DECLARATION OF COMPLIANCE FCC PARTS 24(E) & 22(H) EMC MEASUREMENTS #### **Test Lab** #### **CELLTECH LABS INC.** **Testing and Engineering Services** 1955 Moss Court Kelowna, B.C. Canada V1Y 9L3 Phone: 250-448-7047 Fax: 250-448-7046 e-mail: info@celltechlabs.com web site: www.celltechlabs.com #### **Applicant Information** #### ITRONIX CORPORATION 801 South Stevens Street Spokane, WA 99204 FCC Rule Part(s): 47 CFR §24(E), §22(H), §2 IC Rule Part(s): RSS-133 Issue 2, RSS-129 Issue 2 Test Procedure(s): FCC 47 CFR §24(E), §22(H), §2; ANSI TIA/EIA-603-A-2001 IC RSS-133 Issue 2, RSS-129 Issue 2 FCC Device Classification: PCS Licensed Transmitter (PCB) IC Device Classification: 2GHz Personal Communication Services (RSS-133 Issue 2) 800MHz CDMA Cellular Transmitter (RSS-129 Issue 2) Device Type: Rugged Laptop PC with Sierra Wireless AirCard 555/550 Dual-Band PCS/Cellular CDMA PCMCIA Modem Card (co-located with Cisco MPI-350 Mini-PCI DSSS WLAN Card & Mitsumi WML-C11 Bluetooth Transmitter) with Vehicle Cradle, & MaxRad Mobile Vehicle-Mount Antenna FCC ID: KBCIX260MPIA555BT Model(s): IX260 Tx Frequency Range: 1851.25 - 1908.75 MHz (PCS CDMA) 824.70 - 848.31 MHz (Cellular CDMA) Max. RF Output Power: 0.104 Watts EIRP (PCS CDMA) 0.086 Watts ERP (Cellular CDMA) Conducted Power Tested: 23.0 dBm (PCS CDMA) 23.0 dBm (Cellular CDMA) Emission Designator(s): 1M25F9W Antenna Type: Mobile Vehicle Antenna (MaxRad P/N: WMLPVDB800/1900 - 3 dBi Gain) Power Supply: 12V Vehicle Battery This wireless device has demonstrated compliance with the applicable technical standards as indicated in the measurement report, and was tested in accordance with the measurement procedures specified in FCC 47 CFR §24(E), §22(H), §2, Industry Canada RSS-133 Issue 2, RSS-129 Issue 2, and ANSI TIA/EIA-603-A-2001. I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc. The results and statements contained in this report pertain only to the device(s) evaluated. Russell Pipe **Senior Compliance Technologist** sull W. Ruse Celltech Labs Inc. | | TABLE OF CONTENTS | | | | | | |--|--|-----|--|--|--|--| | 1.1 | SCOPE | 3 | | | | | | 1.2 | GENERAL INFORMATION - §2.1033(a) | 3 | | | | | | 2.1 | MEASUREMENT PROCEDURES | 4 | | | | | | 2.2 | RF Output Power - §2.1046 | 4 | | | | | | 2.3 | Effective Isotropic Radiated Power Output - §24.232(b) | 4 | | | | | | 2.4 | Effective Radiated Power Output - §22.913 | 4 | | | | | | 2.5 | Field Strength of Spurious Radiation - §2.1053 | 5 | | | | | | 2.6 | Radiated Measurement Test Setup | 5 | | | | | | 3.1 | TEST DATA | 6 | | | | | | 3.2 | Effective Isotropic Radiated Power Output - §24.232(b) | 6 | | | | | | 3.3 | Effective Radiated Power Output - §22.913 | 6 | | | | | | 3.4 | Field Strength of Spurious Radiation - §2.1053 | 7-9 | | | | | | 4.1 | LIST OF TEST EQUIPMENT | 10 | | | | | | 5.1 | CONCLUSION | 11 | | | | | | APPENDIX A - RADIATED TEST SETUP PHOTOGRAPHS | | | | | | | © 2003 Celltech Labs Inc. 2 of 12 # FCC PARTS 24(E) & 22(H) EMC MEASUREMENT REPORT ## 1.1 SCOPE Measurement and determination of electromagnetic emissions (EME) from radio frequency devices for compliance with the technical rules and regulations of the Federal Communications Commission and Industry Canada. # 1.2 GENERAL INFORMATION - §2.1033(a) ## **APPLICANT** ## **ITRONIX CORPORATION** 801 South Stevens Street Spokane, WA 99204 | FCC ID | KBCIX260MPIA555BT | |-------------------------------------|---| | Model(s) | IX260 | | Serial No. | ZZGEG3135ZZ1409 (Identical Prototype) | | EUT Type | Rugged Laptop PC with Sierra Wireless AirCard 555/550 Dual-Band PCS/Cellular CDMA PCMCIA Modem Card (co-located with Cisco MPI-350 Mini-PCI DSSS WLAN Card & Mitsumi WML-C11 Bluetooth Transmitter) with Vehicle Cradle, & Mobile Vehicle-Mount Antenna | | Rule Part(s) | FCC 47 CFR §24(E), §22(H), §2
IC RSS-133 Issue 2, RSS-129 Issue 2 | | FCC Classification | Licensed Base Station for Part 24 (PCB) | | IC Classification | 2GHz Personal Communication Services (RSS-133 Issue 2)
800MHz CDMA Cellular Transmitter (RSS-129 Issue 2) | | Tx Frequency Range | 1851.25 - 1908.75 MHz (PCS CDMA)
824.70 - 848.31 MHz (Cellular CDMA) | | Max. RF Output Power | 0.104 Watts EIRP (PCS CDMA)
0.086 Watts ERP (Cellular CDMA) | | RF Conducted Output
Power Tested | 23.0 dBm (PCS CDMA)
23.0 dBm (Cellular CDMA) | | Emission Designator | 1M25F9W | | Frequency Tolerance | 150 Hz (PCS CDMA)
300 Hz (Cellular CDMA) | | Power Supply | 12V Vehicle Battery | | Antenna Type | Mobile Vehicle-Mount Antenna
(MaxRad P/N: WMLPVDB800/1900 - 3 dBi Gain) | ## 2.1 MEASUREMENT PROCEDURES ## 2.2 RF OUTPUT POWER MEASUREMENT - §2.1046 The average conducted power levels were measured with a Gigatronics 8650A Universal Power Meter using modulated average power mode. An offset was entered into the power meter to correct for the losses of the attenuator and cable installed before the sensor input. The transmitter terminal was coupled to the power meter and the EUT was placed into test mode via internal software. All subsequent tests were performed using the same tune-up procedures. | Conducted Power Measurements | | | | | | | |-----------------------------------|------|--|--|--|--|--| | Frequency (MHz Average Power (dBm | | | | | | | | 824.70 | 23.0 | | | | | | | 835.89 | 23.0 | | | | | | | 848.31 | 23.0 | | | | | | | 1851.25 | 23.0 | | | | | | | 1880.00 | 23.0 | | | | | | | 1908.75 | 23.0 | | | | | | ## 2.3 EFFECTIVE ISOTROPIC RADIATED POWER OUTPUT - §24.232(b) EIRP measurements were performed using the Signal Substitution Method in accordance with ANSI TIA/EIA-603-A-2001 on a 3-meter open area test site. The EUT was placed on a turntable 3-meters from the receive antenna and placed into test mode via internal software in the "always up" power control mode. The field of maximum intensity was found by rotating the EUT approximately 360 degrees and changing the height of the receive antenna from 1 to 4 meters. Once a peak was found the spectrum analyzer was set to peak hold and the value of the emission was extracted. The field strength was recorded for each channel being tested, and for both EUT antenna polarizations. A standard gain horn antenna was substituted in place of the EUT. A CDMA signal was fed through a directional coupler to the antenna and the power at the coupler port was monitored. A signal generator and power amplifier controlled the antenna, and the input level of the antenna was adjusted to the same field strength level as the EUT. The feed point for the antenna was then connected to a calibrated power meter and the power adjusted to read the same as the coupler port previously recorded, this is to account for any mismatch in impedance, which may occur at the horn antenna. The conducted power at the antenna feed point was recorded. The forward conducted power for the horn antenna was determined by measuring the power at the horn antenna feed point and reproducing the coupler power previously measured. The EIRP level was determined by adding the horn forward conducted power and the horn antenna gain. ## 2.4 EFFECTIVE RADIATED POWER OUTPUT - §22.913 ERP measurements were performed using the Signal Substitution Method in accordance with ANSI TIA/EIA-603-A-2001 on a 3-meter open area test site. The EUT was placed on a turntable 3-meters from the receive antenna and placed into test mode via internal software in the "always up" power control mode. The field of maximum intensity was found by rotating the EUT approximately 360 degrees and changing the height of the receive antenna from 1 to 4 meters. Once a peak was found the spectrum analyzer was set to peak hold and the value of the emission was extracted. The field strength was recorded for each channel being tested, and for both EUT antenna polarizations. A half-wave dipole antenna was substituted in place of the EUT. A CDMA signal was fed through a directional coupler to the dipole antenna and the power at the coupler port was monitored. A signal generator and power amplifier controlled the antenna, and the input level of the antenna was adjusted to the same field strength level as the EUT. The feed point for the antenna was then connected to a calibrated power meter and the power adjusted to read the same as the coupler port previously recorded. This was to account for any mismatch in impedance, which may occur at the dipole antenna. The conducted power at the antenna feed point was recorded. The forward conducted power for the dipole antenna was determined by measuring the power at the dipole antenna feed point and reproducing the coupler power previously measured. The ERP level was determined by adding the dipole forward conducted power and the dipole antenna gain. ## 2.5 FIELD STRENGTH OF SPURIOUS RADIATION - §2.1053 Radiated spurious emissions were measured on a 3-meter open area test site using the Signal Substitution Method in accordance with ANSI TIA/EIA-603-A-2001. The EUT was placed into test mode via internal software in the "always up" power control mode. The EUT was placed on the turntable with the transmitter transmitting into a non-radiating load. A receiving antenna located 3 meters from the turntable received any signal radiated from the transmitter and its operating accessories. The receiving antenna was varied in height from 1 to 4 meters and the polarization was varied (horizontal and vertical) to determine the worst-case emission level. A standard gain horn antenna was substituted in place of the EUT. A CDMA signal was fed through a directional coupler to the antenna and the power at the coupler port was monitored. A signal generator and power amplifier controlled the antenna, and the input level of the antenna was adjusted to the same field strength level as the EUT. The feed point for the antenna was then connected to a calibrated power meter and the power was adjusted to read the same power at the coupler port previously recorded, this is to account for any mismatch in impedance, which may occur at the horn antenna. The conducted power at the antenna feed point was then recorded. The forward conducted power for the horn antenna was determined by measuring the power at the horn antenna feed point and reproducing the coupler power previously measured. The EIRP level was determined by adding the horn forward conducted power and the horn antenna gain. All spurious emissions from the lowest radio frequency generated in the equipment to the tenth harmonic of the carrier were investigated. #### 2.6 RADIATED MEASUREMENT TEST SETUP Figure 1. Radiated Measurement Test Setup Diagram - Horn Antenna Figure 2. Radiated Measurement Test Setup Diagram - Dipole Antenna ## 3.1 TEST DATA # 3.2 EFFECTIVE ISOTROPIC RADIATED POWER OUTPUT - §24.232(b) ## **PCS CDMA** | Freq.
Tuned | EUT
Conducted
Power | Maximum
Field
Strength
of EUT | Antenna
Polariz. | Horn
Gain | Horn
Forward
Conducted
Power | Horn
Horn F | of EUT
Gain
H
orward
ed Power | |----------------|---------------------------|--|---------------------|--------------|---------------------------------------|----------------|---| | MHz | dBm | dBm | H/V | dBi | dBm | dBm | Watts | | 1851.25 | 23.0 | -17.55 | V | 6.55 | 13.61 | 20.16 | 0.104 | | 1880.00 | 23.0 | -19.73 | V | 6.58 | 12.10 | 18.68 | 0.074 | | 1908.75 | 23.0 | -20.08 | V | 6.61 | 11.96 | 18.57 | 0.072 | # 3.3 EFFECTIVE RADIATED POWER OUTPUT - §22.913 ## **CELLULAR CDMA** | Freq.
Tuned | EUT
Conducted
Power | Maximum
Field
Strength
of EUT | Antenna
Polariz. | Dipole
Gain | Dipole
Forward
Conducted
Power | Dipole | of EUT
e Gain
-
Forward
ed Power | |----------------|---------------------------|--|---------------------|----------------|---|--------|--| | MHz | dBm | dBm | H / V | dBd | dBm | dBm | Watts | | 824.70 | 23.0 | -18.84 | V | - 1.34 | 19.98 | 18.64 | 0.073 | | 835.89 | 23.0 | -16.82 | V | - 1.19 | 20.55 | 19.36 | 0.086 | | 848.31 | 23.0 | -18.16 | V | - 1.04 | 18.60 | 17.56 | 0.057 | #### 3.4 FIELD STRENGTH OF SPURIOUS RADIATION - §2.1053 Operating Frequency (MHz): 1851.25 Channel: 25 (Low) EUT Conducted Pwr. (dBm): 23.0 Measured EIRP (dBm): 20.16 PCS CDMA Mode: Distance: 3 Meters 43 + 10 log (W) = 33.17 dBc Limit: | Frequency | Field
Strength
of
Spurious
Radiation | Horn Forward
Conducted
Power | Standard
Gain Horn
Antenna Gain | POL | EIRP | ERP | dBc | |-----------|--|------------------------------------|---------------------------------------|-----|--------|--------|-------| | MHz | dBm | dBm | dBi | H/V | dBm | dBm | | | 3702.50 | -76.87 | -43.98 | 6.6 | V | -37.38 | -39.52 | 59.68 | | 5553.75 | -76.53 | -38.73 | 7.8 | ٧ | -30.93 | -33.07 | 53.23 | | 7405.00 | -75.49 | -38.91 | 7.8 | V | -31.11 | -33.25 | 53.41 | | 9256.25 | -75.80 | -37.78 | 7.6 | V | -30.18 | -32.32 | 52.48 | | 11107.50 | -75.33 | -38.97 | 8.5 | V | -30.47 | -32.61 | 52.77 | | 12958.75 | -74.48 | -36.60 | 8.8 | V | -27.80 | -29.94 | 50.10 | | 14810.00 | -75.11 | -37.23 | 9.6 | V | -27.63 | -29.77 | 49.93 | | 16661.25 | -75.42 | -37.59 | 9.0 | V | -28.59 | -30.73 | 50.89 | | 18512.50 | -75.26 | -39.05 | 9.3 | V | -29.75 | -31.89 | 52.05 | ## FIELD STRENGTH OF SPURIOUS RADIATION - §2.1053 Operating Frequency (MHz): 1880.00 600 (Mid) Channel: **EUT Conducted Pwr. (dBm):** 23.0 Measured EIRP (dBm): 18.68 Mode: **PCS CDMA** Distance: 3 Meters Limit: 43 + 10 log (W) = 31.69 dBc | Frequency | Field
Strength
of
Spurious
Radiation | Horn Forward
Conducted
Power | Standard
Gain Horn
Antenna Gain | POL | EIRP | ERP | dBc | |-----------|--|------------------------------------|---------------------------------------|-----|--------|--------|-------| | MHz | dBm | dBm | dBi | H/V | dBm | dBm | | | 3760.00 | -75.03 | -42.14 | 6.6 | V | -35.54 | -37.68 | 56.36 | | 5640.00 | -75.64 | -37.84 | 7.8 | ٧ | -30.04 | -32.18 | 50.86 | | 7520.00 | -74.93 | -38.35 | 7.8 | ٧ | -30.55 | -32.69 | 51.37 | | 9400.00 | -74.59 | -36.57 | 7.6 | ٧ | -28.97 | -31.11 | 49.79 | | 11280.00 | -75.32 | -38.96 | 8.5 | ٧ | -30.46 | -32.60 | 51.28 | | 13160.00 | -75.76 | -37.88 | 8.8 | V | -29.08 | -31.22 | 49.90 | | 15040.00 | -74.81 | -36.93 | 9.6 | V | -27.33 | -29.47 | 48.15 | | 16920.00 | -74.40 | -36.57 | 9.0 | V | -27.57 | -29.71 | 48.39 | | 18800.00 | -73.96 | -37.75 | 9.3 | V | -28.45 | -30.59 | 49.27 | ## FIELD STRENGTH OF SPURIOUS RADIATION - §2.1053 Operating Frequency (MHz): 1908.75 Channel: 1175 (High) EUT Conducted Pwr. (dBm): 23.0 Measured EIRP (dBm): 18.57 Mode: PCS CDMA Distance: 3 Meters Limit: 43 + 10 log (W) = 31.57 dBc | Frequency | Field
Strength
of
Spurious
Radiation | Horn Forward
Conducted
Power | Standard
Gain Horn
Antenna Gain | POL | EIRP | ERP | dBc | |-----------|--|------------------------------------|---------------------------------------|-----|--------|--------|-------| | MHz | dBm | dBm | dBi | H/V | dBm | dBm | | | 3817.50 | -75.82 | -42.93 | 6.6 | V | -36.33 | -38.47 | 57.04 | | 5726.25 | -75.43 | -37.63 | 7.8 | V | -29.83 | -31.97 | 50.54 | | 7635.00 | -75.16 | -38.58 | 7.8 | V | -30.78 | -32.92 | 51.49 | | 9543.75 | -74.95 | -36.93 | 7.6 | V | -29.33 | -31.47 | 50.04 | | 11452.50 | -74.51 | -38.15 | 8.5 | V | -29.65 | -31.79 | 50.36 | | 13361.25 | -73.77 | -35.89 | 8.8 | V | -27.09 | -29.23 | 47.80 | | 15270.00 | -73.26 | -35.38 | 9.6 | V | -25.78 | -27.92 | 46.49 | | 17178.75 | -72.80 | -34.97 | 9.0 | V | -25.97 | -28.11 | 46.68 | | 19087.50 | -73.11 | -36.90 | 9.3 | V | -27.60 | -29.74 | 48.31 | #### FIELD STRENGTH OF SPURIOUS RADIATION - §2.1053 Mode: Cellular CDMA Distance: 3 Meters Limit: 43 + 10 log (W) = 31.63 dBc | Frequency | Field
Strength
of
Spurious
Radiation | Horn Forward
Conducted
Power | Standard
Gain Horn
Antenna Gain | POL | EIRP | ERP | dBc | |-----------|--|------------------------------------|---------------------------------------|-----|--------|--------|-------| | MHz | dBm | dBm | dBi | H/V | dBm | dBm | | | 1649.40 | -72.41 | -39.52 | 6.6 | V | -32.92 | -35.06 | 53.70 | | 2474.10 | -73.66 | -35.86 | 7.8 | > | -28.06 | -30.20 | 48.84 | | 3298.80 | -75.90 | -39.32 | 7.8 | ٧ | -31.52 | -33.66 | 52.30 | | 4123.50 | -76.34 | -38.32 | 7.6 | V | -30.72 | -32.86 | 51.50 | | 4948.20 | -76.83 | -40.47 | 8.5 | ٧ | -31.97 | -34.11 | 52.75 | | 5772.90 | -77.15 | -39.27 | 8.8 | V | -30.47 | -32.61 | 51.25 | | 6597.60 | -75.68 | -37.80 | 9.6 | ٧ | -28.20 | -30.34 | 48.98 | | 7422.30 | -75.02 | -37.19 | 9.0 | ٧ | -28.19 | -30.33 | 48.97 | | 8247.00 | -74.97 | -38.76 | 9.3 | ٧ | -29.46 | -31.60 | 50.24 | #### FIELD STRENGTH OF SPURIOUS RADIATION - §2.1053 Operating Frequency (MHz): 835.89 Channel: 363 (Mid) EUT Conducted Pwr. (dBm): 23.0 Measured ERP (dBm): 19.36 Mode: Cellular CDMA Distance: 3 Meters Limit: 43 + 10 log (W) = 32.34 dBc | Frequency | Field
Strength
of
Spurious
Radiation | Horn Forward
Conducted
Power | Standard
Gain Horn
Antenna Gain | POL | EIRP | ERP | dBc | |-----------|--|------------------------------------|---------------------------------------|-----|--------|--------|-------| | MHz | dBm | dBm | dBi | H/V | dBm | dBm | | | 1671.78 | -84.55 | -51.66 | 6.6 | V | -45.06 | -47.20 | 66.56 | | 2507.67 | -84.06 | -46.26 | 7.8 | V | -38.46 | -40.60 | 59.96 | | 3343.56 | -84.83 | -48.25 | 7.8 | V | -40.45 | -42.59 | 61.95 | | 4179.45 | -85.47 | -47.45 | 7.6 | V | -39.85 | -41.99 | 61.35 | | 5015.34 | -85.78 | -49.42 | 8.5 | V | -40.92 | -43.06 | 62.42 | | 5851.23 | -84.60 | -46.72 | 8.8 | V | -37.92 | -40.06 | 59.42 | | 6687.12 | -84.13 | -46.25 | 9.6 | V | -36.65 | -38.79 | 58.15 | | 7523.01 | -83.56 | -45.73 | 9.0 | V | -36.73 | -38.87 | 58.23 | | 8358.90 | -83.93 | -47.72 | 9.3 | V | -38.42 | -40.56 | 59.92 | ## FIELD STRENGTH OF SPURIOUS RADIATION - §2.1053 Operating Frequency (MHz): 848.31 Channel: 777 (High) EUT Conducted Pwr. (dBm): 23.0 Measured ERP (dBm): 17.56 Mode: Cellular CDMA Distance: 3 Meters Limit: 43 + 10 log (W) = 30.56 dBc | Frequency | Field
Strength
of
Spurious
Radiation | Horn Forward
Conducted
Power | Standard
Gain Horn
Antenna Gain | POL | EIRP | ERP | dBc | |-----------|--|------------------------------------|---------------------------------------|-----|--------|--------|-------| | MHz | dBm | dBm | dBi | H/V | dBm | dBm | | | 1696.62 | -73.23 | -40.34 | 6.6 | V | -33.74 | -35.88 | 53.44 | | 2544.93 | -74.61 | -36.81 | 7.8 | V | -29.01 | -31.15 | 48.71 | | 3393.24 | -75.30 | -38.72 | 7.8 | ٧ | -30.92 | -33.06 | 50.62 | | 4241.55 | -76.46 | -38.44 | 7.6 | V | -30.84 | -32.98 | 50.54 | | 5089.86 | -77.38 | -41.02 | 8.5 | ٧ | -32.52 | -34.66 | 52.22 | | 5938.17 | -77.79 | -39.91 | 8.8 | V | -31.11 | -33.25 | 50.81 | | 6786.48 | -75.03 | -37.15 | 9.6 | ٧ | -27.55 | -29.69 | 47.25 | | 7634.79 | -74.81 | -36.98 | 9.0 | ٧ | -27.98 | -30.12 | 47.68 | | 8483.10 | -75.57 | -39.36 | 9.3 | ٧ | -30.06 | -32.20 | 49.76 | # **4.1 TEST EQUIPMENT LIST** | | TEST EQUIPMENT LIST | | | | | | | |----------------------------------|------------------------------------|------------|----------------------|--|--|--|--| | Equipment Type | Model | Serial No. | Calibration Due Date | | | | | | HP Signal Generator | 8648D (9kHz-4.0GHz) | 3847A00611 | Feb 2004 | | | | | | Rohde & Schwarz Signal Generator | SMR40 (10MHz-40GHz) | 835537/022 | Nov 2003 | | | | | | Gigatronics Power Meter | 8652A | 1835272 | Feb 2004 | | | | | | Gigatronics Power Sensor | 80701A (0.05-18GHz) | 1833535 | Feb 2004 | | | | | | Gigatronics Power Sensor | 80701A (0.05-18GHz) | 1833542 | Feb 2004 | | | | | | Amplifier Research Power Amp. | 5S1G4 (5W, 800MHz-4.2GHz) | 26235 | N/A | | | | | | Microwave System Amplifier | HP 83017A (0.5-26.5GHz) | 3123A00587 | N/A | | | | | | Network Analyzer | HP 8753E (30kHz-3GHz) | US38433013 | Feb 2004 | | | | | | Audio Analyzer | HP 8903B | 3729A18691 | Nov 2003 | | | | | | Modulation Analyzer | HP 8901A | 3749A07154 | July 2003 | | | | | | Frequency Counter | HP 53181A (3GHz) | 3736A05175 | May 2003 | | | | | | DC Power Supply | HP E3611A | KR83015294 | N/A | | | | | | Multi-Device Controller | EMCO 2090 | 9912-1484 | N/A | | | | | | Mini Mast | EMCO 2075 | 0001-2277 | N/A | | | | | | Turntable | EMCO 2080-1.2/1.5 | 0002-1002 | N/A | | | | | | Double Ridged Horn Antenna | ETS 3115 (1-18GHz) | 6267 | Oct. 2003 | | | | | | Double Ridged Horn Antenna | ETS 3115 (1-18GHz) | 6276 | Oct. 2003 | | | | | | Horn Antenna | Chase BBHA 9120-A (0.7-4.8GHz) | 9120A-239 | Sept 2003 | | | | | | Horn Antenna | Chase BBHA 9120-A (0.7-4.8GHz) | 9120A-240 | Sept 2003 | | | | | | Roberts Dipoles | Compliance Design (2 sets) 3121C | | June 2003 | | | | | | Spectrum Analyzer | HP 8594E | 3543A02721 | Feb 2004 | | | | | | Spectrum Analyzer | HP E4408B | US39240170 | Dec 2003 | | | | | | Shielded Screen Room | Lindgren R.F. 18W-2/2-0 | 16297 | N/A | | | | | | Environmental Chamber | ESPEC ECT-2 (Temperature/Humidity) | 0510154-B | Feb 2004 | | | | | ## **5.1 CONCLUSION** The data in this measurement report demonstrates that the ITRONIX CORPORATION Model: IX260 Rugged Laptop PC FCC ID: KBCIX260MPIA555BT with Sierra Wireless AirCard 555/550 Dual-Band PCS/Cellular CDMA PCMCIA Modem Card (colocated with Cisco MPI-350 Mini-PCI DSSS WLAN Card and Mitsumi WML-C11 Bluetooth Transmitter), Vehicle Cradle, and MaxRad Mobile Vehicle-Mount Antenna (P/N: WMLPVDB800/1900), complies with the requirements of FCC Rule Parts §24(E), §22(H), §2.