DASY5 Validation Report for Head TSL Date: 18.07.2022 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1003 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.35 \text{ S/m}$; $\varepsilon_r = 38.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.67, 8.67, 8.67) @ 1750 MHz; Calibrated: 31.12.2021 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.05.2022 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.5 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 9.19 W/kg; SAR(10 g) = 4.82 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 53.4% Maximum value of SAR (measured) = 14.3 W/kg 0 dB = 14.3 W/kg = 11.55 dBW/kg # Impedance Measurement Plot for Head TSL Certificate No: D1750V2-1003_Jul22 Page 6 of 6 # 1900 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL (Auden) Certificate No: D1900V2-5d101_Jul22 | | D1900V2 - SN:50 | 1101 | | |---|--|--|--| | | QA CAL-05.v11
Calibration Proce | dure for SAR Validation Sources | between 0.7-3 GHz | | Calibration date: | July 26, 2022 | | | | This calibration certificate document | ts the traceability to nation | onal standards, which realize the physical unit | ts of measurements (SI). | | The measurements and the uncertain | inties with confidence pr | obability are given on the following pages and | d are part of the certificate. | | All calibrations have been conducted | d in the closed laborator | y facility: environment temperature (22 ± 3)°C | and humidity < 70%. | | Calibration Equipment used (M&TE | critical for calibration) | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Type-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-21 (No. EX3-7349 Dec21) | Dec-22 | | DAE4 | SN: 601 | 02-May-22 (No. DAE4-601_May22) | May-23 | | | ID# | Check Date (in house) | Scheduled Check | | Secondary Standards | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | | | | | | Power meter E4419B | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power meter E4419B
Power sensor HP 8481A | | 07-Oct-15 (in house check Oct-20)
07-Oct-15 (in house check Oct-20) | In house check: Oct-22
In house check: Oct-22 | | Power meter E4419B
Power sensor HP 8481A
Power sensor HP 8481A | SN: US37292783 | CONTROL OF THE CONTRO | | | Power meter E4419B
Power sensor HP 8481A
Power sensor HP 8481A
RF generator R&S SMT-06 | SN: US37292783
SN: MY41093315 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power meter E4419B
Power sensor HP 8481A
Power sensor HP 8481A
RF generator R&S SMT-06 | SN: US37292783
SN: MY41093315
SN: 100972 | 07-Oct-15 (in house check Oct-20)
15-Jun-15 (in house check Oct-20) | In house check: Oct-22
In house check: Oct-22 | | Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by: | SN: US37292783
SN: MY41093315
SN: 100972
SN: US41080477 | 07-Oct-15 (in house check Oct-20)
15-Jun-15 (in house check Oct-20)
31-Mar-14 (in house check Oct-20) | In house check: Oct-22
In house check: Oct-22
In house check; Oct-22 | Certificate No: D1900V2-5d101_Jul22 Page 1 of 6 ## Calibration Laboratory of S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d101_Jul22 Page 2 of 6 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.7 ± 6 % | 1.38 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.90 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.7 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.18 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.7 W/kg ± 16.5 % (k=2) | Certificate No: D1900V2-5d101_Jul22 Page 3 of 6 # Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.1 Ω + 4.3 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 26.5 dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.202 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: D1900V2-5d101_Jul22 ### **DASY5 Validation Report for Head TSL** Date: 26.07.2022 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d101 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.38 \text{ S/m}$; $\varepsilon_r = 38.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.43, 8.43, 8.43) @ 1900 MHz; Calibrated: 31.12.2021 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 02.05.2022 • Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.0 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 9.90 W/kg; SAR(10 g) = 5.18 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 54.1% Maximum value of SAR (measured) = 15.5 W/kg 0 dB = 15.5 W/kg = 11.90 dBW/kg Certificate No: D1900V2-5d101_Jul22 ## Impedance Measurement Plot for Head TSL Certificate No: D1900V2-5d101_Jul22 Page 6 of 6 # 2450 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Cartificate No. D2450V2-853 Jul22 | ent CTTL (Auden) | | Cel | rtificate No: D2450V2-853_Jul22 | |--|------------------------------------|--------------------------------------|--| | CALIBRATION C | ERTIFICATE | | | | Object | D2450V2 - SN:85 | 53 | | | Calibration procedure(s) | QA CAL-05.v11
Calibration Proce | dure for SAR Validation | Sources between 0.7-3 GHz | | Calibration date: | July 20, 2022 | | | | | inties with confidence pr | robability are given on the followin | ohysical units of measurements (SI). g pages and are part of the certificate. e (22 ± 3)°C and humidity < 70%. | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/0352 | 24) Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Type-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-21 (No. EX3-7349_Dec | 21) Dec-22 | | DAE4 | SN: 601 | 02-May-22 (No. DAE4-601_Ma | y22) May-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct- | | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct- | A CONTRACTOR OF THE | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct- | | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct- | | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct | | | | Name | Function | Signature | | Calibrated by: | Aidonia Georgiadou | Laboratory Technic | The state of s | | Approved by: | Sven Kühn | Technical Manager | 5.4 | | This calibration certificate shall not | be reproduced except in | full without written approval of the | Issued: July 22, 2022 | Certificate No: D2450V2-853_Jul22 Page 1 of 6 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. | Certificate No: D2450V2-853_Jul22 | Page 2 of 6 | | |-----------------------------------|-------------|--| # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.9 ± 6 % | 1.85 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.5 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.7 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.29 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.9 W/kg ± 16.5 % (k=2) | Certificate No: D2450V2-853_Jul22 # Appendix (Additional assessments outside the scope of SCS 0108) # Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.3 Ω + 4.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.3 dB | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.162 ns | |----------------------------------|----------| | Ziodireai Zeity (tire tire) | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D2450V2-853_Jul22 Page 4 of 6 ### **DASY5 Validation Report for Head TSL** Date: 20.07.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:853 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.85$ S/m; $\varepsilon_r = 37.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 31.12.2021 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.05.2022 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 116.2 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 26.6 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.29 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50.6% Maximum value of SAR (measured) = 22.2 W/kg 0 dB = 22.2 W/kg = 13.47 dBW/kg Certificate No: D2450V2-853_Jul22 Page 5 of 6 # Impedance Measurement Plot for Head TSL Certificate No: D2450V2-853_Jul22 Page 6 of 6 # **5GHz Dipole Calibration Certificate** Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL (Auden) Certificate No: D5GHzV2-1262 Jan22 # CALIBRATION CERTIFICATE Object D5GHzV2 - SN:1262 Calibration procedure(s) **QA CAL-22.v6** Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: January 27, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 3503 | 31-Dec-21 (No. EX3-3503 Dec21) | Dec-22 | | DAE4 | SN: 601 | 01-Nov-21 (No. DAE4-601_Nov21) | Nov-22 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | Name | Function | Signature | | Calibrated by: | Aldonia Georgiadou | Laboratory Technician | Tes | | Approved by: | Sven Kühn | Deputy Manager | (+ | Certificate No: D5GHzV2-1262_Jan22 Page 1 of 8 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Issued: January 27, 2022 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1262_Jan22 Page 2 of 8 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz | | ### Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.9 ± 6 % | 4.52 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.15 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | | |---|--------------------|--------------------------|--| | SAR measured | 100 mW input power | 2.33 W/kg | | | SAR for nominal Head TSL parameters | normalized to 1W | 23.1 W/kg ± 19.5 % (k=2) | | ## Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.4 ± 6 % | 4.87 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.51 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 84.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.41 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.9 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1262_Jan22 Page 3 of 8 # Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.2 ± 6 % | 5.02 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.19 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.31 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.8 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1262_Jan22 # Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 49.9 Ω - 4.0 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 27.8 dB | | ### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 51.5 Ω + 1.0 j Ω | |--------------------------------------|--------------------------------| | Return Loss | - 34.9 dB | #### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 53.3 Ω + 1.4 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 29.2 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.193 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|----------| | | 5, 2, 10 | Certificate No: D5GHzV2-1262_Jan22 ### **DASY5 Validation Report for Head TSL** Date: 27.01.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1262 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; σ = 4.52 S/m; ϵ_r = 34.9; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 4.87 S/m; ϵ_r = 34.4; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 5.02 S/m; ϵ_r = 34.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz; Calibrated: 31.12.2021 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - · Electronics: DAE4 Sn601; Calibrated: 01.11.2021 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 79.04 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 28.0 W/kg SAR(1 g) = 8.15 W/kg; SAR(10 g) = 2.33 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 69.9% Maximum value of SAR (measured) = 18.9 W/kg Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.74 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 31.4 W/kg SAR(1 g) = 8.51 W/kg; SAR(10 g) = 2.41 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 67.6% Maximum value of SAR (measured) = 20.3 W/kg Certificate No: D5GHzV2-1262_Jan22 Page 6 of 8 # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.87 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 31.9 W/kg ### SAR(1 g) = 8.19 W/kg; SAR(10 g) = 2.31 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 65.8% Maximum value of SAR (measured) = 19.9 W/kg 0 dB = 20.3 W/kg = 13.07 dBW/kg Certificate No: D5GHzV2-1262 Jan22 ## Impedance Measurement Plot for Head TSL Certificate No: D5GHzV2-1262_Jan22 Page 8 of 8 # **ANNEX I** Sensor Triggering Data Summary | ANT | P-Sensor Detect | Triggering distances | |-----------------|-----------------|----------------------| | Main | Rear | 15 mm | | Antenna | Right | 10 mm | | Antenna | Top | 15 mm | | WIEI | Rear | 14 mm | | WIFI
Antenna | Left | 11 mm | | Antenna | Top | 12 mm | According to the above description, this device was tested to check the SAR sensor triggering distances for the rear, right edge and top edge of the device. The measured power state within \pm 5mm of the triggering points (or until touching the phantom) is included for rear and each applicable edge. To ensure all production units are compliant it is necessary to test SAR at a distance 1mm less than the smallest distance from the device and SAR phantom with the device at maximum output power without power reduction. We monitor power changes with software built in the EUT and got the different proximity sensor triggering distances for rear, right edge and top edge. But the manufacture 15mm (rear/ top edge) /10mm (right edge) for Main Antenna, 14mm (rear) /11mm (left edge) /12mm (top edge) for WIFI Antenna. Therefore, base on the most conservative triggering distances as above, additional SAR measurements were required at 14mm (rear/ top edge) /9mm (right edge) for Main Antenna, 13mm (rear) /10mm (left edge) /11mm (top edge) for WIFI Antenna. ### **Main Antenna** ## Rear/Top Moving device toward the phantom: | The power state | | | | | | | | | | | | |-----------------|-----|-----|-----|-----|--------|-----|-----|-----|-----|-----|-----| | Distance [mm] | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | | Main antenna | Low | Low | Low | Low | Normal | Low | Low | Low | Low | Low | Low | Moving device away from the phantom: | The power state | | | | | | | | | | | | |-----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | Distance [mm] | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | Main antenna | Low ### Right Moving device toward the phantom: | | The power state | | | | | | | | | | | | | | |---|-----------------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|--|--| | Distance [mm] 15 14 13 12 11 10 9 8 7 6 5 | | | | | | | | | | | | | | | | Main antenna | Normal | Normal | Low | | | Moving device away from the phantom: | The power state | | | | | | | | | | | | | | |-----------------|---|-----|-----|-----|-----|-----|-----|-----|-----|--------|--------|--|--| | Distance [mm] | Distance [mm] 5 6 7 8 9 10 11 12 13 14 15 | | | | | | | | | | | | | | Main antenna | Low Normal | Normal | | | The influence of table tilt angles to proximity sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distance by rotating the device around the edge next to the phantom in $\leq 10^{\circ}$ increments until the tablet is $\pm 45^{\circ}$ or more from the vertical position at 0° . The Rear/Top evaluation The Top edge evaluation ## **WIFI Antenna** ### Rear Moving device toward the phantom: | | The power state | | | | | | | | | | | | | | |---|-----------------|--------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|--| | Distance [mm] 19 18 17 16 15 14 13 12 11 10 9 | | | | | | | | | | | | 9 | | | | Main a | antenna | Normal | Normal | Low | | Moving device away from the phantom: | The power state | | | | | | | | | | | | | | |---|-----|-----|-----|-----|-----|-----|-----|-----|-----|--------|--------|--|--| | Distance [mm] 9 10 11 12 13 14 15 16 17 18 19 | | | | | | | | | | | | | | | Main antenna | Low Normal | Normal | | | ### Left Moving device toward the phantom: | | The power state | | | | | | | | | | | | | | | |--|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|--|--|--| | Distance [mm] 16 15 14 13 12 11 10 9 8 7 6 | | | | | | | | | | | | | | | | | Main antenna | Low | | | | Moving device away from the phantom: | The power state | | | | | | | | | | | | | | |--|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|--| | Distance [mm] 6 7 8 9 10 11 12 13 14 15 16 | | | | | | | | | | | | | | | Main antenna | Low | | **Top**Moving device toward the phantom: | | The power state | | | | | | | | | | | | | | |---|-----------------|--------|--------|-----|-----|-----|-----|-----|-----|-----|-----|--|--|--| | Distance [mm] 17 16 15 14 13 12 11 10 9 8 7 | | | | | | | | | | | | | | | | Main antenna | Normal | Normal | Normal | Low | | | Moving device away from the phantom: | | The power state | | | | | | | | | | | | | | |---------------|---|-----|-----|-----|-----|-----|-----|-----|--------|--------|--------|--|--|--| | Distance [mm] | Distance [mm] 7 8 9 10 11 12 13 14 15 16 17 | | | | | | | | | | | | | | | Main antenna | Low Normal | Normal | Normal | | | | The influence of table tilt angles to proximity sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distance by rotating the device around the edge next to the phantom in $\leq 10^{\circ}$ increments until the tablet is $\pm 45^{\circ}$ or more from the vertical position at 0° . The Rear evaluation The Left edge evaluation The Right edge evaluation Based on the above evaluation, we come to the conclusion that the sensor triggering is not released and normal maximum output power is not restored within the $\pm 45^{\circ}$ range at the smallest sensor triggering test distance declared by manufacturer. # **ANNEX J Accreditation Certificate** United States Department of Commerce National Institute of Standards and Technology # Certificate of Accreditation to ISO/IEC 17025:2017 NVLAP LAB CODE: 600118-0 # Telecommunication Technology Labs, CAICT Beijing China is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for: ### **Electromagnetic Compatibility & Telecommunications** This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009). 2022-10-01 through 2023-09-30 Effective Dates For the National Voluntary Laboratory Accreditation Program