

Datasheet DSU840PA Module Rev 1.0

CONTENTS

1	Over	view and Key Features	4
	1.1	Features and Benefits	4
	1.2	Application Areas	4
2	Spec	ification	5
	2.1	Specification Summary	5
3	Hard	ware Specifications	8
	3.1	Block Diagram and Pin-out	8
	3.2	Pin Definitions	9
	3.3	Electrical Specifications	15
	3.3.1	Absolute Maximum Ratings	15
	3.3.2	Recommended Operating Parameters	16
	3.4	Programmability	18
	3.4.1	DSU840PA Default Firmware	18
	3.4.2	DSU840PA Special Function Pins in smartBASIC	18
4	Powe	er Consumption	19
	4.1	Power Consumption	19
	4.2	Peripheral Block Current Consumption	21
5	Func	tional Description	22
	5.1	Power Management	22
	5.2	DSU840PA Power Supply Options	22
	5.3	Clocks and Timers	25
	5.3.1	Clocks	25
	5.3.2	Timers	25
	5.4	Radio Frequency (RF)	25
	5.5	USB interface	26
	5.6	SPI Bus	26
	5.7	I2C Interface	26
	5.8	General Purpose I/O, ADC, PWM, and FREQ	27
	5.8.1	GPIO	27
	5.8.2	ADC	27
	5.8.3	PWM Signal Output on up to 16 SIO Pins	27
	5.8.4	FREQ Signal Output on up to 16 SIO Pins	27
	5.9	nRESET pin	28
	5.10	Two-wire Interface JTAG	28
	5.11	DSU840PA Wakeup	29
	5.11.	1 Waking Up DSU840PA from Host	29
	5.12	Low Power Modes	29
	5 13	Temperature Sensor	20

	5.14	Security/Privacy	29
	5.14.	1 Random Number Generator	29
	5.14.	2 AES Encryption/Decryption	29
	5.14.	3 ARM Cryptocell	29
	5.14.	4 Readback Protection	29
	5.14.	5 Elliptic Curve Cryptography	30
	5.15	Optional External 32.768 kHz Crystal	30
6	Hard	ware Integration Suggestions	32
	6.1	Circuit	32
	6.2	PCB Layout on Host PCB - General	33
	6.3	External Antenna Integration with the DSU840PA	34
7	Mech	anical Details	34
	7.1	DSU840PA Mechanical Details	34
	7.2	Reflow Parameters	35
8	Relia	bility Tests	37
9	Regu	latory	37
	9.1	Certified Antennas	37
	9.2	Documentation Requirements	38
	9.3	FCC Regulatory	38
	9.4	Antenna Information	38
	9.5	FCC Documentation Requirements	38
10	ISED	(Canada) Regulatory	39
	10.1	Antenna Information	39
	Industry	Canada Statement	40
	10.2	ISED ICES-003 Issue 7 Compliance Declaration	11

1 OVERVIEW AND KEY FEATURES

Every DSU840PA module is designed to simplify OEMs enablement of ANT and Bluetooth Low Energy (BLE) v5.0 to small, portable, highly power-conscious devices. The DSU840PA provides engineers with considerable design flexibility in both hardware and software programming capabilities.

Based on the world-leading Nordic Semiconductor nRF52840 chipset, the DSU840PA modules provide ultra-low power consumption with outstanding wireless range and the Long Range (CODED PHY) Bluetooth 5 feature. New circuitry both increases TX power and decreases sleep current for impeccable power management. The DSU840PA is programmable via AT commands and Laird's *smart*BASIC language

smartBASIC is an event-driven programming language that is highly optimized for memory-constrained systems such as embedded modules. It was designed to make BLE development quicker and simpler, vastly cutting down time to market.

Note:

DSU840PA hardware provides all functionality of the nRF52840 chipset used in the module design. This is a hardware datasheet only – it does not cover the software aspects of the DSU840PA.

1.1 Features and Benefits

- Bluetooth v5.1 Single mode
- ANT
- External antennas
- Multiple programming options
 - smartBASIC
 - AT command set
- Compact footprint
- Programmable Tx power +18 dBm to -6 dBm, -26 dBm
 - LE Coded max Tx is +14 dBm
- Rx sensitivity -98.5 dBm (1 Mbps), 107 dBm (125 kbps)
- Ultra-low power consumption
- Tx @ +18 dBm- 102.2 mA peak (at 18 dBm, DCDC on)
 (See Note 1 in the Power Consumption section)
- Rx: 10.9 mA peak (DCDC on) (See Note 1 in the Power Consumption section)

- Standby Doze 5.9 uA typical
- Deep Sleep 2.0 uA (See Note 4 in the Power Consumption section)
- UART, GPIO, ADC, PWM, FREQ output, timers, I2C, SPI, I2S, PDM, and USB interfaces
- Fast time-to-market
- FCC and ISED certified
- Full Bluetooth Declaration ID
- Other regulatory certifications on request
- No external components required
- Industrial temperature range (-40° C to +85° C)

1.2 Application Areas

- Medical devices
- IoT Sensors
- Factory Automation

- HVAC Controllers
- Location awareness
- Home automation

2 SPECIFICATION

2.1 Specification Summary

Categories/Feature	Implementation					
Wireless Specification						
Bluetooth®	 BT 5.1 – Single mode 4x Range (CODED PHY support) – BT 5.1 2x Speed (2M PHY support) – BT 5.1 Concurrent master, slave Diffie-Hellman based pairing (LE Secure Connections) – BT 4.2 Data Packet Length Extension – BT 4.2 Link Layer Privacy (LE Privacy 1.2) – BT 4.2 LE Dual Mode Topology – BT 4.1 LE Ping – BT 4.1 					
ANT Features	 79 selectable RF channels (2402 to 2480 MHz) Flexible network topologies: peer-to-peer, star, tree, high node count, mesh and more Broadcast, acknowledged, and burst data communication modes Built-in device search and pairing Built-in interference handling and radio coexistence management with application radio disable requests and application flash write/erase requests Enhanced ANT features: Supports up to 15 logical channels each with configurable channel periods (5.2ms - 2s) Advanced burst data transfer modes (up to 60kbps) Optional channel encryption mode (AES-128) Supports up to 8 public, private and/or managed networks Advanced power management features to optimize application power consumption including Event Filtering and Selective Data Updates Asynchronous transmit channel Fast channel initiation High duty search Time synchronization 					
Frequency	2.402 - 2.480 GHz for BLE (CH0 to CH39)					
Raw Data Rates	1 Mbps BLE (over-the-air) 2 Mbps BLE (over-the-air) 125 kbps BLE (over-the-air)					
Maximum Transmit Power Setting See Note 6 in Module Specification Notes.	+18 dBm conducted DSU840PA (external antenna)					
Minimum Transmit Power Setting	-26 dBm, -6 dBm, 0 dBm, 6 dBm, 14 dBm					
Receive Sensitivity (≤37-byte packet)	BLE 1 Mbps (BER=1E-3) -98.5 dBm typical BLE 2 Mbps -95 dBm typical BLE 125 kbps -107 dBm typical					
Link Budget (conducted)	116.5 dB @ BLE 1 Mbps 121 dB @ BLE 125 kbps					

Categories/Feature	Implementation
Maximum Received Signal Strength at <0.1% PER	-11 dBm (limited by 11dB RX LNA gain)
RF Cellular Coexistence	
RF Band Pass Filter	Assists with cellular RF co-existence
Host Interfaces and Peripherals	
Total	46 x multifunction I/O lines
UART	 2 UARTs Tx, Rx, CTS, RTS DCD, RI, DTR, DSR (See Note 3 in the Module Specification Notes) Default 115200, n, 8, 1 From 1,200 bps to 1 Mbps
USB	USB 2.0 FS (Full Speed, 12 Mbps)CDC driver/virtual UART (baud rate TBD)
GPIO	Up to 46, with configurable: I/O direction O/P drive strength (standard 0.5 mA or high 3mA/5 mA), Pull-up/pull-down Input buffer disconnect
ADC	 Eight 8/10/12-bit channels 0.6 V internal reference Configurable 4, 2, 1, 1/2, 1/3, 1/4, 1/5 1/6 (default) pre-scaling Configurable acquisition time 3uS, 5uS, 10uS (default), 15uS, 20uS, 40uS. One-shot mode
PWM Output	PWM outputs on 16 GPIO output pins. PWM output duty cycle: 0%-100% (per frequency) PWM output frequency: Up to 500 kHz
FREQ Output	FREQ outputs on 16 GPIO output pins. • FREQ output frequency: 0 MHz to 4 MHz (50% duty cycle per frequency)
I2C	Two I2C interface (up to 400 kbps) – See Note 4 in the Module Specification Notes
SPI	Four SPI Master Slave interface (up to 4 Mbps)
QSPI	 One 32-MHz QSPI interface. Gives XIP (execute in place) capability External serial flash IC must be fitted as per Nordic specifications
Temperature Sensor	 One temperature sensor Temperature range equal to the operating temperature range Resolution 0.25 degrees
RSSI Detector	 One RF received signal strength indicator ±2 dB accuracy (valid over -101 dBm to -31 dBm) – added 11 dB LNA gain 1 dB resolution
12S	One inter-IC sound interface
PDM	One pulse density modulation interface
Optional (External to the DSU840	PA module)
External 32.768 kHz crystal	For customer use, connect +/-20 ppm accuracy crystal for more accurate protocol timing.

Categories/Feature	Implementation							
Profiles								
Services supported	Central modePeripheral modeCustom and adopted profiles							
Programmability								
smartBASIC	 FW upgrade via JTAG or UART Application download via UART or via over-the-air (if SIO_02 pin is pulled high externally) 							
Operating Modes								
smartBASIC	 Self-contained Run mode Selected by nAutoRun pin status: LOW (0V). Then runs \$autorun\$ (smartBASIC application script) if it exists. Interactive/Development mode HIGH (VDD). Then runs via at+run (and file name of smartBASIC application script). 							
Supply Voltage								
Supply (VDD or VDD_HV) options	 Normal voltage mode VDD 3.0- 3.6 V – Internal DCDC converter or LDO (See Note 5 in the Module Specification Notes) OR High voltage mode VDD_HV 3.0V-5.5V Internal DCDC converter or LDO (See Note 5 in the Module Specification Notes) 							
Power Consumption								
Active Modes Peak Current (for maximum Tx power +18 dBm) – Radio only	102.2 mA peak Tx (with DCDC)							
Active Modes Peak Current (for Tx power -26 dBm) – Radio only	18.5 mA peak Tx (with DCDC)							
Active Modes Average Current	Depends on many factors, see Power Consumption							
Ultra-low Power Modes	Standby Doze 5.9 uA typical Deep Sleep 2.0 uA							
Physical								
Dimensions	22.0 mm x 10 mm x 2.2 mm Pad Pitch – 0.8 mm Pad Type – Two rows of pads							
Weight	<1 gram							
Environmental								
Operating	-40 °C to +85 °C							
Storage	-40 °C to +85 °C							
Miscellaneous								

Module Specification Notes:

Note 3

DSR, DTR, RI, and DCD can be implemented in the *smart*BASIC application.

Module Specification Notes:

Note 4	With I2C interface selected, pull-up resistors on I2C SDA and I2C SCL <i>must</i> be connected externally as per I2C standard.
Note 5	Use of the internal DCDC convertor or LDO is decided by the underlying BLE stack.
Note 6	For DSU840PA BLE coded PHY 125kbps (s=8), the conducted RF TX power is limited to 14 dBm (conducted) to be within the FCC/ISED TX power spectral density limit. For DSU840PA ANT, Maximum Allow to Configure Tx Power fpr

3 HARDWARE SPECIFICATIONS

3.1 Block Diagram and Pin-out

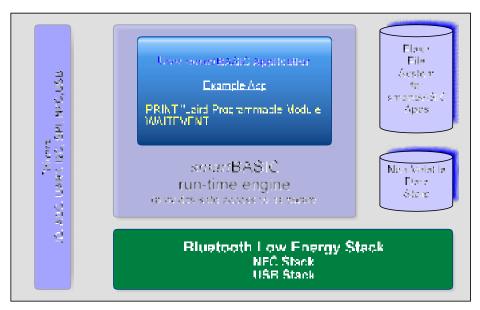


Figure 1: Functional HW and SW block diagram for DSU840PA BLE module

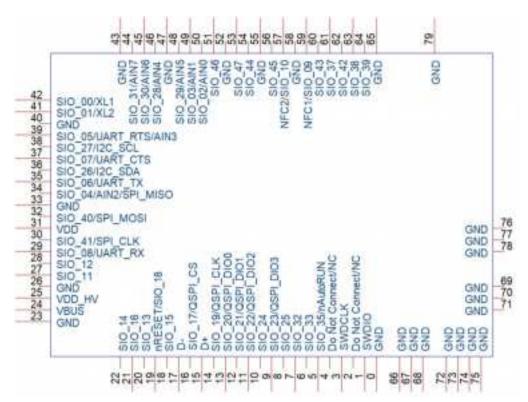


Figure 2: DSU840PA module pin-out (top view). Outer row pads (long red line) and inner row pads (short red line) shown.

3.2 Pin Definitions

Table 1: Pin definitions

	ii aciiiiiiioiio							
Pin#	Pin Name	Default Function	Alternate Function	In/ Out	Pull Up/ Down	nRF52840 QFN Pin	nRF52840 QFN Name	Comment
0	GND	-	-	-	-	-	-	-
1	SWDIO	SWDIO	-	IN	PULL- UP	AC24	SWDIO	-
2	DO NOT CONNECT/NC	No Connect		IN	PULL- UP	U24	P1.04	Do Not Connect.
3	SWDCLK	SWDCLK	-	IN	PULL- DOWN	AA24	SWDCLK	
4	DO NOT CONNECT/NC	No Connect	-	-	PULL- UP	W24	P1.02	Do Not Connect.
5	SIO_35/ nAutoRUN	nAutoRUN	SIO_35	IN	PULL- DOWN	V23	P1.03	Laird Devkit: FTDI USB_DTR via jumper on J12 pin1-2.
6	SIO_33	SIO_33		IN	PULL- UP	Y23	P1.01	-
7	SIO_32	SIO_32	-	IN	PULL- UP	AD22	P1.00	-
8	SIO_25	SIO_25	-	IN	PULL- UP	AC21	PO.25	Laird Devkit: BUTTON4

Pin#	Pin Name	Default Function	Alternate Function	In/ Out	Pull Up/ Down	nRF52840 QFN Pin	nRF52840 QFN Name	Comment
9	SIO_23	SIO_23	QSPI_DIO3	IN	PULL- UP	AC19	PO.23	-
10	SIO_24	SIO_24		IN	PULL- UP	AD20	PO.24	Laird Devkit: BUTTON3
11	SIO_22	SIO_22	QSPI_DIO2	IN	PULL- UP	AD18	PO.22	-
12	SIO_21	SIO_21	QSPI_DIO1	IN	PULL- UP	AC17	PO.21	-
13	SIO_20	SIO_20	QSPI_DIO0	IN	PULL- UP	AD16	PO.20	-
14	SIO_19	SIO_19	QSPI_CLK	IN	PULL- UP	AC15	PO.19	-
15	D+	D+	-	IN		AD6	D+	-
16	SIO_17	SIO_17	QSPI_CS	IN	PULL- UP	AD12	PO.17	-
17	D-	D-	-	IN		AD4	D-	-
18	SIO_15	SIO_15	-	IN	PULL- UP	AD10	PO.15	Laird Devkit: LED3
19	nRESET	nRESET	SIO_18	IN	PULL- UP	AC13	PO.18	System Reset (Active Low)
20	SIO_13	SIO_13	-	IN	PULL- UP	AD8	PO.13	Laird Devkit: LED1
21	SIO_16	SIO_16	-	IN	PULL- UP	AC11	PO.16	Laird Devkit: LED4
22	SIO_14	SIO_14	-	IN	PULL- UP	AC9	PO.14	Laird Devkit: LED2
23	GND	-	-	-	-	-	-	-
24	VBUS							4.35V – 5.5V
25	VDD_HV	-	-	-	-	-	-	3.0V to 5.5V
26	GND	-	-	-	-	-	-	-
27	SIO_11	SIO_11	-	IN	PULL- UP	T2	PO.11	Laird Devkit: BUTTON1
28	SIO_12	SIO_12	-	IN	PULL- UP	U1	PO.12	BUTTON2
29	SIO_08/ UART_RX	SIO_08	UART_RX	IN	PULL- UP	N1	PO.08	UARTCLOSE() selects DIO functionality. UARTOPEN() selects UART COMMS behavior

Pin#	Pin Name	Default Function	Alternate Function	In/ Out	Pull Up/ Down	nRF52840 QFN Pin	nRF52840 QFN Name	Comment
	SIO_41/				PULL-			Laird Devkit: SPI EEPROM. SPI_Eeprom_CLK, Output:
30	SPI_CLK	SIO_41	SPI_CLK	IN	UP	R1	P1.09	SPIOPEN() in smartBASIC selects SPI function, MOSI and CLK are outputs when in SPI master mode.
31	VDD	-	-	-	-			3.0V to 3.6V
32	SIO_40/	SIO_40	SPI_MOSI	IN	PULL-	P2	P1.08	Laird Devkit: SPI EEPROM. SPI_Eeprom_MOSI, Output SPIOPEN() in
	SPI_MOSI				UP		1	smartBASIC selects SPI function, MOSI and CLK are outputs in SPI master.
33	GND	-	-	-	-	-	-	-
34	SIO_04/ AIN2/ SPI_MISO	SIO_04	AIN2/ SPI_MISO	IN	PULL- UP	J1	PO.04/AIN2	Laird Devkit: SPI EEPROM. SPI_Eeprom_MISO, Input. SPIOPEN() in smartBASIC selects SPI function; MOSI and CLK are outputs when in SPI master mode
35	SIO_06/ UART_TX	SIO_06	UART_TX	OUT	Set High in FW	L1	PO.06	UARTCLOSE() selects DIO functionality. UARTOPEN() selects UART COMMS behaviour
36	SIO_26/ I2C_SDA	SIO_26	I2C_SDA	IN	PULL- UP	G1	PO.26	Laird Devkit: I2C RTC chip. I2C data line.
37	SIO_07/ UART_CTS	SIO_07	UART_CTS	IN	PULL- DOWN	M2	PO.07	UARTCLOSE() selects DIO functionality. UARTOPEN() selects UART COMMS behaviour
38	SIO_27/ I2C_SCL	SIO_27	I2C_SCL	IN	PULL- UP	H2	PO.27	Laird Devkit: I2C RTC chip. I2C clock line.
39	SIO_05/ UART_RTS/ AIN3	SIO_05	UART_RTS/ AIN3	OUT	Set Low in FW	K2	PO.05/AIN3	UARTCLOSE() selects DIO functionality.

Pin#	Pin Name	Default Function	Alternate Function	In/ Out	Pull Up/ Down	nRF52840 QFN Pin	nRF52840 QFN Name	Comment
								UARTOPEN() selects UART COMMS behaviour
40	GND	-	-	-	-	-	-	-
41	SIO_01/ XL2	SIO_01	XL2	IN	PULL- UP	F2	PO.01/XL2	Laird Devkit: Optional 32.768kHz crystal pad XL2 and associated load capacitor.
42	SIO_00/ XL1	SIO_00	XL1	IN	PULL- UP	D2	PO.00/XL1	Laird Devkit: Optional 32.768kHz crystal pad XL1 and associated load capacitor.
43	GND	-	-	-	-	-	-	-
44	SIO_31/ AIN7	SIO_31	AIN7	IN	PULL- UP	A8	PO.31/AIN7	-
45	SIO_30/ AIN6	SIO_30	AIN6	IN	PULL- UP	В9	PO.30/AIN6	-
46	SIO_28/ AIN4	SIO_28	AIN4	IN	PULL- UP	B11	PO.28/AIN4	-
47	GND	-	-	-	-	-	-	-
48	SIO_29/ AIN5	SIO_29	AIN5	IN	PULL- UP	A10	PO.29/AIN5	-
49	SIO_03/ AIN1	SIO_03	AIN1	IN	PULL- UP	B13	PO.03/AIN1	Laird Devkit: Temp Sens Analog
50	SIO_02/ AIN0	SIO_02	AIN0	IN	PULL- DOWN	A12	PO.02/AIN0	Internal pull-down. Pull High externally to enter VSP (Virtual Serial Port) Service.
51	SIO_46	SIO_46	-	IN	PULL- UP	B15	P1.14	-
52	GND	-	-	-	-	-	-	-
53	SIO_47	SIO_47	-	IN	PULL- UP	A14	P1.15	-
54	SIO_44	SIO_44	-	IN	PULL- UP	B17	P1.12	Laird Devkit: SPI EEPROM. SPI_Eeprom_CS, Input
55	GND	-	-	-	-	-	-	-
56	SIO_45	SIO_45	-	IN	PULL- UP	A16	P1.13	-
57	NFC2/ SIO_10	NFC2	SIO_10	IN	-	J24	PO.10/NFC2	-
58	GND	-	-	-	-	-	-	-

Pin#	Pin Name	Default Function	Alternate Function	In/ Out	Pull Up/ Down	nRF52840 QFN Pin	nRF52840 QFN Name	Comment
59	NFC1/ SIO_09	NFC1	SIO_09	IN	-	L24	PO.09/NFC1	-
60	SIO_43	SIO_43	-	IN	PULL- UP	B19	P1.11	-
61	SIO_37	SIO_37	-	IN	PULL- UP	T23	P1.05	-
62	SIO_42	SIO_42	-	IN	PULL- UP	A20	P1.10	-
63	SIO_38	N/C	-	IN	PULL- UP	R24	P1.06	Reserved for future use. Do not connect.
64	SIO_39	SIO_39	-	IN	PULL- UP	P23	P1.07	-
65	GND	-	-	-	-	-	-	-
66	GND	-	-	-	-	-	-	-
67	GND	-	-	-	-	-	-	-
68	GND	-	-	-	-	-	-	-
69	GND	-	-	-	-	-	-	-
70	GND	-	-	-	-	-	-	-
71	GND	-	-	-	-	-	-	-
72	GND	-	-	-	-	-	-	Added GND in the DSU840PA
73	GND	-	-	-	-	-	-	Added GND in the DSU840PA
74	GND	-	-	-	-	-	-	Added GND in the DSU840PA
75	GND	-	-	-	-	-	-	Added GND in the DSU840PA
76	GND	-	-	-	-	-	-	Added GND in the DSU840PA
77	GND	-	-	-	-	-	-	Added GND in the DSU840PA
78	GND	-	-	-	-	-	-	Added GND in the DSU840PA
79	GND	-	-	-	-	-	-	Added GND in the DSU840PA

Pin Definition Notes:

Note 1 SIO = Signal Input or Output. Secondary function is selectable in *smart*BASIC application or via Nordic SDK. I/O voltage level tracks VDD. AIN = Analog Input.

Note 2 At reset, all SIO lines are configured as the defaults shown above.

ratiood, all olo illio alo comigaloù ao alo aolagilo chomi abovo.

Pin Definition Notes:

SIO lines can be configured through the *smart*BASIC application script to be either inputs or outputs with pull-ups or pull-downs. When an alternative SIO function is selected (such as I2C or SPI), the firmware does not allow the setup of internal pull-up/pull-down. Therefore, when I2C interface is selected, pull-up resistors on I2C SDA and I2C SCL *must* be connected externally as per I2C standard.

Note 3

JTAG (two-wire SWD interface), pin 1 (SWDIO) and pin 3 (SWDCLK).

JTAG is required because Nordic SDK applications can only be loaded using JTAG (*smart*BASIC firmware can be loaded using the JTAG as well as UART). We recommend that you use JTAG (2-wire interface) to handle future DSU840PAmodule *smart*BASIC firmware upgrades. You MUST wire out the JTAG (2-wire interface) on your host design (see Figure 2, where four lines (SWDIO, SWDCLK, GND and VDD) should be wired out. *smart*BASIC firmware upgrades can still be performed over the DSU840PAUART interface, but this is slower (60 seconds using UART vs. 10 seconds when using JTAG) than using the DSU840PAJTAG (2-wire interface).

Upgrading smartBASIC firmware or loading the smartBASIC applications is done using the UART interface.

Note 4

Pull the nRESET pin (pin 19) low for minimum 100 milliseconds to reset the DSU840PA.

Note 5

The SIO_02 pin (pin 50) must be pulled high externally to enable VSP (Virtual Serial Port) which would allow OTA (over-the-air) *smart*BASIC application download. Refer to the latest firmware release documentation for details.

Note 6

Ensure that SIO_02 (pin 50) and AutoRUN (pin 5) are **not both high** (externally), in that state, the UART is bridged to Virtual Serial Port service; the DSU840PAmodule does not respond to AT commands and cannot load *smart*BASIC application scripts.

Note 7

Pin 5 (nAutoRUN) is an input, with active low logic. In the development kit it is connected so that the state is driven by the host's DTR output line. The nAutoRUN pin must be externally held high or low to select between the following two DSU840PAoperating modes:

- Self-contained Run mode (nAutoRUN pin held at 0V –this is the default (internal pull-down enabled))
- Interactive/Development mode (nAutoRUN pin held at VDD)

The *smart*BASIC firmware checks for the status of nAutoRUN during power-up or reset. If it is low and if there is a *smart*BASIC application script named **\$autorun\$**, then the *smart*BASIC firmware executes the application script automatically; hence the name Self-contained Run Mode.

Note 8

The *smartBASIC* firmware has SIO pins as Digital (Default Function) INPUT pins, which are set PULL-UP by default. This avoids floating inputs (which can cause current consumption to drive with time in low power modes (such as Standby Doze). You can disable the PULL-UP through your *smartBASIC* application.

All of the SIO pins (with a default function of DIO) are inputs (apart from SIO 05 and SIO 06, which are outputs):

- SIO 06 (alternative function UART TX) is an output, set High (in the firmware).
- SIO 05 (alternative function UART RTS) is an output, set Low (in the firmware).
- SIO 08 (alternative function UART RX) is an input, set with internal pull-up (in the firmware).
- SIO 07 (alternative function UART CTS) is an input, set with internal pull-down (in the firmware).
- SIO_02 is an input set with internal pull-down (in the firmware). It is used for OTA downloading of smartBASIC applications. Refer to the latest firmware extension documentation for details.
- UART_RX, UART_TX, and UART_CTS are 3.3 V level logic (if VDD is 3.3 V; such as SIO pin I/O levels track VDD). For example, when Rx and Tx are idle, they sit at 3.3 V (if VDD is 3.3 V). Conversely, handshaking pins CTS and RTS at 0V are treated as assertions.

Note 9

DSU840PA also allows an option to connect an external higher accuracy (±20 ppm) 32.768 kHz crystal to the DSU840PA pins SIO_01/XL2 (pin 41) and SIO_00/XL1 (pin 42). This provides higher accuracy protocol timing and helps with radio power consumption in the system standby doze/deep sleep modes by reducing the time that the Rx window must be open.

Pin Definition Notes:

Note 10

Not required for DSU840PA module normal operation. The on-chip 32.768 kHz LFRC oscillator provides the standard accuracy of ±500 ppm, with calibration required every eight seconds (default) to stay within ±500 ppm.

DSU840PA power supply options:

 Option 1 – Normal voltage power supply mode entered when the external supply voltage is connected to both the VDD and VDD_HV pins (so that VDD equals VDD_HV). Connect external supply within range 3.0V to 3.6V range to DSU840PA VDD and VDD_HV pins.

OR

Option 2 – High voltage mode power supply mode (using DSU840PA VDD_HV pin) entered when the
external supply voltage in ONLY connected to the VDDH pin and the VDD pin is not connected to any
external voltage supply. Connect external supply within range 3.0V to 5.5V range to DSU840PA VDD_HV
pin. DSU840PA VDD pin left unconnected.

For either option, if you use USB interface then the DSU840PA VBUS pin must be connected to external supply within the range 4.35V to 5.5V. When using the DSU840PA VBUS pin, you MUST externally fit a 4.7uF to ground.

3.3 Electrical Specifications

3.3.1 Absolute Maximum Ratings

Absolute maximum ratings for supply voltage and voltages on digital and analogue pins of the module are listed below; exceeding these values causes permanent damage.

Table 2: Maximum current ratings

Parameter	Min	Max	Unit
Voltage at VDD pin	-0.3	+3.9 (Note 1)	V
Voltage at VDD_HV pin	-0.3	+5.5	V
VBUS	-0.3	+5.8	V
Voltage at GND pin		0	V
Voltage at SIO pin (at VDD≤3.6V)	-0.3	VDD +0.3	V
Voltage at SIO pin (at VDD≥3.6V)	-0.3	3.9	V
Radio RF input level	-	-1	dBm
Environmental			
Storage temperature	-40	+85	°C
MSL (Moisture Sensitivity Level)	-	4	-
ESD (as per EN301-489)			
Conductive		4	KV
Air Coupling		8	KV
Flash Memory (Endurance) (Note 2)	-	10000	Write/erase cycles
Flash Memory (Retention)	-	10 years at 40°C	-

Maximum Ratings Notes:

Note 1	The absolute maximum rating for VDD pin (max) is 3.9V for the DSU840PA.
Note 2	Wear levelling is used in file system.

3.3.2 Recommended Operating Parameters

Table 3: Power supply operating parameters

Parameter	Min	Тур	Max	Unit
VDD (independent of DCDC) ¹ supply range	3.0	3.3	3.6	V
VDD_HV (independent of DCDC) supply range	3.0	3.7	5.5	V
VBUS USB supply range	4.35	5	5.5	V
VDD Maximum ripple or noise ²	-	-	10	mV
VDD supply rise time (0V to 1.7V) ³	-	-	60	mS
Time in Power				mS
				mS
				mS
VDD_HV supply rise time (0V to 3.7V) ³			100	mS
Operating Temperature Range	-40	-	+85	°C
Maximum Received Signal Strength at <0.1% PER		-11		dBm

Recommended Operating Parameters Notes:

Note 1	4.7 uF internal to module on VDD. The internal DCDC convertor or LDO is decided by the underlying BLE stack.
Note 2	This is the maximum VDD or VDD_HV ripple or noise (at any frequency) that does not disturb the radio.
Note 3	The on-board power-on reset circuitry may not function properly for rise times longer than the specified maximum.
Note 4	DSU840PA power supply options:

 Option 1 – Normal voltage power supply mode entered when the external supply voltage is connected to both the VDD and VDD_HV pins (so that VDD equals VDD_HV). Connect external supply within range 3.0V to 3.6V range to DSU840PA VDD and VDD_HV pins.

OR

Option 2 – High voltage mode power supply mode (using DSU840PA VDD_HV pin) entered when the
external supply voltage in ONLY connected to the VDD_HV pin and the VDD pin is not connected to any
external voltage supply. Connect external supply within range 3.0V to 5.5V range to DSU840PA VDD_HV
pin. DSU840PA VDD pin left unconnected.

For either option, if you use USB interface then the DSU840PA VBUS pin must be connected to external supply within the range 4.35V to 5.5V. When using the DSU840PA VBUS pin, you MUST externally fit a 4.7uF to ground.

Table 4: Signal levels for interface, SIO

Parameter	Min	Тур	Max	Unit
V _{IH} Input high voltage	0.7 VDD		VDD	V
V _{IL} Input low voltage	VSS		0.3 x VDD	V
V _{OH} Output high voltage				
(std. drive, 0.5 mA) (Note 1)	VDD -0.4		VDD	V
(high-drive, 3 mA) (Note 1)	VDD -0.4		VDD	V
(high-drive, 5mmA) (Note 2)	VDD -0.4		VDD	
V _{OL} Output low voltage				
(std. drive, 0.5 mA) (Note 1)	VSS		VSS+0.4	V

Parameter	Min	Тур	Max	Unit
(high-drive, 3nmA) (Note 1)	VSS		VSS+0.4	V
(high-drive, 5mmA) (Note 2)	VSS		VSS+0.4	
V _{OL} Current at VSS+0.4V, Output set low				
(std. drive, 0.5 mA) (Note 1)	1	2	4	mA
(high-drive, 3 mA) (Note 1)	3	-	-	mA
(high-drive, 5 mA) (Note 2)	6	10	15	mA
V _{OL} Current at VDD -0.4, Output set low				
(std. drive, 0.5 mA) (Note 1)	1	2	4	mA
(high-drive, 3 mA) (Note 1)	3	-	-	mA
(high-drive, 5 mA) (Note 2)	6	9	14	mA
Pull up resistance	11	13	16	kΩ
Pull down resistance	11	13	16	kΩ
Pad capacitance		3		pF
Pad capacitance at NFC pads		4		pF

Signal Levels Notes:

Note 1 For VDD≥1.7V. The firmware supports high drive (3 mA, as well as standard drive).

Note 2 For VDD≥2.7V. The firmware supports high drive (5 mA (since VDD≥2.7V), as well as standard drive).

The GPIO (SIO) high reference voltage always equals the level on the VDD pin.

- Normal voltage mode The GPIO high level equals the voltage supplied to the VDD pin
- High voltage mode The GPIO high level equals the level specified (is configurable to 1.8V, 2.1V, 2.4V, 2.7V, 3.0V, and 3.3V. The default voltage is 1.8V). In High voltage mode, the VDD pin becomes an output voltage pin. The VDD output voltage and hence the GPIO is configurable from 1.8V to 3.3V with possible settings of 1.8V, 2.1V, 2.4V, 2.7V, 3.0V, and 3.3V. Refer to Table 15 for additional details.

Table 5: SIO pin alternative function AIN (ADC) specification

Parameter	Min	Тур	Max	Unit
Maximum sample rate			200	kHz
ADC Internal reference voltage	-1.5%	0.6 V	+1.5%	%
ADC pin input internal selectable scaling		4, 2, 1, 1/2, 1/3, 1/4, 1/5		scaling
		1/6		

ADC input pin (AIN) voltage maximum without

damaging ADC w.r.t (see Note 1)

VCC Prescaling

0V-VDD 4, 2, 1, ½, 1/3, ¼, 1/5, 1/6 VDD+0.3

Configurable Resolution	8-bit mode	10-bit mode	12-bit mode	bits
Configurable (see Note 2)				
Acquisition Time, source resistance ≤10kΩ Acquisition		3		uS
Time, source resistance ≤40kΩ		5		uS
Acquisition Time, source resistance ≤100kΩ		10		uS
Acquisition Time, source resistance ≤200kΩ		15		uS

Parameter	Min	Тур	Max	Unit	
Maximum sample rate			200	kHz	
Acquisition Time, source resistance ≤400kΩ	•	20		uS	
Acquisition Time, source resistance ≤800kΩ		40		uS	
Conversion Time (see Note 3) <2					
ADC input impedance (during operation) (see Note 3)					
Input Resistance		>1		MOhm	
Sample and hold capacitance at maximum gain		2.5		pF	

Recommended Operating Parameters Notes:

Note 1	Stay within internal 0.6 V reference voltage with given pre-scaling on AIN pin and do not violate ADC maximum input voltage (for damage) for a given VCC, e.g. If VDD is 3.6V, you can only expose AIN pin to VDD+0.3 V. Default pre-scaling is 1/6 which configurable via <i>smart</i> BASIC.
Note 2	Firmware allows configurable resolution (8-bit, 10-bit or 12-bit mode) and acquisition time. DSU840PA ADC is a Successive Approximation type ADC (SSADC), as a result no external capacitor is needed for ADC operation. Configure the acquisition time according to the source resistance that customer has.
	The sampling frequency is limited by the sum of sampling time and acquisition time. The maximum sampling time is 2us. For acquisition time of 3us the total conversion time is therefore 5us, which makes maximum sampling frequency of 1/5us = 200kHz. Similarly, if acquisition time of 40us chosen, then the conversion time is 42us and the maximum sampling frequency is 1/42us = 23.8 kHz.
Note 3	ADC input impedance is estimated mean impedance of the ADC (AIN) pins.

3.4 Programmability

3.4.1 DSU840PA Default Firmware

The DSU840PA module comes loaded with *smart*BASIC firmware but does not come loaded with any *smart*BASIC application script (as that is dependent on customer-end application or use). Laird provides many sample *smart*BASIC application scripts via a sample application folder on GitHub – https://github.com/LairdCP/BL654-Applications

Therefore, it boots into AT command mode by default.

3.4.2 DSU840PA Special Function Pins in smartBASIC

Refer to the smartBASIC extension manual for details of functionality connected to this:

- nAutoRUN pin (SIO_35), see Table 6 for default
- VSP pin (SIO_02), see Table 7 for default
- SIO_38 Reserved for future use. Do not connect. See Table 8

Table 6: nAutoRUN pin

Signal Name	Pin#	I/O	Comments		
nAutoRUN /(SIO_35)	5	I	Input with active low logic. Internal pull down (default).		
			Operating mode selected by nAutoRun pin status:		
			 Self-contained Run mode (nAutoRUN pin held at 0V). 		
			If Low (0V), runs \$autorun\$ if it exists		
			 Interactive/Development mode (nAutoRUN pin held at VCC). 		
			 If High (VCC), runs via at+run (and file name of application) 		

In the development board nAutoRUN pin is connected so that the state is driven by the host's DTR output line.

Table 7: VSP mode

Signal Name	Pin#	I/O	Comments
SIO_02	50	1	Internal pull down (default).
			VSP mode selected by externally pulling-up SIO_02 pin:
			High (VCC), then OTA smartBASIC application download is possible.

Table 8: SIO 38

Signal Name	Pin#	I/O	Comments
SIO_38	63	I	Internal pull up (default).
			Reserved for future use. Do not connect if using smartBASIC FW.

4 POWER CONSUMPTION

Data at VDD of 3.3 V with internal (to chipset) LDO ON or with internal (to chipset) DCDC ON (see Power Consumption Note 1) and 25° C.

4.1 Power Consumption

Table 9: Power consumption

Parameter	Min	Тур	Max	Unit
Active mode 'peak' current (Note 1)		With DCDC [with LDO]		
(Advertising or Connection)				
Tx only run peak current @ Txpwr = +18 dBm		102.2 [112.7]		mA
Tx only run peak current @ Txpwr = +14 dBm		65.9 [77.0]		mA
Tx only run peak current @ Txpwr = 6 dBm		37.2 [44.4]		mA
Tx only run peak current @ Txpwr = 0 dBm		25.5 [30.5]		mA
Tx only run peak current @ Txpwr = -6 dBm		21.2 [25.3]		mA
Tx only run peak current @ Txpwr = -26 dBm		18.5 [21.8]		mA
Active Mode				
Rx only 'peak' current, BLE 1 Mbps (Note 1)		10.9 [17.3]		mA
Ultra-Low Power Mode 1 (Note 2) Standby Doze, 256 k RAM retention		5.9		uA
Ultra-Low Power Mode 2 (Note 3)				
Deep Sleep (no RAM retention)		2.0		uA
Active Mode Average current (Note 4)				
Advertising Average Current draw		Note4		
Max, with advertising interval (min) 20 mS Min, with advertising interval (max) 10240 mS		uA uA		
Connection Average Current draw		Note4		uA
Max, with connection interval (min) 7.5 mS		Note4		uA
Min, with connection interval (max) 4000 mS		Note4		uA

Power Consumption Notes:

Note 1

This is for Peak Radio Current only, but there is additional current due to the MCU. The Normal Voltage mode internal REG1 DCDC convertor or LDO is decided by the underlying BLE stack.

Power Consumption Notes:

Note 2

DSU840PA modules Standby Doze is 5.9uA typical. When using *smart*BASIC firmware, Standby Doze is entered automatically (when a waitevent statement is encountered within a smartBASIC application script). In Standby Doze, all peripherals that are enabled stay on and may re-awaken the chip. Depending on active peripherals, current consumption ranges from 5.9 μ A to 370 uA (when UART is ON). See individual peripherals current consumption data in the Peripheral Block Current Consumption section. smartBASIC firmware has functionality to detect GPIO change with no current consumption cost, it is possible to close the UART and get to the 5.9 uA current consumption regime and still be able to detect for incoming data and be woken up so that the UART can be re-opened at expense of losing that first character.

The DSU840PA Standby Doze current consists of the below nRF52840 blocks:

- nRF52 System ON IDLE current (no RAM retention) (0.97 uA) This is the base current of the CPU
- LFRC (0.7 uA) and RTC (0.1uA) running as well as 256k RAM retention (1.4 uA) This adds to the total of 3.1 uA typical. The RAM retention is 20nA per 4k block (1.28uA), but this can vary to 30nA per 4k block (1.92uA) which would make the total 3.7uA.
- DSU840PA PA and LNA and associated circuitry takes the rest.

Note 3

In Deep Sleep, everything is disabled and the only wake-up sources (including NFC to wakeup) are reset and changes on SIO or NFC pins on which sense is enabled. The current consumption seen is ~2.0 uA typical in DSU840PA modules.

Coming out from Deep Sleep to Standby Doze through the reset vector.

Note 4

Average current consumption depends on several factors (including Tx power, VCC, accuracy of 32MHz and 32.768 kHz). With these factors fixed, the largest variable is the advertising or connection interval set.

Advertising Interval range:

20 milliseconds to 10240 mS (10485759.375 mS in BT 5.1) in multiples of 0.625 milliseconds.

For an advertising event:

- The minimum average current consumption is when the advertising interval is large 10240 mS (10485759.375 mS in BT 5.1) although this may cause long discover times (for the advertising event) by scanners
- The maximum average current consumption is when the advertising interval is small 20 mS

each advertising packet and whether it's continuously advertising or periodically advertising.

Other factors that are also related to average current consumption include the advertising payload bytes in

Connection Interval range (for a peripheral):

7.5 milliseconds to 4000 milliseconds in multiples of 1.25 milliseconds.

For a connection event (for a peripheral device):

- The minimum average current consumption is when the connection interval is large 4000 milliseconds
- The maximum average current consumption is with the shortest connection interval of 7.5 ms; no slave latency.

Other factors that are also related to average current consumption include:

- Number packets per connection interval with each packet payload size
- An inaccurate 32.768 kHz master clock accuracy would increase the average current consumption.

Connection Interval range (for a central device):

2.5 milliseconds to 40959375 milliseconds in multiples of 1.25 milliseconds.

4.2 Peripheral Block Current Consumption

The values below are calculated for a typical operating voltage of 3V.

Table 10: UART power consumption

		T	ур		
Parameter	Min	WITH DCDC(REG1)	WITH LDO(REG1)	Max	Unit
UART Run current @ 115200 bps	-	729	951	-	uA
UART Run current @ 1200 bps	-	729	951	-	uA
Idle current for UART (no activity)	-	29	29	-	uA
UART Baud rate	1.2		-	1000	kbps

Table 11: SPI power consumption

		T	ур		
Parameter	Min	WITH DCDC(REG1)	WITH LDO(REG1)	Max	Unit
SPI Master Run current @ 2 Mbps	-	803	1040	-	uA
SPI Master Run current @ 8 Mbps	-	803	1040	-	uA
Idle current for SPI (no activity)	-	<1	<1	-	uA
SPI bit rate	-		-	8	Mbps

Table 12: I2C power consumption

		Т	/p		
Parameter	Min	WITH DCDC(REG1)	WITH LDO(REG1)	Max	Unit
I2C Run current @ 100 kbps	-	967	1250	-	uA
I2C Run current @ 400 kbps	-	967	1250	-	uA
Idle current for I2C (no activity)	-	3.2	3.2	-	uA
I2C Bit rate	100		-	400	kbps

Table 13: ADC power consumption

		Ту	ур			
Parameter	Min	WITH DCDC(REG1)	WITH LDO(REG1)	Max	Unit	
ADC current during conversion	-	1640	2010	-	uA	
Idle current for ADC (no activity)	-	0	0	-	uA	

The above current consumption is for the given peripheral including the internal blocks that are needed for that peripheral for both the case when DCDC(REG1) is on and off. The peripheral Idle current is when the peripheral is enabled but not running (not sending data or being used) and must be added to the DSU840PA StandByDoze current (Nordic System ON Idle current). In all cases radio is not turned on.

For asynchronous interface, like the UART (asynchronous as the other end can communicate at any time), the UART on the DSU840PA must be kept open (by a command in *smart*BASIC application script), resulting in the base current consumption penalty.

For a synchronous interface like the I2C or SPI (since DSU840PA side is the master), the interface can be closed and opened (by a command in *smart*BASIC application script) only when needed, resulting in current saving (no base current consumption penalty). There's a similar argument for ADC (open ADC when needed).

5 FUNCTIONAL DESCRIPTION

To provide the widest scope for integration, a variety of physical host interfaces/sensors are provided. The major DSU840PA module functional blocks described below.

5.1 Power Management

Power management features:

- System Standby Doze and Deep Sleep modes
- Open/Close peripherals (UART, SPI, QSPI, I2C, SIO's, ADC). Peripherals consume current when open; each peripheral
 can be individually closed to save power consumption
- Use of the internal DCDC convertor or LDO is decided by the underlying BLE stack
- smartBASIC command allows the supply voltage to be read (through the internal ADC)
- Pin wake-up system from deep sleep

Power supply features:

- Supervisor hardware to manage power during reset, brownout, or power fail.
- 3.0V to 3.6V supply range for normal power supply (VDD pin) using internal DCDC convertor or LDO decided by the underlying BLE stack.
- 3.0V to 5.5 supply range for High voltage power supply (VDD_HV pin) using internal DCDC convertor or LDO decided by the underlying BLE stack.
- 4.35V to 5.5V supply range for powering USB (VBUS pin) portion of DSU840PA only. The remainder of the DSU840PA module circuitry must still be powered through the VDD (or VDD_HV) pin.

5.2 DSU840PA Power Supply Options

The DSU840PA module power supply internally contains the following two main supply regulator stages (Figure 1):

- REG0 Connected to the VDD HV pin
- REG1 Connected to the VDD pin

The USB power supply is separate (connected to the VBUS pin).

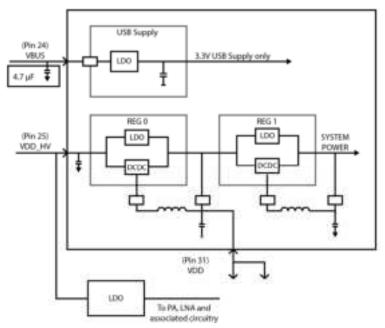


Figure 1: DSU840PA power supply block diagram (adapted from the following resource: http://infocenter.nordicsemi.com/pdf/nRF52840_PS_v1.0.pdf

The DSU840PA power supply system enters one of two supply voltage modes, normal or high voltage mode, depending on how the external supply voltage is connected to these pins.

DSU840PA power supply options:

Option 1 – Normal voltage power supply mode entered when the external supply voltage is connected to both the VDD and VDD_HV pins (so that VDD equals VDD_HV). Connect external supply within range 3.0V to 3.6V range to DSU840PA VDD and VDD_HV pins.

OR

Option 2 – High voltage mode power supply mode (using DSU840PA VDD_HV pin) entered when the external supply voltage in ONLY connected to the VDD_HV pin and the VDD pin is not connected to any external voltage supply. Connect external supply within range 3.0V to 5.5V range to DSU840PA VDD_HV pin. DSU840PA VDD pin left unconnected.

For either option, if you use USB interface then the DSU840PA VBUS pin must be connected to external supply within the range 4.35V to 5.5V. When using the DSU840PA VBUS pin, you **MUST** externally fit a 4.7uF to ground.

Table 14 summarizes these power supply options.

Table 14: DSU840PA powering options

Power Supply Pins and Operating Voltage Range	OPTION 1 Normal voltage mode operation connect?	OPTION 2 High voltage mode operation connect?	OPTION 1 with USB peripheral, operation, and normal voltage connect?	OPTION 2 with USB peripheral, operation, and high voltage connect?
VDD (pin31) 3.0V to 3.6V	Yes (Note 1)	No (Note 2)	Yes	No (Note 2)
VDD_HV (pin25) 3.0V to 5.5V	No	Yes	No	Yes (Note 5)
VBUS (pin24) 4.35V to 5.5V	No	(Note 3)	Yes (Note 4)	Yes (Note 4)

Power Supply Option Notes:

Note 1 Or

Option 1 – External supply voltage is connected to BOTH the VDD and VDD_HV pins (so that VDD equals VDD_HV). Connect external supply within range 3.0V to 3.6V range to BOTH DSU840PA VDD and VDD_HV pins.

Note 2

Option 2 – External supply within range 3.0V to 5.5V range to the DSU840PA VDD_HV pin ONLY. DSU840PA VDD pin left unconnected.

In High voltage mode, the VDD pin becomes an output voltage pin. It can be used to supply external circuitry from the VDD pin. Before any current can be taken from the DSU840PA VDD pin, this feature must be enabled in the DSU840PA. Additionally, the VDD output voltage is configurable from 1.8V to 3.3V with possible settings of 1.8V, 2.1V, 2.4V, 2.7V, 3.0V, and 3.3V. The default voltage is 1.8V.

The supported DSU840PA VDD pin output voltage range depends on the supply voltage provided on the DSU840PA VDD_HV pin. The minimum difference between voltage supplied on the VDD_HV pin and the voltage output on the VDD pin is 0.3 V. The maximum output voltage of the VDD pin is VDDH – 0.3V. Table4 shows the current that can be drawn by external circuitry from VDD pin in high voltage mode (supply on VDD_HV).

Table 15: Current that can be drawn by external circuitry from VDD pin in High voltage mode (supply on VDD_HV)

Parameter	Min	Тур	Max	Unit
External current draw (from VDD pin) allowed in High Voltage mode (supply on VDD_HV) during System OFF (DSU840PA Deep Sleep)			1	mA
External current draw (from VDD pin) allowed in High Voltage mode (supply on VDD_HV) when radio Tx RF power higher than 4dBm.			5	mA
External current draw (from VDD pin) allowed in High Voltage mode (supply on VDD_HV) when radio Tx RF power lower than 4dBm.			25	mA
Minimum difference between voltage supplied on VDD_HV pin and voltage on VDD pin		0.3		V

Note 3

External current draw is the sum of all GPIO currents and current being drawn from VDD.

Depends on whether USB operation is required

Note 4

When using the DSU840PA VBUS pin, you must externally fit a 4.7uF capacitor to ground.

Note 5

To use the DSU840PA USB peripheral:

- 1. Connect the DSU840PA VBUS pin to the external supply within the range 4.35V to 5.5V. When using the DSU840PA VBUS pin, you **MUST** externally fit a 4.7 uF to ground.
- 2. Connect the external supply to either the VDD (Option 1) or VDD_HV (Option 2) pin to operate the rest of DSU840PA module.

When using the DSU840PA USB peripheral, the VBUS pin can be supplied from same source as VDD_HV (within the operating voltage range of the VBUS pin and VDD_HV pin).

5.3 Clocks and Timers

5.3.1 Clocks

The integrated high accuracy 32 MHz (±10 ppm) crystal oscillator helps with radio operation and reducing power consumption in the active modes.

The integrated on-chip 32.768 kHz LFRC oscillator (±500 ppm) provides protocol timing and helps with radio power consumption in the system StandByDoze and Deep Sleep modes by reducing the time that the RX window needs to be open.

To keep the on-chip 32.768 kHz LFRC oscillator within ±500 ppm (which is needed to run the BLE stack) accuracy, RC oscillator needs to be calibrated (which takes 33 mS) regularly. The default calibration interval is eight seconds which is enough to keep within ±500 ppm. The calibration interval ranges from 0.25 seconds to 31.75 seconds (in multiples of 0.25 seconds) and configurable via firmware

5.3.2 Timers

When using *smart*BASIC, the timer subsystem enables applications to be written which allows future events to be generated based on timeouts.

- Regular Timer There are eight built-in timers (regular timers) derived from a single RTC clock which are controlled solely by smartBASIC functions. The resolution of the regular timer is 976 microseconds.
- Tick Timer A 31-bit free running counter that increments every (1) millisecond. The resolution of this counter is 488 microseconds.

Refer to the smartBASIC User Guide available from the Laird DSU840PA product page.

5.4 Radio Frequency (RF)

- 2402–2480 MHz Bluetooth Low Energy radio BT 5.1 1 Mbps, 2 Mbps, and Long-range (125 kbps) over-the-air data rate.
- Tx output power of +18 dBm programmable down to 14 dBm, 6 dBm, 0 dBm, -6 dBm and final TX power level of -26 dBm.
- TX power for coded PHY 125 kbps (s=8) is limited to 14 dBm to stay within regulatory TX power spectral density requirements.
- Receiver (with integrated channel filters) to achieve maximum sensitivity -98.5 dBm @ 1 Mbps BLE, -95 dBm @ 2 Mbps, -107 dBm @ 125 kbps long-range).
- RF band pass filter to help with cellular RF co-existence.
- RF conducted interface available in the following two ways:
 - DSU840PA: RF connected to on-board IPEX MH4 RF connector
- Antenna options:
 - External dipole antenna connected with to IPEX MH4 RF connector on the DSU840PA
- Received Signal Strength Indicator (RSSI)
- RSSI accuracy (valid range -90 to -20dBm) is ±2dB typical
 - DSU840PA RX LNA gain is 11dB, so RSSI valid range becomes -101dB to -31dBm
- RSSI resolution 1dB typical
- Maximum Received Signal Strength (at <0.1% PER) of -11dBm. Limited by RX LNA gain of 11dB in Front End Module.
- For ANT protocol, Maximum allowable Tx power for NRF52840 is -8dBm and duty cycle must be equal or less then 10%.
- DSU840PA can run the ANT and Bluetooth LE protocols concurrently. The radio time is time-sliced and shared between
 the protocols. The scheduling is autonomous and connections are maintained. Leverage the interoperability of Bluetooth
 LE stack and let a Bluetooth LE device, such as a smartphone, interact with the ANT network.

5.5 USB interface

DSU840PA has USB2.0 FS (Full Speed, 12 Mbps) hardware capability.

Table 16: USB interface

Signal Name	Pin No	I/O	Comments
D-	17	I/O	
D+	15	I/O	
VDLIC	VBUS 24	use	When using the DSU840PA VBUS pin (which is mandatory when a USB interface is used), you MUST connect a 4.7uF capacitor to ground.
VBUS			Note: You MUST power the rest of DSU840PA module circuitry through the VDD pin (OPTION1) or VDD_HV pin (OPTION2).

5.6 SPI Bus

The SPI interface is an alternate function on SIO pins.

The module is a master device that uses terminals SPI_MOSI, SPI_MISO, and SPI_CLK. SPI_CS is implemented using any spare SIO digital output pins to allow for multi-dropping.

The SPI interface enables full duplex synchronous communication between devices. It supports a 3-wire (SPI_MOSI, SPI_MISO, SPI_SCK,) bidirectional bus with fast data transfers to and from multiple slaves. Individual chip select signals are necessary for each of the slave devices attached to a bus, but control of these is left to the application through use of SIO signals. I/O data is double-buffered.

The SPI peripheral supports SPI mode 0, 1, 2, and 3.

Table 17: SPI interfaces

Signal Name	Pin No	I/O	Comments
SIO_40/SPI_MOSI	32	0	This interface is an alternate function configurable by smartBASIC.
SIO_04/AIN2/SPI_MISO	34	I	Default in the FW pin 56 and 53 are SIO inputs. SPIOPEN() in smartBASIC selects SPI function and changes pin 56 and 53 to outputs
SIO_41/SPI_CLK	30	0	(when in SPI master mode).
Any_SIO/SPI_CS	54	I	SPI_CS is implemented using any spare SIO digital output pins to allow for multi-dropping. On Laird devboard SIO_44 (pin54) used as SPI_CS.

5.7 I2C Interface

The I2C interface is an alternate function on SIO pins.

The two-wire interface can interface a bi-directional wired-OR bus with two lines (SCL, SDA) and has master/slave topology. The interface is capable of clock stretching. Data rates of 100 kbps and 400 kbps are supported.

An I2C interface allows multiple masters and slaves to communicate over a shared wired-OR type bus consisting of two lines which normally sit at VDD. The SCL is the clock line which is always sourced by the master and SDA is a bi-directional data line which can be driven by any device on the bus.

IMPORTANT: You must remember that pull-up resistors on both SCL and SDA lines are not provided in the module and MUST be provided external to the module.

Table 18: I2C interface

Signal Name	Pin No	I/O	Comments
SIO_26/I2C_SDA	36	I/O	This interface is an alternate function on each pin, configurable by
SIO_27/I2C_SCL	38	I/O	smartBASIC. I2COPEN() in smartBASIC selects I2C function.

5.8 General Purpose I/O, ADC, PWM, and FREQ

5.8.1 **GPIO**

The 19 SIO pins are configurable by *smartBASIC* application script. They can be accessed individually. Each has the following user configured features:

- Input/output direction
- Output drive strength (standard drive 0.5 mA or high drive 5mA)
- Internal pull-up and pull-down resistors (13 K typical) or no pull-up/down or input buffer disconnect
- Wake-up from high or low-level triggers on all pins including NFC pins

5.8.2 ADC

The ADC is an alternate function on SIO pins, configurable by smartBASIC.

The DSU840PA provides access to 8-channel 8/10/12-bit successive approximation ADC in one-shot mode. This enables sampling up to eight external signals through a front-end MUX. The ADC has configurable input and reference pre-scaling and sample resolution (8, 10, and 12 bit).

5.8.2.1 Analog Interface (ADC)

Table 19: Analog interface

Signal Name	Pin No	I/O	Comments
SIO_05/UART_RTS/AIN3 – Analog Input	39	I	This interface is an alternate function on each pin,
SIO_04/AIN2/SPI_MISO – Analog Input	34	I	configurable by <i>smart</i> BASIC. AIN configuration
SIO_03/AIN1 – Analog Input	49	I	selected using GpioSetFunc() function.
SIO_02/AIN0 – Analog Input	50	ı	Configurable 8, 10, 12-bit resolution.
SIO_31/AIN7 – Analog Input	44	I	Configurable voltage scaling 4, 2, 1/1, 1/3, 1/3, 1/4, 1/5, 1/6(default).
SIO_30/AIN6 – Analog Input	45	I	Configurable acquisition time 3uS, 5uS, 10uS(default),
SIO_29/AIN5 – Analog Input	48	I	15uS, 20uS, 40uS.
SIO_28/AIN4 – Analog Input	46	Ī	Full scale input range (VDD)

5.8.3 PWM Signal Output on up to 16 SIO Pins

The PWM output is an alternate function on ALL (GPIO) SIO pins, configurable by smartBASIC.

The **PWM output** signal has a frequency and duty cycle property. Frequency is adjustable (up to 1 MHz) and the duty cycle can be set over a range from 0% to 100%.

PWM output signal has a frequency and duty cycle property. PWM output is generated using dedicated hardware in the chipset. There is a trade-off between PWM output frequency and resolution.

For example:

- PWM output frequency of 500 kHz (2 uS) results in resolution of 1:2.
- PWM output frequency of 100 kHz (10 uS) results in resolution of 1:10.
- PWM output frequency of 10 kHz (100 uS) results in resolution of 1:100.
- PWM output frequency of 1 kHz (1000 uS) results in resolution of 1:1000.

5.8.4 FREQ Signal Output on up to 16 SIO Pins

The FREQ output is an alternate function on 16 (GPIO) SIO pins, configurable by smartBASIC.

Note: The frequency driving each of the 16 SIO pins is the same but the duty cycle can be independently set for each pin.

FREQ output signal frequency can be set over a range of 0 Hz to 4 MHz (with 50% mark-space ratio).

5.9 nRESET pin

Table 20: nRESET pin

Signal Name	Pin No	I/O	Comments
nRESET	19	I	DSU840PA HW reset (active low). Pull the nRESET pin low for minimum 100mS for the DSU840PA to reset.

5.10 Two-wire Interface JTAG

The DSU840PA firmware hex file consists of four elements:

- smartBASIC runtime engine
- Nordic Softdevice
- Master Bootloader

DSU840PA *smart*BASIC firmware (FW) image part numbers are referenced as w.x.y.z (ex. v29.x.y.z). The DSU840PA *smart*BASIC runtime engine and Softdevice combined image can be upgraded by the customer over the UART interface.

You also have the option to use the two-wire (JTAG) interface, during production, to clone the file system of a Golden preconfigured DSU840PA to others using the Flash Cloning process. This is described in the following application note *Flash Cloning for the DSU840PA*. In this case, the file system is also part of the .hex file.

Signal Name	Pin No	I/O	Comments
SWDIO	1	I/O	Internal pull-up resistor
SWDCLK	3	I	Internal pull-down resistor

The development board incorporates an on-board JTAG J-link programmer for this purpose. There is also the following JTAG connector which allows on-board JTAG J-link programmer signals to be routed off the development board. The only requirement is that you should use the following JTAG connector on the host PCB.

The JTAG connector MPN is as follows:

Reference	Part	Description and MPN (Manufacturers Part Number)
JP1	FTSH-105	Header, 1.27mm, SMD, 10-way, FTSH-105-01-L-DV Samtech

Note: Reference on the DSU840PA development board schematic (Figure 2) shows the DVK development schematic wiring only for the JTAG connector and the DSU840PA module JTAG pins.

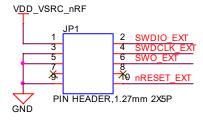


Figure 2: DSU840PA development board schematic

Note: The DSU840PA development board allows on-board JTAG J-link programmer signals to be routed off the development board by from connector JP1

JTAG is require because Nordic SDK applications can only be loaded using the JTAG (*smart*BASIC firmware can be loaded using JTAG as well as over the UART). We recommend that you use JTAG (2-wire SWD interface) to handle future DSU840PA module firmware upgrades. You **must** wire out the JTAG (2-wire SWD interface) on your host design (see Figure 2, where the following four lines should be wired out – SWDIO, SWDCLK, GND and VCC). *smart*BASIC firmware upgrades can still be performed over the DSU840PA UART interface, but this is slower than using the DSU840PA JTAG (2-wire SWD interface) – (60 seconds using UART vs. 10 seconds when using JTAG).

SWO (SIO_32) is a Trace output (called SWO, Serial Wire Output) and is not necessary for programming DSU840PA over the SWD interface.

nRESET_BLE is not necessary for programming DSU840PA over the SWD interface.

5.11 DSU840PA Wakeup

5.11.1 Waking Up DSU840PA from Host

Wake the DSU840PA from the host using wake-up pins (any SIO pin). You may configure the DSU840PA's wakeup pins via *smart*BASIC to do any of the following:

- Wake up when signal is low
- Wake up when signal is high
- Wake up when signal changes

Refer to the smartBASIC user guide for details. You can access this guide from the DSU840PA product page.

5.12 Low Power Modes

The DSU840PA has three power modes: Run, Standby Doze, and Deep Sleep.

The module is placed automatically in Standby Doze if there are no pending events (when WAITEVENT statement is encountered within a customer's *smartBASIC* script). The module wakes from Standby Doze via any interrupt (such as a received character on the UART Rx line). If the module receives a UART character from either the external UART or the radio, it wakes up.

Deep sleep is the lowest power mode. Once awakened, the system goes through a system reset.

5.13 Temperature Sensor

The on-silicon temperature sensor has a temperature range greater than or equal to the operating temperature of the device. Resolution is 0.25°C degrees. The on-silicon temperature sensor accuracy is ±5°C.

To read temperature from on-silicon temperature sensor (in tenth of centigrade, so 23.4°C is output as 234) using smartBASIC:

- In command mode, use ATI2024
- From running a smartBASIC application script, use SYSINFO(2024)

5.14 Security/Privacy

5.14.1 Random Number Generator

Exposed via an API in *smart*BASIC (see *smart*BASIC documentation available from the DSU840PA product page). The **rand()** function from a running *smart*BASIC application returns a value.

5.14.2 AES Encryption/Decryption

Exposed via an API in *smart*BASIC (see *smart*BASIC documentation available from the DSU840PA product page). Function called **aesencrypt** and **aesdecrypt**.

5.14.3 ARM Cryptocell

ARM Cryptocell incorporates a true random generator (TRNG) and support for a wide range of asymmetric, symmetric and hashing cryptographic services for secure applications. For more information, please check the Nordic SDK.

5.14.4 Readback Protection

The DSU840PA supports readback protection capability that disallows the reading of the memory on the nrf52840 using a JTAG interface. Available via *smart*BASIC

5.14.5 Elliptic Curve Cryptography

The DSU840PA offers a range of functions for generating public/private keypair, calculating a shared secret, as well as generating an authenticated hash. Available via *smart*BASIC

5.15 Optional External 32.768 kHz Crystal

This is not required for normal DSU840PA module operation.

The DSU840PA uses the on-chip 32.76 kHz RC oscillator (LFCLK) by default (which has an accuracy of ±500 ppm) which requires regulator calibration (every eight seconds) to within ±500 ppm.

You can connect an optional external high accuracy (±20 ppm) 32.768 kHz crystal (and associated load capacitors) to the DSU840PASIO_01/XL2 (pin 41) and SIO_00/XL1 (pin 42) to provide improved protocol timing and to help with radio power consumption in the system standby doze/deep sleep modes by reducing the time that the RX window needs to be open. Table 21 compares the current consumption difference between RC and crystal oscillator.

Table 21: Comparing current consumption difference between DSU840PA on-chip RC 32.76 kHz oscillator and optional external crystal (32.768kHz) based oscillator

crystal (32.768kHz) based osc	cillator			
	DSU840PA On-chip 32.768 kHz RC Oscillator (±500 ppm) LFRC	Optional External Higher Accuracy (±20 ppm) 32.768 kHz Crystal-based Oscillator LFXO		
Current Consumption of 32.768 kHz Block	0.7 uA	0.23 uA		
Standby Doze Current (SYSTEM ON IDLE +full RAM retention +RTC run current + LFRC or LFXO)	3.1 uA	2.6 uA		
Calibration	Calibration required regularly (default eight seconds interval). Calibration takes 33 ms; with DCDC used, the total charge of a calibration event is 16 uC. The average current consumed by the calibration depends on the calibration interval and can be calculated using the following formula: CAL_charge/CAL_interval – The lowest calibration interval (0.25 seconds) provides an average current of (DCDC enabled): 16uC/0.25s = 64uA To get the 500-ppm accuracy, the BLE stack specification states that a calibration interval of eight seconds is enough. This gives an average current of: 16uC/8s = 2 uA Added to the LFRC run current and Standby Doze (IDLE) base current shown above results in a total average current of: LFRC + CAL = 3.1 + 2 = 5.1 uA	Not applicable		
Total	5.1 uA	2.6 uA		
Summary	Low current consumption	Lowest current consumption		

DSU840PA On-chip 32.768 kHz RC Oscillator (±500 ppm) LFRC

Optional External Higher Accuracy (±20 ppm) 32.768 kHz Crystal-based Oscillator LFXO

Accuracy 500 ppm

- Needs external crystal
- High accuracy (depends on the crystal, usually 20 ppm)

Table 22: Optional external 32.768 kHz crystal specification

Optional external 32.768kHz crystal	Min	Тур	Max
Crystal Frequency	-	32.768 kHz	-
Frequency tolerance requirement of BLE stack	-	-	±500 ppm
Load Capacitance	-	-	12.5 pF
Shunt Capacitance	-	-	2 pF
Equivalent series resistance	-	-	100 kOhm
Drive level	-	-	1 uW
Input capacitance on XL1 and XL2 pads	-	4 pF	-
Run current for 32.768 kHz crystal based oscillator	-	0.23 uA	-
Start-up time for 32.768 kHz crystal based oscillator	-	0.25 seconds	-
Peak to peak amplitude for external low swing clock input signal must not be outside supply rails	200 mV	-	1000 mV

Be sure to tune the load capacitors on the board design to optimize frequency accuracy (at room temperature) so it matches that of the same crystal standalone, Drive Level (so crystal operated within safe limits) and oscillation margin (R_{neg} is at least 3 to 5 times ESR) over the operating temperature range.

6 HARDWARE INTEGRATION SUGGESTIONS

6.1 Circuit

The DSU840PA is easy to integrate, requiring no external components on your board apart from those which you require for development and in your end application.

The following are suggestions for your design for the best performance and functionality.

Checklist (for Schematic):

DSU840PA power supply options:

Option 1 – Normal voltage power supply mode entered when the external supply voltage is connected to both the VDD and VDDH pins (so that VDD equals VDD_HV). Connect external supply within range 3.0V to 3.6V range to DSU840PA VDD and VDD_HV pins.

OR

Option 2 – High voltage mode power supply mode (using DSU840PA VDD_HV pin) entered when the external supply voltage in ONLY connected to the VDDH pin and the VDD pin is not connected to any external voltage supply. Connect external supply within range 3.0V to 5.5V range to DSU840PA VDD HV pin. DSU840PA VDD pin left unconnected.

For either option, if you use USB interface then the DSU840PA VBUS pin must be connected to external supply within the range 4.35V to 5.5V. When using the DSU840PA VBUS pin, you MUST externally fit a 4.7uF to ground.

External power source should be within the operating range, rise time and noise/ripple specification of the DSU840PA. Add decoupling capacitors for filtering the external source. Power-on reset circuitry within DSU840PA module incorporates brown-out detector, thus simplifying your power supply design. Upon application of power, the internal power-on reset ensures that the module starts correctly.

VDD and coin-cell operation

With a built-in DCDC (operating range 3.0V to 3.6V) that reduces the peak current required from a coin cell battery, making it easier to use with a coin cell. The coin cell battery MUST be able to service the peak and average current requirements of the customer application.

AIN (ADC) and SIO pin IO voltage levels

DSU840PA SIO voltage levels are at VDD. Ensure input voltage levels into SIO pins are at VDD also (if VDD source is a battery whose voltage will drop). Ensure ADC pin maximum input voltage for damage is not violated.

AIN (ADC) impedance and external voltage divider setup

If you need to measure with ADC a voltage higher than 3.6V, you can connect a high impedance voltage divider to lower the voltage to the ADC input pin.

JTAG

This is REQUIRED as Nordic SDK applications can only be loaded using the JTAG (*smart*BASIC firmware can be loaded using the JTAG as well as the UART).

Laird recommends you use JTAG (2-wire interface) to handle future DSU840PA module firmware upgrades. You MUST wire out the JTAG (2-wire interface) on your host design (see Figure 2, where four lines should be wired out, namely SWDIO, SWDCLK, GND and VCC). Firmware upgrades can still be performed over the DSU840PA UART interface, but this is slower (60 seconds using UART vs. 10 seconds when using JTAG) than using the DSU840PA JTAG (2-wire interface).

JTAG may be used if you intend to use Flash Cloning during production to load smartBASIC scripts.

UART

Required for loading your *smart*BASIC application script during development (or for subsequent firmware upgrades (except JTAG for FW upgrades and/or Flash Cloning of the *smart*BASIC application script). Add connector to allow interfacing with UART via PC (UART–RS232 or UART-USB).

UART RX and UART CTS

SIO_08 (alternative function UART_RX) is an input, set with internal weak pull-up (in firmware). The pull-up prevents the module from going into deep sleep when UART_RX line is idling.

SIO_07 (alternative function UART_CTS) is an input, set with internal weak pull-down (in firmware). This pull-down ensures the default state of the UART_CTS will be asserted which means can send data out of the UART_TX line. Laird recommends that UART_CTS be connected.

nAutoRUN pin and operating mode selection

nAutoRUN pin needs to be externally held high or low to select between the two DSU840PA operating modes at power-up:

- Self-contained Run mode (nAutoRUN pin held at 0V).

Interactive / development mode (nAutoRUN pin held at VDD).
 Make provision to allow operation in the required mode. Add jumper to allow nAutoRUN pin to be held high or low (DSU840PA has internal 13K pull-down by default) OR driven by host GPIO.

I2C

It is essential to remember that pull-up resistors on both I2C_SCL and I2C_SDA lines are not provided in the DSU840PA module and MUST be provided external to the module as per I2C standard.

SPI

Implement SPI chip select using any unused SIO pin within your *smart*BASIC application script or Nordic application then SPI CS is controlled from the software application allowing multi-dropping.

SIO pin direction

DSU840PA modules shipped from production with *smart*BASIC FW, all SIO pins (with default function of DIO) are mostly digital inputs (see Pin Definitions Table2). Remember to change the direction SIO pin (in your *smart*BASIC application script) if that particular pin is wired to a device that expects to be driven by the DSU840PA SIO pin configured as an output. Also, these SIO pins have the internal pull-up or pull-down resistor-enabled by default in firmware (see Pin Definitions Table 2). This was done to avoid floating inputs, which can cause current consumption in low power modes (e.g. StandbyDoze) to drift with time. You can disable the PULL-UP or Pull-down through their *smart*BASIC application.

Note: Internal pull-up, pull down will take current from VDD.

SIO 02 pin and OTA smartBASIC application download feature

SIO_02 is an input, set with internal pull-down (in FW). Refer to latest firmware release documentation on how SIO_02 is used for Over the Air *smart*BASIC application download feature. The SIO_02 pin must be pulled high externally to enable the feature. Decide if this feature is required in production. When SIO_02 is high, ensure nAutoRun is NOT high at same time; otherwise you cannot load the *smart*BASIC application script.

NFC antenna connector

To make use of the Laird flexi-PCB NFC antenna, fit connector:

- Description FFC/FPC Connector, Right Angle, SMD/90d, Dual Contact, 1.2 mm Mated Height
- Manufacturer Molex
- Manufacturers Part number 512810594

Add tuning capacitors of 300 pF on NFC1 pin to GND and 300 pF on NFC2 pins to GND if the PCB track length is similar as development board.

nRESET pin (active low)

Hardware reset. Wire out to push button or drive by host.

By default module is out of reset when power applied to VCC pins.

Optional External 32.768kHz crystal

If the optional external 32.768kHz crystal is needed, then use a crystal that meets specification and add load capacitors whose values should be tuned to meet all specification for frequency and oscillation margin.

SIO 38 special function pin

This is for future use by Laird. It is currently a Do Not Connect pin if using the smartBASIC FW.

DSU840PA pin2 and pin4 are Do No Connect pins (on BL654 SIO_34 and SIO_36)

Customer MUST NOT connect anything to DSU840PA pin2 and pin4 which are Do No connect pins.

6.2 PCB Layout on Host PCB - General

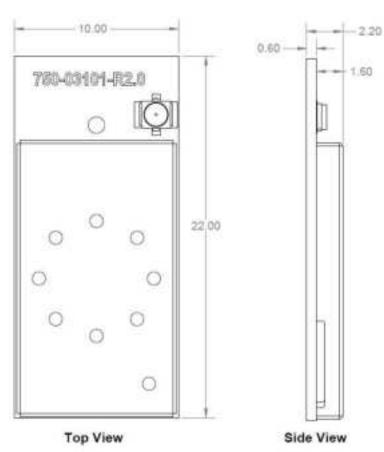
Checklist (for PCB):

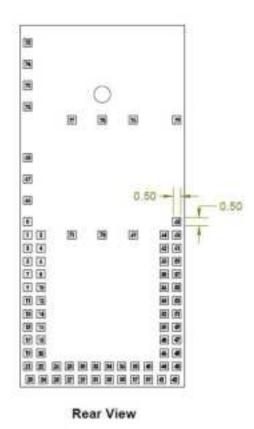
- MUST locate DSU840PA module close to the edge of PCB.
- Use solid GND plane on inner layer (for best EMC and RF performance).
- All module GND pins MUST be connected to host PCB GND.
- Place GND vias close to module GND pads as possible.
- Unused PCB area on surface layer can flooded with copper but place GND vias regularly to connect the copper flood to
 the inner GND plane. If GND flood copper is on the bottom of the module, then connect it with GND vias to the inner GND
 plane.
- Route traces to avoid noise being picked up on VDD, VDDH, VBUS supply and AIN (analogue) and SIO (digital) traces.
 DSU840PA pin 2 and 4 (SIO_34 and SIO_36) which are Do No Connect pins are especially important.

Ensure no exposed copper is on the underside of the module (refer to land pattern of DSU840PA development board).

6.3 External Antenna Integration with the DSU840PA

Please refer to the regulatory sections for FCC and ISED for details of use of DSU840PA-with external antennas in each regulatory region.


The DSU840PA family has been designed to operate with the below external antennas (with a maximum gain of 2.0 dBi). The required antenna impedance is 50 ohms. See Table 23. External antennas improve radiation efficiency.


Table 23: External antennas for the DSU840PA

Manufacturer	Part Number	Туре	Connector	Maximum Gain
Walsin	RFDPA870900SBAB8G1	Dipole	Reverse SMA	2.0

7 MECHANICAL DETAILS

7.1 DSU840PA Mechanical Details

Tolerances

Board Outiline: +/- 0.13mm Board Height: +/- 0.15mm

7.2 Reflow Parameters

Prior to any reflow, it is important to ensure the modules were packaged to prevent moisture absorption. New packages contain desiccate (to absorb moisture) and a humidity indicator card to display the level maintained during storage and shipment. If directed to *bake units* on the card, see Table 24 and follow instructions specified by IPC/JEDEC J-STD-033. A copy of this standard is available from the JEDEC website: http://www.jedec.org/sites/default/files/docs/jstd033b01.pdf

Any modules not manufactured before exceeding their floor life should be re-packaged with fresh desiccate and a new humidity indicator card. Floor life for MSL (Moisture Sensitivity Level) four devices is 72 hours in ambient environment ≤30°C/60%RH.

Table 24: Recommended baking times and temperatures

	125°C Baking Temp.		90°C/≤ 5%RH Baking Temp.		40°C/ ≤ 5%RH Baking Temp.	
MSL	Saturated @ 30°C/85%	Floor Life Limit + 72 hours @ 30°C/60%	Saturated @ 30°C/85%	Floor Life Limit + 72 hours @ 30°C/60%	Saturated @ 30°C/85%	Floor Life Limit + 72 hours @ 30°C/60%
4	11 hours	7 hours	37 hours	23 hours	15 days	9 days

Laird surface mount modules are designed to be easily manufactured, including reflow soldering to a PCB. Ultimately it is the responsibility of the customer to choose the appropriate solder paste and to ensure oven temperatures during reflow meet the requirements of the solder paste. Laird surface mount modules conform to J-STD-020D1 standards for reflow temperatures.

Important:

During reflow, modules should not be above 260° and not for more than 30 seconds. In addition, we recommend that the DSU840PA module **does not** go through the reflow process more than one time; otherwise the DSU840PA internal component soldering may be impacted.

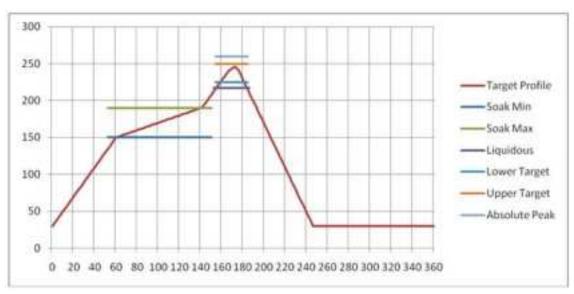


Figure 3: Recommended reflow temperature

Temperatures should not exceed the minimums or maximums presented in Table 25.

Table 25: Recommended maximum and minimum temperatures

Specification	Value	Unit
Temperature Inc./Dec. Rate (max)	1~3	°C / Sec
Temperature Decrease rate (goal)	2-4	°C / Sec
Soak Temp Increase rate (goal)	.5 - 1	°C / Sec
Flux Soak Period (Min)	70	Sec

Specification	Value	Unit
Flux Soak Period (Max)	120	Sec
Flux Soak Temp (Min)	150	°C
Flux Soak Temp (max)	190	°C
Time Above Liquidous (max)	70	Sec
Time Above Liquidous (min)	50	Sec
Time In Target Reflow Range (goal)	30	Sec
Time At Absolute Peak (max)	5	Sec
Liquidous Temperature (SAC305)	218	°C
Lower Target Reflow Temperature	240	°C
Upper Target Reflow Temperature	250	°C
Absolute Peak Temperature	260	°C

8 RELIABILITY TESTS

The DSU840PA module went through the below reliability tests and passed.

Test Sequence	Test Item	Test Limits and Pass	Test Conditions
1	Vibration	JESD22-B103B	Sample: Unpowered.
	Test	Vibration,	Sample number: 3.
		Variable	Vibration waveform: Sine waveform.
		frequency	Vibration frequency /Displacement: 20 to 80Hz /1.52mm.
			Vibration frequency /Acceleration: 80 to 2000Hz /20g.
			Cycle time: 4 minutes.
			Number of cycles: 4 cycles for each axis.
			Vibration axis: X, Y and Z (Rotating each axis on vertical vibration table).
2	Mechanical	JESD22-B104C	Sample: Unpowered.
	Shock		Sample number: 3.
			Pulse shape: Half-sine waveform.
			Impact acceleration: 1500g.
			Pulse duration: 0.5ms.
			Number of shocks: 30 shocks (5 shocks for each face).
			Orientation: Bottom, top, left, right, front and rear faces.
3	Thermal	JESD22-A104E	Sample: Unpowered.
	Shock	Temperature	Sample number: 3.
		cycling	Temperature transition time: Less than 30 seconds.
			Temperature cycle: -40°C (10 minutes), +85°C (10 minutes).
			Number of cycles: 350.

Before and after the testing, visual inspection showed no physical defect on samples.

After Vibration test and Mechanical Shock testing, the samples were functionally tested, and all samples functioned as normal. After the thermal shock test, the samples were functionally tested, and all samples functioned as normal.

9 REGULATORY

Current Regulatory Certifications

The DSU840PA holds current certifications in the following countries:

Country/Region	Regulatory ID
USA (FCC)	2AEHJDSU840PA
Canada (ISED)	20053-DSU840PA

9.1 Certified Antennas

The antennas listed below were tested for use with the DSU840PA. The OEM can choose a different manufacturer's antenna but must make sure it is of same type and that the gain is less than or equal to the antenna that is approved for use.

Manufacturer	Part Number	Туре	Connector	Maximum Gain
Walsin	RFDPA870900SBAB8G1	Dipole	Reverse SMA	2.0

9.2 Documentation Requirements

To ensure regulatory compliance, when integrating the DSU840PA into a host device, it is necessary to meet the documentation requirements set forth by the applicable regulatory agencies. The following sections (FCC, ISED Canada,) outline the information that may be included in the user's guide and external labels for the host devices into which the DSU840PA is integrated.

9.3 FCC Regulatory

Model	US/FCC	
DSU840PA	2AEHJDSU840PA	BLE 15.247 ANT 15.249

The DSU840PA holds full modular approval. The OEM must follow the regulatory guidelines and warnings listed below to inherit the modular approval.

For ANT protocol, Maximum allowable Tx power for NRF52840 is -8dBm and duty cycle must be equal or less then 10%

9.4 Antenna Information

The DSU840PA family has been designed to operate with the antennas listed below with a maximum gain of 2 dBi. The required antenna impedance is 50 ohms.

Manufacturer	Laird Connectivity Part Number	Туре	Connector	Maximum Gain
Walsin	RFDPA870900SBAB8G1	Dipole	Reverse SMA	2.0

Note:

The OEM is free to choose another vendor's antenna of like type and equal or lesser gain as an antenna appearing in the table and still maintain compliance. Reference FCC Part 15.204(c)(4) for further information on this topic.

To reduce potential radio interference to other users, the antenna type and gain should be chosen so that the equivalent isotropic radiated power (EIRP) is not more than that permitted for successful communication.

9.5 FCC Documentation Requirements

Federal Communication Commission Interference Statement

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications.

However, there is no guarantee that interference will not occur in an installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

FCC Caution: Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- 1. This device may not cause harmful interference; and
- 2. This device must accept any interference received, including interference that may cause undesired operation.

FCC Radiation Exposure Statement

This product complies with the US mobile RF exposure limit set forth for an uncontrolled environment and is safe for intended operation as described in this manual. The minimum separation distance for use is limited to 20cm assuming use of antenna with 2 dBi of gain. Further RF exposure reduction can be achieved if the product is kept as far as possible from the user body or is set to a lower output power if such function is available.

This transmitter must not be co-located or operated in conjunction with any other antenna or transmitter.

This device is intended only for OEM integrators under the following condition:

1. The transmitter module may not be co-located with any other transmitter or antenna,

If the condition above is met, further transmitter testing is not required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this installed module.

IMPORTANT NOTE:

If this condition cannot be met (for example, certain laptop configurations or co-location with another transmitter), then the FCC authorization is no longer considered valid and the FCC ID **cannot** be used on the final product. In these circumstances, the OEM integrator is responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC authorization.

End-Product Labeling

The end product must be labeled in a visible area with the following: Contains FCC ID: 2AEHJDSU840PA

Manual Information to the End User

The OEM integrator must be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module.

The end user manual shall include all required regulatory information/warning as show in this manual.

10 ISED (CANADA) REGULATORY

Model	ISED (Canada)	
DSU840PA	20053-DSU840PA	BLE RSS-247 ANT RSS-210

10.1 Antenna Information

This radio transmitter (IC: 20053-DSU840PA) was approved by Innovation, Science and Economic Development (ISED) Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device.

Le présent émetteur radio (IC: 20053-DSU840PA) a été approuvé par Innovation, Sciences et Développement économique Canada pour fonctionner avec les types d'antenne énumérés ci-dessous et ayant un gain admissible maximal. Les types d'antenne non inclus dans cette liste, et dont le gain est supérieur au gain maximal indiqué pour tout type figurant sur la liste, sont strictement interdits pour l'exploitation de l'émetteur.

Manufacturer	Laird Connectivity Part Number	Туре	Connector	Maximum Gain
Walsin	RFDPA870900SBAB8G1	Dipole	Reverse SMA	2.0

Industry Canada Statement

The end user manual shall include all required regulatory information/warning as shown in this manual.

This device complies with Industry Canada's license-exempt RSSs. Operation is subject to the following two conditions:

- 1. This device may not cause interference; and
- 2. This device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes:

- 1. l'appareil ne doit pas produire de brouillage;
- 2. l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Radiation Exposure Statement

The product complies with the Canada RF exposure limit set forth for an uncontrolled environment and are safe for intended operation as described in this manual. The minimum separation distance for use is limited to 34mm assuming use of antenna with 2 dBi of gain. The further RF exposure reduction can be achieved if the product can be kept as far as possible from the user body or set the device to lower output power if such function is available.

Déclaration d'exposition aux radiations

Le produit est conforme aux limites d'exposition pour les appareils RF pour les Etats-Unis et le Canada établies pour un environnement non contrôlé. La distance de séparation minimale pour l'utilisation est limitée à 34mm en supposant l'utilisation de l'antenne avec 2 dBi de gain. Le produit est sûr pour un fonctionnement tel que décrit dans ce manuel. La réduction aux expositions RF peut être augmentée si l'appareil peut être conservé aussi loin que possible du corps de l'utilisateur ou que le dispositif est réglé sur la puissance de sortie la plus faible si une telle fonction est disponible.

This device is intended only for OEM integrators under the following conditions:

1. The transmitter module may not be co-located with any other transmitter or antenna.

If the condition above is met, further transmitter testing is not required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed.

Cet appareil est conçu uniquement pour les intégrateurs OEM dans les conditions suivantes:

1. Le module émetteur peut ne pas être coïmplanté avec un autre émetteur ou antenne.

Tant que les 1 condition ci-dessus sont remplies, des essais supplémentaires sur l'émetteur ne seront pas nécessaires. Toutefois, l'intégrateur OEM est toujours responsable des essais sur son produit final pour toutes exigences de conformité supplémentaires requis pour ce module installé.

IMPORTANT NOTE:

If this condition cannot be met (for example, certain laptop configurations or co-location with another transmitter), then the Canada authorization is no longer considered valid and the IC ID **cannot** be used on the final product. In these circumstances, the OEM integrator is responsible for re-evaluating the end product (including the transmitter) and obtaining a separate Canada authorization.

NOTE IMPORTANTE:

Dans le cas où ces conditions ne peuvent être satisfaites (par exemple pour certaines configurations d'ordinateur portable ou de certaines co-localisation avec un autre émetteur), l'autorisation du Canada n'est plus considéré comme valide et l'ID IC ne peut pas être utilisé sur le produit final. Dans ces circonstances, l'intégrateur OEM sera chargé de réévaluer le produit final (y compris l'émetteur) et l'obtention d'une autorisation distincte au Canada.

End-Product Labeling

The final end product must be labeled in a visible area with the following: Contains IC: 20053-DSU840PA

Plaque signalétique du produit final

Le produit final doit être étiqueté dans un endroit visible avec l'inscription suivante: Contient des IC: 20053-DSU840PA

Manual Information to the End User

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module.

The end user manual shall include all required regulatory information/warning as show in this manual.

Manuel d'information à l'utilisateur final

L'intégrateur OEM doit être conscient de ne pas fournir des informations à l'utilisateur final quant à la façon d'installer ou de supprimer ce module RF dans le manuel de l'utilisateur du produit final qui intègre ce module.

Le manuel de l'utilisateur final doit inclure toutes les informations réglementaires requises et avertissements comme indiqué dans ce manuel.

10.2 ISED ICES-003 Issue 7 Compliance Declaration

This device was originally tested to the requirements of ICES-003 Issue 6, Information Technology Equipment (Including Digital Apparatus) — Limits and Methods of Measurement; and evaluated to the updates published in ICES-003, Issue 7, Information Technology Equipment (Including Digital Apparatus). Based on this evaluation, this product continues to observe compliance to the requirements set forth by The Innovation, Science and Economic Development Canada (ISED), and complies with the updates published in ICES-003, Issue 7, Information Technology Equipment (Including Digital Apparatus).