

TE	ST REPORT				
eport Reference No	TRE1711018603 R/C: 80658				
CC ID:	Q5EM50				
applicant's name:	Shenzhen Kirisun Communications Co., Ltd.				
ddress:	3rd Floor, Building A, Tongfang Information Habour, No Langshan Road, Nanshan District, Shenzhen, China				
lanufacturer:	Shenzhen Kirisun Communications Co., Ltd.				
ddress:	3rd Floor, Building A, Tongfang Information Habour, No.11 Langshan Road, Nanshan District,Shenzhen, China				
est item description:	POC Trunked Mobile Radio				
rade Mark	KIRISUN				
lodel/Type reference:	M50				
isted Model(s)	iTALK450				
tandard:	FCC CFR Title 47 Part 15 Subpart C Section 15.247				
Date of receipt of test sample	Nov. 28, 2017				
Date of testing	Nov. 29, 2017 – Jan. 05, 2018				
Date of issue	Jan. 05, 2018				
esult:	PASS				
Compiled by position+printedname+signature):	File administrators Shayne Zhu				
Supervised by position+printedname+signature):	Project Engineer Jerry Wang				
pproved by position+printedname+signature):	Manager Hans Hu				
esting Laboratory Name: :	Shenzhen Huatongwei International Inspection Co.				
ddress:	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Roa Tianliao, Gongming, Shenzhen, China				

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
1.1.	Test Standards	3
1.2.	Report version	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Operation state	6
3.4.	EUT configuration	6
3.5.	Modifications	6
<u>4.</u>	TEST ENVIRONMENT	7
4.1.	Address of the test laboratory	7
4.2.	Test Facility	7
4.3.	Environmental conditions	8
4.4.	Statement of the measurement uncertainty	8
4.5.	Equipments Used during the Test	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	11
5.1.	Antenna requirement	11
5.2.	Conducted Emissions (AC Main)	12
5.3.	Conducted Peak Output Power	13
5.4.	Power Spectral Density	14
5.5.	6dB bandwidth	18
5.6.	Restricted band	22
5.7.	Band edge and Spurious Emissions (conducted)	26
5.8.	Spurious Emissions (radiated)	39
<u>6.</u>	TEST SETUP PHOTOS OF THE EUT	46
7.	EXTERANAL AND INTERNAL PHOTOS OF THE EUT	46

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10:2013: American National Standard forTesting Unlicensed Wireless Devices

<u>KDB 558074 D01 DTS Meas Guidance v04:</u> Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating under §15.247

1.2. Report version

Version No. Date of issue		Description	
00	Jan. 05, 2018	Original	

2. TEST DESCRIPTION

Test Item	FCC Rule	Result	Test Engineer
Antenna requirement	15.203/15.247(c)	PASS	Jiuru Pan
Line Conducted Emissions (AC Main)	15.207 N/A		
Conducted Peak Output Power	15.247(b)(3)	PASS	Jiuru Pan
Power Spectral Density	15.247(e)	PASS	Jiuru Pan
6dB Bandwidth	15.247(a)(2)	PASS	Jiuru Pan
Restricted band	15.247(d)/15.205	PASS	Jiuru Pan
Spurious Emissions	15.247(d)/15.209	PASS	Jiuru Pan

Note: The measurement uncertainty is not included in the test result.

Shenzhen Huatongwei International Inspection Co., Ltd.

3. <u>SUMMARY</u>

3.1. Client Information

Applicant:	Shenzhen Kirisun Communications Co., Ltd.	
Address:	3rd Floor, Building A, Tongfang Information Habour, No.11 Langshan Road, Nanshan District, Shenzhen, China	
Manufacturer: Shenzhen Kirisun Communications Co., Ltd.		
Address:	3rd Floor, Building A, Tongfang Information Habour, No.11 Langshan Road, Nanshan District, Shenzhen, China	

3.2. Product Description

Name of EUT:	POC Trunked Mobile Radio		
Trade Mark:	KIRISUN		
Model No.:	M50		
Listed Model(s):	iTALK450		
IMEI:	865746030000260		
Power supply:	12-24Vd.c., 2A		
Adapter information:	-		
Hardware version: V1.0			
Software version:	V1.0		
WIFI			
Supported type:	802.11b/802.11g/802.11n(HT20)		
Modulation:	DSSS for 802.11b OFDM for 802.11g/802.11n(HT20)		
Operation frequency:	2412MHz~2462MHz		
Channel number:	11		
Channel separation:	5MHz		
Antenna type:	PIFA antenna		
Antenna gain: -0.5 dBi			

Remark:

We tested DC 12V and DC 24V, recorded worst case for DC 12V.

3.3. Operation state

Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channel which were tested. the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above gray bottom.

802.11b/g/n(HT20)			
Channel Frequency (MHz)			
01 2412			
02 2417			
06	2437		
10 2457			
11 2462			

Test mode

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit (duty cycle>98%).

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated suprious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit(duty cycle>98%). The EUT in each of three orthogonal axis emissions had been tested ,but only the worst case (X axis) data Recorded in the report.

3.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

supplied by the manufacturer

0	 supplied by the 	e lab

o /	1	Manufacturer:	/
	7	Model No.:	/
- (Manufacturer:	/	
0	7	Model No.:	/

3.5. Modifications

No modifications were implemented to meet testing criteria.

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

4.2. Test Facility

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files.

IC-Registration No.:5377B-1

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No.: 5377B-1.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors in calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd. quality system according to ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Here after the best measurement capability for Shenzhen Huatongwei International Inspection Co., Ltd. is reported:

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.39 dB	(1)
Radiated Emissions 30~1000MHz	4.24 dB	(1)
Radiated Emissions 1~18GHz	5.16 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)

 This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4.5. Equipments Used during the Test

Condu	cted Emissions					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. (mm-dd-yy)	Next Cal. (mm-dd-yy)
1	EMI Test Receiver	R&S	ESCI	101247	11/11/2017	11/10/2018
2	Artificial Mains	SCHWARZBECK	NNLK 8121	573	11/11/2017	11/10/2018
3	2-Line V- Network	R&S	ESH3-Z5	100049	11/11/2017	11/10/2018
4	Pulse Limiter	R&S	ESH3-Z2	101488	11/11/2017	11/10/2018
5	RF Connection Cable	HUBER+SUHNER	EF400	N/A	11/21/2017	11/20/2018
6	Test Software	R&S	ES-K1	N/A	N/A	N/A
Radiat	ed Emissions					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. (mm-dd-yy)	Next Cal. (mm-dd-yy)
1	EMI Test Receiver	R&S	ESCI	101247	11/11/2017	11/10/2018
2	Loop Antenna	R&S	HFH2-Z2	100020	11/20/2017	11/19/2018
3	Ultra- Broadband Antenna	SCHWARZBECK	VULB9163	538	4/5/2017	4/4/2018
4	Preamplifier	SCHWARZBECK	BBV 9743	9743-0022	10/18/2017	10/17/2018
5	RF Connection Cable	HUBER+SUHNE R	RE-7-FL	N/A	11/21/2017	11/20/2018
6	EMI Test Software	R&S	ESK1	N/A	N/A	N/A
7	Spectrum Analyzer	R&S	FSP40	100597	11/11/2017	11/10/2018
8	Horn Antenna	SCHWARZBECK	9120D	1011	3/27/2017	3/26/2018
9	Horn Antenna	SCHWARZBECK	BBHA9170	25841	3/27/2017	3/26/2018
10	Broadband Preamplifier	SCHWARZBECK	BBV 9718	9718-248	10/18/2017	10/17/2018
11	High pass filter	Compliance Direction systems	BSU-6	34202	11/11/2017	11/10/2018
12	RF Connection Cable	HUBER+SUHNE R	RE-7-FH	N/A	11/21/2017	11/20/2018
13	EMI Test Software	Audix	E3	N/A	N/A	N/A
14	Turntable	MATURO	TT2.0	/	N/A	N/A
15	Antenna Mast	MATURO	TAM-4.0-P	/	N/A	N/A

RF Con	ducted Test					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. (mm-dd-yy)	Next Cal. (mm-dd-yy)
1	Spectrum Analyzer	R&S	FSV40	100048	11/11/2017	11/10/2018
2	EXA Signal Analyzer	Agilent	N9020A	184247	9/22/2017	9/21/2018
3	Power Meter	Agilent	U2021XA	178231	9/22/2017	9/21/2018
4	OSP	R&S	OSP120	101317	N/A	N/A

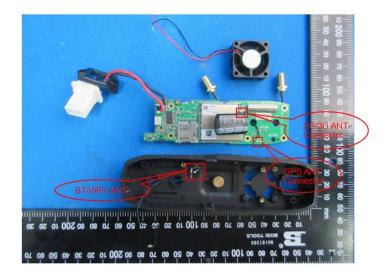
The Cal.Interval was one year.

5. TEST CONDITIONS AND RESULTS

5.1. Antenna requirement <u>REQUIREMENT:</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of anantenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

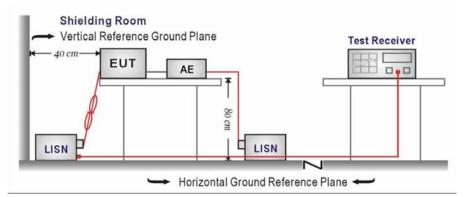
(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

TEST RESULTS

☑ Passed □ Not Applicable

The directional gain of the antenna less than 6 dBi, please refer to the below antenna photo.

5.2. Conducted Emissions (AC Main)


<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207:

	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

* Decreases with the logarithm of the frequency.

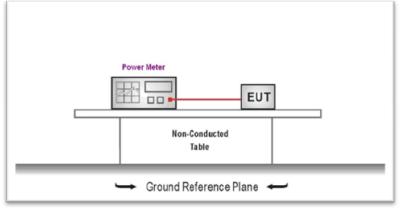
TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:

Please refer to the clause 3.3


TEST RESULTS

Passed
 Not Applicable

5.3. Conducted Peak Output Power LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3): 30dBm

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was tested according to ANSI C63.10: 2013 and KDB 558074 D01 for compliance to FCC 47 CFR 15.247 requirements.
- 2. The maximum peak conducted output power may be measured using a broadband peak RF power meter.
- The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector
- 4. Record the measurement data.

TEST MODE:

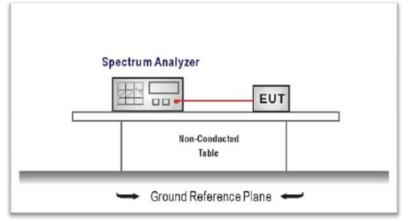
Please refer to the clause 3.3

TEST RESULTS

⊠ Passed □ N

Not Applicable

Туре	Channel	Output power (dBm)	Limit (dBm)	Result	
	01	18.92			
802.11b	06	19.62	≤30.00	Pass	
	11	19.43			
	01	16.97			
802.11g	06	17.56	≤30.00	Pass	
	11	17.52			
	01	14.71			
802.11n(HT20)	06	15.63	≤30.00	Pass	
	11	15.58			


5.4. Power Spectral Density

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e):

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

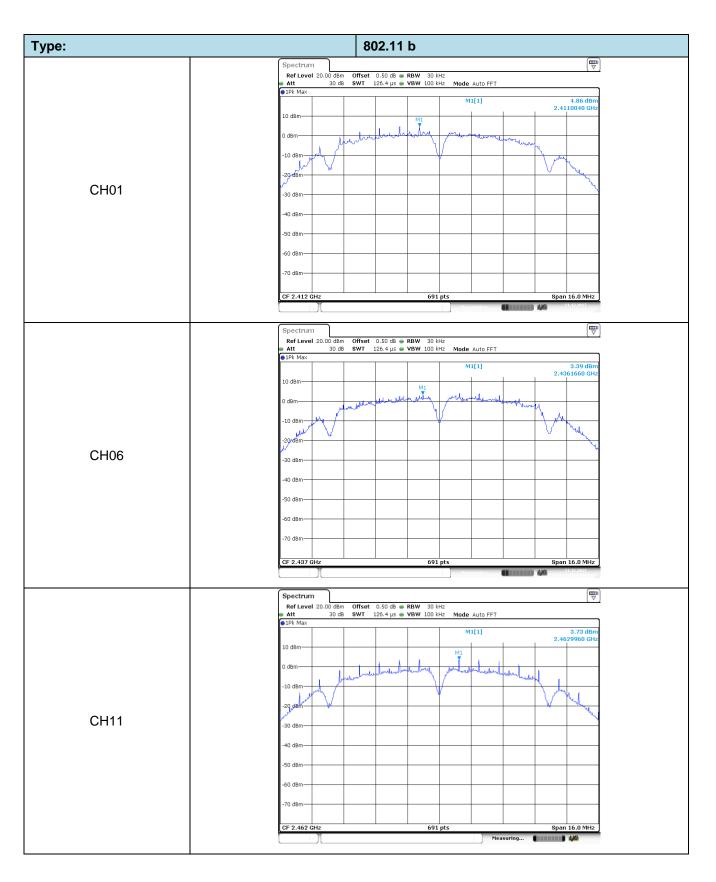
TEST CONFIGURATION

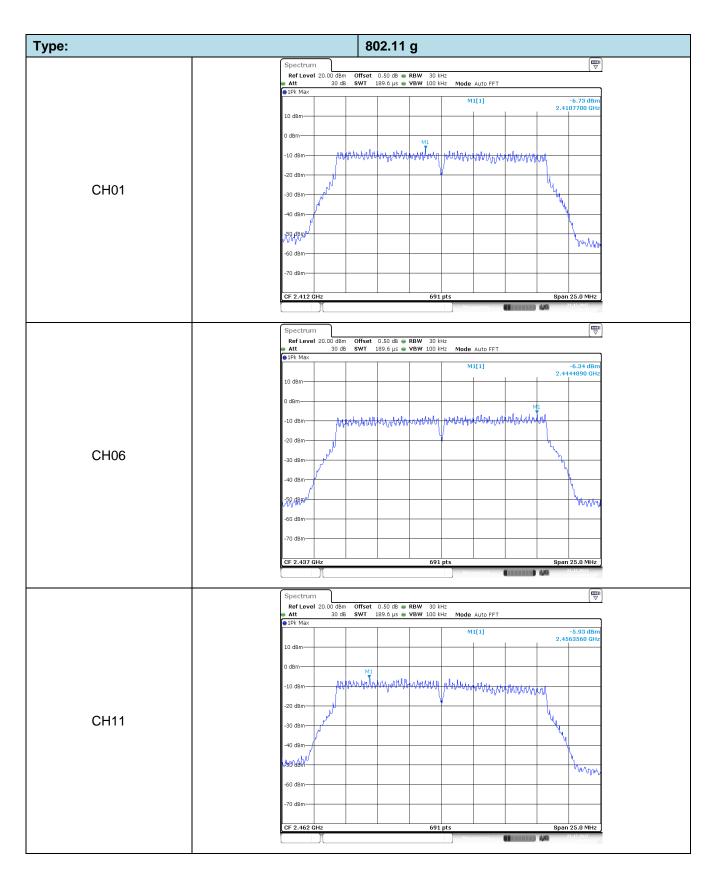
TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input,
- Configure the spectrum analyzer as shown below: Center frequency=DTS channel center frequency Span =1.5 times the DTS bandwidth RBW = 3 kHz ≤ RBW ≤ 100 kHz, VBW ≥ 3 × RBW Sweep time = auto couple Detector = peak Trace mode = max hold
- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
- 4. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 5. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST MODE:

Please refer to the clause 3.3


TEST RESULTS

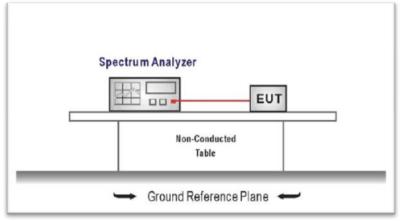

⊠ Passed □ Not

Not Applicable

Туре	Channel	Channel Power Spectral Density (dBm/30KHz)		Result	
	01	4.86			
802.11b	06	3.39	≤8.00	Pass	
	11	3.73			
	01	-6.73			
802.11g	06	-6.34	≤8.00	Pass	
	11	-5.93			
	01	-9.00			
802.11n(HT20)	06	-8.76	≤8.00	Pass	
	11	-7.72			

Test plot as follows:

Type: 802.11n(HT20) Spectrum Spectrum RefLevel 20.00 dBm Offset 0.50 dB ● RBW 30 kHz Att 30 dB SWT 189.6 µs ● VBW 100 kHz Mode Auto FFT ●1Pk Max M1[1] -9.00 dB 2.4107340 GF 10 dBm) dBm manun manun parananan -10 dBm -20 dBn CH01 30 dBn 40 dBn -50 dBm NUMB Word -60 dBm-70 dBn Span 25.0 MH CF 2.412 GH 691 pt **II** 49 Spectrum M1[1] -8.76 dBr 2.4357340 GH 10 dBm) dBn M1 -10 dBm Hitton Manna Manna Manna hunnannannannan -20 dBm h. CH06 30 dBr 40 dBm -50 dBm· burullo MM -60 dBm 70 dBm Span 25.0 MHz CF 2.437 GH 691 pts **II** 4/4 Spectrum RefLevel 20.00 dBm Att 30 dB Offset 0.50 dB ● RBW 30 kHz SWT 189.6 µs ● VBW 100 kHz Mode Auto FFT Att 1Pk Max -7.72 dBr 2.4551260 GH 10 dBm) dBm and many many with many many many many -10 dBm -20 dBn CH11 30 dBn 40 dBn 50 dBm ner -60 dBm 70 dBn F 2.462 GI 691 pt: 5.0 MH Spar


5.5. 6dB bandwidth

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2):

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

TEST CONFIGURATION

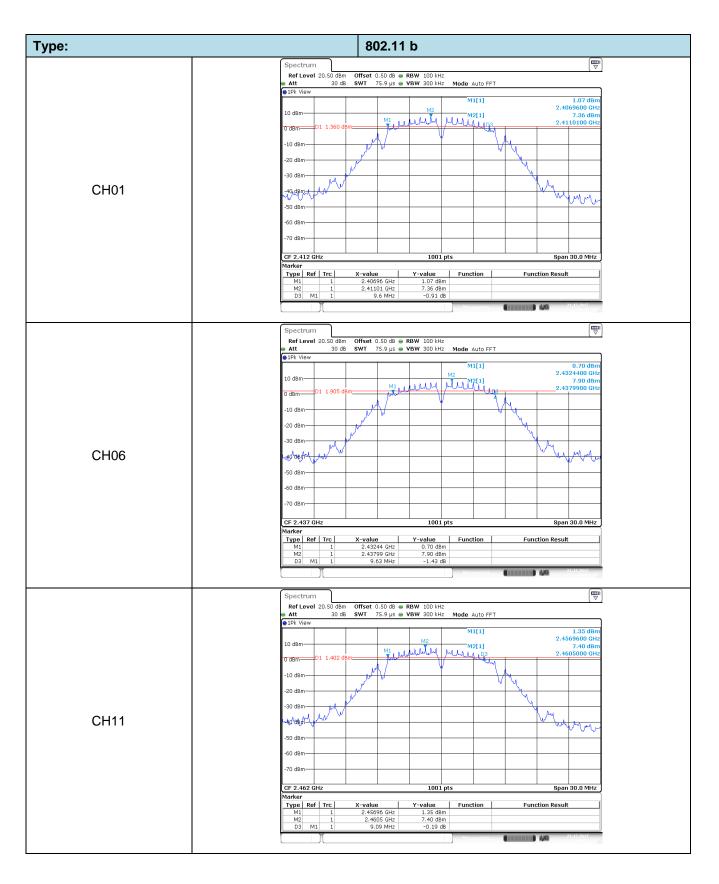
TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency =DTS channel center frequency Span=2 x DTS bandwidth RBW = 100 kHz, VBW ≥ 3 × RBW Sweep time= auto couple Detector = Peak Trace mode = max hold

- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission, and record the pertinent measurements.

TEST MODE:


Please refer to the clause 3.3

TEST RESULTS

Туре	Channel	6dB Bandwidth (MHz)	Limit (kHz)	Result	
1 900	01	9.60		rtooun	
802.11b	06	9.63	≥500	Pass	
	11	9.09			
	01	16.41			
802.11g	06	16.41	≥500	Pass	
	11	16.20			
	01	17.61			
802.11n(HT20)	06	17.61	≥500	Pass	
	11	16.50			

Test plot as follows:

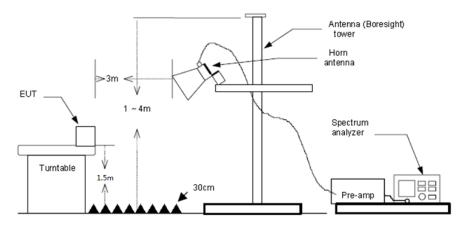
CH01				g	802.1		
CH01				-			
CH01	-9.19 dBm 2.4037800 GHz					30 d	🕳 Att
CH01	-2.29 dBm 2.4069900 GHz	2.4					
CH01		marand Q3	mumentenanetena	Marrandray	Brandhund		
CH06 CH11 CH11 CH11 CH11 CH11 CH11 CH11 CH1						J.	
CH06	~~hhtting	<u> </u>				man	, ∕50√d 8m
CH06							
CH06 MC I 2.20000 0H -2.30 0B Inf Level 20.50 db 000 0HFt 0.50 db 0.80 0HFt 0.50 db 0.00 0HFt 0.50	Span 30.0 MHz			Y-value		Ref Trc	Marker Type R
CH06 Spectrum Ref Level 20: 00 dis wit 75.9 is e VBW 200 Hz Made AUD FT Spectrum Ref Level 20: 00 dis wit 75.9 is e VBW 200 Hz Made AUD FT Spectrum Ref Level 20: 00 dis wit 75.9 is e VBW 200 Hz Spect	21.12.2017		Measuring	-2.29 dBm	2.40699 GHz	1	M2
CH06 CH11 CH11 CH11 CH11 CH11 CH11 CH11 CH1				DDuy 400 lu			
CH06	-9.15 dBm					30 d	Att
CH06	2.4288100 GHz -2.16 dBm 2.4419800 GHz	2 2.4	M2[1]				
CH06		www.ug3	Mushannalha	umbardang po	Britanderstand		
CH11					۳ 		-40 dBm-
CH11	Wenner	Wr				MANNA	∿støt,diβm
Narker Type Ref Trc X-value Y-value Function Result M1 1 2.42881 GHz -9.15 dBm -							-70 dBm—
CH11	Span 30.0 MHz			Y-value		Ref Trc	Marker Type R
CH11	21.12.2017	11	Measuring	-2.16 dBm	2.44198 GHz	1	M2
CH11				PRW 100 kHz	Offcot 0 50 dB =		
CH11	-8.47 dBm					30 d	Att
CH11	2.4537200 GHz -2.11 dBm 2.4632600 GHz	2.4	M2		M1 . 4 A 1		
CH11		Mohundan	Murmulingulingulinguling	adamatica po	iBm		
-50 dBm							
-70 dBm	wood where						-50 UBIII-
II CE 2 462 CH2 1001 ntc 2000 0							-70 dBm—
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.45372 GHz -8.47 dBm Function Funct	Span 30.0 MHz		Function	Y-value -8.47 dBm	2.45372 GHz	Ref Trc	Marker Type R M1
M2 1 2.46326 GHz -2.11 dBm D3 M1 1 16.2 MHz -0.04 dB	21.12.2017	44		-2.11 dBm	2.46326 GHz	1	M2

Type: 802.11n(HT20) Spectrum ●1Pk View -10.64 dBn 2.4031800 GH -4.26 dBn 2.4069900 GH M1[1] 10 dBm M2[1] 0 dBn X ÷ 10 dBn -10.5 20 dBn 30 dBn CH01 40 dB 20 -50_d8m^-Mm 60 dBm 70 dBm CF 2.412 GHz 1001 pts Span 30.0 MHz Type Ref Trc X-value 2.40318 GHz 2.40699 GHz 17.61 MHz Y-value -10.64 dBm -4.26 dBm 0.19 dB Function Function Result M2 D3 M1 Spectrum RefLevel 20.50 dBm Att 30 dB
 Offset
 0.50 dB
 ■ RBW
 100 kHz

 SWT
 75.9 μs
 ■ VBW
 300 kHz
 Mode
 Auto FFT
 ●1Pk View M1[1] 9.91 dB -9.91 dBr 2.4282100 GH -3.58 dBr 2.4420100 GH .0 dBm M2[1] dBr 9.581 ٨. Alm -10 dBm 20 dBm 30 dBm CH06 40 dBn ;50rd8m4 . مر ال -60 dBm -70 dBm CF 2.437 GH: 1001 pts Span 30.0 MHz Type Ref Trc X-value 2.42821 GHz 2.44201 GHz 17.61 MHz
 Y-value
 Function

 -9.91 dBm
 -3.58 dBm

 -0.04 dB
 -0.04 dB
 Function Result M2 D3 M1 (₩) Spectrum RefLevel 20.50 dBm Att 30 dB Att 1Pk Viev Mode Auto FF M1[1] -10.96 dBr 2.4530900 GH 10 dBm -4.14 dB 2.4632600 GF M2[1]) dBn Ĭ mAHAA 10 dB -10.1 -93 20 dBm 30 dBm CH11 40 dB ao ann 🗥 man 60 dBn 70 dBm CF 2.462 GHz 1001 pts Span 30.0 MHz Marker Type Ref Trc 2 45309 GH: Y-value -10.96 dBm -4.14 dBm -0.78 dB Function Function Result M2 D3 2.46326 GHz 16.5 MHz M1


5.6. Restricted band

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, Radiated Emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the Radiated Emissions limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

- 1) The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2) The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3) The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4) The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow: RBW=1MHz, VBW=3MHz PEAK detector for Peak value. RBW=1MHz, VBW=3MHz RMS detector for Average value.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable

Note:

1) Final level= Read level + Antenna Factor+ Cable Loss- Preamp Factor

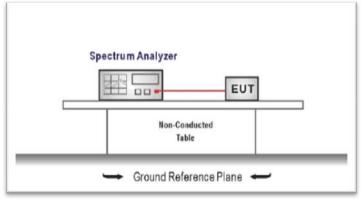
802.11b					CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2310.00	17.01	28.05	6.62	0.00	51.68	74.00	-22.32	Vertical	Peak
2390.01	16.13	27.65	6.75	0.00	50.53	74.00	-23.47	Vertical	Peak
2310.00	17.52	28.05	6.62	0.00	52.19	74.00	-21.81	Horizontal	Peak
2390.01	17.65	27.65	6.75	0.00	52.05	74.00	-21.95	Horizontal	Peak
2310.00	10.63	28.05	6.62	0.00	45.30	54.00	-8.70	Vertical	Average
2390.01	10.25	27.65	6.75	0.00	44.65	54.00	-9.35	Vertical	Average
2310.00	10.62	28.05	6.62	0.00	45.29	54.00	-8.71	Horizontal	Average
2390.01	10.20	27.65	6.75	0.00	44.60	54.00	-9.40	Horizontal	Average

802.11b					CH11				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2483.49	17.31	27.26	6.83	0.00	51.40	74.00	-22.60	Vertical	Peak
2500.00	17.33	27.20	6.84	0.00	51.37	74.00	-22.63	Vertical	Peak
2483.49	17.26	27.26	6.83	0.00	51.35	74.00	-22.65	Horizontal	Peak
2500.00	17.44	27.20	6.84	0.00	51.48	74.00	-22.52	Horizontal	Peak
2483.49	10.54	27.26	6.83	0.00	44.63	54.00	-9.37	Vertical	Average
2500.00	10.17	27.20	6.84	0.00	44.21	54.00	-9.79	Vertical	Average
2483.486	10.48	27.26	6.83	0.00	44.57	54.00	-9.43	Horizontal	Average
2500.00	10.20	27.20	6.84	0.00	44.24	54.00	-9.76	Horizontal	Average

802.11g					CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2310.00	17.67	28.05	6.62	0.00	52.34	74.00	-21.66	Vertical	Peak
2390.01	18.87	27.65	6.75	0.00	53.27	74.00	-20.73	Vertical	Peak
2310.00	16.75	28.05	6.62	0.00	51.42	74.00	-22.58	Horizontal	Peak
2390.01	17.40	27.65	6.75	0.00	51.80	74.00	-22.20	Horizontal	Peak
2310.00	10.63	28.05	6.62	0.00	45.30	54.00	-8.70	Vertical	Average
2390.01	10.21	27.65	6.75	0.00	44.61	54.00	-9.39	Vertical	Average
2310.00	10.65	28.05	6.62	0.00	45.32	54.00	-8.68	Horizontal	Average
2390.01	10.31	27.65	6.75	0.00	44.71	54.00	-9.29	Horizontal	Average

802.11g					CH11				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2483.49	17.77	27.26	6.83	0.00	51.86	74.00	-22.14	Vertical	Peak
2500.00	19.20	27.20	6.84	0.00	53.24	74.00	-20.76	Vertical	Peak
2483.49	16.68	27.26	6.83	0.00	50.77	74.00	-23.23	Horizontal	Peak
2500.00	18.11	27.20	6.84	0.00	52.15	74.00	-21.85	Horizontal	Peak
2483.49	11.81	27.26	6.83	0.00	45.90	54.00	-8.10	Vertical	Average
2500.00	10.22	27.20	6.84	0.00	44.26	54.00	-9.74	Vertical	Average
2483.49	11.33	27.26	6.83	0.00	45.42	54.00	-8.58	Horizontal	Average
2500.00	10.23	27.20	6.84	0.00	44.27	54.00	-9.73	Horizontal	Average

802.11n(HT	20)				CH01					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value	
2310.00	17.37	28.05	6.62	0.00	52.04	74.00	-21.96	Vertical	Peak	
2390.01	17.74	27.65	6.75	0.00	52.14	74.00	-21.86	Vertical	Peak	
2310.00	18.78	28.05	6.62	0.00	53.45	74.00	-20.55	Horizontal	Peak	
2390.01	17.87	27.65	6.75	0.00	52.27	74.00	-21.73	Horizontal	Peak	
2310.00	10.63	28.05	6.62	0.00	45.30	54.00	-8.70	Vertical	Average	
2390.01	10.20	27.65	6.75	0.00	44.60	54.00	-9.40	Vertical	Average	
2310.00	10.63	28.05	6.62	0.00	45.30	54.00	-8.70	Horizontal	Average	
2390.01	10.20	27.65	6.75	0.00	44.60	54.00	-9.40	Horizontal	Average	


802.11n(HT	20)				CH11				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2483.49	17.74	27.26	6.83	0.00	51.83	74.00	-22.17	Vertical	Peak
2500.00	18.03	27.20	6.84	0.00	52.07	74.00	-21.93	Vertical	Peak
2483.49	17.07	27.26	6.83	0.00	51.16	74.00	-22.84	Horizontal	Peak
2500.00	17.55	27.20	6.84	0.00	51.59	74.00	-22.41	Horizontal	Peak
2483.49	10.77	27.26	6.83	0.00	44.86	54.00	-9.14	Vertical	Average
2500.00	10.21	27.20	6.84	0.00	44.25	54.00	-9.75	Vertical	Average
2483.49	11.26	27.26	6.83	0.00	45.35	54.00	-8.65	Horizontal	Average
2500.00	10.20	27.20	6.84	0.00	44.24	54.00	-9.76	Horizontal	Average

5.7. Band edge and Spurious Emissions (conducted)

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- Establish a reference level by using the following procedure Center frequency=DTS channel center frequency The span = 1.5 times the DTS bandwidth. RBW = 100 kHz, VBW ≥ 3 x RBW Detector = peak, Sweep time = auto couple, Trace mode = max hold Allow trace to fully stabilize Use the peak marker function to determine the maximum PSD level

Note: the channel found to contain the maximum PSD level can be used to establish the reference level. 3. Emission level measurement

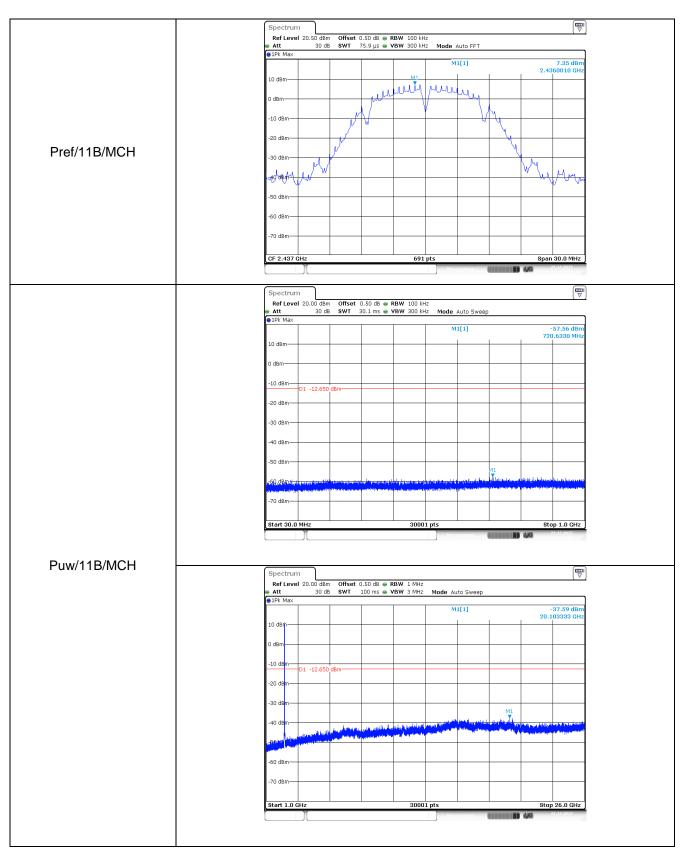
Set the center frequency and span to encompass frequency range to be measured RBW = 100 kHz, VBW ≥ 3 x RBW Detector = peak, Sweep time = auto couple, Trace mode = max hold Allow trace to fully stabilize Use the peak marker function to determine the maximum amplitude level.

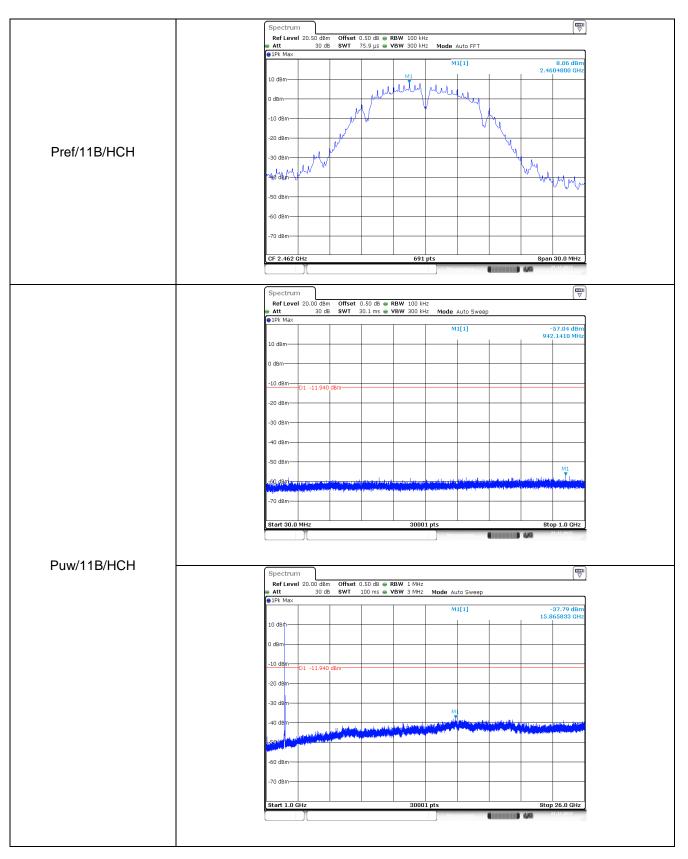
- 4. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- Ensure that the amplitude of all unwanted emission outside of the authorized frequency band excluding restricted frequency bands) are attenuated by at least the minimum requirements specified (at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz). Report the three highest emission relative to the limit.

TEST MODE:

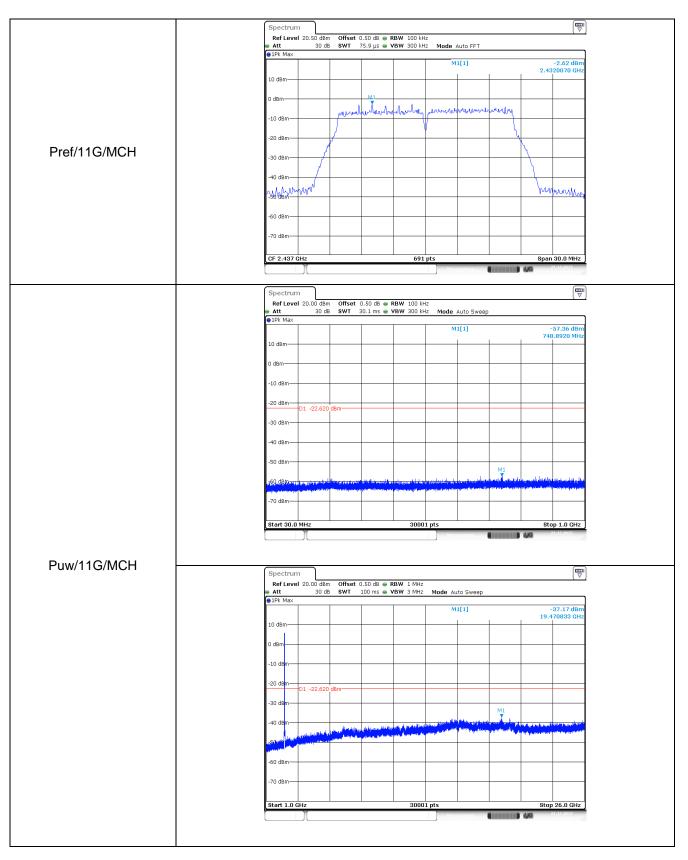
Please refer to the clause 3.3

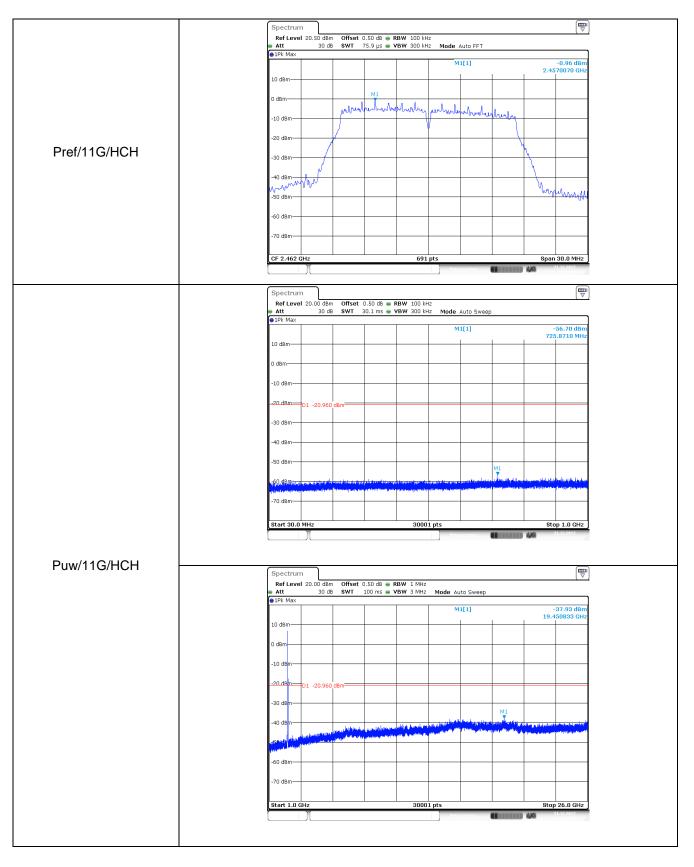
TEST RESULTS

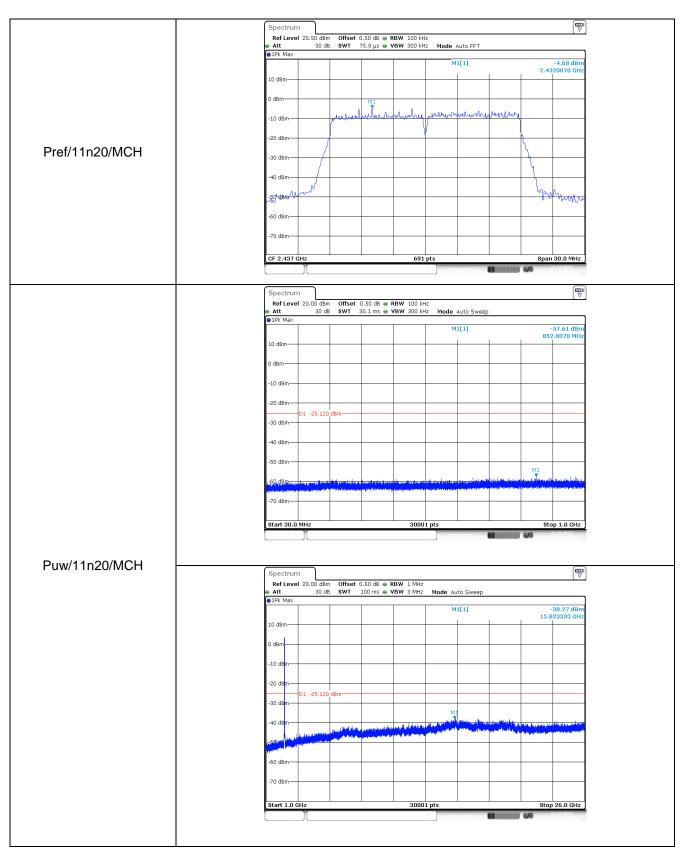

☑ Passed □ Not Applicable

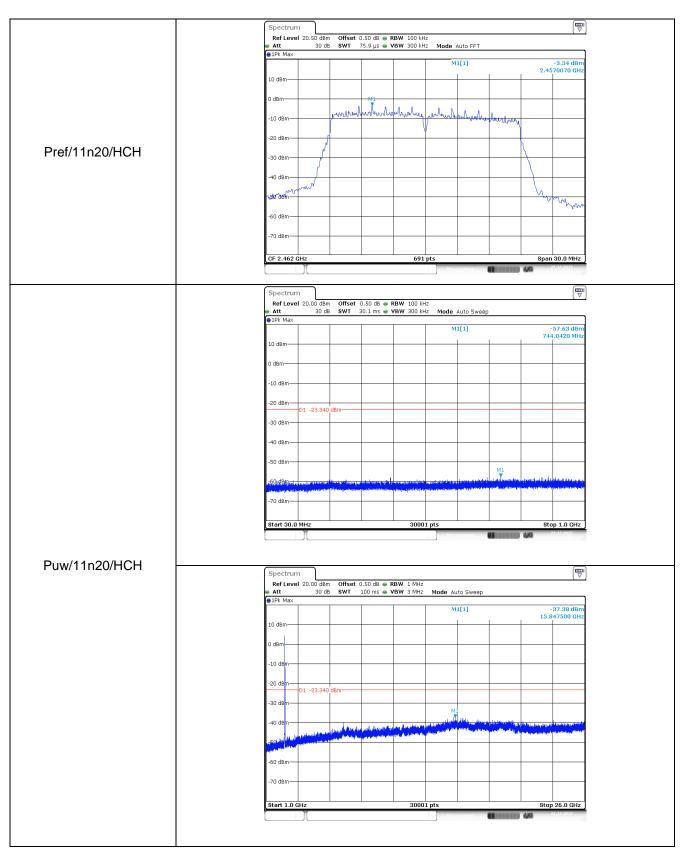

Test Item:	Bandedge	Type: 802.11 b	
	👄 Att	.evel 20.00 dBm Offset 0.50 dB ● RBW 100 kHz 30 dB SWT 246.5 µs ● VBW 300 kHz Mode Auto FFT	
	• 1Pk M 10 dBm 0 dBm-	M1[1] 7.28 dBm	
	-10 dBr -20 dBr		
CH01	-30 dBr -40 dBr -50 dBr		
	₿60,dar -70 dBr		
	Marker	Ref Trc X-value Y-value Function Function Result 1 2.41106 GHz 7.28 dBm	
	M3 M3 M4 M5	1 2.39 GHz -52.35 dBm 1 2.31 GHz -61.45 dBm	
		.evel 20.00 dBm Offset 0.50 dB RBW 100 kHz	
	Att P 1Pk M 10 dBm	M1 0 0000 000 000 000 000 000 000 000 00	
	0 dBm- -10 dBr /	2.4835000 GHz	
CH11	-20 ber 50 der -40 der		
0111	-50 dBr -60 dBr	n	
	Marker	2.452 GHz 691 pts Stop 2.5 GHz	
	Type M1 M2 M3	1 2.4935 GHz -54.09 dBm 1 2.5 GHz -61.02 dBm 1 2.484 GHz -53.13 dBm	

Test Item:	Bandedge	T	ype:	802.11 g
	Re Att	t 30 dB SWT	0.50 dB RBW 100 kHz 246.5 µs VBW 300 kHz Mode A	uto FFT
	• 1Pk 10 dl		M1 M2	2.407010 GHz
	-10 c			
CH01	-30 c -40 c -50 c	dBm		
	560. -70 c	dBhy haan yn en balw dBm	Annon the ten ten annon	Handred Mandalla
	Mark Typ	oe Ref Trc X-valu	691 pts	Stop 2.422 GHz
		M2 1	701 GHz -2.14 dBm 2.4 GHz -46.99 dBm 39 GHz -57.98 dBm .31 GHz -61.01 dBm J25 GHz -45.32 dBm	ring Constants 400 PLD2417
			0.50 dB ● RBW 100 kHz 113.8 µs ● VBW 300 kHz Mode A	(m) V
		< Max	M1	1] -1.04 dBm 2.4569670 GHz
	0 dB) -10 jo -ah c	www.bellendertent. ober with and well	ybutuly	2.4633000 Gr2
CH11	/-30 c			
	-50 c -60 c -70 c	dBm	han affred the	With many and a contraction of the contraction
	Mark		691 pts	Stop 2.5 GHz
		M2 1 2.48 M3 1 :	e Y-value Functi 967 GHz -1.04 dBm - 355 GHz -55.87 dBm - 2.5 GHz -60.44 dBm - 187 GHz -52.85 dBm -	n Function Result
			Meas	ring 👔 🗰 🧰 21.12.2017

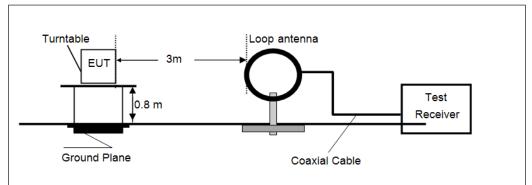

Test Item:	Bandedge	Туре:		802.11 n(HT20)
	Spectrum Ref Level Att		• RBW 100 kHz • VBW 300 kHz Mode Auto FFT	(T)
	 1Pk Max 10 dBm 0 dBm 		M1[1] M2[1]	-4.20 dBm 2.407010 GHz -49.11 dBm Mg2-40000 GHz
	-10 dBm	1 -24.200_dBm		atterneer
CH01	-30 dBm			
	4 Խնֆ վթա յրությ -70 dBm		1970 - Charles Martin Caller of Martin Parks	
	Start 2.31 G Marker		691 pts	Stop 2.422 GHz
	Type Ref M1 M2 M3 M4 M5 M5	Trc X-value 1 2.40701 GHz 1 2.4 GHz 1 2.39 GHz 1 2.31 GHz 1 2.399762 GHz	Y-value Function -4.20 dBm - -49.11 dBm - -57.94 dBm - -59.93 dBm - -49.10 dBm -	Function Result
)[Measuring	(11122017 (11122017
	Spectrum Ref Level Att	20.00 dBm Offset 0.50 dB (30 dB SWT 113.8 µs (RBW 100 kHz VBW 300 kHz Mode Auto FFT	
	PPk Max I0 dBm		M1[1] M2[1]	-2.92 dBm 2.4569570 GHz -56.45 dBm 2.4835000 GHz
	0 dBm -10 dBm -20 dBm	when have going and	1	
CH11	-40 dBm	1 -22.920 dBm		
	-50 dBm		M2M4	March 1999 - Stage - Stage - Start Barrow
	Start 2.452 Marker		691 pts	Stop 2.5 GHz
	Type Ref M1 M2 M3 M4	Trc X-value 1 2.456967 GHz 1 2.4835 GHz 1 2.5 GHz 1 2.4846261 GHz	Y-value Function -2.92 dBm - -56.45 dBm - -61.51 dBm - -56.41 dBm -	Function Result
			Measuring	(111111) (MA) 21.12.2017


est Item:	SE	Туре:	802.11 b
		Spectrum Ref Level 20.50 dBm Offset 0.50 dB RBW 100 kHz	
		Att 30 dB SWT 75.9 µs VBW 300 kHz Mode Au	:0 FFT
		MI	1] 7.28 dBm 2.4115220 GHz
		10 dBm	
		0 dBm	My
		-10 dBm	
		-20 dBm	
Pref/11B/LCH		-30 dBm	- <u>v</u>
		-40 dan 4 Ar	My
		-50 dBm	" "Myrby
		-60 dBm	
		-70 dBm	
		CF 2.412 GHz 691 pts	Span 30.0 MHz
		(Pagetrum)	
		Spectrum Ref Level 20.00 dBm Offset 0.50 dB ● RBW 100 kHz 0.00 dB	
		Att 30 dB SWT 30.1 ms VBW 300 kHz Mode Au IPk Max	
		10 dBm	1] -57.05 dBm 790.4060 MHz
		0 dBm	
		-10 dBm D1 -12.720 dBm	
		-20 dBm	
		-30 dBm	
		-40 dBm	
		-50 dBm	M1
		-69,48m in metalasticia del de la contractición de la contractición de la contractica de la contractica de la c	M1.
		- Province of the second	
		Start 30.0 MHz 30001 pts	Stop 1.0 GHz
			ring (1112.2017
/uw/11B/LCH		Spectrum	
		RefLevel 20.00 dBm Offset 0.50 dB RBW 1 MHz Att 30 dB SWT 100 ms VBW 3 MHz Mode Auto	
		IPk Max MI[1] -37.85 dBm
		10 dBm	16.543333 GHz
		0 dBm	
		-10 dem	
		-20 dBm	
		-40 dBm	
		-60 dBm	
		-70 dBm	
		Start 1.0 GHz 30001 pts	Stop 26.0 GHz
		po	,, and

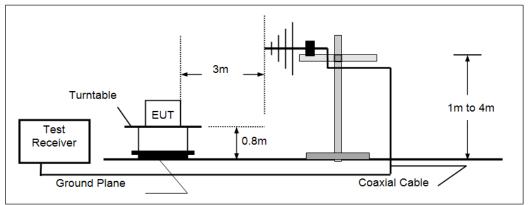



est Item:	SE		Type:			8	802.11	
		Spectrum Ref Level 20.50 dBm	Offset 0.50 dB 👄 F	BW 100 kH	2			
		■ Att 30 dB ● 1Pk Max	SWT 75.9 µs 🖷 🕻					
					M1[1]	1	2.407	2.05 dBm 0070 GHz
		10 dBm						
		0 dBm	moundersh	10s. La	mhandandarah			
		-10 dBm	Julianananan	www.	no malandana	whenpy		
		-20 dBm	/		, 	+	V	
Pref/11G/LCH		-30 dBm						
		-40 dBm						
		vshabhnuhn					Lan	
							- ~	mount
		-60 dBm						
		-70 dBm						
		CF 2.412 GHz		691	pts			30.0 MHz
					Measuring		4,49	12.2017
		Spectrum						
			SWT 30.1 ms e			эр		
		● 1Pk Max			M1[1]		-5	7.21 dBm 0050 MHz
		10 dBm						0000 0012
		0 dBm						
		-10 dBm						
		-20 dBm	10					
		-30 dBm	Bm					
		-40 dBm						
		-50 dBm						M1
		-60, dBm	na poljek pod kon do na klasta i kon Na plana og konstante da ter som je	alaharat dan dan Kanadarat dan sebutahan	n piter in this data in a firm of	la distante distante Maria	di singlati sendita si Parta panglati sendita si	aliyata belalada Maryan yang
		-70 dBm						
		Start 30.0 MHz		3000:	L pts		Stop	0 1.0 GHz
					Measuring		140 21	.12.2017
Puw/11G/LCH		Spectrum						
		Ref Level 20.00 dBm Att 30 dB 1Pk Max	Offset 0.50 dB - F SWT 100 ms - V	BW 1 MHz BW 3 MHz	Mode Auto Sweep			
		14K 149X			M1[1]		-3	7.51 dBm 5833 GHz
		10 dBm					10.10	
		0 dBm						
		-10 dBm						
		-20 dBm - 01 - 02 050 d	10					
		-30 dBm						
					M1	، فاستقدر الم		
		-40 dEm		d Andrew	alled the second building the			
		-50 Mar Albert	ingen of the test					
		-60 dBm						
		-70 dBm						
		Start 1.0 GHz		3000:	L pts		Stop	26.0 GHz
							p	

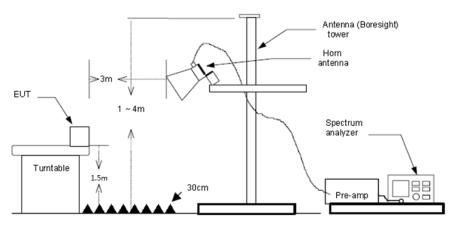
st Item:	SE		Ту	/pe:				8	302.1 <i>°</i>	l n(HT2
	Spectru				D.W. 400 L					
	e Att Pk Max	vel 20.50 dBn 30 di).50 dB 👄 R 75.9 μs 👄 V		iz Iz Mode	Auto FFT			
						м	1[1]		2.40	-5.35 dBm 70070 GHz
	10 dBm—									
	0 dBm			M1						
	-10 dBm-	_	mound	7	monaluey	maland		hurber		
	-20 dBm-					V				
Pref/11n20/LCH									۱.	
	-30 dBm-	1							\square	
	-40 dBm-									
	-50 dBm	hum							Mrs	mony
	-60 dBm-									
	-70 dBm-									
	CF 2.41:	2 GHZ			691	pts	isuring			30.0 MHz
	(an a star									
		/el 20.00 dBn		0.50 dB 👄 F						
	 Att 1Pk Max 		B SWT 3	30.1 ms 🖷 🕻	/BW 300 kH					
						м	1[1]		910	56.46 dBm 3.6040 MHz
	10 dBm—									
	0 dBm									
	-10 dBm-	-								
	-20 dBm-									
	-30 dBm-	D1 -25.350	dBm							
	-40 dBm-									
	-50 dBm-									M1
	,760)d8m7	(An University of States) An university of the states	्य हिंदु शत्कर्त्तने सरा जन्महर्त्तने सरा	and reprint to a surprise of the second s	ner al faith an	a la seriera delas La secola delas	in a second s		and a start of the	instally in solutions,
	-70 dBm-									
	Start 30	.0 MHz			3000	1 pts			Sto	p 1.0 GHz
		(Mea	suring		4/0	21.12.2017 21.40.05
Puw/11n20/LCH	Spectru									
	👄 Att	vel 20.00 dBn 30 dB	n Offset (3 SWT	J.SO dB 👄 R 100 ms 👄 V	BW 1 MHz BW 3 MHz	Mode Au	ito Sweep			
	• 1Pk Max	:				м	1[1]			37.26 dBm
	10 dBm—								15.9	54167 GHz
	0 dBm									
	-10 dBm-									
	-20 dBm-									
		D1 -25.350	dBm							
	-30 dBm-					M	1			
	-40 dBm-			, ha al fill and a	a da chuh		literature la parte Alternature de la constante			and program to the last
	1550 via					<u> </u>				
	-60 dBm-									
	-70 dBm-									
		1							1	
	Start 1.0					1 pts				26.0 GHz


5.8. Spurious Emissions (radiated) LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.209


Frequency	Limit (dBuV/m @3m)	Value		
30MHz-88MHz	40.00	Quasi-peak		
88MHz-216MHz	43.50	Quasi-peak		
216MHz-960MHz	46.00	Quasi-peak		
960MHz-1GHz	54.00	Quasi-peak		
Above 1GHz	54.00	Average		
	74.00	Peak		

TEST CONFIGURATION


> 9kHz ~30MHz

> 30MHz ~ 1GHz

Above 1GHz

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:
 - RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
 - (3) From 1 GHz to 10th harmonic: RBW=1MHz, VBW=3MHz Peak detector for Peak value. RBW=1MHz, VBW=3MHz RMS detector for Average value.

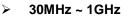
TEST MODE:

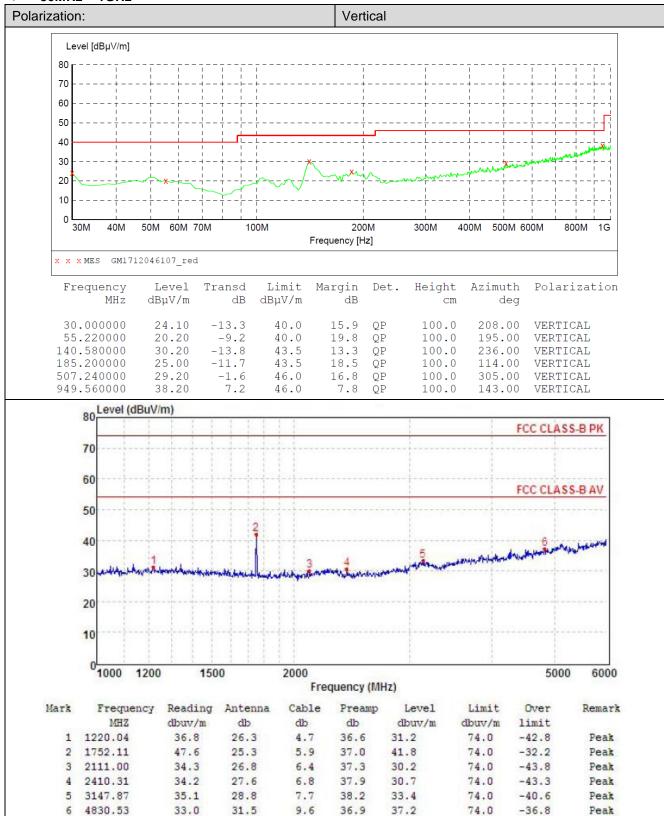
Please refer to the clause 3.3

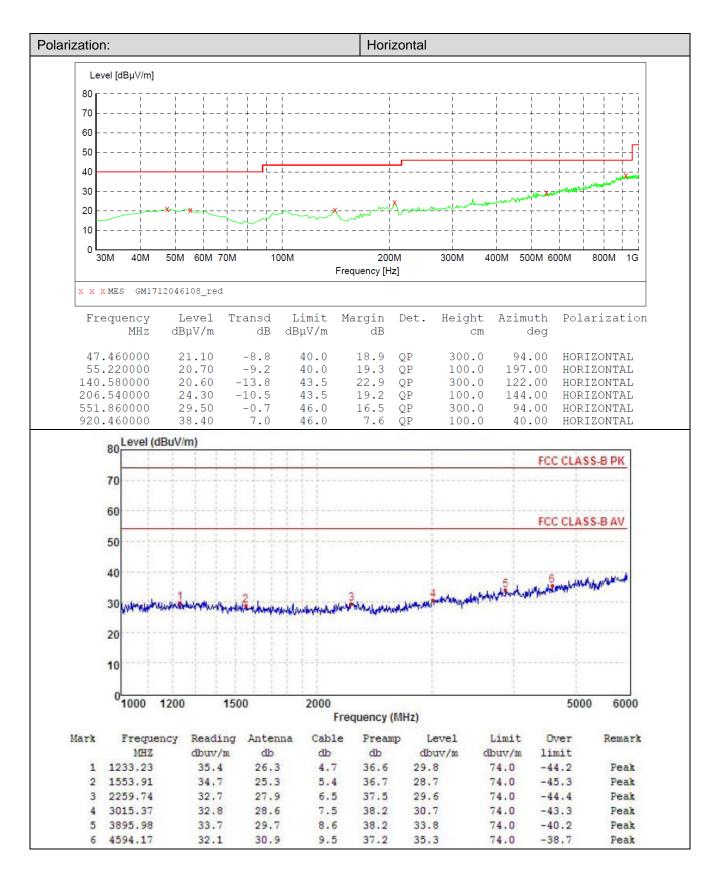
TEST RESULTS

☑ Passed □ Not Applicable

Note:


- 1) Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2) The emission levels of other frequencies are very lower than the limit and not show in test report.


➢ 9kHz ~ 30MHz


The EUT was pre-scanned the frequency band (9kHz~30MHz), found the radiated level lower than the limit, so don't show on the report.

➢ 30MHz ~1000MHz

Have pre-scan all modulation mode, found the 802.11b mode CH01 which it was worst case, so only the worst case's data on the test report.

➢ 1 GHz ~ 25 GHz

802.11b					CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1750.70	36.03	25.30	5.86	37.04	30.15	74.00	-43.85	Vertical	Peak
3579.82	32.88	29.24	8.24	38.30	32.06	74.00	-41.94	Vertical	Peak
5776.92	30.39	31.99	10.55	35.38	37.55	74.00	-36.45	Vertical	Peak
6956.63	28.88	35.04	11.80	34.83	40.89	74.00	-33.11	Vertical	Peak
1323.14	33.13	26.13	4.87	36.50	27.63	74.00	-46.37	Horizontal	Peak
2564.71	31.22	27.59	6.89	37.85	27.85	74.00	-46.15	Horizontal	Peak
4858.72	31.52	31.48	9.58	36.80	35.78	74.00	-38.22	Horizontal	Peak
6527.71	31.20	34.06	11.23	35.34	41.15	74.00	-32.85	Horizontal	Peak

802.11b					CH06				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1296.47	34.09	26.20	4.82	36.52	28.59	74.00	-45.41	Vertical	Peak
2140.66	32.08	27.03	6.39	37.33	28.17	74.00	-45.83	Vertical	Peak
3700.26	33.81	29.30	8.39	38.25	33.25	74.00	-40.75	Vertical	Peak
6494.56	30.79	33.96	11.16	35.33	40.58	74.00	-33.42	Vertical	Peak
1313.08	33.22	26.16	4.85	36.51	27.72	74.00	-46.28	Horizontal	Peak
1737.38	33.13	25.28	5.84	37.01	27.24	74.00	-46.76	Horizontal	Peak
3805.33	33.10	29.61	8.51	38.23	32.99	74.00	-41.01	Horizontal	Peak
7319.96	32.41	36.30	11.99	34.92	45.78	74.00	-28.22	Horizontal	Peak

802.11b					CH11				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1213.44	33.93	26.29	4.68	36.56	28.34	74.00	-45.66	Vertical	Peak
1529.75	32.42	25.53	5.37	36.63	26.69	74.00	-47.31	Vertical	Peak
4559.15	31.66	30.82	9.39	37.30	34.57	74.00	-39.43	Vertical	Peak
7357.33	30.41	36.30	12.03	34.88	43.86	74.00	-30.14	Vertical	Peak
1244.73	34.99	26.25	4.74	36.55	29.43	74.00	-44.57	Horizontal	Peak
1800.42	33.18	25.40	5.96	37.14	27.40	74.00	-46.60	Horizontal	Peak
3983.75	33.25	29.70	8.76	38.12	33.59	74.00	-40.41	Horizontal	Peak
6412.43	30.81	33.39	11.01	35.31	39.90	74.00	-34.10	Horizontal	Peak

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.

3. The emission levels of other frequencies(test frequency band is 1GHz to 25GHz) are very lower than the limit and not show in test report.

802.11g					CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1260.67	34.37	26.24	4.76	36.54	28.83	74.00	-45.17	Vertical	Peak
3681.47	33.57	29.30	8.36	38.25	32.98	74.00	-41.02	Vertical	Peak
4785.08	31.10	31.54	9.53	36.98	35.19	74.00	-38.81	Vertical	Peak
8022.46	31.04	37.08	12.35	34.53	45.94	74.00	-28.06	Vertical	Peak
1333.28	32.46	26.10	4.89	36.50	26.95	74.00	-47.05	Horizontal	Peak
2055.23	31.32	26.52	6.32	37.31	26.85	74.00	-47.15	Horizontal	Peak
4946.07	30.77	31.45	9.63	36.55	35.30	74.00	-38.70	Horizontal	Peak
5732.97	32.01	31.77	10.48	35.50	38.76	74.00	-35.24	Horizontal	Peak

802.11g					CH06				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1323.14	33.53	26.13	4.87	36.50	28.03	74.00	-45.97	Vertical	Peak
1805.01	32.47	25.39	5.97	37.14	26.69	74.00	-47.31	Vertical	Peak
4138.80	32.68	29.94	8.89	37.79	33.72	74.00	-40.28	Vertical	Peak
6478.05	30.22	33.85	11.13	35.33	39.87	74.00	-34.13	Vertical	Peak
1213.44	35.44	26.29	4.68	36.56	29.85	74.00	-44.15	Horizontal	Peak
1689.41	32.50	25.17	5.74	36.91	26.50	74.00	-47.50	Horizontal	Peak
4191.82	32.74	29.99	8.93	37.67	33.99	74.00	-40.01	Horizontal	Peak
6645.07	30.60	34.20	11.41	35.28	40.93	74.00	-33.07	Horizontal	Peak

802.11g	802.11g CH11								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1371.15	32.87	25.98	4.95	36.48	27.32	74.00	-46.68	Vertical	Peak
4688.62	30.54	31.17	9.50	37.11	34.10	74.00	-39.90	Vertical	Peak
5646.08	30.54	31.71	10.34	35.74	36.85	74.00	-37.15	Vertical	Peak
6851.19	30.18	34.36	11.66	34.94	41.26	74.00	-32.74	Vertical	Peak
1219.64	34.46	26.28	4.69	36.56	28.87	74.00	-45.13	Horizontal	Peak
1746.25	32.44	25.29	5.86	37.03	26.56	74.00	-47.44	Horizontal	Peak
3653.46	33.26	29.30	8.33	38.26	32.63	74.00	-41.37	Horizontal	Peak
6478.05	31.10	33.85	11.13	35.33	40.75	74.00	-33.25	Horizontal	Peak

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies(test frequency band is 1GHz to 25GHz) are very lower than the limit and not show in test report.

802.11n(HT	20)				CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1680.83	33.33	25.14	5.73	36.89	27.31	74.00	-46.69	Vertical	Peak
3653.46	32.78	29.30	8.33	38.26	32.15	74.00	-41.85	Vertical	Peak
4821.76	36.57	31.56	9.55	36.90	40.78	74.00	-33.22	Vertical	Peak
6868.65	29.52	34.48	11.69	34.92	40.77	74.00	-33.23	Vertical	Peak
1502.73	31.13	25.77	5.29	36.59	25.60	74.00	-48.40	Horizontal	Peak
3588.94	31.55	29.27	8.25	38.29	30.78	74.00	-43.22	Horizontal	Peak
4821.76	32.10	31.56	9.55	36.90	36.31	74.00	-37.69	Horizontal	Peak
6511.12	29.49	34.02	11.20	35.34	39.37	74.00	-34.63	Horizontal	Peak

802.11n(HT	20)				CH06				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1257.47	35.02	26.24	4.76	36.54	29.48	74.00	-44.52	Vertical	Peak
1755.16	36.18	25.31	5.87	37.05	30.31	74.00	-43.69	Vertical	Peak
3135.99	32.58	28.80	7.64	38.21	30.81	74.00	-43.19	Vertical	Peak
7604.87	31.14	36.20	12.73	34.98	45.09	74.00	-28.91	Vertical	Peak
1746.25	37.52	25.29	5.86	37.03	31.64	74.00	-42.36	Horizontal	Peak
3552.58	32.36	29.16	8.20	38.34	31.38	74.00	-42.62	Horizontal	Peak
4871.10	32.65	31.46	9.59	36.76	36.94	74.00	-37.06	Horizontal	Peak
8042.90	31.17	37.06	12.40	34.53	46.10	74.00	-27.90	Horizontal	Peak

802.11n(HT	20)			CH11					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1257.47	34.77	26.24	4.76	36.54	29.23	74.00	-44.77	Vertical	Peak
1814.22	33.09	25.39	5.98	37.15	27.31	74.00	-46.69	Vertical	Peak
4641.12	32.56	31.02	9.48	37.17	35.89	74.00	-38.11	Vertical	Peak
7394.88	32.33	36.30	12.06	34.83	45.86	74.00	-28.14	Vertical	Peak
1185.96	35.73	26.19	4.63	36.58	29.97	74.00	-44.03	Horizontal	Peak
1741.81	33.37	25.29	5.85	37.02	27.49	74.00	-46.51	Horizontal	Peak
5086.52	31.79	31.85	9.74	36.31	37.07	74.00	-36.93	Horizontal	Peak
7394.88	34.66	36.30	12.06	34.83	48.19	74.00	-25.81	Horizontal	Peak

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.

3. The emission levels of other frequencies(test frequency band is 1GHz to 25GHz) are very lower than the limit and not show in test report.

6. TEST SETUP PHOTOS of the eut

Radiated Emissions

7. EXTERANAL AND INTERNAL PHOTOS OF THE EUT

Reference to the test report No.: TRE1711018601.

-----End of Report-----