

TEST REPORT

FCC LTE Test for WW22B

Class II Permissive Change

APPLICANT

Panasonic Corporation of North America

REPORT NO.

HCT-RF-2206-FC006

DATE OF ISSUE

June 16, 2022

Tested byJae Ryang Do

Technical Manager Kwon Jeong

HCT CO., LTD.
Bongsai Huh / CEO

HCT Co., Ltd.

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 Fax. +82 31 645 6401

REPORT NO. HCT-RF-2206-FC006

DATE OF ISSUE June 16, 2022

Additional Model

-

Applicant	Panasonic Corporation of North America Two Riverfront Plaza, 9th Floor, Newark, NJ 07102-5490, USA
Eut Type Model Name	Wireless module WW22B
FCC ID	ACJ9TGWW22B
FCC Classification:	Citizens Band End User Devices (CBE)
FCC Rule Part(s):	§ 96, § 2
	The result shown in this test report refer only to the sample(s) tested unless otherwise stated. This test results were applied only to the test methods required by the standard.

F-TP22-03 (Rev. 04) Page 2 of 18

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description	
0	June 16, 2022	Initial Release	

The measurements shown in this report were made in accordance with the procedures specified in CFR47 section § 2.947. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

If this report is required to confirmation of authenticity, please contact to www.hct.co.kr

F-TP22-03 (Rev. 04) Page 3 of 18

CONTENTS

1. GENERAL INFORMATION	
2. INTRODUCTION	6
2.1. DESCRIPTION OF EUT	ϵ
2.2. MEASURING INSTRUMENT CALIBRATION	ϵ
2.3. TEST FACILITY	6
3. DESCRIPTION OF TESTS	7
3.1 TEST PROCEDURE	7
3.2 RADIATED POWER	3
3.3 RADIATED SPURIOUS EMISSIONS	g
4. LIST OF TEST EQUIPMENT	10
5. MEASUREMENT UNCERTAINTY	11
6. SUMMARY OF TEST RESULTS	12
7. SAMPLE CALCULATION	14
8. TEST DATA	16
8.1 EQUIVALENT ISOTROPIC RADIATED POWER	16
8.2 RADIATED SPURIOUS EMISSIONS	17
9. ANNEX A_ TEST SETUP PHOTO	18

F-TP22-03 (Rev. 04) Page 4 of 18

MEASUREMENT REPORT

1. GENERAL INFORMATION

nerica
wark, NJ 07102-5490, USA
BE)

F-TP22-03 (Rev. 04) Page 5 of 18

2. INTRODUCTION

2.1. DESCRIPTION OF EUT

The EUT was installed in the CF-33 host devices.

The EUT was a Wireless module and LTE.

2.2. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.3. TEST FACILITY

The Fully-anechoic chamber and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

F-TP22-03 (Rev. 04) Page 6 of 18

비

3. DESCRIPTION OF TESTS

3.1 TEST PROCEDURE

Test Description	Test Procedure Used
Effective Radiated Power/	- KDB 971168 D01 v03r01 – Section 5.2 & 5.8
•	- ANSI/TIA-603-E-2016 – Section 2.2.17
Effective Isotropic Radiated Power	- KDB 940660 D01 v01
	- KDB 971168 D01 v03r01 – Section 6.2
Radiated Spurious and Harmonic Emissions	- ANSI/TIA-603-E-2016 – Section 2.2.12
	- KDB 940660 D01 v01

F-TP22-03 (Rev. 04) Page 7 of 18

3.2 RADIATED POWER

Test Overview

Radiated tests are performed in the Fully-anechoic chamber.

The equipment under test is placed on a non-conductive table 3-meters away from the receive antenna in accordance with ANSI/TIA-603-E-2016 Clause 2.2.17.

Test Settings

- 1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
- 2. RBW = 1 5 % of the expected OBW, not to exceed 1 MHz
- 3. VBW \geq 3 x RBW
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points > 2 x span / RBW
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto".
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation.
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize

Test Note

- 1. The turntable is rotated through 360 degrees, and the receiving antenna scans in order to determine the level of the maximized emission.
- 2. A half wave dipole is then substituted in place of the EUT. For emissions above 1 GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The power is calculated by the following formula;

Where: P_d is the dipole equivalent power and P_g is the generator output power into the substitution antenna.

3. The maximum value is calculated by adding the forward power to the calibrated source plus its appropriate gain value.

These steps are repeated with the receiving antenna in both vertical and horizontal polarization. the difference between the gain of the horn and an isotropic antenna are taken into consideration

- 4. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
- 5. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

F-TP22-03 (Rev. 04) Page 8 of 18

3.3 RADIATED SPURIOUS EMISSIONS

Test Overview

Radiated tests are performed in the Fully-anechoic chamber.

Radiated Spurious Emission Measurements at 3 meters by Substitution Method according to ANSI/TIA-603-E-2016.

Test Settings

- 1. RBW = 100 kHz for emissions below 1 GHz and 1 MHz for emissions above 1 GHz
- 2. VBW \geq 3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = Peak
- 6. Trace mode = Max Hold
- 7. The trace was allowed to stabilize
- 8. Test channel: Low/ Middle/ High
- 9. Frequency range: We are performed all frequency to 10th harmonics from 9 kHz.

Test Note

- Measurements value show only up to 3 maximum emissions noted, or would be lesser
 if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit)
 and considered that's already beyond the background noise floor.
- 2. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the test data
- 3. For spurious emissions above 1 GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The spurious emissions is calculated by the following formula;

Result (dBm) = Pg (dBm) - cable loss (dB) + antenna gain (dBi)

Where: P g is the generator output power into the substitution antenna.

If the fundamental frequency is below 1 GHz, RF output power has been converted to EIRP.

EIRP
$$(dBm)$$
 = ERP (dBm) + 2.15

F-TP22-03 (Rev. 04) Page 9 of 18

4. LIST OF TEST EQUIPMENT

Equipment	Model	Manufacture	Serial No.	Due to Calibration	Calibration Interval
Precision Dipole Antenna	UHAP	Schwarzbeck	01273	03/27/2024	Biennial
Precision Dipole Antenna	UHAP	Schwarzbeck	01274	03/27/2024	Biennial
Horn Antenna(1~18 GHz)	BBHA 9120D	Schwarzbeck	02289	03/21/2024	Biennial
Horn Antenna(1~18 GHz)	BBHA 9120D	Schwarzbeck	9120D-1299	05/04/2023	Biennial
Horn Antenna(15~40 GHz)	BBHA 9170	Schwarzbeck	BBHA9170342	10/13/2022	Biennial
Horn Antenna(15~40 GHz)	BBHA 9170	Schwarzbeck	BBHA9170124	04/12/2023	Biennial
Loop Antenna(9 kHz~30 MHz)	FMZB1513	Rohde & Schwarz	1513-175	06/04/2023	Biennial
Bilog Antenna	VULB9160	Schwarzbeck	3150	03/03/2023	Biennial
Hybrid Antenna	VULB9160	Schwarzbeck	760	02/22/2023	Biennial
High Pass Filter	WHKX10-900-1000-15000- 40SS	Wainwright Instruments	15	05/18/2023	Annual
High Pass Filter	WHKX10-2700-3000-18000- 40SS	Wainwright Instruments	145	05/18/2023	Annual
High Pass Filter	WHNX6-4740-6000-26500- 40CC	Wainwright Instruments	11	05/18/2023	Annual
LOW NOISE AMP (100 MHz ~ 18 GHz)	CBLU1183540B-01	CERNEX	26822	05/18/2023	Annual
Power Amplifier	CBL18265035	CERNEX	22966	12/02/2022	Annual
Power Amplifier	CBL26405040	CERNEX	25956	03/11/2023	Annual
DC Power Supply	E3632A	Hewlett Packard	MY40004427	09/15/2022	Annual
Power Splitter(DC~26.5 GHz)	11667B	Hewlett Packard	11275	03/11/2023	Annual
Chamber	SU-642	ESPEC	93008124	03/04/2023	Annual
Signal Analyzer(10 Hz~26.5 GHz)	N9020A	Agilent	MY51110063	04/19/2023	Annual
ATTENUATOR(20 dB)	8493C	Hewlett Packard	17280	05/18/2023	Annual
Spectrum Analyzer (10 Hz~40 GHz)	FSV40	REOHDE & SCHWARZ	101436	02/25/2023	Annual
Base Station	8960 (E5515C)	Agilent	MY48360800	08/18/2022	Annual
Wideband Radio Communication Tester	MT8821C	Anritsu Corp.	6262287700	05/19/2023	Annual
SIGNAL GENERATOR (100 kHz~40 GHz)	SMB100A	REOHDE & SCHWARZ	177633	07/05/2022	Annual
Signal Analyzer(5 Hz~40.0 GHz)	N9030B	KEYSIGHT	MY55480167	05/30/2023	Annual
4-Way Divider	ZC4PD-K1844+	Mini-Circuits	942907	09/27/2022	Annual
FCC LTE Mobile Conducted RF Automation Test Software	-	HCT CO., LTD.,	-	-	-

Note:

- 1. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.
- 2. Espectially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

F-TP22-03 (Rev. 04) Page 10 of 18

Report No. HCT-RF-2206-FC006

5. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4:2014.

All measurement uncertainty values are shown with a coverage factor of k=2 to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (±dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	2.00 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (9 kHz ~ 30 MHz)	4.40 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (30 MHz ~ 1 GHz)	5.74 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (1 GHz ~ 18 GHz)	5.51 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (18 GHz ~ 40 GHz)	5.92 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (Above 40 GHz)	5.48 (Confidence level about 95 %, <i>k</i> =2)

F-TP22-03 (Rev. 04) Page 11 of 18

6. SUMMARY OF TEST RESULTS

6.1 Test Condition: Conducted Test

Test Description	FCC Part Section(s)	Test Limit	Test Result
Occupied Bandwidth	§ 2.1049	N/A	NT ^{Note3}
Band Edge / Spurious and Harmonic Emissions at Antenna Terminal.	§ 2.1051, § 96.41(e)	 I -13 dBm/Mhz at frequencies within 0-10 MHz of channel edge I -25 dBm/MHz at frequencies greater than 10 MHz above and below channel edge I -40 dBm/MHz at frequencies below 3530 MHz and above 3720 MHz 	NT ^{Note3}
Conducted Output Power	§ 2.1046	N/A	C^{Note1}
Frequency stability / variation of ambient temperature	§ 2.1055,	Emission must remain in band	NT ^{Note3}
End User Device Additional Requirements (CBSD Protocol)	§ 96.47	End User Devices may operate only if they can positively receive and decode an authorization signal transmitted by a CBSD, including the frequencies and power limits for their operation. An End User Device must discontinue operations, change frequencies, or change its operational power level within 10 seconds of receiving instructions from its associated CBSD.	NT ^{Note3}

Note:

- 1. See SAR Report
- 2. C = Comply, NT = Not Tested, NA = Not Applicable, NC = Not Comply
- 3. C2PC models are electrically identical to the Original models.

 The Product Equality Declaration includes detailed information about the changes between the devices.
- 4. The data from that application has been verified through appropriate spot checks to demonstrate compliance for this device as shown in the test result of section 8
- 5. Output power was verified to be within the expected tune up tolerances prior to performing the spot checks for radiated spurious emissions and Conducted power to confirm that the proposed changes to the digital circuitry had not adversely affected the previously reported values in the original filing.

F-TP22-03 (Rev. 04) Page 12 of 18

6.2 Test Condition: Radiated Test

Test Description	FCC Part Section(s)	Test Limit	Test Result
Equivalent Isotropic Radiated Power	§ 96.41(b)	23 dBm/10 MHz	CNote3
Radiated Spurious and	§ 2.1053,	-40 dBm/MHz	CNote3
Harmonic Emissions	§ 96.41(e)	,	Citotas

Note:

- 1. C = Comply, NT = Not Tested, NA = Not Applicable, NC = Not Comply
- 2. C2PC models are electrically identical to the Original models.

The Product Equality Declaration includes detailed information about the changes between the devices.

3. The data from that application has been verified through appropriate spot checks to demonstrate compliance for this device as shown in the test result of section 8

F-TP22-03 (Rev. 04) Page 13 of 18

7. SAMPLE CALCULATION

7.1 ERP Sample Calculation

Ch.	./ Freq.	Measured	Substitute	Ant. Gain	C.I. Dol		ERP	
channel	Freq.(MHz)	Level(dBm)	Level(dBm)	(dBd)	C.L	Pol.	W	dBm
128	824.20	-21.37	38.40	-10.61	0.95	Н	0.483	26.84

ERP = Substitute LEVEL(dBm) + Ant. Gain – CL(Cable Loss)

- 1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.
- 2) During the test , the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of effective radiated power.

7.2 EIRP Sample Calculation

Ch.	/ Freq.	Measured	Substitute	Ant. Gain	C.I. Pol		EIRP	
channel	Freq.(MHz)	Level(dBm)	Level(dBm)	(dBi)	C.L	Pol.	W	dBm
20175	1,732.50	-15.75	18.45	9.90	1.76	Н	0.456	26.59

EIRP = Substitute LEVEL(dBm) + Ant. Gain – CL(Cable Loss)

- 1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.
- 2) During the test, the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of equivalent isotropic radiated power.

F-TP22-03 (Rev. 04) Page 14 of 18

7.3. Emission Designator

GSM Emission Designator

Emission Designator = 249KGXW

GSM BW = 249 kHz

G = Phase Modulation

X = Cases not otherwise covered

W = Combination (Audio/Data)

WCDMA Emission Designator

Emission Designator = 4M17F9W

WCDMA BW = 4.17 MHz

F = Frequency Modulation

9 = Composite Digital Info

W = Combination (Audio/Data)

QAM Modulation

Emission Designator = 4M48W7D

LTE BW = 4.48 MHz

W = Amplitude/Angle Modulated

7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand

EDGE Emission Designator

Emission Designator = 249KG7W

GSM BW = 249 kHz

G = Phase Modulation

7 = Quantized/Digital Info

W = Combination (Audio/Data)

QPSK Modulation

Emission Designator = 4M48G7D

LTE BW = 4.48 MHz

G = Phase Modulation

7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand

F-TP22-03 (Rev. 04) Page 15 of 18

8. TEST DATA

8.1 EQUIVALENT ISOTROPIC RADIATED POWER

Mod (Bandwidth)	Freq (MHz)	Modulation	Original (MCLT77W968) (dBm)	C2PC (ACJ9TGWW22B) (dBm)	Deviation
LTE B48	2557.5	ODCK	22.00	21.06	1.93
(15 MHz)	3557.5	QPSK	22.99	21.00	1.93

Mode	Ch./ Freq.		Measured	Substitute	Ant.			Limit	EIRP	
	channel	Freq.(MHz)	Level (dBm)	Level (dBm)	Gain (dBd)	C.L	Pol.	dBm/ 10 MHz	W/ 10 MHz	dBm/ 10 MHz
LTE B48	55315	3557.5	-26.02	12.42	11.74	3.10	Н	< 23.00	0.128	21.06

F-TP22-03 (Rev. 04) Page 16 of 18

8.2 RADIATED SPURIOUS EMISSIONS

■ MODE: LTE B48

■ MODULATION SIGNAL: 20 MHz QPSK

■ DISTANCE: 1 meters

Freq (MHz)	Measured Freq (MHz)	Measured Level (dBm)	Ant. Gain (dBi)	Substitute Level (dBm)	C.L	Pol	Result (dBm)	Limit (dBm)
	7 250.00	-69.02	10.50	-59.40	4.52	Н	-53.42	-40.00
55990 (3625.0)	10 875.00	-69.59	11.85	-56.20	5.64	Н	-49.98	-40.00
(3023.0)	14 500.00	-63.12	13.40	-54.06	6.63	Н	-47.29	-40.00

Note:

1. All modes of operation were investigated and the worst case configuration results are reported.

F-TP22-03 (Rev. 04) Page 17 of 18

비

9. ANNEX A_ TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description
1	HCT-RF-2206-FC006-P

F-TP22-03 (Rev. 04) Page 18 of 18