EF3DV3 – SN:4060 May 21, 2021 | 10922 | 440 | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.82 | ± 9.6 % | |---|-----|---|----------------|-------|----------| | 10922 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10923 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10924 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.95 | ± 9.6 % | | 10925 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | | AAD | 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.94 | ± 9.6 % | | 10927 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 10928 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 110000000000000000000000000000000000000 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 10930 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10931 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10932 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10933 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10934 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10935 | AAA | 5G NR (DFT-s-OFDM, 1 KB, 30 km/z, qr 5K, 15 km/z) | 5G NR FR1 FDD | 5.90 | ± 9.6 % | | 10936 | AAC | 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QFSK, 15 KHz) | 5G NR FR1 FDD | 5.77 | ± 9.6 % | | 10937 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.90 | ± 9.6 % | | 10938 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 13 MHz, QFSK, 15 KHz) | 5G NR FR1 FDD | 5.82 | ± 9.6 % | | 10939 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.89 | ± 9.6 % | | 10940 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.83 | ± 9.6 % | | 10941 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QFSK, 15 KHz) | 5G NR FR1 FDD | 5.85 | ± 9.6 % | | 10942 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.95 | ± 9.6 % | | 10943 | AAB | 5G NR (DFT-s-OFDM, 30% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.81 | ± 9.6 % | | 10944 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 3 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.85 | ± 9.6 % | | 10945 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.83 | ± 9.6 % | | 10946 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.87 | ± 9.6 % | | 10947 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.94 | ± 9.6 % | | 10948 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QFSK, 15 kHz) | 5G NR FR1 FDD | 5.87 | ± 9.6 % | | 10949 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.94 | ± 9.6 % | | 10950 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.92 | ± 9.6 % | | 10951 | AAB | 5G NR (DF1-s-0-DM, 100 % RB, 50 MHz, QF3H, 10 KHz) 5G NR DL (CP-0-DM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.25 | ± 9.6 % | | 10952 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 KHz) | 5G NR FR1 FDD | 8.15 | ± 9.6 % | | 10953 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.23 | ± 9.6 % | | 10954 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.42 | ± 9.6 % | | 10955 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 10 KHz) | 5G NR FR1 FDD | 8.14 | ± 9.6 % | | 10956 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.31 | ± 9.6 % | | 10957 | AAC | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.61 | ± 9.6 % | | 10958 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.33 | ± 9.6 % | | 10959 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 35 KHz) | 5G NR FR1 TDD | 9.32 | ± 9.6 % | | 10960 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.36 | ± 9.6 % | | 10961 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.40 | ± 9.6 % | | 10962 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 13 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.55 | ± 9.6 % | | 10963 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 13 kHz) | 5G NR FR1 TDD | 9.29 | ± 9.6 % | | 10964 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.37 | ± 9.6 % | | 10965 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.55 | ± 9.6 % | | 10966 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.42 | ± 9.6 % | | 10967 | AAB | | 5G NR FR1 TDD | 9.49 | ± 9.6 % | | 10968 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 11.59 | ± 9.6 % | | 10972 | AAB | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 9.06 | ± 9.6 % | | 10973 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 10.28 | ± 9.6 % | | 10974 | AAB | 5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz) | 30 141 111 100 | 10.20 | 2 3.0 70 | $^{^{\}rm E}$ Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Certificate No: EF3-4060_May21 Page 22 of 22 ### ANNEX E DIPOLE CALIBRATION CERTIFICATE ### Dipole 835 MHz Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL (Auden) Certificate No: CD835V3-1023 Aug21 | | ERTIFICATE | | | |---|---|---|---| | Object | CD835V3 - SN: 1 | 023 | | | | QA CAL-20.v7 | | | | | Calibration Proce | dure for Validation Sources in air | | | | | | | | | | | | | Calibration date: | August 24, 2021 | | | | This calibration certificate document | ts the traceability to natio | onal standards, which realize the physical unit | ts of measurements (SI). | | The measurements and the uncerta | inties with confidence pr | robability are given on the following pages and | d are part of the certificate. | | | | , , | • | | All calibrations have been conducted | d in the closed laborator | y facility: environment temperature (22 ± 3)°C | and humidity = 70% | | The campitations have been conducted | d III the closed laborator | y facility. environment temperature (22 ± 3) c | and naminary < 70%. | | Calibration Equipment used (M&TE | critical for calibration) | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | | W. C. | 09-Apr-21 (No. 217-03343) | Apr-22 | | Reference 20 dB Attenuator | | | | | Reference 20 dB Attenuator Type-N mismatch combination | SN: BH9394 (20k)
SN: 310982 / 06327 | | (1) 1 (1) (1) (1) (1) (1) (1) (1) (1) (1 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference 20 dB Attenuator
Type-N mismatch combination
Probe EF3DV3
DAE4 | | | (1) 1 (1) (1) (1) (1) (1) (1) (1) (1) (1 | | Type-N mismatch combination
Probe EF3DV3 | SN: 310982 / 06327
SN: 4013 | 09-Apr-21 (No. 217-03344)
28-Dec-20 (No. EF3-4013_Dec20) | Apr-22
Dec-21 | | Type-N mismatch combination
Probe EF3DV3
DAE4
Secondary Standards | SN: 310982 / 06327
SN: 4013
SN: 781 | 09-Apr-21 (No. 217-03344)
28-Dec-20 (No. EF3-4013_Dec20) | Apr-22
Dec-21 | | Type-N mismatch combination
Probe EF3DV3 | SN: 310982 / 06327
SN: 4013
SN: 781 | 09-Apr-21 (No. 217-03344)
28-Dec-20 (No. EF3-4013_Dec20)
23-Dec-20 (No. DAE4-781_Dec20) | Apr-22
Dec-21
Dec-21 | | Type-N mismatch combination
Probe EF3DV3
DAE4
Secondary Standards | SN: 310982 / 06327
SN: 4013
SN: 781 | 09-Apr-21 (No. 217-03344)
28-Dec-20 (No. EF3-4013_Dec20)
23-Dec-20 (No. DAE4-781_Dec20)
Check Date (in house) | Apr-22
Dec-21
Dec-21
Scheduled Check | | Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A | SN: 310982 / 06327
SN: 4013
SN: 781
ID #
SN: GB42420191 | 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EF3-4013_Dec20) 23-Dec-20 (No. DAE4-781_Dec20) Check Date (in house) 09-Oct-09 (in house check Oct-20) | Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Oct-23 | | Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A | SN: 310982 / 06327
SN: 4013
SN: 781
ID #
SN: GB42420191
SN: US38485102 | 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EF3-4013_Dec20) 23-Dec-20 (No. DAE4-781_Dec20) Check Date (in house) 09-Oct-09 (in house check Oct-20) 05-Jan-10 (in house check Oct-20) | Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Oct-23 In house check: Oct-23 | | Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 | SN: 310982 / 06327
SN: 4013
SN: 781
ID #
SN: GB42420191
SN: US38485102
SN: US37295597 | 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EF3-4013_Dec20) 23-Dec-20 (No. DAE4-781_Dec20) Check Date (in house) 09-Oct-09 (in house check Oct-20) 05-Jan-10 (in house check Oct-20) 09-Oct-09 (in house check Oct-20) | Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Oct-23 In house check: Oct-23 In house check: Oct-23 | | Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 310982 / 06327
SN: 4013
SN: 781
ID #
SN: GB42420191
SN: US38485102
SN: US37295597
SN: 837633/005 | 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EF3-4013_Dec20) 23-Dec-20 (No. DAE4-781_Dec20) Check Date (in house) 09-Oct-09 (in house check Oct-20) 05-Jan-10 (in house check Oct-20) 09-Oct-09 (in house check Oct-20) 10-Jan-19 (in house check Oct-20) | Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Oct-23 In house check: Oct-23 In house check: Oct-23 In house check: Oct-23 | | Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 310982 / 06327
SN: 4013
SN: 781
ID #
SN: GB42420191
SN: US38485102
SN: US37295597
SN: 837633/005
SN: US41080477 | 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EF3-4013_Dec20) 23-Dec-20 (No. DAE4-781_Dec20) Check Date (in house) 09-Oct-09 (in house check Oct-20) 05-Jan-10 (in house check Oct-20) 10-Jan-19 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Oct-23 In house check: Oct-23 In house check: Oct-23 In house check: Oct-21 | | Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 | SN: 310982 / 06327
SN: 4013
SN: 781
ID #
SN: GB42420191
SN: US38485102
SN: US37295597
SN: 837633/005
SN: US41080477 | 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EF3-4013_Dec20) 23-Dec-20 (No. DAE4-781_Dec20) Check Date (in house) 09-Oct-09 (in house check Oct-20) 05-Jan-10 (in house check Oct-20) 09-Oct-09 (in house check Oct-20) 10-Jan-19 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function | Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Oct-23 In house check: Oct-23 In house check: Oct-23 In house check: Oct-21 | | Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 310982 / 06327
SN: 4013
SN: 781
ID #
SN: GB42420191
SN: US38485102
SN: US37295597
SN: 837633/005
SN: US41080477 | 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EF3-4013_Dec20) 23-Dec-20 (No. DAE4-781_Dec20) Check Date (in house) 09-Oct-09 (in house check Oct-20) 05-Jan-10 (in house check Oct-20) 09-Oct-09 (in house check Oct-20) 10-Jan-19 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function | Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Oct-23 In house check: Oct-23 In house check: Oct-23 In house check: Oct-21 | | Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by: | SN: 310982 / 06327
SN: 4013
SN: 781
ID #
SN: GB42420191
SN: US38485102
SN: US37295597
SN: 837633/005
SN: US41080477
Name
Leif Klysner | 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EF3-4013_Dec20) 23-Dec-20 (No. DAE4-781_Dec20) Check Date (in house) 09-Oct-09 (in house check Oct-20) 05-Jan-10 (in house check Oct-20) 09-Oct-09 (in house check Oct-20) 10-Jan-19 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function Laboratory Technician | Apr-22 Dec-21 Dec-21 Scheduled Check In house check: Oct-23 In house check: Oct-23 In house check: Oct-23 In house check: Oct-21 | Certificate No: CD835V3-1023_Aug21 Page 1 of 5 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### References [1] ANSI-C63.19-2019 (ANSI-C63.19-2011) American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. #### Methods Applied and Interpretation of Parameters: - Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms. - Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level. - Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy. - Feed Point Impedance and Return Loss: These parameters are measured using a Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles. - E-field distribution: E field is measured in the x-y-plane with an isotropic E-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: CD835V3-1023_Aug21 Page 2 of 5 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY5 | | |------------------------------------|-----------------|----------| | Phantom | DASYS | V52.10.4 | | | HAC Test Arch | | | Distance Dipole Top - Probe Center | 15 mm | | | Scan resolution | | | | Frequency | dx, $dy = 5 mm$ | | | | 835 MHz ± 1 MHz | | | Input power drift | | | | | < 0.05 dB | | ### Maximum Field values at 835 MHz | E-field 15 mm above dipole surface | 00444 | | | |------------------------------------|--------------------|--------------------------|--| | Maximum measured above high end | condition | Interpolated maximum | | | | 100 mW input power | 112.2 V/m = 41.00 dBV/m | | | Maximum measured above low end | 100 mW input power | | | | Averaged maximum above arm | | 108.3 V/m = 40.69 dBV/m | | | and to diffi | 100 mW input power | 110.3 V/m ± 12.8 % (k=2) | | # Appendix (Additional assessments outside the scope of SCS 0108) ### **Antenna Parameters** | Frequency | | | |-----------|-------------|-----------------------------| | 800 MHz | Return Loss | Impedance | | 835 MHz | 17.2 dB | 41.3 Ω - 9.3 jΩ | | 880 MHz | 24.6 dB | $53.0 \Omega + 5.2 j\Omega$ | | | 16.0 dB | | | 900 MHz | 16.6 dB | 62.4 Ω - 13.0 jΩ | | 945 MHz | | 52.4 Ω - 15.1 jΩ | | | 25.6 dB | 46.0 Ω + 3.0 jΩ | ### 3.2 Antenna Design and Handling The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals. Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected. After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. Certificate No: CD835V3-1023_Aug21 Page 3 of 5 ### Impedance Measurement Plot Certificate No: CD835V3-1023_Aug21 Page 4 of 5 ### **DASY5 E-field Result** Date: 24.08.2021 Test Laboratory: SPEAG Lab2 # DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: CD835V3 - SN: 1023 Communication System: UID 0 - CW ; Frequency: 835 MHz Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: - Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 835 MHz; Calibrated: 28.12.2020 - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn781; Calibrated: 23.12.2020 - Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole E-Field measurement @ 835MHz/E-Scan - 835MHz d=15mm/Hearing Aid Compatibility Test (41x361x1): Device Reference Point: 0, 0, -6.3 mm Reference Value = 133.6 V/m; Power Drift = -0.03 dB Applied MIF = 0.00 dB RF audio interference level = 41.00 dBV/m Emission category: M3 MIF scaled E-field | Grid 1 M3 | Grid 2 M3 | Grid 3 M3 | |------------------|-------------|--------------------------| | 40.62 dBV/m | 40.69 dBV/m | 40.38 dBV/m | | Grid 4 M4 | 0.1. | Grid 6 M4 | | 0 | Grid 8 M3 | Grid 9 M3
40.67 dBV/m | Certificate No: CD835V3-1023_Aug21 Page 5 of 5 ### Dipole 1880 MHz Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates | ient CTTL (Auden) | | Cert | ficate No: CD1880V3-1018_Aug21 | |--|--|---|--| | CALIBRATION C | ERTIFICATE | | | | Object | CD1880V3 - SN: | 1018 | | | Calibration procedure(s) | QA CAL-20.v7
Calibration Proce | dure for Validation Sourc | es in air | | Calibration date: | August 24, 2021 | | | | | ainties with confidence pr | robability are given on the following | nysical units of measurements (SI). pages and are part of the certificate. (22 ± 3)°C and humidity < 70%. | | Calibration Equipment used (M&TE | 1 | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/0329 | | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91
Reference 20 dB Attenuator | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Type-N mismatch combination | SN: BH9394 (20k)
SN: 310982 / 06327 | 09-Apr-21 (No. 217-03343) | Apr-22 | | Probe EF3DV3 | SN: 4013 | 09-Apr-21 (No. 217-03344)
28-Dec-20 (No. EF3-4013 Dec2 | Apr-22
20) Dec-21 | | DAE4 | SN: 781 | 23-Dec-20 (No. DAE4-781_Dec | 5550 - CONTROL CONTROL | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter Agilent 4419B | SN: GB42420191 | 09-Oct-09 (in house check Oct- | 20) In house check: Oct-23 | | Power sensor HP E4412A | SN: US38485102 | 05-Jan-10 (in house check Oct- | 20) In house check: Oct-23 | | Power sensor HP 8482A | SN: US37295597 | 09-Oct-09 (in house check Oct- | 20) In house check: Oct-23 | | RF generator R&S SMT-06 | SN: 837633/005 | 10-Jan-19 (in house check Oct- | | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct- | 20) In house check: Oct-21 | | | Name | Function | Signature | | Calibrated by: | Leif Klysner | Laboratory Technic | an Spitalist 1 | | | Katja Pokovic | Technical Manager | 11/1 | | Approved by: | raga i olovio | i ecimicai iviariagei | | Certificate No: CD1880V3-1018_Aug21 Page 1 of 5 Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### References ANSI-C63.19-2019 (ANSI-C63.19-2011) American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. #### Methods Applied and Interpretation of Parameters: - Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms. - Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level. - Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the - Feed Point Impedance and Return Loss: These parameters are measured using a Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles. - E-field distribution: E field is measured in the x-y-plane with an isotropic E-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any nonparallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface. | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by th | |---| | coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95% | Certificate No: CD1880V3-1018 Aug21 Page 2 of 5 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------------|------------------|----------| | Phantom | HAC Test Arch | | | Distance Dipole Top - Probe Center | 15 mm | | | Scan resolution | dx, dy = 5 mm | | | Frequency | 1880 MHz ± 1 MHz | | | Input power drift | < 0.05 dB | | #### Maximum Field values at 1880 MHz | E-field 15 mm above dipole surface | condition | Interpolated maximum | |------------------------------------|--------------------|-------------------------| | Maximum measured above high end | 100 mW input power | 87.1 V/m = 38.80 dBV/m | | Maximum measured above low end | 100 mW input power | 86.1 V/m = 38.70 dBV/m | | Averaged maximum above arm | 100 mW input power | 86.6 V/m ± 12.8 % (k=2) | ### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters** | Frequency | Return Loss | Impedance | |-----------|-------------|------------------| | 1730 MHz | 28.3 dB | 54.0 Ω + 0.2 jΩ | | 1880 MHz | 21.6 dB | 55.0 Ω + 7.1 jΩ | | 1900 MHz | 22.6 dB | 56.8 Ω + 4.1 jΩ | | 1950 MHz | 34.0 dB | 52.0 Ω - 0.1 jΩ | | 2000 MHz | 19.4 dB | 47.1 Ω + 10.1 jΩ | ### 3.2 Antenna Design and Handling The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth. The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals. Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected. After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. Certificate No: CD1880V3-1018_Aug21 Page 3 of 5 ### Impedance Measurement Plot Certificate No: CD1880V3-1018_Aug21 Page 4 of 5