

FCC PART 15.247

TEST REPORT

For

UNNECTO HOLDING LIMITED

13/F HARBOUR COMMERCIAL BUILDING, 122-124 CONNAUGHT ROAD CENTRAL SHEUNG WAN, HONG KONG

FCC ID: 2ADR3U510

Report Type:		Product Type:		
Class II Permissive Change		3G Mobile Phone		
Test Engineer:	Sonia Zhou	Sonia Zhon		
Report Number:	RSZ160523005	-00BA1		
Report Date:	2016-05-25			
	Rocky Kang	Racky Kang		
Reviewed By:	RF Engineer			
Prepared By:	6/F, the 3rd Pha	3320018 3320008		

Note: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

Bay Area Compliance Laboratories Corp. (Shenzhen)

TABLE OF CONTENTS

GENERAL INFORMATION	
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
Test Facility	4
SYSTEM TEST CONFIGURATION	5
DESCRIPTION OF TEST CONFIGURATION	
Equipment Modifications	5
SUPPORT EQUIPMENT LIST AND DETAILS	
EXTERNAL I/O CABLE	5
BLOCK DIAGRAM OF TEST SETUP	6
SUMMARY OF TEST RESULTS	7
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	8
APPLICABLE STANDARD	
Measurement Uncertainty	
EUT SETUP	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
CORRECTED FACTOR & MARGIN CALCULATION	
Test Results Summary Test Data	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
Measurement Uncertainty	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
Test Results Summary	
TEST DATA	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The UNNECTO HOLDING LIMITED's product, model number: U510(FCC ID: 2ADR3U510) or the "EUT" in this report was a 3G Mobile Phone, which was measured approximately: 115mm (L) × 61 mm (W) × 11 mm (H), rated with input voltage: DC 3.7V battery and DC 5V from adaptor.

Adaptor Information: Model: CU-510 Input: 100-240Vac 50/60Hz 150mA Output: DC5.0V-700mA

*All measurement and test data in this report was gathered from production sample serial number: 1602309. (Assigned by Shenzhen BACL). The EUT supplied by the applicant was received on 2016-05-23.

Objective

This report is prepared on behalf of *UNNECTO HOLDING LIMITED* in accordance with Part 2-Subpart J, Part 15-Subparts A, B and C of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

This is a class II permissive change base on the original report STS1412031F03 with FCC ID: 2ADR3U510 which was granted on 2015-01-05 for change an adapter, so the change will just affect the test data of "AC Line Conducted Emissions and Radiated Emissions below 1 GHz", all the other test data can be referred to the original report STS1412031F03.

Related Submittal(s)/Grant(s)

FCC Part 15B JBP, Part 15.247 DSS submissions with FCC ID: 2ADR3U510.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement uncertainty with RF radiated emission is 5.81 dB for 30MHz-1GHz and 4.88 dB for above 1GHz, 1.95dB for conducted measurement.

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on October 31, 2013. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.10-2013.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For 802.11b, 802.11g and 802.11n-HT20 mode, 11 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432	/	/
6	2437	/	/
7	2442	/	/

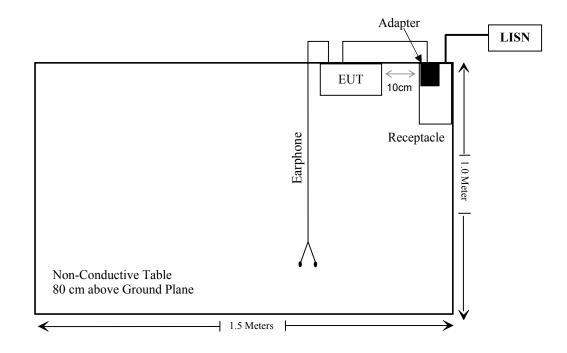
For 802.11b, 802.11g, 802.11n-HT20 mode, EUT was tested with Channel 1, 6 and 11.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number	
N/A	Receptacle	N/A	N/A	


External I/O Cable

Cable Description	Length (m)	From Port	То
Un-Shielding Detachable USB Cable	1.0	Adapter	EUT

Bay Area Compliance Laboratories Corp. (Shenzhen)

Block Diagram of Test Setup

For conducted emission

SUMMARY OF TEST RESULTS

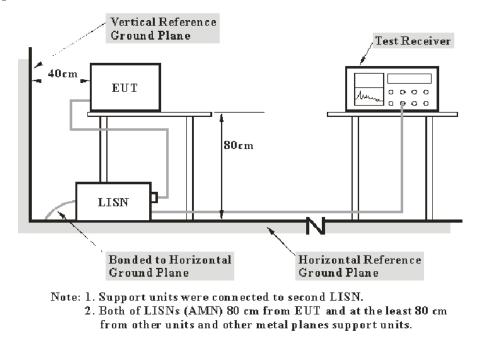
FCC Rules	Description of Test	Result
§15.247 (i), §1.1307 (b) (1)& §2.1093	RF Exposure	Compliance*
§15.203	Antenna Requirement	Compliance*
§15.207 (a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
§15.247 (a)(2)	6 dB Emission Bandwidth	Compliance*
§15.247(b)(3)	Maximum Conducted Output Power	Compliance*
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliance*
§15.247(e)	Power Spectral Density	Compliance*

Compliance*: Please refer to the original report STS1412031F03 with FCC ID: 2ADR3U510 which was granted on 2015-01-05

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207


Measurement Uncertainty

Input quantities to be considered for conducted disturbance measurements maybe receiver reading, attenuation of the connection between LISN and receiver, LISN voltage division factor, LISN VDF frequency interpolation and receiver related input quantities, etc.

Based on CISPR 16-4-2:2011, the expended combined standard uncertainty of conducted disturbance test at Bay Area Compliance Laboratories Corp. (Shenzhen) is shown as below. And the uncertainty will not be taken into consideration for the test data recorded in the report.

Port	Expanded Measurement uncertainty
AC Mains	3.34 dB (k=2, 95% level of confidence)
CAT 3	3.72 dB (k=2, 95% level of confidence)
CAT 5	3.74 dB (k=2, 95% level of confidence)
CAT 6	4.54 dB (k=2, 95% level of confidence)

EUT Setup

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

FCC Part 15.247

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCS30	100176	2015-06-01	2016-05-31
Rohde & Schwarz	LISN	ENV216	3560.6650.12- 101613-Yb	2015-12-15	2016-12-14
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2016-05-14	2017-05-14
Rohde & Schwarz	CE Test software	EMC 32	V8.53	NCR	NCR
Ducommun technologies	Conducted Emission Cable	RG-214	CB031	2015-06-15	2016-06-15

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Correction Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Bay Area Compliance Laboratories Corp. (Shenzhen)

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207, the worst margin reading as below:

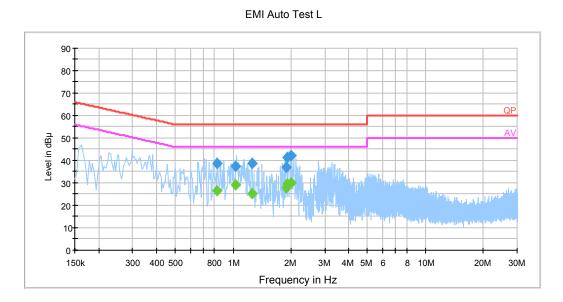
13.5 dB at 0.325110 MHz in the Neutral conducted mode

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

 $L_{\rm m} + U_{(Lm)} \leq L_{\rm lim} + U_{\rm cispr}$

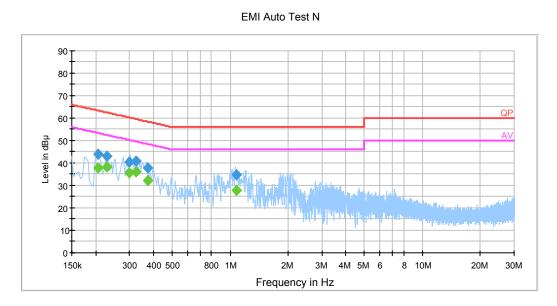
In BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

Test Data


Environmental Conditions

Temperature:	25 °C
Relative Humidity:	58 %
ATM Pressure:	101.0 kPa

The testing was performed by Sonia Zhou on 2016-05-24.


EUT operation mode: Communication

AC 120V/60 Hz, Line

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
0.825610	38.5	19.9	56.0	17.5	QP
0.825610	26.5	19.9	46.0	19.5	Ave.
1.030310	37.3	20.0	56.0	18.7	QP
1.030310	29.1	20.0	46.0	16.9	Ave.
1.251250	38.7	20.0	56.0	17.3	QP
1.251250	25.2	20.0	46.0	20.8	Ave.
1.881710	37.1	20.0	56.0	18.9	QP
1.881710	28.0	20.0	46.0	18.0	Ave.
1.913170	41.2	20.0	56.0	14.8	QP
1.913170	29.7	20.0	46.0	16.3	Ave.
1.992210	42.2	20.0	56.0	13.8	QP
1.992210	30.1	20.0	46.0	15.9	Ave.

AC 120V/60 Hz, Neutral

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
0.205500	44.1	20.0	63.4	19.3	QP
0.205500	37.9	20.0	53.4	15.5	Ave.
0.229500	43.0	20.0	62.5	19.5	QP
0.229500	38.2	20.0	52.5	14.3	Ave.
0.297470	40.6	19.9	60.4	19.8	QP
0.297470	35.5	19.9	50.3	14.8	Ave.
0.325110	40.9	19.9	59.6	18.7	QP
0.325110	36.1	19.9	49.6	13.5	Ave.
0.372450	37.9	19.9	58.5	20.6	QP
0.372450	32.3	19.9	48.4	16.1	Ave.
1.081990	34.8	20.0	56.0	21.2	QP
1.081990	27.8	20.0	46.0	18.2	Ave.

Note:

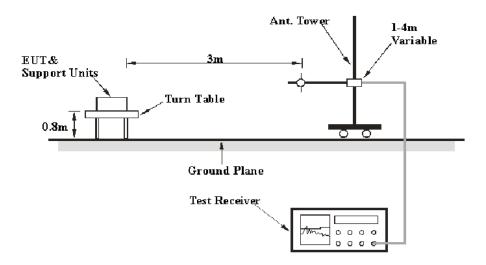
1) Correction Factor =LISN VDF (Voltage Division Factor) + Cable Loss + Transient Limiter Attenuation

2) Corrected Amplitude = Reading + Correction Factor3) Margin = Limit - Corrected Amplitude

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;


Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on CISPR 16-4-2:2011, the expended combined standard uncertainty of radiation emissions at Bay Area Compliance Laboratories Corp. (Shenzhen) is 5.81 dB for 30MHz-1GHz and 4.88 dB for above 1GHz, 1.95dB for conducted measurement at antenna port. And the uncertainty will not be taken into consideration for the test data recorded in the report

EUT Setup

Below 1 GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 1 GHz.

During the radiated emission test, the EMI test receiver was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz.

Test Equipment List and Details

Manufacturer	Description	Model Serial Number		Calibration Date	Calibration Due Date	
HP	Amplifier	HP8447E	1937A01046	2015-05-06	2017-05-06	
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2015-12-15	2016-12-14	
Sunol Sciences	Bi-log Antenna	JB1	A040904-2	2014-12-07	-12-07 2017-12-06	
TDK	TDK Chamber		2#	2013-10-15	2016-10-15	
R&S	Auto test Software	EMC32	V9.10	NCR	NCR	
Ducommun technologies	RF Cable	UFA210A-1- 4724-30050U	MFR64369 223410-001	2015-06-15	2016-06-15	
Ducommun technologies	RF Cable	104PEA	218124002	2015-06-15	2016-06-15	
Ducommun technologies	RF Cable	RG-214	1	2015-06-15	2016-06-15	
Ducommun technologies	RF Cable	RG-214	2	2015-06-15	2016-06-15	

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247.

5.14 dB at 31.93 MHz in the Vertical polarization

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

 $L_{\rm m} + U_{(Lm)} \leq L_{\rm lim} + U_{\rm cispr}$

In BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

Test Data

Environmental Conditions

Temperature:	25 ℃		
Relative Humidity:	58 %		
ATM Pressure:	101.0 kPa		

The testing was performed by Sonia Zhou on 2016-05-24

EUT operation mode: Communication

30 MHz-1 GHz:

(1,111)	Receiver		Turntable	Rx Antenna		Corrected	Corrected	FCC Part 15.247	
	Reading	Detector (PK/QP/Ave.)	Degree	Height (m)	Polar (H / V)	Factor (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
31.93	36.46	QP	123	1.4	V	-1.6	34.86	40	5.14
34.41	25.45	QP	23	1.2	Н	-3.5	21.95	40	18.05
38.69	35.56	QP	146	2.4	Н	-6.6	28.96	40	11.04
40.00	29.21	QP	57	2.1	V	-7.5	21.71	40	18.29
150.13	26.30	QP	240	1.8	V	-7.8	18.50	43.5	25.00
833.45	20.43	QP	301	2.7	Н	2.0	22.43	46	23.57

Note:

Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor Corrected Amplitude = Corrected Factor + Reading Margin = Limit - Corrected. Amplitude

The other spurious emission which is 20dB to the limit was not recorded.

Above 1 GHz

The test data above 1 GHz please refer to the original report STS1412031F03 with FCC ID: 2ADR3U510 which was granted on 2015-01-05.

***** END OF REPORT *****