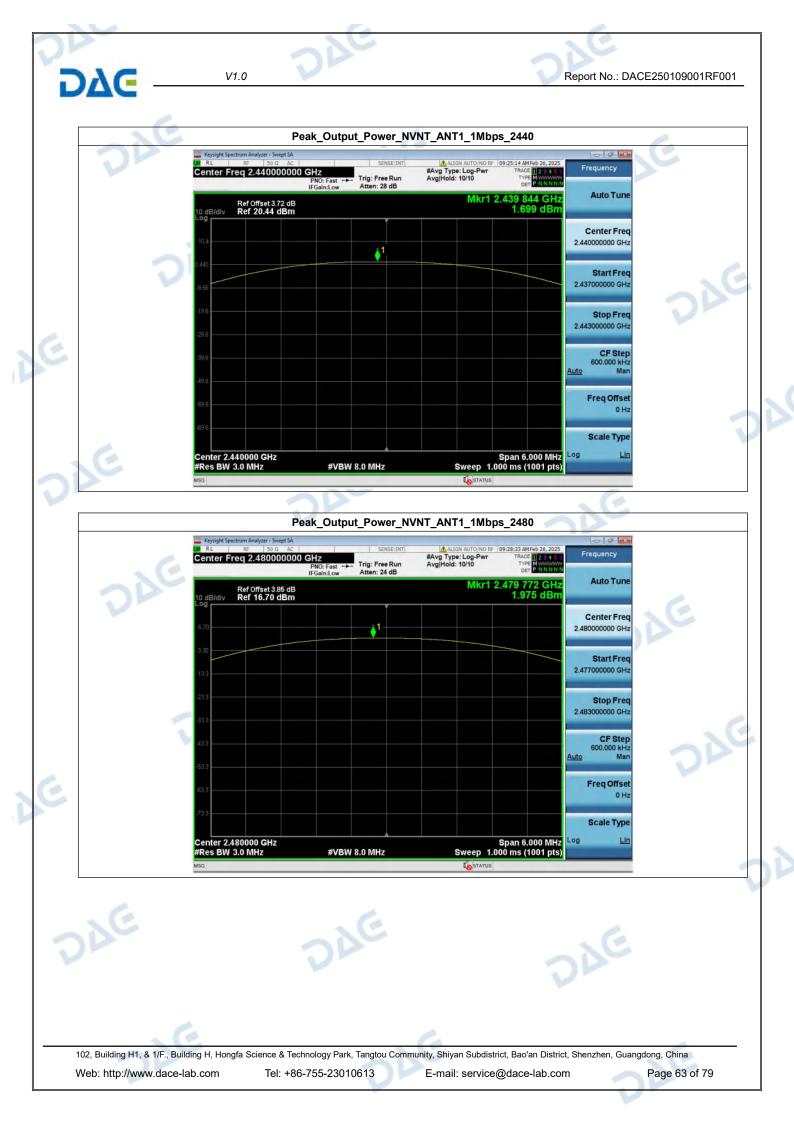

3. Duty Cycle

DVC

Condition	Antenna	Rate	Frequency (MHz)	Dutycycle(%)	Duty_factor
NVNT	ANT1	1Mbps	2402.00	100	0.00
NVNT	ANT1	1Mbps	2440.00	100	0.00
NVNT	ANT1	1Mbps	2480.00	100	0.00
NVNT	ANT1	2Mbps	2402.00	100	0.00
NVNT	ANT1	2Mbps	2440.00	100	0.00
NVNT	ANT1	2Mbps	2480.00	100	0.00

76-	ale	20	
DAG —	V1.0	Report No.: DA	CE250109001RF001
-			
200	Duty_Cycle_NVNT	_ANT1_2Mbps_2480	6
VE	RL RF 50.0 AC SENSE:INT Center Freq 2.480000000 GHz PN0: Fast ↔ Trig: Free Run	ALIGN AUTO/NO RF 09:39:37 AM Feb 26, 2025 #Avg Type: Log-Pwr TRACE 12 3 4 4 T TYPE WWWWWW DET P N N N N N	
	IFGain:Low Atten: 24 dB Ref Offset 3.85 dB 10 dB/dlv Ref 16.70 dBm	Mkr1 5.380 ms 2.27 dBm	
	6.70 1 3.30	Center Freq 2,48000000 GHz	
2	133	Start Freq	
	-33.3	2.480000000 GHz	DAG
	63.3	2.48000000 GHz	VE
2	Center 2.480000000 GHz Res BW 8 MHz #VBW 8.0 MHz	Span 0 Hz CF Step Sweep 20.00 ms (1001 pts) 8.000000 MHz	
		Sweep 20.00 ms (1001 pts) sunction FUNCTION VIDTH FUNCTION VALUE / Man	
	2	Freq Offset 0 Hz	
		Scale Type	V
SE	10 11 *	Log Lin	
6			

Report No.: DACE250109001RF001

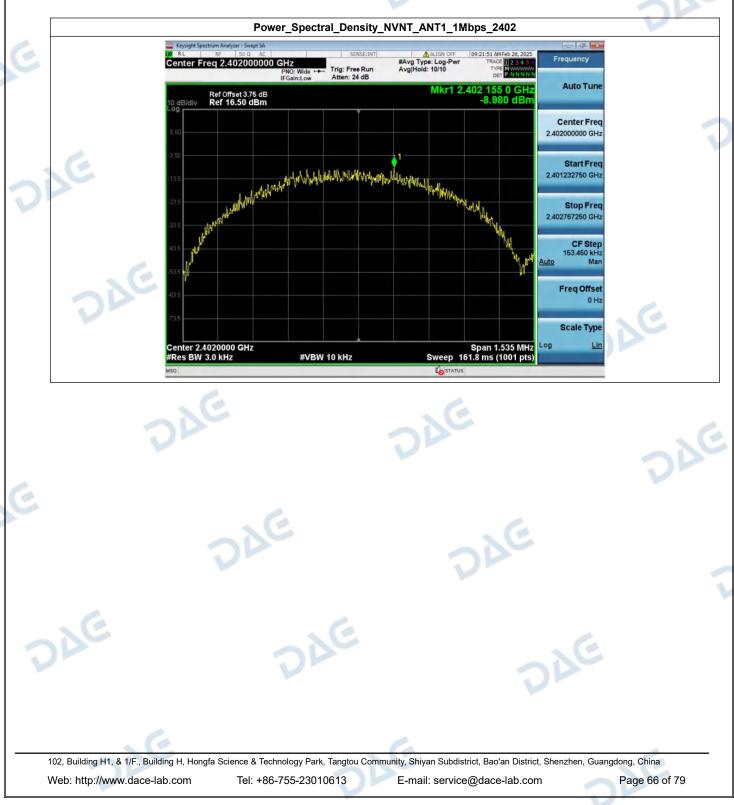

4. Peak Output Power

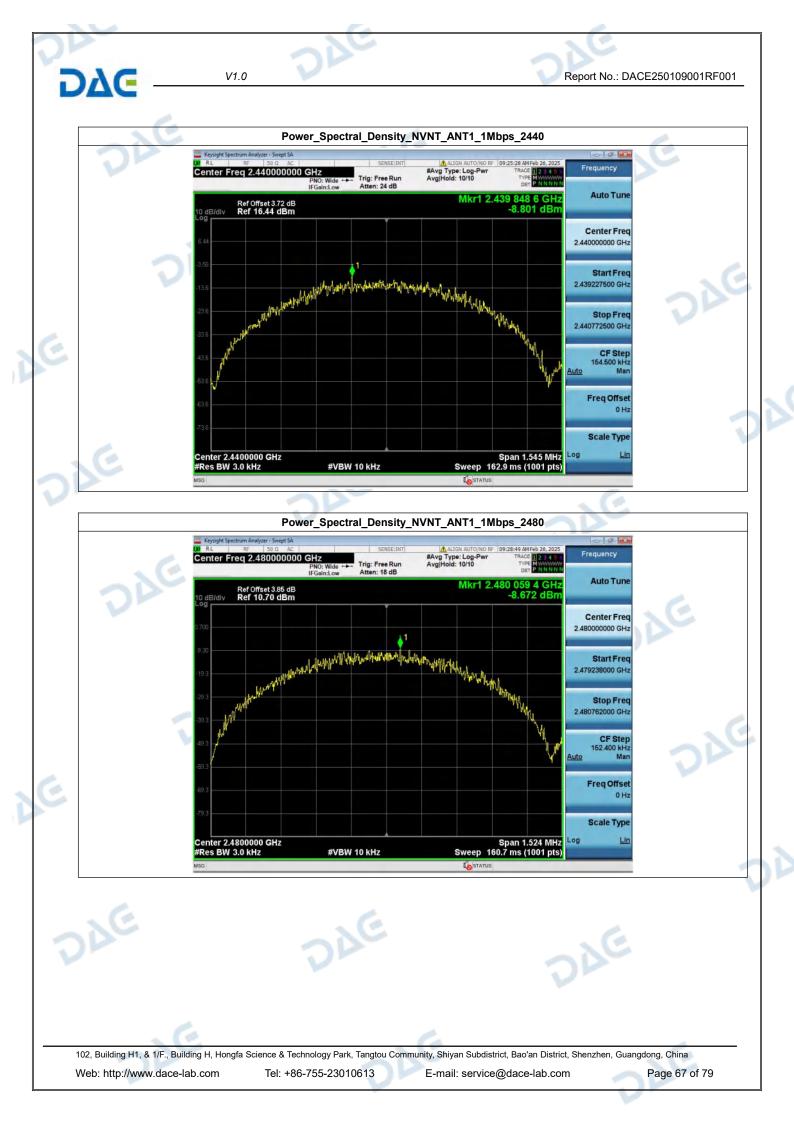

DVG

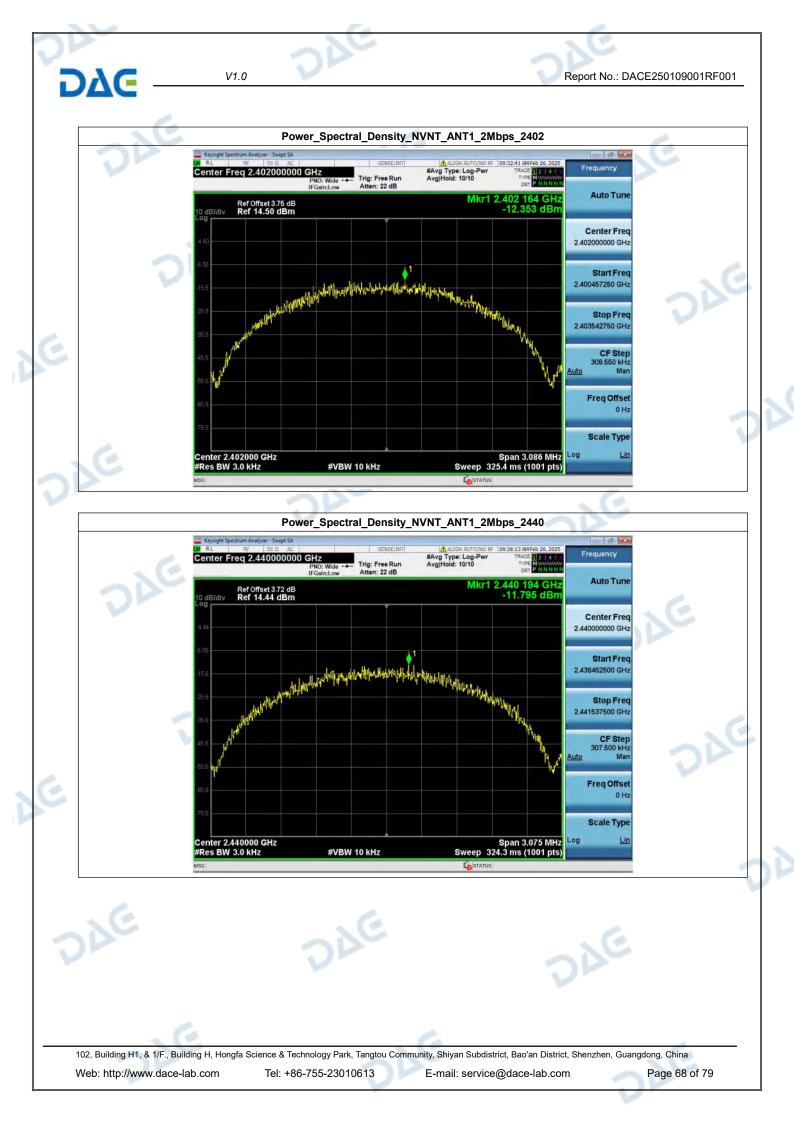
Condition	Antenna	Rate	Frequency (MHz)	Max. Conducted Power(dBm)	Max. Conducted Power(mW)	Limit(mW)	Result
NVNT	ANT1	1Mbps	2402.00	1.89	1.55	1000	Pass
NVNT	ANT1	1Mbps	2440.00	1.70	1.48	1000	Pass
NVNT	ANT1	1Mbps	2480.00	1.98	1.58	1000	Pass
NVNT	ANT1	2Mbps	2402.00	1.77	1.50	1000	Pass
NVNT	ANT1	2Mbps	2440.00	1.79	1.51	1000	Pass
NVNT	ANT1	2Mbps	2480.00	2.19	1.66	1000	Pass

C

DAG	V1.0	Report No.: DACE250109001RF001
Die	Peak_Output_Power_NVNT_AN	
	Replicit Spectrum Analyzer - Swept SA RE 50.0 AC SENSE:INT AL Center Freq 2.48000000 GHz PNO: Fast Trig: Free Run #Avg Hold PNO: Fast PNO: Fast Trig: Free Run #Avg Hold Ref Offset 3.85 dB Colspan="2">Conter Freq 2.48000000 GHz PNO: Fast Trig: Free Run #Avg Hold Ref Offset 3.85 dB Colspan="2">Conter Freq 16.70 dBm Conter Free Trig: Free Run #Avg Hold Ref Offset 3.85 dB Colspan="2">Conter Free Run Autor Ref Offset 3.85 dB Conter Ref 16.70 dBm Colspan="2">Conter Free Run Conter Ref 16.70 dBm Conter Ref 16.70 dBm Conter Ref 16.70 dBm Conter Ref 16.70 dBm	Mkr1 2.479 604 GHz 2.193 dBm Center Freq 2.48000000 GHz Start Freq 2.47700000 GHz Stop Freq
	333	Span 6.000 MHz Sweep 1.000 ms (1001 pts)


Report No.: DACE250109001RF001


5. Power Spectral Density

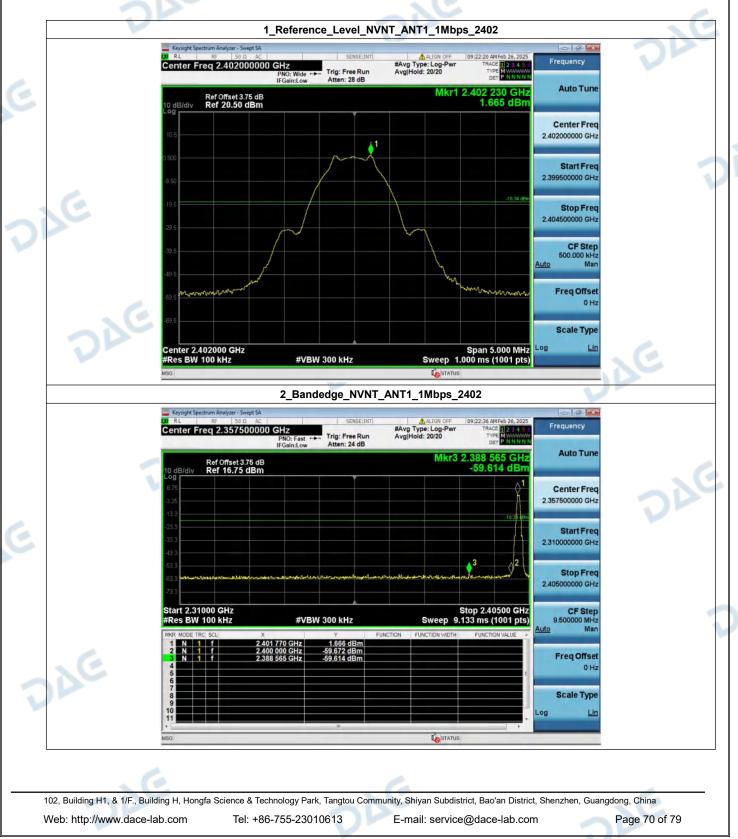

DVG

Condition	Antenna	Rate	Frequency (MHz)	Power Spectral Density(dBm/3kHz)	Limit(dBm/3kHz)	Result
NVNT	ANT1	1Mbps	2402.00	-8.98	8	Pass
NVNT	ANT1	1Mbps	2440.00	-8.80	8	Pass
NVNT	ANT1	1Mbps	2480.00	-8.67	8	Pass
NVNT	ANT1	2Mbps	2402.00	-12.35	8	Pass
NVNT	ANT1	2Mbps	2440.00	-11.79	8	Pass
NVNT 📎	ANT1	2Mbps	2480.00	-9.70	8	Pass

C

DAC -	Center Freq 2.480000000 GHz #Av PNO: Wide +++ Trig: Free Run Avg	T_ANT1_2Mbps_2480 Alicn Autro/NO RF 09:40:14 AMFeb 26, 2025 Type: Log-Pwr TRACE IHold: 10/10 Troe	
Ð	If Gein: Low Atten: 22 dB 10 dB/div Ref Offset 3.85 dB 470	Mkr1 2.479 870 GHz -9.703 dBm Center Freq 2.48000000 GHz Start Freq	E
ole Dle	Center 2.480000 GHz #Res BW 3.0 kHz #VBW 10 kHz	Span 3.026 MHz Sweep 319.1 ms (1001 pts)	
DAE			

Report No.: DACE250109001RF001

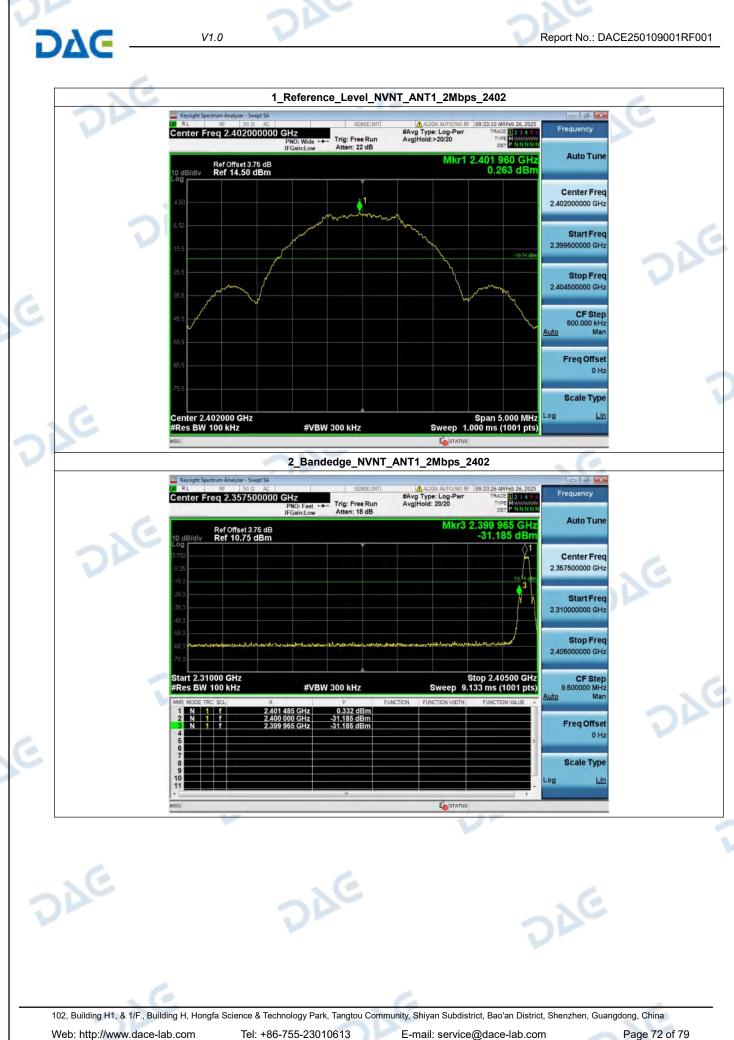

V1.0

6. Bandedge

DΔC

Condition	Antenna	Modulation	TX_Frequency (MHz)	Max. Mark_freq(MHz)	Ref_level(dBm)	Spurious level(dBm)	limit(dBm)	Result		
NVNT	ANT1	1Mbps	2402.00	2388.565	1.665	-59.614	-18.335	Pass		
NVNT	ANT1	1Mbps	2480.00	2483.650	1.838	-59.246	-18.162	Pass		
NVNT	ANT1	2Mbps	2402.00	2399.965	0.263	-31.185	-19.737	Pass		
NVNT	ANT1	2Mbps	2480.00	2483.525	0.575	-61.487	-19.425	Pass		

e.



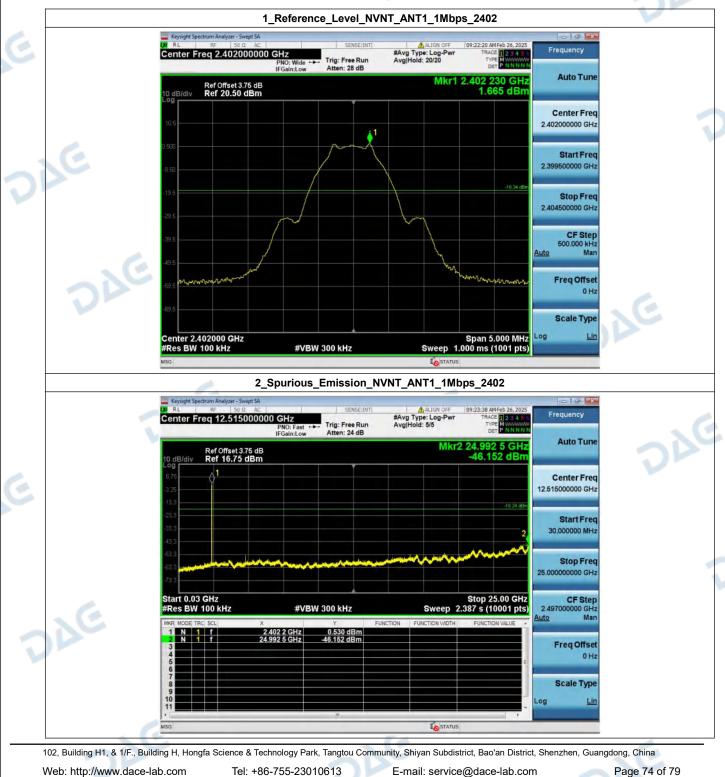
Page 71 of 79

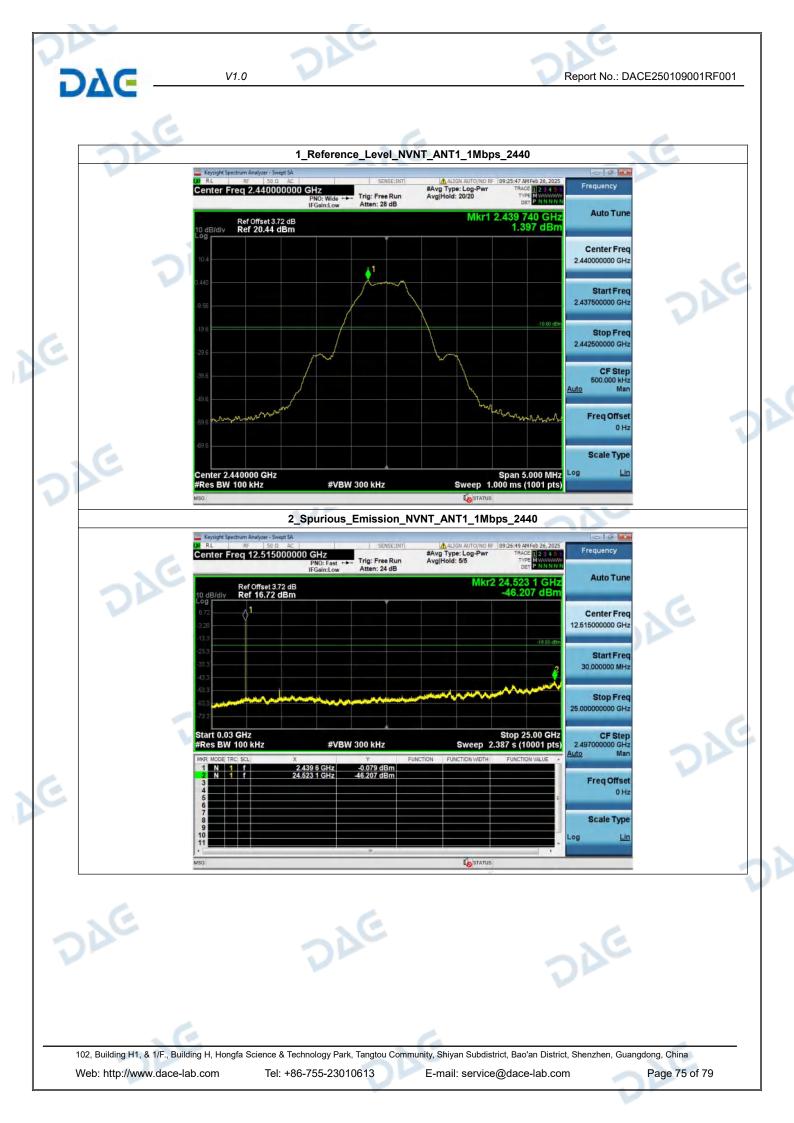
Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 72 of 79

Tel: +86-755-23010613


1


Report No.: DACE250109001RF001

7. Spurious Emission

DAC

Condition	Antenna	Modulation	TX_Frequency (MHz)	Ref_level(dBm)	Spurious level(dBm) 🝏	limit(dBm)	Result
NVNT	ANT1	1Mbps	2402.00	1.665	-46.152	-18.335	Pass
NVNT	ANT1	1Mbps	2440.00	1.397	-46.207	-18.603	Pass
NVNT	ANT1	1Mbps	2480.00	1.838	-46.119	-18.162	Pass
NVNT	ANT1	2Mbps	2402.00	0.263	-51.420	-19.737	Pass
NVNT 🚽	ANT1	2Mbps	2440.00	-0.173	-51.666	-20.173	Pass
NVNT	ANT1	2Mbps	2480.00	0.575	-51.235	-19.425	Pass

Tel: +86-755-23010613 E-mail: service@dace-lab.com

Web: http://www.dace-lab.com

Page 76 of 79

E-mail: service@dace-lab.com

Page 77 of 79

E-mail: service@dace-lab.com

Page 78 of 79

Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

Page 79 of 79