

Inter Lab

FCC Measurement/Technical Report on PCMCIA card Globetrotter 3G Quad Slim

Report Reference: 4_OPTI_0505_ERF_FCCb

Test Laboratory (Headquarter):

7 Layers AG Borsigstr. 11 40880 Ratingen Germany

DAT-P-192/99-01

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the testing laboratory.

7 layers AG, Borsigstrasse 11 40880 Ratingen, Germany Phone: +49 (0) 2102 749 0 Fax: +49 (0) 2102 749 350 http://www.7Layers.com

Aufsichtsratsvorsitzender -Chairman of the Supervisory Board: Michael Abels Vorstand - Board of Directors: Dr. Hans-Jürgen Meckelburg René Schildknecht Registergericht - registered in: Düsseldorf, HRB 44096 USt-IdNr VAT Nr: DE 203159652

Interlab is a registered trademark of 7 layers AG

Table of Contents

0. Summary	3
0.1 Technical Report Summary	3
0.2 Measurement Summary	4
1. Administrative Data	5
1.1 Testing Laboratory	5
1.2 Project Data	5
1.3 Applicant Data	5
1.4 Manufacturer Data	5
2. Testobject Data	6
2.1 General EUT Description	6
2.2 EUT Main Components	7
2.3 Ancillary Equipment	7
2.4 EUT Setups	7
2.5 Operating Modes	7
3. Test Results	8
3.1 Field Strength of Spurious Radiation	8
4. Testequipment	12
5. Foto Report	15
6 Sotup Drawings	17

0 Summary

0.1 Technical Report Summary

Type of Authorization

Certification for a broadband PCS device

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 0 to 19 and Parts 20 to 69 (10-1-98 Edition). The following subparts are applicable to the results in this test report.

Part 2

Subpart J - Equipment Authorization Procedures, Certification

§ 2.1046 Measurement required: RF power output

§ 2.1049 Measurement required: Occupied bandwidth

§ 2.1051 Measurement required: Spurious emissions at antenna terminals

§ 2.1053 Measurement required: Field strength of spurious emission

§ 2.1055 Measurement required: Frequency stability

§ 2.1057 Frequency spectrum to be investigated

Part 24

Subpart E - Broadband PCS

§ 24.232 Power and antenna height limits

§ 24.235 Frequency stability

§ 24.238 Emission limits

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0.2 Measurement Summary.

Testreport Reference: 4 OPTI 0505 ERF FCCb Page 3 of 17

0.2 Measurement Summary

Field strength of spurious radiation

The measurement was performed according to FCC §2.1053

10-01-1998

OP-Mode

Setup

Port

Final Result

op-mode 1

37s40a01

passed

op-mode 2

enclosure enclosure

passed

op-mode 3

37s40a01 37s40a01

enclosure

passed

Responsible for Accreditation Scope: Responsible for Test Report: Mallet

Players AG, Borsigstr. 11
40880 Ratingen, Germany
Phone +49 (0)2102 749 0

1. Administrative Data

1.1 Testing Laboratory

Company Name: 7 Layers AG

Address: Borsigstr. 11

40880 Ratingen

Germany

This facility has been fully described in a report submitted to the FCC and accepted under the registration number 96716 .

The test facility is also accredited by the following accreditation organisation:

- Deutscher Akkreditierungs Rat DAR-Registration no. TTI-P-G 178/99

Responsible for Accreditation Scope: Dipl.-Ing Bernhard Retka

Dipl.-Ing Arndt Stöcker Dipl.-Ing Thomas Hoell

1.2 Project Data

Responsible for testing and report Dipl.-Ing. Robert Machulec

 Receipt of EUT:
 2005-05-19

 Date of Test(s):
 2005-05-24

 Date of Report:
 2005-05-25

1.3 Applicant Data

Company Name: Option International NV SA

Address: Kolonel Begaultlaan 45

3012 Leuven

Belgium

Contact Person: Mr. Stefan Lodeweyckx

1.4 Manufacturer Data

Company Name: please see Applicant data

Address:

Contact Person:

2. Testobject Data

2.1 General EUT Description

Equipment under Test: PCMCIA card

Type Designation: Globetrotter 3G Quad Slim

Kind of Device: GSM 850/900/1800/1900; UMTS; GPRS

(optional)

Voltage Type: DC (powered by PC)

Nominal Voltage: 5 V

Maximum Voltage: -

Minimum Voltage: -

General product description:

The Equipment Under Test (EUT) is a GSM 850/900/1800/1900; UMTS; GPRS phone. In the PCS1900 mode the card operates in blocks A through F from 1850,2 MHz (lowest channel = 512) to 1909,8 MHz (highest channel = 810).

The EUT provides the following ports:

Ports

external antenna antenna connector enclosure

The main components of EUT are listed and described in Chapter 2.2

Testreport Reference: 4_OPTI_0505_ERF_FCCb

2.2 EUT Main components: Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	Date of Receipt
EUT A (Code: 37s41a01)	Globetrotter 3G Quad Slim	PCMCIA card	QL4A4BC02S	4.0	1.5.5	2005-05-19
EUT A is equipp	oed with a permaner	it antenna connector.				
EUT B (Code: 37s41a01)	antenna	external antenna	Test sample 1	-	-	2005-05-19
EUT B is an ext	ternal antenna.					

NOTE: The short description is used to simplify the identification of the EUT in this test report

2.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But never the less Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	HW Status	SW Status	Serial No.	FCC Id
AE 1	Compaq nc6000	PC (Laptop)	-	OP-system Windows XP	-	-

2.4 EUT Setups

This chapter describes the combination of EUT's and ancillary equipment used for testing.

Setup No.	Combination of EUTs	Description
37s41a01	EUT A + EUT B + AE1	

2.5 Operating Modes

This chapter describes the operating modes of the EUT's used for testing.

Op. Mode	Description of Operating Modes	Remarks
op-mode 1	Call established on Traffic Channel (TCH) 512, Carrier Frequency 1850,2 MHz	512 is the lowest channel
op-mode 2	Call established on Traffic Channel (TCH) 661, Carrier Frequency 1880 MHz	661 is a mid channel of the full PCS band (blocks A to F)
op-mode 3	Call established on Traffic Channel (TCH) 810, Carrier Frequency 1909,8 MHz	810 is the highest channel

3. Test Results

3.1 Field strength of spurious radiation

Standard FCC Part 24, 10-01-98 Subpart E

The test was performed according to: FCC §2.1053 10-01-1998

3.1.1 Test Description

- 1) The mobile station was placed inside a anechoic chamber. Refer to chapter "Setup Drawings". The mobile station was coupled to a Digital Communication Tester which was located outside the chamber via coaxial cable.
- 2) A speech call was established on a Traffic Channel (TCH) between the mobile station and the base station simulator.

Important Settings:

- Discontinuous Transmission: OFF
- Modulation Signal: PSR16-1 (Pseudo Random Sequenz)
- Output Power: Maximum
- Channel: Varied during measurements

(lowest channel: 512, mid channel: 661 and highest channel: 810)

- 3) A pre-calibration procedure is used so that the readings from the spectrum analyser are corrected and represent directly the equivalent radiated power (related to a lamda/2 dipole).
- 4) All spurious radiation measuements were made with spectrum analyser and the appropriate calibrated antennas for the frequency range of 30 MHz to 20 GHz (up to the 10th harmonic of the transmit frequency).
- 5) Important Analyser Settings
- [Resolution Bandwidth / Video Bandwidth]:
- a) [3 kHz / 10 kHz] in the Span of 1 MHz directly below and above the PCS-Band,
- b) [10 kHz / 30 kHz] in case the curve of the analyser IF-Filter leads to an exceeding of the limit, in this case a worst case correction factor of 20 dB (1 MHz -> 10 kHz) was used
- c) [1 MHz / 3 MHz] otherwise
- Sweep Time: Calculated by using a formula given in the Product Standard "PCS 11.10-1 edition 4" for spurious emissions measurements (depending on the transmitting signal, the span and the resolution bandwidth)
- 6) The spurious emissions (peak) were measured in both vertical and horizontal antenna polarisation during the call is established on the lowest channel (512), mid channel (661) and on the highest channel (810).

3.1.2 Test Requirements / Limits

- § 2.1053 Measurements required: Field strength of spurious radiation.
- (a) Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or

Testreport Reference: 4 OPTI 0505 ERF FCCb

intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of Sec. 2.1049, as appropriate. For equipment operating on frequencies below 890 MHz, an open field test is normally required, with the measuring instrument antenna located in the far-field at all test frequencies. In the event it is either impractical or impossible to make open field measurements (e.g. a broadcast transmitter installed in a building) measurements will be accepted of the equipment as installed. Such measurements must be accompanied by a description of the site where the measurements were made showing the location of any possible source of reflections which might distort the field strength measurements. Information submitted shall include the relative radiated power of each spurious emission with reference to the rated power output of the transmitter, assuming all emissions are radiated from halfwave dipole antennas.

- (b) The measurements specified in paragraph (a) of this section shall be made for the following equipment:
- (2) All equipment operating on frequencies higher than 25 MHz.
- § 2.1057 Frequency spectrum to be investigated.
- (a) In all of the measurements set forth in Secs. 2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without going below 9 kHz, up to at least the frequency shown below:
- (1) If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- (b) Particular attention should be paid to harmonics and subharmonics of the carrier frequency as well as to those frequencies removed from the carrier by multiples of the oscillator frequency. Radiation at the frequencies of multiplier stages should also be checked.
- (c) The amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be reported.
- (d) Unless otherwise specified, measurements above 40 GHz shall be performed using a minimum resolution bandwidth of 1 MHz.

§ 24.238 Emission limits

(a) On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log (P) dB$.

This is calculated to be -13 dBm (effective radiated power) which corresponds to 84.6 dB μ V/m (field strength) in a distance of 3 m.

3.1.3 Test Protocol

Temperature: 25 °C Air Pressure: 1022 hPa Humidity: 30 %

Op. Mode Setup Port

op-mode 1 37s40a01 enclosure

Frequency MHz	Antenna Polarisation vertical/horizontal	Bandwidth kHz	Measured Level dBm	Limit dBm
1850,00	Horizontal	3,00	-19,13	-13,00
9261,00	Horizontal	1000,00	-21,88	-13,00
11102,00	Vertical	1000,00	-30,20	-13,00

Remark: No (further) spurious emissions were found in the range 20 dB below the limit.

Temperature: 25 °C Air Pressure: 1022 hPa Humidity: 30 %

Op. Mode Setup Port

op-mode 2 37s40a01 enclosure

Frequency MHz	Antenna Polarisation vertical/horizontal	Bandwidth kHz	Measured Level dBm	Limit dBm
9380,00	Horizontal	1000,00	-14,54	-13,00
11280,00	Horizontal	1000,00	-28,65	-13,00

Remark: No (further) spurious emissions were found in the range 20 dB below the limit.

Temperature: 25 °C Air Pressure: 1022 hPa Humidity: 30 %

Op. Mode Setup Port

op-mode 3 37s40a01 enclosure

Frequency MHz	Antenna Polarisation vertical/horizontal	Bandwidth kHz	Measured Level dBm	Limit dBm
1910,00	Vertical	3,00	-13,52	-13,00
9537,00	Horizontal	1000,00	-13,71	-13,00
11469,10	Horizontal	1000,00	-26,85	-13,00
13370,00	Horizontal	1000,00	-27,00	-13,00
15301,00	Horizontal	1000,00	-29,55	-13,00
17202,00	Horizontal	1000,00	-29,90	-13,00

Remark: No (further) spurious emissions were found in the range 20 dB below the limit.

3.1.4 Test result: Field strength of spurious radiation

FCC Part 24, Subpart E	Op. Mode	Setup	Port	Result
	op-mode 1	37s40a 01	enclosure	passed
	op-mode 2	37s40a 01	enclosure	passed
	op-mode 3	37s40a 01	enclosure	passed

Testreport Reference: 4_OPTI_0505_ERF_FCCb

Page 11 of 17

4. Test Equipment

EUT Digital Signalling System

Equipment	Туре	Serial No.	Manufacturer
Digital Radio Communication Tester	CMD 55	831050/020	Rohde & Schwarz
Signalling Unit for Bluetooth Spurious Emissions	PTW60	100004	Rohde & Schwarz
Universal Radio Communication Tester	CMU 200	102366	Rohde & Schwarz

EMI Test System

Equipment	Туре	Serial No.	Manufacturer	
Comparison Noise Emitter	CNE III	99/016	York	
EMI Analyzer	ESI 26	830482/004	Rohde & Schwarz	
Signal Generator	SMR 20	846834/008	Rohde & Schwarz	

EMI Radiated Auxiliary Equipment

Equipment	Туре	Serial No.	Manufacturer
Antenna mast 4m	MA 240	240/492	HD GmbH H. Deisel
Biconical dipole	VUBA 9117	9117108	Schwarzbeck
Broadband Amplifier 18MHz- 26GHz	JS4-18002600-32-5P	849785	Miteq
Broadband Amplifier 30MHz- 18GHz	JS4-00101800-35-5P	896037	Miteq
Broadband Amplifier 45MHz- 27GHz	JS4-00102600-42-5A	619368	Miteq
Cable "ESI to EMI Antenna"	RTK081+Aircell7	W18.01+W38.01a	Huber+Suhner
Cable "ESI to EMI Antenna"	EcoFlex10	W18.01-2+W38.01-2	Kabel Kusch
Cable "ESI to Horn Antenna"	UFB311A+UFB293C	W18.02-2+W38.02-2	Rosenberger-Microcoax
Cable "ESI to Horn Antenna"	RTK 081	W18.04+3599/001	Rosenberger
Double-ridged horn	HF 906	357357/002	Rohde & Schwarz
Double-ridged horn	HF 906	357357/001	Rohde & Schwarz
High Pass Filter	5HC3500/12750-1.2- KK	200035008	Trilithic
High Pass Filter	5HC2700/12750-1.5- KK	9942012	Trilithic
High Pass Filter	4HC1600/12750-1.5- KK	9942011	Trilithic
KUEP pre amplifier	Kuep 00304000	001	7layers
Logper. Antenna	HL 562 Ultralog	830547/003	Rohde & Schwarz
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz
Pyramidal Horn Antenna 26,5 GHz	Model 3160-09	9910-1184	EMCO

Testreport Reference: 4_OPTI_0505_ERF_FCCb

EMI Conducted Auxiliary Equipment

Equipment	Туре	Serial No.	Manufacturer
Cable "LISN to ESI"	RG214	W18.03+W48.03	Huber+Suhner
Two-Line V-Network	ESH 3-Z5	828304/029	Rohde & Schwarz
Two-Line V-Network	ESH 3-Z5	829996/002	Rohde & Schwarz

Auxiliary Test Equipment

Equipment	Туре	Serial No.	Manufacturer
Broadband Resist. Power Divider N	1506A / 93459	LM390	Weinschel
Broadband Resist. Power Divider SMA	1515 / 93459	LN673	Weinschel
Digital Multimeter 01	Voltcraft M-3860M	IJ096055	Conrad
Digital Multimeter 02	Voltcraft M-3860M	IJ095955	Conrad
Digital Oscilloscope	TDS 784C	B021311	Tektronix
Fibre optic link Satellite	FO RS232 Link	181-018	Pontis
Fibre optic link Transceiver	FO RS232 Link	182-018	Pontis
I/Q Modulation Generator	AMIQ-B1	832085/018	Rohde & Schwarz
Notch Filter ultra stable	WRCA800/960-6EEK	24	Wainwright
Spectrum Analyzer 9KHz To 3GHz	FSP3	838164/004	Rohde & Schwarz
Temperature Chamber	VT 4002	58566002150010	Vötsch
Temperature Chamber	KWP 120/70	59226012190010	Weiss
ThermoHygro Datalogger 03	Opus10 THI (8152.00)	7482	Lufft Mess- und Regeltechni
ThermoHygro_01	430202		Fischer

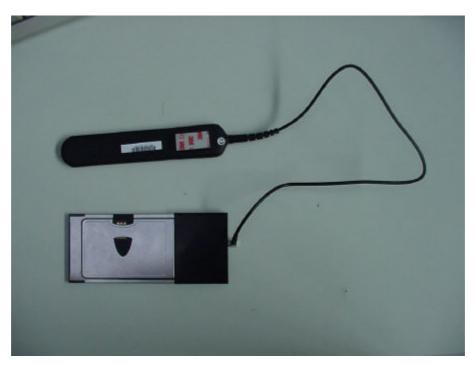
Anechoic Chamber

Equipment	Туре	Serial No.	Manufacturer
Air Compressor (pneumatic)			Atlas Copco
Controller	HD 100	100/603	HD GmbH H. Deisel
EMC Camera	CE-CAM/1		CE-SYS
EMC Camera for observation of EUT	CCD-400E	0005033	Mitsubishi
Filter ISDN	B84312-C110-E1		Siemens&Matsushita
Filter telephone systems / modem	B84312-C40-B1		Siemens&Matsushita
Filter Universal 1A	B84312-C30-H3		Siemens&Matsushita
Fully/Semi AE Chamber	10.58x6.38x6		Frankonia
Turntable	DS 420S	420/573/99	HD GmbH, H. Deisel
Valve Control Unit (pneum.)	VE 615P	615/348/99	HD GmbH, H. Deisel

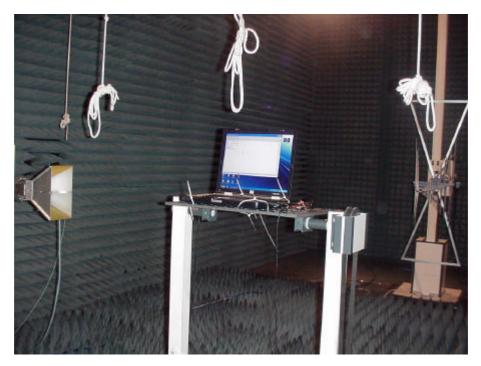
Testreport Reference: 4_OPTI_0505_ERF_FCCb

7 layers Bluetooth™ Full RF Test Solution

Bluetooth RF Conformance Test System TS8960

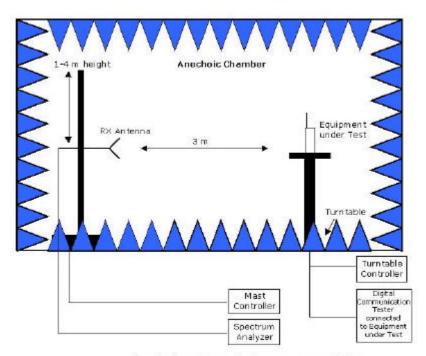

	-,			
Equipment	Туре	Serial No.	Manufacturer	
10MHz Reference	MFS	5489/001	Efratom	
Power Meter 832025/059	NRVD	832025/059	Rohde & Schwarz	
Power Sensor A 832279/013	NRV-Z1	832279/013	Rohde & Schwarz	
Power Sensor B 832279/015	NRV-Z1	832279/015	Rohde & Schwarz	
Power Supply	E3632A	MY40003776	Agilent	
Power Supply	PS-2403D	-	Conrad	
RF Step Attenuator 833695/001	RSP	833695/001	Rohde & Schwarz	
Rubidium Frequency Normal	MFS	002	Efratom	
Signal Analyser FSIQ26 832695/007	FSIQ26	832695/007	Rohde & Schwarz	
Signal Analyser FSP30 100051	FSP30	100051	Rohde & Schwarz	
Signal Generator 101175	SMIQ03B	101175	Rohde & Schwarz	
Signal Generator 833680/003	SMP 03	833680/003	Rohde & Schwarz	
Signal Generator A 834344/002	SMIQ03B	834344/002	Rohde & Schwarz	
Signal Generator B 832870/017	SMIQ03B	832870/017	Rohde & Schwarz	
Signal Switching and Conditioning Unit	SSCU	338826/005	Rohde & Schwarz	
Signalling Unit PTW60 838312/014	PTW60 for TS8960	838312/014	Rohde & Schwarz	
System Controller 829323/008	PSM12	829323/008	Rohde & Schwarz	

5. Foto Report



Picture 1 : EUT (top side)

Picture 2 : EUT (bottom side)



Picture 3 : Setup for radiated measurements (EUT in the Laptop)

6. Setup Drawings

Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1 : Principle setup for radiated measurements