

TEST REPORT R/C....: 19117 Report Reference No.....:: TRE1704021603 FCC ID.....: ZSW-30-039 Applicant's name: **b** mobile HK Limited Flat 18; 14/F Block 1; Golden Industrial Building; 16-26 Kwai Tak Address.....: Street; Kwai Chung; New Territories; Hong Kong. Manufacturer....: b mobile HK Limited Flat 18; 14/F Block 1; Golden Industrial Building; 16-26 Kwai Tak Address.....: Street; Kwai Chung; New Territories; Hong Kong. **Mobile Phone** Test item description:: **Bmobile** Trade Mark Model/Type reference.....: AX821 Listed Model(s) Standard: FCC CFR Title 47 Part 15 Subpart C Section 15.247 Date of receipt of test sample.....: Apr. 24, 2017 Date of testing..... Apr. 24, 2017 - May 07, 2017 Date of issue.....: May 07, 2017 Result.....: PASS Compiled by (position+printedname+signature)...: File administrators Becky Liang Supervised by (position+printedname+signature)....: Project Engineer Lion Cai Approved by (position+printedname+signature)....: **RF Manager Hans Hu** Testing Laboratory Name: : Shenzhen Huatongwei International Inspection Co., Ltd. 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Address..... Gongming, Shenzhen, China Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

<u>1.</u>	TEST STANDARDS ANDTEST DESCRIPTION	3
1.1.	Test Standards	3
1.2.	Report version	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Operation state	6
3.4.	EUT configuration	6
3.5.	Modifications	6
<u>4.</u>	TEST ENVIRONMENT	77
4.1.	Address of the test laboratory	7
4.2.	Test Facility	7
4.3.	Environmental conditions	8
4.4.	Statement of the measurement uncertainty	8
4.5.	Equipments Used during the Test	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	10
5.1.	Antenna requirement	10
5.2.	Conducted Emission (AC Main)	11
5.3.	Conducted Peak Output Power	14
5.4.	20dB Emission Bandwidth	17
5.5.	Carrier Frequencies Separation	20
5.6.	Hopping Channel Number	22
5.7.	Dwell Time	24
5.8.	Pseudorandom Frequency Hopping Sequence	27
5.9.	Restricted band (radiated)	28
5.10. 5.11.	Bandedge and Spurious Emission (conducted) Spurious Emission (radiated)	30 34
6	TEST SETUP PHOTOS OF THE EUT	39
<u>6.</u>		
7.	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	40

1. TEST STANDARDS ANDTEST DESCRIPTION

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

ANSI C63.10-2013: American National Standard forTesting Unlicensed Wireless Devicese

1.2. Report version

Version No.	Date of issue	Description
00	May 07, 2017	Original

2. Test Description

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)&TCB Exclusion List (7 July 2002)	Pass
Restricted band	15.247(d)/15.205	Pass
Radiated Emission	15.247(d)/15.209	Pass

Note: The measurement uncertainty is not included in the test result.

3. <u>SUMMARY</u>

3.1. Client Information

Applicant:	b mobile HK Limited
Address:	Flat 18; 14/F Block 1; Golden Industrial Building;16-26 Kwai Tak Street; Kwai Chung; New Territories; Hong Kong.
Manufacturer:	b mobile HK Limited
Address:	Flat 18; 14/F Block 1; Golden Industrial Building;16-26 Kwai Tak Street; Kwai Chung; New Territories; Hong Kong.

3.2. Product Description

Name of EUT:	Mobile Phone	
Trade Mark:	Bmobile	
Model No.:	AX821	
Listed Model(s):	-	
Power supply:	DC 3.8V From internal battery	
Adapter information:	Input: 100-240Va.c., 50-60Hz, 0.15A Output: 5.0Vd.c., 500mA	
Bluetooth		
Version:	Supported BT2.1+EDR	
Modulation:	GFSK, π/4DQPSK, 8DPSK	
Operation frequency:	2402MHz~2480MHz	
Channel number:	79	
Channel separation:	1MHz	
Antenna type:	Integral Antenna	

3.3. Operation state

Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channel which were tested. the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above gray bottom.

Channel	Frequency (MHz)
0	2402
1	2403
:	:
39	2441
:	:
77	2479
78	2480

> <u>Test mode</u>

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit (duty cycle>98%).

For AC power line conducted emissions:

The EUT was set to connect with the Bluetooth instrument under large package sizes transmission.

For RF test axis

EUT in each of three orthogonal axis emissions had been tested ,but only the worst case (X axis) data Recorded in the report.

3.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

• - supplied by the manufacturer

0	- supplied by the lab

	Length (m):	/
	Shield:	/
	Detachable:	/
	Manufacturer:	/
	Model No.:	/

3.5. Modifications

No modifications were implemented to meet testing criteria.

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory:Shenzhen Huatongwei International Inspection Co., Ltd. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phone: 86-755-26748019 Fax: 86-755-26748089

4.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 317478

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 317478.

IC-Registration No.: 5377B

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
lative Humidity:	30~60 %
Air Pressure:	950~1050mba

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01"Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics;Part 1"and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement characteristics;Part 2 " and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongweilaboratory is reported:

Test Items	MeasurementUncertainty	Notes
Transmitter Power Conducted	0.57 dB	(1)
Transmitter Power Radiated	2.20 dB	(1)
Conducted Spurious Emission 9 kHz ~ 40 GHz	1.60 dB	(1)
Radiated Spurious Emission 9 kHz ~ 40 GHz	2.20 dB	(1)
Conducted Emission 9 kHz ~30 MHz	3.39 dB	(1)
Radiated Emission 30 ~1000 MHz	4.24 dB	(1)
Radiated Emissio 1 ~ 18 GHz	5.16 dB	(1)
Radiated Emissio 18 ~ 40 GHz	5.54 dB	(1)
Occupied Bandwidth		(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4.5. Equipments Used during the Test

Conducted Emission (AC Main)					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Artificial Mains	Rohde&Schwarz	ESH2-Z5	100028	2016/11/13
2	EMI Test Receiver	Rohde&Schwarz	ESCI3	100038	2016/11/13
3	Pulse Limiter	Rohde&Schwarz	ESHSZ2	100044	2016/11/13
4	EMI Test Software	Rohde&Schwarz	ES-K1 V1.71	N/A	N/A
Radia	ted Emission				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	2016/11/13
2	EMI TEST RECEIVER	Rohde&Schwarz	ESI 26	100009	2016/11/13
3	EMI TEST Software	Audix	E3	N/A	N/A
4	TURNTABLE	ETS	2088	2149	N/A
5	ANTENNA MAST	ETS	2075	2346	N/A
6	EMI TEST Software	Rohde&Schwarz	ESK1	N/A	N/A
7	HORNANTENNA	ShwarzBeck	9120D	1011	2016/11/13
8	Amplifer	Sonoma	310N	E009-13	2016/11/13
9	JS amplifer	Rohde&Schwarz	JS4-00101800- 28-5A	F201504	2016/11/13
10	High pass filter	Compliance Direction systems	BSU-6	34202	2016/11/13
11	HORNANTENNA	ShwarzBeck	9120D	1012	2016/11/13
12	Amplifer	Compliance Direction systems	PAP1-4060	120	2016/11/13
13	Loop Antenna	Rohde&Schwarz	HFH2-Z2	100020	2016/11/13
14	TURNTABLE	MATURO	TT2.0		N/A
15	ANTENNA MAST	MATURO	TAM-4.0-P		N/A
16	Horn Antenna	SCHWARZBECK	BBHA9170	25841	2016/11/13
17	ULTRA-BROADBAND ANTENNA	Rohde&Schwarz	HL562	100015	2016/11/13

Maximum Peak Output Power / Power Spectral Density / 6dB Bandwidth / Band Edge Compliance of RFEmission / Spurious RF Conducted EmissionItemTest EquipmentManufacturerModel No.Spectrum AnalyzerRohde&SchwarzFSP1164.4391.402016/11/13

The Cal.Interval was one year.

5. TEST CONDITIONS AND RESULTS

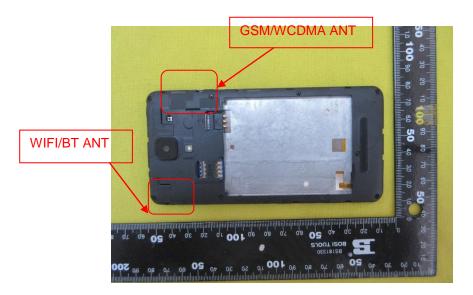
5.1. Antenna requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of anantenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):


(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

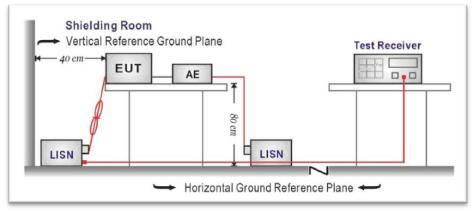
Test Result:

 \boxtimes Passed

Not Applicable

The antenna is integralantenna, the best case gain of the antenna is -0.3dBi.

5.2. Conducted Emission (AC Main)


LIMIT

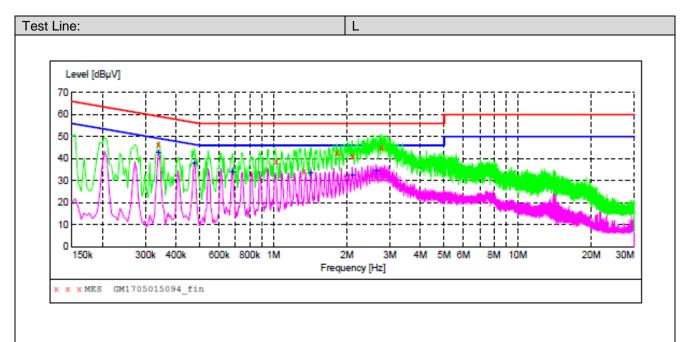
FCC CFR Title 47 Part 15 Subpart C Section 15.207

	Limit (dBuV)		
Frequency range (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

* Decreases with the logarithm of the frequency.

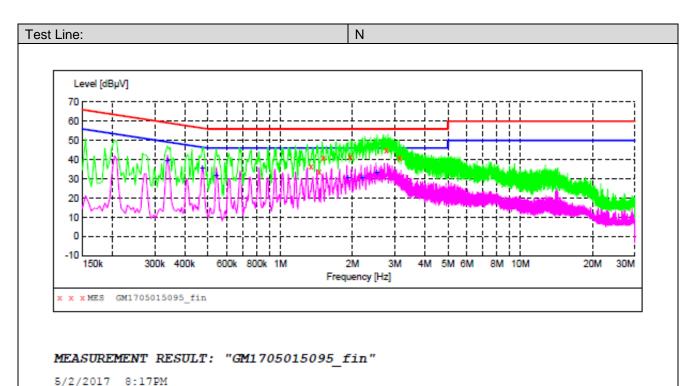
TEST CONFIGURATION

TEST PROCEDURE


- 1. The EUT was setup according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above theconducting ground plane. The vertical conducting plane was located 40 cm to the rear of theEUT. All other surfaces of EUT were at least 80 cm from any other grounded conductingsurface.
- 3. The EUT and simulators are connected to the main power through a line impedancestabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for themeasuring equipment.
- 4. The peripheral devices are also connected to the main power through aLISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were foldedback and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15 MHz to 30 MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

9. TEST RESULTS

☑ Passed □ Not Applicable


Note:

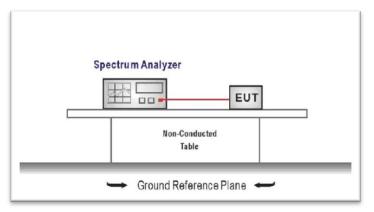
- 1) Transd= Cable lose + Pulse Limiter Factor + Artificial Mains Factor
- 2) Margin= Limit Level

MEASUREMENT RESULT: "GM1705015094 fin"

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.339000	46.70	10.2	59	12.5	QP	Ll	GND
1.027500	38.70	10.2	56	17.3	QP	Ll	GND
1.338000	34.10	10.2	56	21.9	QP	Ll	GND
	42.40					Ll	
	41.30			14.7	-	L1	
2 220000	44.90	10.2	56	11.1	OP	Ll	GND
ASUREMENT	RESULT	: "GM17	050150	94_fin	-		
CASUREMENT 2/2017 8:14 Frequency	RESULT PM Level	Transd	Limit	— Margin	2″	Line	PE
CASUREMENT 2/2017 8:14	RESULT			-	2″	Line	PE
CASUREMENT 2/2017 8:14 Frequency	RESULT PM Level	Transd dB	Limit dBµV	— Margin	2" Detector	Line	PE
2/2017 8:14 Frequency MHz 0.339000	RESULT PM Level dBµV	Transd dB 10.2	Limit dBµV 49	— Margin dB	2" Detector AV		
2/2017 8:14 Frequency MHz 0.339000 0.474000 0.681000	RESULT PM dBµV 43.20 38.20 34.60	Transd dB 10.2 10.2 10.2	Limit dBµV 49 46 46	- Margin dB 6.0	2" Detector AV AV	Ll	GND GND GND
2/2017 8:14 Frequency MHz 0.339000 0.474000 0.681000	RESULT PM dBµV 43.20 38.20	Transd dB 10.2 10.2 10.2	Limit dBµV 49 46 46		2" Detector AV AV AV AV	L1 L1 L1 L1	GND GND GND
2/2017 8:14 Frequency MHz 0.339000 0.474000 0.681000 1.423500	RESULT PM dBµV 43.20 38.20 34.60	Transd dB 10.2 10.2 10.2 10.2	Limit dBµV 49 46 46 46		2" Detector AV AV AV AV AV	L1 L1 L1	GND GND GND

5/2/2017 8:17 Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
1.342500	36.30	10.2	56	19.7	OP	N	GND
1.455000	33.80	10.2	56	22.2	QP	N	GND
1.509000	40.80	10.2	56	15.2	QP	N	GND
1.959000	41.80	10.2	56	14.2	QP	N	GND
2.769000	44.70	10.2	56	11.3	QP	N	GND
3.147000	41.00	10.2	56	15.0	QP	N	GND

MEASUREMENT RESULT: "GM1705015095 fin2"


Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.339000	40.00	10.2	49	9.2	AV	N	GND
0.474000	35.70	10.2	46	10.7	AV	N	GND
0.541500	32.20	10.2	46	13.8	AV	N	GND
1.914000	31.00	10.2	46	15.0	AV	N	GND
2.193000	31.00	10.2	46	15.0	AV	N	GND
2.521500	33.50	10.2	46	12.5	AV	N	GND

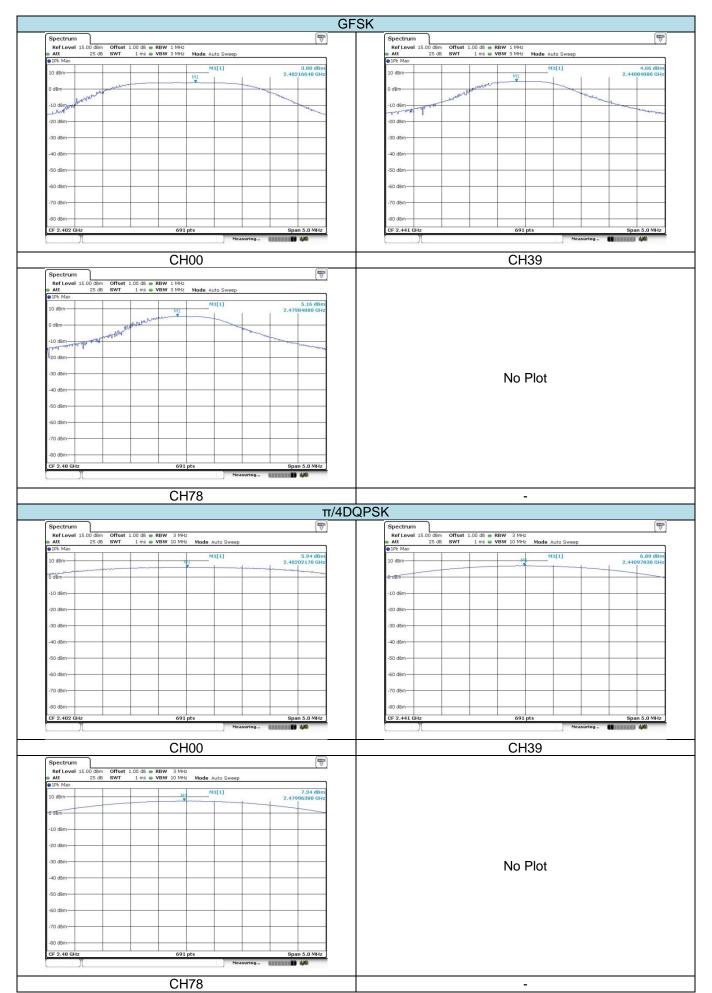
5.3. Conducted Peak Output Power

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3): **30dBm**

TEST CONFIGURATION

TEST PROCEDURE

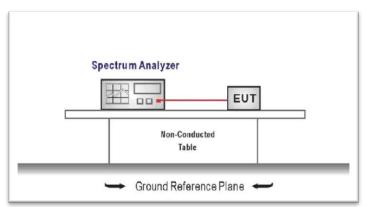

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings:
 Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW≥ the 20 dB bandwidth of the emission being measured, VBW ≥ RBW
 Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Modulation type	Channel Output power (dB		Limit (dBm)	Result
	00	3.88		
GFSK	39	4.66	30.00	Pass
	78	5.16		
	00	5.95		
π/4DQPSK	39	6.89	21.00	Pass
	78	7.34		
	00	6.27		
8DPSK	39	7.22	21.00	Pass
	78	7.67		



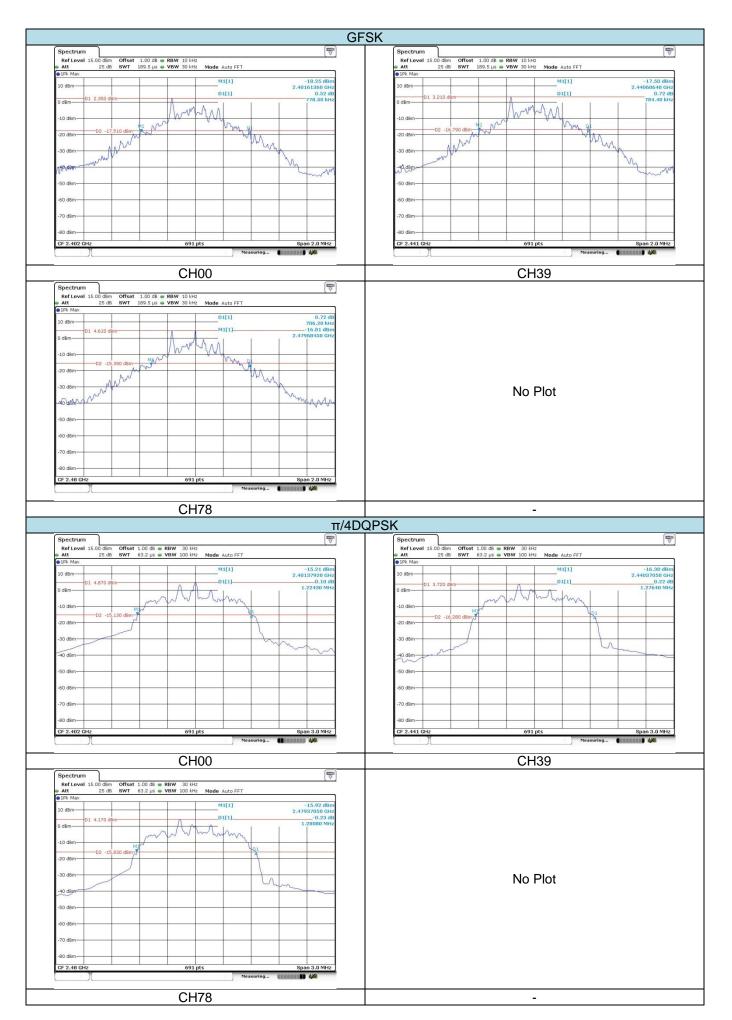
5.4. 20dB Emission Bandwidth

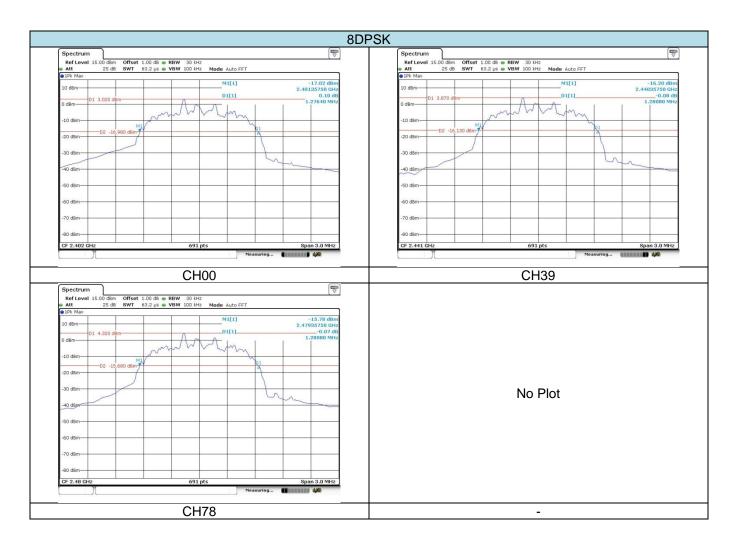
LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

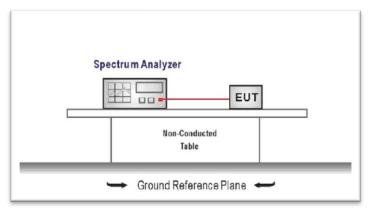

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:
 - Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW ≥ 1% of the 20 dB bandwidth, VBW ≥ RBW Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.


TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Modulation type	Channel	Channel 20dB Bandwidth (MHz)		Result
	00	0.778		
GFSK	39	0.784	-	Pass
	78	0.706		
	00	1.224		
π/4DQPSK	39	1.276	-	Pass
	78	1.281		
	00	1.276		
8DPSK	39	1.281	-	Pass
	78	1.281		



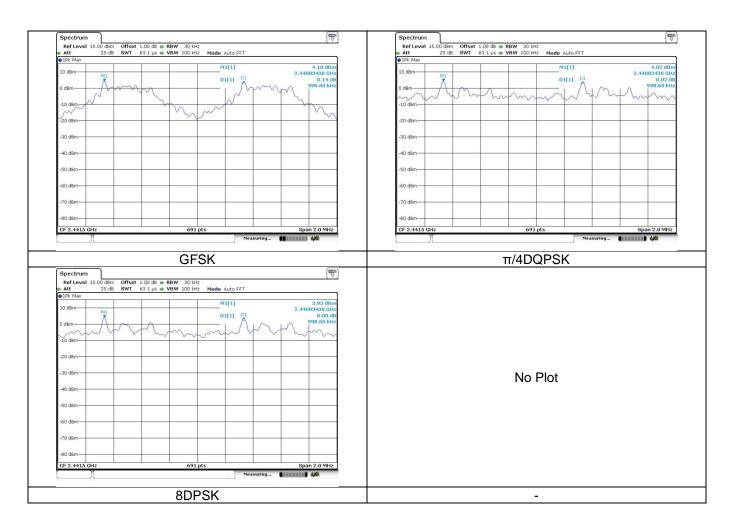
5.5. Carrier Frequencies Separation

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1): frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25 kHz or the 2/3*20 dB bandwidth of the hopping channel, whichever is greater.

TEST CONFIGURATION

TEST PROCEDURE

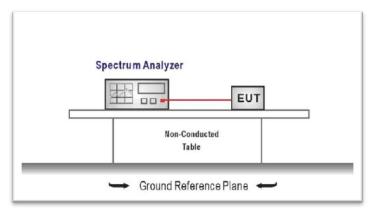

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels RBW ≥ 1% of the span, VBW ≥ RBW Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Modulation type	Channel	Carrier Frequencies Separation (MHz)	Limit (MHz)	Result
GFSK	39	0.999	0.784	Pass
π/4DQPSK	39	0.999	0.854	Pass
8DPSK	39	0.999	0.854	Pass



5.6. Hopping Channel Number

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1): Frequency hopping systems in the 2400–2483.5 MHz band shall use at least **15** channels.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: Span = the frequency band of operation RBW ≥ 1% of the span, VBW ≥ RBW Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

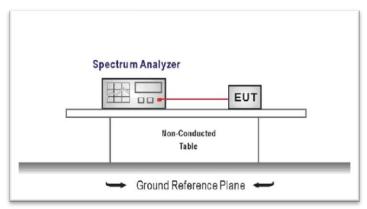
TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Modulation type	Channel number	Limit	Result
GFSK	79		
π/4DQPSK	79	15.00	Pass
8DPSK	79		

Report No.: TRE1704021603


Ref Level 25.00 dBm O	ffset 1.00 dB 🖷 RBW	1 MHz	a			ffset 1.00 dB 🖷 RBW 1 MH		
Att 35 dB S	WT 1 ms 🖶 VBW	3 MHz Mode Aut	to Sweep		Att 35 dB SV	WT 1 ms 👄 VBW 3 MH	z Mode Auto Sweep	
1Pk Max					1Pk Max		101	
20 dBm-		Mi	1[1]	3.17 dBm	20 dBm		M1[1]	5.00 dBn
20 d8m				2.401630 GHz	20 d8m			2.401750 GH
NAC220 7		01	[1]	1.36 dB 78.790 MHz	10.172.0.7		D1[1]	1.05 dE 78.550 MH
10 dBm		1	I I		19 dBm			D1
······································	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*****	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	man D1	Junnounnen	·····		an manufacture and
C dBm					0 dBm			
10 dBm-					-10 dBm-			
-20 dBm-					-20 dBm			
-30 dBm-					-30 dBm			
				M				
-40 dBm				19	-40 dBm			
-TO GOIN-					MU UBIN			
F0.10					50 ID			
-50 dBm					-50 dBm			
-60 dBm-					-60 dBm			
101.0					101 0.0			
-70 dBm					-70 dBm			
Start 2.4 GHz		691 pts		Stop 2.4835 GHz	Start 2.4 GHz	69	1 pts	Stop 2.4835 GHz
Y			Measuring	ERNHARD 440	The second se			asuring 🖬 Annual 40
				CONTRACTOR OF THE OWNER				
Spectrum Ref Level 25.00 dBm 0		GFSK		(The second seco		π/4D	QPSK	
Ref Level 25.00 dBm O Att 35 dB S	offset 1.00 dB 🖷 RBW		to Sweep	(The second seco		π/4D	QPSK	
Ref Level 25.00 dBm 0	offset 1.00 dB 🖷 RBW	1 MHz 3 MHz Mode Aut				π/4D	QPSK	
Ref Level 25.00 dBm O Att 35 dB S	offset 1.00 dB 🖷 RBW	1 MHz 3 MHz Mode Aut	to Sweep	4.12 dBm		π/4D	QPSK	
Ref Level 25.00 dBm C Att 35 dB S 1Pk Max	offset 1.00 dB 🖷 RBW	1 MHz 3 MHz Mode Aut	1[1]	4.12 dBm 2.401630 GHz		π/4D	QPSK	
Ref Level 25.00 dBm Q Att 35 dB S 1Pk Max 20 dBm 10 dBm	Mfset 1.00 dB ⊕ RBW WT 1 ms ⊕ VBW	1 MHz 3 MHz Mode Aut	u[1] u[1]	4.12 dBm 2.401630 GHz 1.93 dB 78.787 MHz		π/4D	QPSK	
Ref Level 25.00 dBm Q Att 35 dB S 1Pk Max 20 dBm 10 dBm	Mfset 1.00 dB ⊕ RBW WT 1 ms ⊕ VBW	1 MHz 3 MHz Mode Aut	u[1] u[1]	4.12 dBm 2.401630 GHz 1.93 dB 78.787 MHz		π/4D	QPSK	
Ref Level 25.00 dBm 0 Att 35 dB S 1Pk Max 20 dBm 10 dBm	Mfset 1.00 dB ⊕ RBW WT 1 ms ⊕ VBW	1 MHz 3 MHz Mode Aut	u[1] u[1]	4.12 dBm 2.401630 GHz 1.93 dB 78.787 MHz		π/4D	QPSK	
Ref Level 25.00 dBm Q Att 35 dB S 1Pk Max 20 dBm 10 dBm	Mfset 1.00 dB ⊕ RBW WT 1 ms ⊕ VBW	1 MHz 3 MHz Mode Aut	u[1] u[1]	4.12 dBm 2.401630 GHz 1.93 dB 78.787 MHz		<u>π/4D</u>	QPSK	
Ref Level 25.00 dBm Q Att 35 dB S 91Pk Max 20 dBm 10 dBm 10 dBm 10 dBm 10 dBm	Mfset 1.00 dB ⊕ RBW WT 1 ms ⊕ VBW	1 MHz 3 MHz Mode Aut	u[1] u[1]	4.12 dBm 2.401630 GHz 1.93 dB 78.787 MHz		π/4D	<u>QPSK</u>	
Ref Level 25.00 dBm 0 Att 35 dB S 1Pk Max 20 dBm 10 dBm	Mfset 1.00 dB ⊕ RBW WT 1 ms ⊕ VBW	1 MHz 3 MHz Mode Aut	u[1] u[1]	4.12 dBm 2.401630 GHz 1.93 dB 78.787 MHz		π/4D	<u>QPSK</u>	
Ref Level 25.00 dBm O Att 35 dB S JDPK Max 20 dBm 10 dBm 10 dBm 10 dBm 10 dBm	Mfset 1.00 dB ⊕ RBW WT 1 ms ⊕ VBW	1 MHz 3 MHz Mode Aut	u[1] u[1]	4.12 dBm 2.401630 GHz 1.93 dB 78.787 MHz				
Ref Level 25.00 dBm Q Att 35 dB S 91Pk Max 20 dBm 10 dBm 10 dBm 10 dBm 10 dBm	Mfset 1.00 dB ⊕ RBW WT 1 ms ⊕ VBW	1 MHz 3 MHz Mode Aut	u[1] u[1]	4.12 dBm 2.401630 GHz 1.93 dB 78.787 MHz				
Ref Level 25.00 dBm 35 dB 8 ● 1Pk Max 20 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm -10 dBm	Mfset 1.00 dB ⊕ RBW WT 1 ms ⊕ VBW	1 MHz 3 MHz Mode Aut	u[1] u[1]	4.12 dBm 2.401630 GHz 1.93 dB 78.787 MHz			<u>QPSK</u> Plot	
Ref Level 25.00 dBm O Att 35 dB S JDPK Max 20 dBm 10 dBm 10 dBm 10 dBm 10 dBm	Mfset 1.00 dB ⊕ RBW WT 1 ms ⊕ VBW	1 MHz 3 MHz Mode Aut	u[1] u[1]	4.12 dBm 2.401630 GHz 1.93 dB 78.787 MHz				
Ref Level 25.00 dBm 35 dB • IPk Max • IPk Max 20 dBm In dBm -10 dBm -20 dBm -30 dBm	Mfset 1.00 dB ⊕ RBW WT 1 ms ⊕ VBW	1 MHz 3 MHz Mode Aut	u[1] u[1]	4.12 dBm 2.401630 GHz 1.93 dB 78.787 MHz				
Ref Level 25.00 dBm 35 dB 8 ● 1Pk Max 20 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm -10 dBm	Mfset 1.00 dB ⊕ RBW WT 1 ms ⊕ VBW	1 MHz 3 MHz Mode Aut	u[1] u[1]	4.12 dBm 2.401630 GHz 1.93 dB 78.787 MHz				
Ref Lovel 25.00 dBm 0 9174 35 dB 9174; Max 20 dBm 10; dBm 0 40 dBm 0	Mfset 1.00 dB ⊕ RBW WT 1 ms ⊕ VBW	1 MHz 3 MHz Mode Aut	u[1] u[1]	4.12 dBm 2.401630 GHz 1.93 dB 78.787 MHz				
Ref Level 25.00 dBm 35 dB • IPk Max • IPk Max 20 dBm In dBm -10 dBm -20 dBm -30 dBm	Mfset 1.00 dB ⊕ RBW WT 1 ms ⊕ VBW	1 MHz 3 MHz Mode Aut	u[1] u[1]	4.12 dBm 2.401630 GHz 1.93 dB 78.787 MHz				
Ref Level 25.00 dBm 0 9 Att 25 dB 9 JPk Max 20 dBm 10 dBm 0 10 dBm 0 -20 dBm	Mfset 1.00 dB ⊕ RBW WT 1 ms ⊕ VBW	1 MHz 3 MHz Mode Aut	u[1] u[1]	4.12 dBm 2.401630 GHz 1.93 dB 78.787 MHz				
Ref Lovel 25.00 dBm 0 9174 35 dB 9174; Max 20 dBm 10; dBm 0 40 dBm 0 -20 dBm -0	Mfset 1.00 dB ⊕ RBW WT 1 ms ⊕ VBW	1 MHz 3 MHz Mode Aut	u[1] u[1]	4.12 dBm 2.401630 GHz 1.93 dB 78.787 MHz				
Ref Level 25.00 dBm 0 9 Att 25 dB 9 JPk Max 20 dBm 10 dBm 0 10 dBm 0 -20 dBm	Mfset 1.00 dB ⊕ RBW WT 1 ms ⊕ VBW	1 MHz 3 MHz Mode Aut	u[1] u[1]	4.12 dBm 2.401630 GHz 1.93 dB 78.787 MHz				
Ref Level 25.00 dBm 0 9 Att 25 dB 9 JPk Max 20 dBm 10 dBm 0 10 dBm 0 -20 dBm	Mfset 1.00 dB ⊕ RBW WT 1 ms ⊕ VBW	1 MHz 3 MHz Mode Aut	u[1] u[1]	4.12 dBm 2.401630 GHz 1.93 dB 78.787 MHz				
Ref Level 25.00 dBm 0 918 35 dB 919k Max 0 20 dBm 0 10 dBm 0 -20 dBm 0 -30 dBm 0 -40 dBm 0 -50 dBm 0 -60 dBm 0	Mfset 1.00 dB ⊕ RBW WT 1 ms ⊕ VBW	1 MHz 3 MHz Mode Au Mo	u[1] u[1]	4.12.dbm 2.401630 GHz 1.03.db 78.787 MHz 01 01				
Ref Level 25.00 dBm 35 dB 8 ● 15Pk Max 20 dBm 10 dBm 10 dBm 10 dBm 10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -50 dBm -50 dBm	Mfset 1.00 dB ● RBW WT 1 ms ● VBW	1 MHz 3 MHz Mode Aut		4.12 dBm 2.401630 GHz 1.93 dB 76.787 MHz VVVVVVVV 1.93 dB 76.787 MHz VVVVVVVV 1.93 dB 1.93 dB				
Ref Level 25.00 dBm 0 918 35 dB 919k Max 0 20 dBm 0 10 dBm 0 -20 dBm 0 -30 dBm 0 -40 dBm 0 -50 dBm 0 -60 dBm 0	Mfset 1.00 dB ● RBW WT 1 ms ● VBW	1 MHz 3 MHz Mode Au Mo	u[1] u[1]	4.12 dBm 2.401630 GHz 1.93 dB 76.787 MHz VVVVVVVV 1.93 dB 76.787 MHz VVVVVVVV 1.93 dB 1.93 dB				
Ref Level 25.00 dBm 0 918 35 dB 919k Max 0 20 dBm 0 10 dBm 0 -20 dBm 0 -30 dBm 0 -40 dBm 0 -50 dBm 0 -60 dBm 0	Mfset 1.00 dB e RBW 1 ms e VBW	1 MHz 3 MHz Mode Au Mo		4.12 dBm 2.401630 GHz 1.93 dB 76.787 MHz VVVVVVVV 1.93 dB 76.787 MHz VVVVVVVV 1.93 dB 1.93 dB				

5.7. Dwell Time

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1): The average time of occupancy on any channel shall not be greater than 0.4 seconds within a pe-riod of 0.4 seconds multiplied by the number of hopping channels employed.

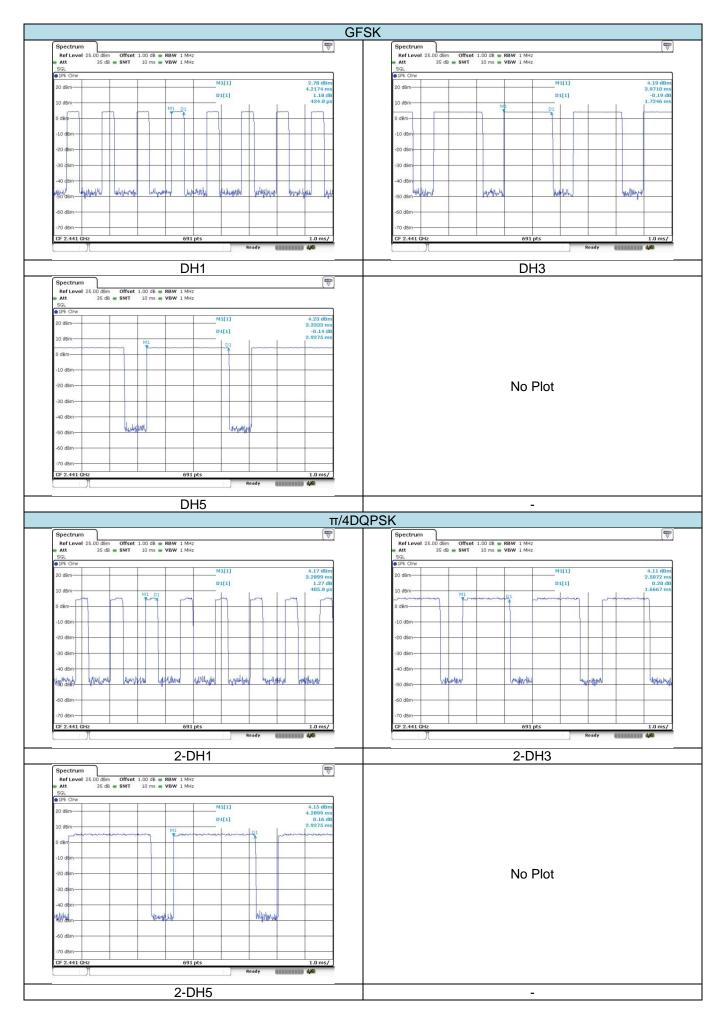
TEST CONFIGURATION

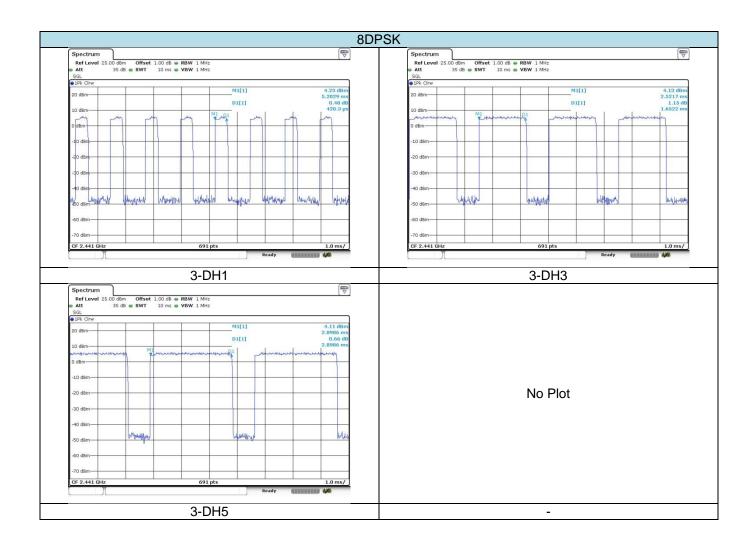
TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel, RBW= 1 MHz, VBW ≥ RBW Sweep = as necessary to capture the entire dwell time per hopping channel, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

TEST MODE:

Please refer to the clause 3.3


TEST RESULTS


☑ Passed □ Not Applicable

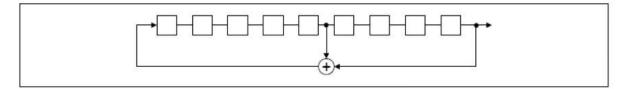
Modulation type	Channel	Dwell time (Second)	Limit (Second)	Result
	DH1	0.140		
GFSK	DH3	0.276	0.40	Pass
	DH5	0.312		
	2-DH1	0.130		
π/4DQPSK	2-DH3	0.267	0.40	Pass
	2-DH5	0.312		
	3-DH1	0.134		
8DPSK	3-DH3	0.264	0.40	Pass
	3-DH5	0.309		

Note:

- 1. We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.
- Dwell time=Pulse time (ms) x (1600 ÷ 2 ÷ 79) x31.6 Second for DH1, 2-DH1, 3-DH1
 Dwell time=Pulse time (ms) x (1600 ÷ 4 ÷ 79) x31.6 Second for DH3, 2-DH3, 3-DH3
 Dwell time=Pulse time (ms) x (1600 ÷ 6 ÷ 79) x31.6 Second for DH5, 2-DH5, 3-DH5

5.8. Pseudorandom Frequency Hopping Sequence

LIMIT


FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):

Frequency hopping systems shall have hopping channel carrier fre-quencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Al-ternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier fre-quencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo ran-domly ordered list of hopping fre-quencies. Each frequency must be used equally on the average by each trans-mitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their cor-responding transmitters and shall shift frequencies in synchronization with the transmitted signals.

TEST RESULTS

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the friststage. The sequence begins with the frist one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

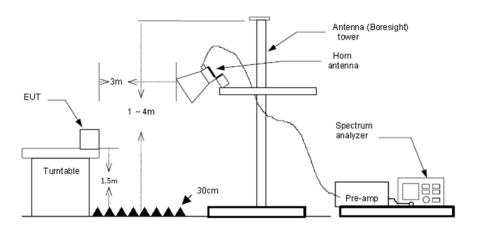
Linear Feedback Shift Register for Generation of the PRBS sequence

An explame of pseudorandom frequency hopping sequence as follows:

0	2	4	6		62 6	4	78	1		73 7	75 7
Т				 			1		 		Т
							1				
						1	1				

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.


5.9. Restricted band (radiated)

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow: RBW=1 MHz, VBW=3 MHz for Peak value RBW=1 MHz, VBW=10 Hz for Average value.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable

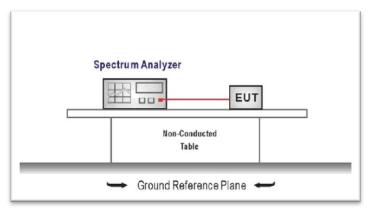
Note:

- 1) Final level= Read level + Antenna Factor+ Cable Loss- Preamp Factor
- 2) Have pre-scan all modulation mode, found the 8DPSK modulation which it was worst case, so only the worst case's data on the test report.

Report No.: TRE1704021603

	CH00												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value				
2310.00	35.72	27.27	6.62	37.65	31.96	74.00	-42.04	Vertical					
2390.03	48.73	27.53	6.75	37.87	45.14	74.00	-28.86	Vertical	Peak				
2310.00	35.84	27.27	6.62	37.65	32.08	74.00	-41.92	Horizontal	rean				
2390.03	44.20	27.53	6.75	37.87	40.61	74.00	-33.39	Horizontal					
2310.00	23.88	27.27	6.62	37.65	20.12	54.00	-33.88	Vertical					
2390.03	26.57	27.53	6.75	37.87	22.98	54.00	-31.02	Vertical	Average				
2310.00	24.16	27.27	6.62	37.65	20.40	54.00	-33.60	Horizontal	Average				
2390.03	26.57	27.53	6.75	37.87	22.98	54.00	-31.02	Horizontal					

					CH78				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
2483.50	68.01	27.85	6.83	37.87	64.82	74.00	-9.18	Vertical	
2500.00	44.23	27.90	6.84	37.87	41.10	74.00	-32.90	Vertical	Peak
2483.50	71.14	27.85	6.83	37.87	67.95	74.00	-6.05	Horizontal	геак
2500.00	45.58	27.90	6.84	37.87	42.45	74.00	-31.55	Horizontal	
2483.50	28.97	27.85	6.83	37.87	25.78	54.00	-28.22	Vertical	
2500.00	23.24	27.90	6.84	37.87	20.11	54.00	-33.89	Vertical	Average
2483.50	28.44	27.85	6.83	37.87	25.25	54.00	-28.75	Horizontal	Average
2500.00	22.40	27.90	6.84	37.87	19.27	54.00	-34.73	Horizontal	

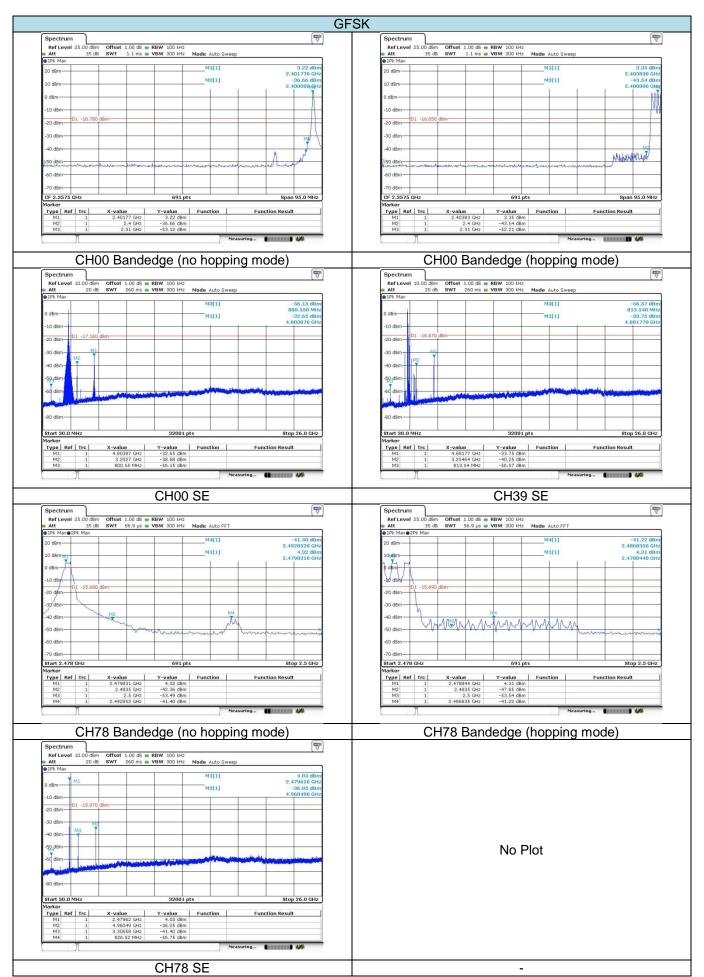

5.10. Bandedge and Spurious Emission (conducted)

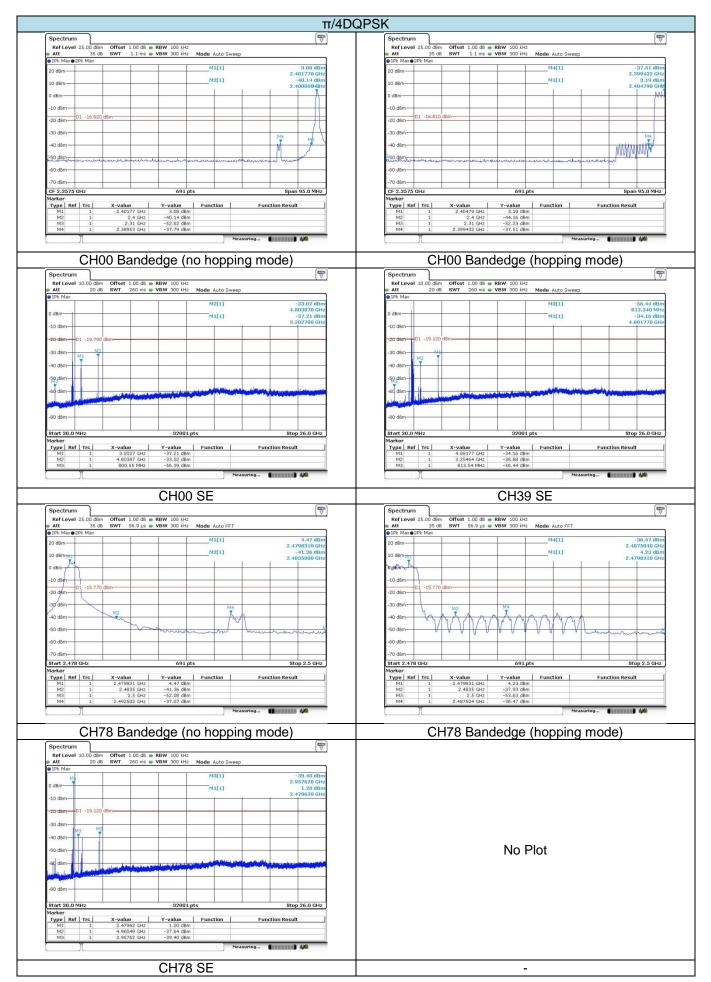
LIMIT

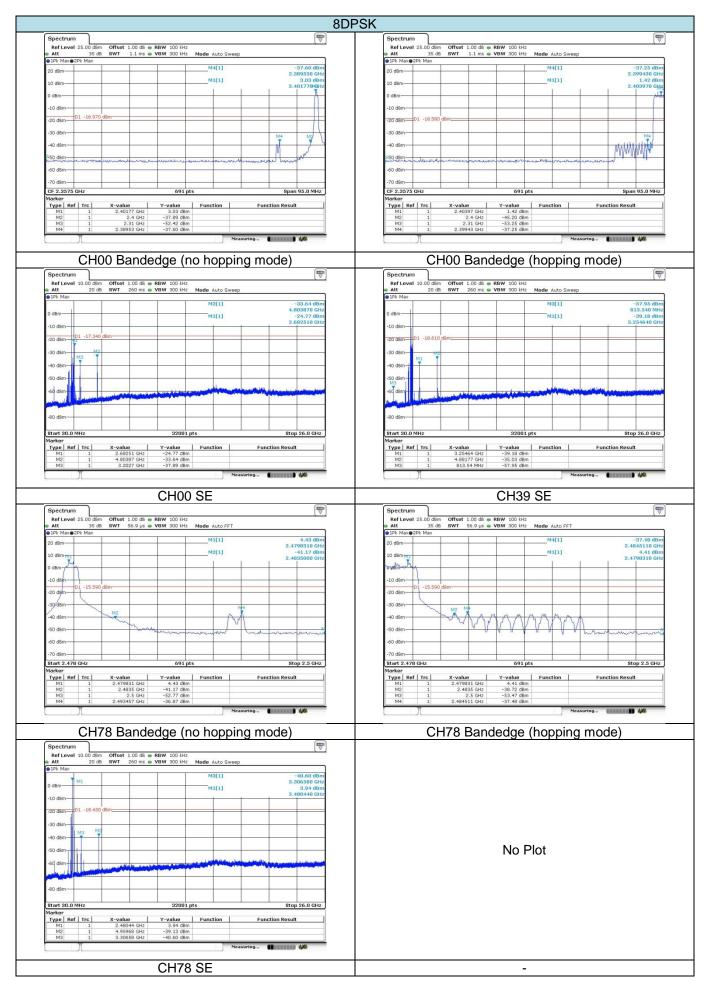
FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION


TEST PROCEDURE

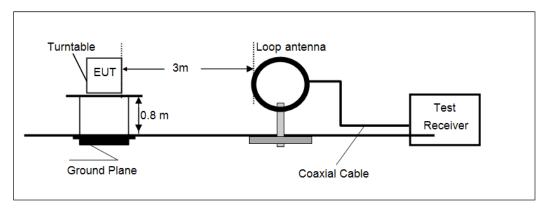

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: RBW = 100 kHz, VBW ≥ RBW Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.


TEST MODE:

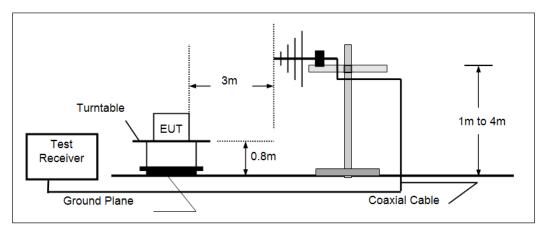
Please refer to the clause 3.3

TEST RESULTS

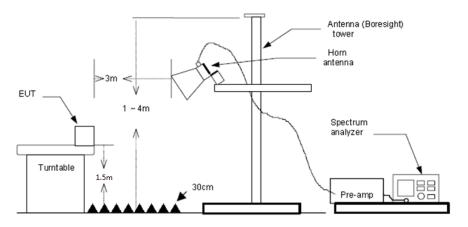
5.11. Spurious Emission (radiated)


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.209


Frequency	Limit (dBuV/m @3m)	Value		
30 MHz ~ 88 MHz	40.00	Quasi-peak		
88 MHz ~ 216 MHz	43.50	Quasi-peak		
216 MHz ~ 960 MHz	46.00	Quasi-peak		
960 MHz ~ 1 GHz	54.00	Quasi-peak		
Above 1 GHz	54.00	Average		
	74.00	Peak		

TEST CONFIGURATION


➢ Below 30 MHz

> 30 MHz ~1000 MHz

> Above 1 GHz

TEST PROCEDURE

- 1. The EUT was tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is
 - repeated for both horizontal and vertical polarization of the antenna.
 - Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz, RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detectoris 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, theemission measurement will be repeated using the quasi-peak detector and reported.
 - (3) Above 1 GHz, RBW=1 MHz, VBW=3 MHz for Peak value RBW=1 MHz, VBW=10 Hz for Average value.

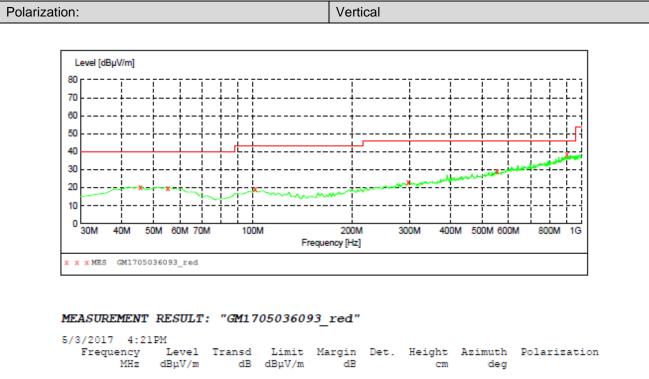
TEST MODE:

Please refer to the clause 3.3

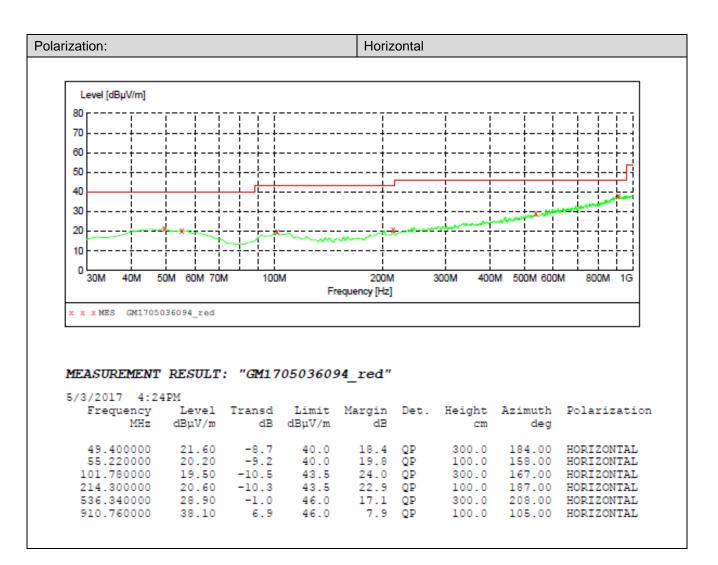
TEST RESULTS

☑ Passed □ Not Applicable

Note:


5.

- 1) Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2) The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3) Below 1 GHz, Have pre-scan all modulation mode, found the 8DPSK modulation High channel which it was worst case, so only the worst case's data on the test report.
- 4) Above 1 GHz, Have pre-scan all modulation mode, found the 8DPSK modulation which it was worst case, so only the worst case's data on the test report


➢ 9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

> 30 MHz ~ 1 GHz

45.520000 55.220000								VERTICAL VERTICAL
101.780000	18.90	-10.5	43.5	24.6	QP	100.0	325.00	VERTICAL
297.720000	22.80	-7.3	46.0	23.2	QP	100.0	36.00	VERTICAL
553.800000	29.20	-0.7	46.0	16.8	QP	100.0	217.00	VERTICAL
903.000000	38.60	6.8	46.0	7.4	QP	100.0	49.00	VERTICAL

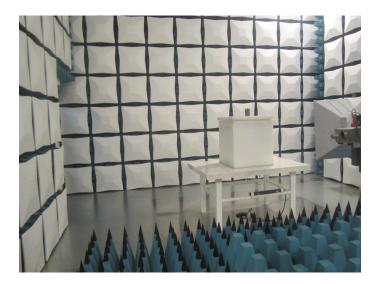
> Above 1 GHz

				CH00	for 8DPSK				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
1680.83	36.46	25.26	5.73	36.89	30.56	74.00	-43.44	Vertical	
3200.50	46.32	28.58	7.72	38.20	44.42	74.00	-29.58	Vertical	Peak
4809.50	44.18	31.09	9.55	36.93	47.89	74.00	-26.11	Vertical	Peak
6678.99	31.99	35.35	11.45	35.21	43.58	74.00	-30.42	Vertical	
2269.73	43.52	27.13	6.56	37.54	39.67	74.00	-34.33	Horizontal	
4809.50	41.43	31.09	9.55	36.93	45.14	74.00	-28.86	Horizontal	Dook
6868.65	33.22	35.63	11.69	34.92	45.62	74.00	-28.38	Horizontal	Peak
8950.44	33.30	37.83	13.26	34.38	50.01	74.00	-23.99	Horizontal	

CH39 for 8DPSK									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
2263.96	43.44	27.11	6.55	37.52	39.58	74.00	-34.42	Vertical	
3258.04	43.66	28.61	7.79	38.30	41.76	74.00	-32.24	Vertical	
4883.52	54.41	31.14	9.59	36.73	58.41	74.00	-15.59	Vertical	Peak
7319.96	35.10	36.07	11.99	34.92	48.24	74.00	-25.76	Vertical	
4883.52	36.75	31.14	9.59	36.73	40.75	54.00	-13.25	Average	
1750.70	37.41	25.46	5.86	37.04	31.69	74.00	-42.31	Horizontal	
3507.65	38.34	28.72	8.13	38.40	36.79	74.00	-37.21	Horizontal	
4883.52	49.80	31.14	9.59	36.73	51.80	74.00	-20.20	Horizontal	Peak
7319.96	34.21	36.07	11.99	34.92	47.35	74.00	-26.65	Horizontal	
4883.52	28.73	31.14	9.59	36.73	32.73	54.00	-21.27	Average	

	CH78 for 8DPSK									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value	
1737.38	37.37	25.41	5.84	37.01	31.61	74.00	-42.39	Vertical		
3834.51	36.23	29.24	8.55	38.21	35.81	74.00	-38.19	Vertical		
4958.68	53.90	31.18	9.64	36.52	58.20	74.00	-15.80	Vertical	Peak	
7451.57	35.25	36.17	12.24	34.86	48.80	74.00	-25.20	Vertical		
4958.68	36.28	31.18	9.64	36.52	40.58	54.00	-13.42	Average		
1983.27	37.57	26.06	6.24	37.29	32.58	74.00	-41.42	Horizontal		
3943.39	36.45	29.41	8.70	38.14	36.42	74.00	-37.58	Horizontal		
4958.68	53.39	31.18	9.64	36.52	57.69	74.00	-16.31	Horizontal	Peak	
7451.57	35.14	36.17	12.24	34.86	48.69	74.00	-25.31	Horizontal		
4958.68	28.63	31.18	9.64	36.52	32.93	54.00	-21.07	Average		

6. Test Setup Photos of the EUT


Conducted Emission (AC Mains)

Radiated Emission

7. External and Internal Photos of the EUT

Reference to Test Report No.: TRE1704021601.

.....End of Report.....